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Analytical one-dimensionless study of unsteady heat transfer in bilayer, and three-layer materials

The main objective of this work is to give an application of the heat transfer equation to study in the first moments, the heat flow by conduction through composite materials along the real axis (Ox). We will first give an analytical study based on separate variables method (SVM). Next, we will discuss the behavior of heat transfer as a function of the thermo-physical properties of the two materials such as conductivities, diffusivities, thicknesses and Biot numbers. Finally, we will pass to the case of three-layer, in which the correspondence with the first case is given. The graphs are obtained from Maple program.

Introduction

Heat transfer by conduction has been described since the end of the 19th century by J. Fourier after numerous experiments. Since that time, several works in various fields of physics and outside physics, whether theoretical physics, material physics, biology and even electronics, have been interested in studying this phenomenon as well as its equation. We refer the reader to [START_REF] Hs Carlsaw | Conduction of heat in solids[END_REF] for general and basic background. From a mathematical point of view, several types of the heat equation are developed as the nonlinear case. See [START_REF] Latif | Non-linear conduction problems[END_REF] for basic presentation, and [START_REF] Stefan | Implicit euler time discretization and fdm with newton method in nonlinear heat transfer modeling[END_REF] for numerical resolution. We find also the fractional type in [START_REF] Singh | Fractional order heat equation in higher space-time dimensions[END_REF] and the references therein. In physical picture, we find a very rich research. We mention not exclusively, the study of multiple slabs in [START_REF] De | An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[END_REF], and [START_REF] De | Unsteady heat conduction in two-dimensional two slabshaped regions. exact closed-form solution and results[END_REF] for multi-dimensional study of two slab-shaped regions. Monte Carlo methods are also used for solving the heat transfer problems. See [START_REF] Haji | The oating random walk and its application to Monte carlo solutions of heat equations[END_REF] for good presentation, and [START_REF] Deng | Monte carlo method to solve multidimensional bioheat transfer problem[END_REF] for an important application to the bio-heat equation inside biological bodies. With regard to the relationship of heat to energy conservation in buildings, we refer the reader to the reference [START_REF] Chihab | Energy performance of earthen walls in a hot climate of Morocco[END_REF] where there is a recent applied study. In electronic, we find the use of graphene for reducing hot spots in electronic circuit [START_REF] Subrina | Graphene heat spreaders for thermal management of nanoelectronic circuits[END_REF]. Also, in [START_REF] Belghazi | Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source[END_REF], one can find some fundamental detail in the study of heat transfer in a bilayer material formed by splats deposited on a substrate subjected to a moving Gaussian laser beam where the thermal resistance between the two contact surfaces (TCR) was considered. This study is applicable in the treatment of surfaces. Recently, we find a great importance given to the inverse heat problems where we can determine certain thermo-physical properties knowing the behavior of heat flow. We site [START_REF] Oleg | Analysis of statements and solution methods for inverse heat transfer problems[END_REF] as a fundamental reference, and [START_REF] Cicek | Inverse source problem for a time-fractional heat equation with generalized impedance boundary condition[END_REF] for concrete example.

In our paper, we shall go in the sense of studying the transfer problem by conduction across a bilayer and three-layer materials. Along this work, we will adopt the same notations as used in [START_REF] De | Transient heat conduction in one-dimensional composite slab. a 'natural' analytic approach[END_REF] with some small modifications. Firstly, the SVM is used to solve the two heat equations in the two slabs with the associated boundary and initial conditions. The total procedure is well detailed showing how to obtain the so called Eigen-problem whose solutions called roots are used to give the explicit form of the heat transfer. Then, using orthogonal properties between the two solutions we get the integral constants, and thus, the final form of the solutions. For simplicity, we will use in all our calculus dimensionless parameters as explained in [START_REF] De | Transient heat conduction in one-dimensional composite slab. a 'natural' analytic approach[END_REF]. Then, according to the material's thermo-physical properties, we can explain how the transfer heat change. In the last point, we consider the case of three slabs where we repeat the analytical algorithm used above, and show that we can pass to the solution of the two slabs.

Bilayer Material

We consider a material composed of two different regions S 1 , and S 2 (cf. figure 1) with perfect contact. The thermo-physical properties of the two layers are: Conductivity k i , diffusivity α i , specific heat Cp i , density ρ i , and thickness a i . The convection coefficients in both sides are h i . All for i = 1, 2 (in this section). The two layers are maintained respectively at the two initial temperatures T 01 , and T 02 . For simplicity, we adopt the change of variable

θ i (x, t) = T amb -T i (x, t)
where T amb is the ambient temperature assumed to be constant and uniform, and T i the space-time depending temperature of the two layers. We will omit the dependence (x, t) below and it will be automatic. The one-dimensional heat 

∂ 2 θ i ∂x 2 = 1 α i ∂θ i ∂t (1) 
with the set of boundary conditions (BCs) at the edges

-k 1 ∂θ 1 ∂x x=-a1 + h 1 θ 1 | x=-a1 = 0, k 2 ∂θ 2 ∂x x=a2 + h 2 θ 2 | x=a2 = 0 (2)
On the contact surface, we have continuity of temperatures and discontinuity on heat flux

θ 2 | x=0 = θ 1 | x=0 , k 1 ∂θ 1 ∂x x=0 = k 2 ∂θ 2 ∂x x=0 (3) 
The initial conditions (ICs) for each layer are supposed constants

θ 0i = T amb -T 0i (4) 
Now, we have a full solvable system constructed by equations ( 1), ( 2), (3), and (4). According to SVM, we can write for each layer i

θ i (x, t) = X i (x).G i (t) (5) 
By injecting in (1), we can separate the two parts for each layer

1 X i d 2 X i dx 2 = 1 α i G i dG i dt = -λ 2 i
where we keep α i for the part time. We have chosen negative constants -λ 2 i by the convergence stress in G i (t). Therefore, the solutions are written as

X i (x) = A i cos(λ i x) + B i sin(λ i x), (6) 
G i (t) = exp(-α i λ 2 i t) (7) 
A i and B i are integration constants. t ≥ 0, -a 1 ≤ x ≤ 0 for the first layer (i = 1), and 0 ≤ x ≤ a 2 for the second one (i = 2). Thus, we are solved our problem formally. It remains the determination of all the constants A i , B i and λ i . For this, we need to use all conditions (2), (3), and (4). The two equations in [START_REF] Latif | Non-linear conduction problems[END_REF] give

A 1 = -B 1 k 1 cos(λ 1 a 1 )λ 1 + h 1 sin(λ 1 a 1 ) k 1 sin(λ 1 a 1 )λ 1 -h 1 cos(λ 1 a 1 ) , A 2 = B 2 k 2 cos(λ 2 a 2 )λ 2 + h 2 sin(λ 2 a 2 ) k 2 sin(λ 2 a 2 )λ 2 -h 2 cos(λ 2 a 2 )
By defining the function

R i (λ i ) = k i cos(λ i a i )λ i + h i sin(λ i a i ) k i sin(λ i a i )λ i -h i cos(λ i a i ) (8) 
we can write

A i = (-1) i-1 B i R i (λ i ) (9) 
From the continuity and discontinuity conditions (3), we obtain

A 1 = A 2 , (10) 
λ 2 1 λ 2 2 = α 2 α 1 , (11) 
B 2 = k 1 λ 1 k 2 λ 2 B 1 (12) 
To reduce the number of parameters, it is useful to use immediately the dimensionless group defined by

ω = α 1 α 2 , κ = k 2 k 1 , γ = a 2 a 1 (13) 
and the Biot numbers

Biot i = h i a 1 k 1 (14) 
Thus, we can transform the function defined in (8) as

R i (λ i ) → P i (β) = (κω) i-1 β + Biot i tg((ωγ) i-1 β) Biot i -(κω) i-1 βtg((ωγ) i-1 β)
where we introduce the dimensionless unknown constant

β = a 1 λ 1
The relations ( 9), [START_REF] Belghazi | Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source[END_REF], and ( 12) become respectively

A i = (-1) i-1 B i P i (β), (15) 
λ 2 = ωλ 1 , (16) 
B 2 = B 1 κω (17) 
From the three relations ( 10), (15), and (17) we construct our solutions (( 6) and ( 7)) by imposing

B 1 = B X 1 (ξ) = B (P 1 (β)cos(βξ) + sin(βξ)) , G 1 (τ ) = exp(-β 2 τ ), X 2 (ξ) = B P (β)cos(ωβξ) + 1 κω sin(ωβξ) , G 2 (τ ) = exp(-β 2 τ ) ( 18 
)
in which we introduce the two dimensionless time and space coordinates

τ = α 1 a 2 1 t, ξ = x a 1
with τ ≥ 0, -1 ≤ ξ ≤ 0 for the first layer, and 0 ≤ ξ ≤ γ for the second one. So, we need to determine the constants B and β. For B, this can be done by using initial conditions and the orthogonal property of X i . For β, using the same relations ( 10), (15), and (17) we can define an eigen-problem described by the following equation [START_REF] De | Transient heat conduction in one-dimensional composite slab. a 'natural' analytic approach[END_REF] 

E(β) = P 1 (β) + P 2 (β) κω = 0 (19)
The non-vanishing values of β verified (19) are called eigenvalues. Since it is mentioned in [START_REF] De | Transient heat conduction in one-dimensional composite slab. a 'natural' analytic approach[END_REF] that negative and positive eigenvalues are absolutely equal, we shall restrict our calculus to the positive ones. In Fig. 2, we plot for example, 20 first roots of E(β) for ω = 0.5, κ = 1.5, γ = 1.5, Biot 1 = 1.5, and Biot 2 = 2.5. 1 illustrates the roots obtained by implementing Newton method in Maple software simulation with a relative tolerance of 10 -5 . As a result, we obtain equidistance roots. (Fig. 3). Therefore, we will generate a second positive integer n characterizing beta dependence: X i (ξ) → X i,n (ξ) (and similarly for G and B), and the solution (5) will be a linear combination with respect to n where we isolate B from X

θ i (ξ, τ ) = ∞ n=1 B n X i,n (ξ)G i,n (τ ) (20) 
Now, we move on to determine the constants B n . First of all, we know [14] that the functions X i,n (ξ) satisfy the orthogonality relationship

κ 0 -1 X 1,n (ξ)X 1,m (ξ)dξ + (κω) 2 γ 0 X 2,n (ξ)X 2,m (ξ)dξ = δ nm ϕ n (21) 
In which we have (we limit ourselves to the integral form because the explicit form is relatively long) Taking into account this last expression and initial conditions (4), we obtain the expression of the constants B n

ϕ n = κ 0 -1 X 1,n (ξ) 2 dξ + (κω) 2 γ 0 X 2,n (ξ) 2 dξ
B n = κ ϕ n 0 -1 θ 01 X 1,n (ξ)dξ + κω 2 γ 0 θ 02 X 2,n (ξ)dξ
If we introduce the dimensionless temperatures

F i = θ 0i θ 01 and Θ i = θ i θ 01
then, we explicitly get the resulted dimensionless constants C as defined

C n = B n θ 01 = κ ϕ n β n × {cos(β n ) + P 1 (β n )sin(β n ) -1 + F 2 (1 -cos(ωγβ n ) -P 2 (β n )sin(ωγβ n ))} (22)
Finally, by combining the two relations (19) and ( 22), we obtain the analytic solution as

Θ i (ξ, τ ) = ∞ n=1 C n X i,n (ξ)G i,n (τ ) (23) 
So we are solved analytically by SVM our problem of heat transfer through the two layers. Note that the unsteady equilibrium temperature between the two slabs is given by

T eq = √ k 1 ρ 1 Cp 1 T 01 + √ k 2 ρ 2 Cp 2 T 02 √ k 1 ρ 1 Cp 1 + √ k 2 ρ 2 Cp 2
where Cp i and ρ i (i = 1, 2) are respectively specific heat and density material.

Since thermal diffusivity is related on these properties and k i by

α i = k i ρ i Cp i
we obtain by simple calculus the dimensionless equilibrium temperature

F eq = T amb -T eq T amb -T 01 = √ κωF 2 + 1 √ κω + 1 ( 24 
)
After sufficient time, all temperatures go to T amb , and Θ i goes to 0. We can regroup the two temperatures in single expression describing the whole material as

Θ(ξ, τ ) = Θ 1 (ξ, τ ) if -1 ≤ ξ ≤ 0 Θ 2 (ξ, τ ) if 0 ≤ ξ ≤ γ
The error is defined as the relative difference at zero time between calculated temperature obtained by (23) and our initial conditions (F 1 = 1 for the first layer and F 2 for the second)

(ξ) = 1 -Θ 1 (ξ, 0) if -1 ≤ ξ ≤ 0 1 F2 (F 2 -Θ 2 (ξ, 0)) if 0 ≤ ξ ≤ γ
We will notice in section 4 that becomes negligible as soon as we exceed the 20th root, the reason why, we stopped in the sum (23) at order 20.

Three-layer situation

The previous case is easily generalized to three-layer material [START_REF] De | An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[END_REF]. We shall adopt the same notation as used above. Figure [START_REF] Singh | Fractional order heat equation in higher space-time dimensions[END_REF] shows a representation of this material then, our problem is well described by the equation (1) and the following BCs and ICs

-k 1 ∂θ 1 ∂x x=-a1 + h 1 θ 1 | x=-a1 = 0, k 3 ∂θ 3 ∂x x=a3 + h 3 θ 3 | x=a3 = 0,
Figure 4: Three-layer material

θ 2 | x=0 = θ 1 | x=0 , θ 3 | x=a2 = θ 2 | x=a2 , k 1 ∂θ 1 ∂x x=0 = k 2 ∂θ 2 ∂x x=0 , k 2 ∂θ 2 ∂x x=a2 = k 3 ∂θ 3 ∂x x=a2 , θ 0i = T amb -T 0i , for i = 1, 2, 3 (25) 
The decomposition [START_REF] De | An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[END_REF] gives the similar form of solutions as [START_REF] Haji | The oating random walk and its application to Monte carlo solutions of heat equations[END_REF] for i = 1, 2, 3

X i (x) = A i cos(λ i x) + B i sin(λ i x), G i (t) = exp(-α i λ i 2 t)
The dimensionless group is extended to {ω i , κ i , γ i ,Biot 1 ,Biot 3 , β', F i ,ξ, τ } for i = 2, 3 where

ω i = α 1 α i , κ i = k i k 1 , γ i = a i a 1 , β = a 1 λ 1 (26) 
In that notation, our problem eased off immediately to the eigen problem

E (β ) = cos(ω 2 γ 2 β ) -κ 2 ω 2 P 1 (β )sin(ω 2 γ 2 β ) sin(ω 2 γ 2 β ) + κ 2 ω 2 P 1 (β )cos(ω 2 γ 2 β ) - κ 3 ω 3 cos(ω 3 γ 2 β ) + P 3 (β )sin(ω 3 γ 2 β ) κ 2 ω 2 sin(ω 3 γ 2 β ) -P 3 (β )cos(ω 3 γ 2 β ) = 0 ( 27 
)
where we define the functions

P 1 (β ) = β + Biot 1 tg(β ) Biot 1 -β tg(β ) = P 1 (β ), P 3 (β ) = κ 3 ω 3 β + Biot 3 tg(γ 3 ω 3 β ) Biot 3 -κ 3 ω 3 β tg(γ 3 ω 3 β )
and all the constants emerge into one: B (similar to B defined previously in ( 18)). Thus, the temporal and space solutions take according to the set of eigenvalues β n the form

G 1,n (τ ) = G 2,n (τ ) = G 3,n (τ ) = exp(-β 2 n τ ), X 1,n (ξ) = P 1 (β n )cos(β n ξ) + sin(β n ξ), X 2,n (ξ) = P 1 (β n )cos(ω 2 β n ξ) + 1 κ 2 ω 2 sin(ω 2 β n ξ), X 3,n (ξ) = Ω(β n ) -P 3 (β n )cos(ω 3 β n ξ) + sin(ω 3 β n ξ) Ω(β n ) is a coupling function defined as Ω(β n ) = κ 2 ω 2 P 1 (β n )cos(ω 2 γ 2 β n ) + sin(ω 2 γ 2 β n ) κ 2 ω 2 (sin(ω 3 γ 2 β n ) -P 3 (β n )cos(ω 3 γ 2 β n )
The final solution is upon the constants B n a linear combination similar to (20) of the temporal and space parts product

θ i (ξ, τ ) = ∞ n=1 B n X i,n (ξ)G i,n (τ ) 
Similarly as (21), we have the orthogonally property between the three space parts

0 -1 X 1,n (ξ)X 1,m (ξ)dξ + κ 2 γ2 0 X 2,n (ξ)X 2,m (ξ)dξ + κ 3 ω 2 3 γ3 γ2 X 3,n (ξ)X 3,m (ξ)dξ = δ nm ϕ n
where we define

ϕ n = 0 -1 X 1,n (ξ) 2 dξ + κ 2 γ2 0 X 2,n (ξ) 2 dξ + κ 3 ω 2 3 γ3 γ2 X 3,n (ξ) 2 dξ
Using ICs (25), we find the expression of B n

B n = 1 ϕ n 0 -1 θ 01 X 1,n (ξ)dξ + κ 2 γ2 0 θ 02 X 2,n (ξ)dξ + κ 3 ω 2 3 γ3 γ2 θ 03 X 3,n (ξ)dξ
and we have the explicit expression of dimensionless constants C

C n = B n θ 01 = 1 ϕ n β n cos(β n ) + P 1 (β n )sin(β n ) -1+ F 2 ω 2 2 × 1 + ω 2 κ 2 P 1 (β n )sin(ω 2 γ 2 β n ) -cos(ω 2 γ 2 β n ) + Ω(β n )ω 3 κ 3 F 3 × cos(ω 3 γ 2 β n ) + P 3 (β n )sin(ω 3 γ 2 β n ) -cos(ω 3 γ 3 β n ) -P 3 (β n )sin(ω 3 γ 3 β n )
Finally, the dimensionless solutions describing heat transfer through three-layer material are well described by

Θ i (ξ, τ ) = ∞ n=1 C n X i,n (ξ)G i,n (τ ) (28) 
In addition, the unsteady equilibrium temperature between second and third layer is given by

F 23 eq = κ3ω3 κ2ω2 F3 F2 + 1 κ3ω3 κ2ω2 + 1
We set in the formula (24) F eq ≡ F 12 eq . In the same way, we regroup all temperatures for any position ξ in a single expression as

Θ (ξ, τ ) =      Θ 1 (ξ, τ ) if -1 ≤ ξ ≤ 0 Θ 2 (ξ, τ ) if 0 ≤ ξ ≤ γ 2 Θ 3 (ξ, τ ) if γ 2 ≤ ξ ≤ γ 3
The error is defined by

(ξ) =      1 -Θ 1 (ξ, 0) if -1 ≤ ξ ≤ 0 1 F2 (F 2 -Θ 2 (ξ, 0)) if 0 ≤ ξ ≤ γ 2 1 F3 (F 3 -Θ 3 (ξ, 0) if γ 2 ≤ ξ ≤ γ 3
One can find a concrete example including discussions about this case in the next section.

Results and discusions 4.1 Bilayer material

By taking the example illustrated by table 1, and setting for example T amb = 300K,T 01 = 400K,and T 02 = 500K, we obtain F 2 = 2 and F eq ≈ 1.43. Figure [START_REF] De | An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[END_REF] shows 3d representation of Θ. The thermal equilibrium is the cooling of the layers until reaching ambient temperature, which is achieved approximately after a dimensionless time τ = 2. If a 1 is in millimeter order, then the real time t will be in the order of τ since in general α is in 10 -6 order. In figure 6(a), we show temperature evolution with respect dimensionless position for different times. We can observe the unsteady equilibrium between the two slabs around the point (0, 1.4) which is in excellent agreement with F eq . In figure 6(b) and 6(c), we represent the change in temperature in terms of time at selected points in the two layers. In 6(b), we can see clearly the unsteady equilibrium, and it is natural to see that in the first layer the temperatures increase with small values called temperature jumps proportional to theirs distances from the contact surface to unsteady equilibrium while taking times inversely proportional to these distances to reach it. Hence achieving the final thermal equilibrium. While in the second layer, (figure 6(c)) the point temperatures converge to equilibrium at a much slower pace due to its thickness which is greater than that of the first layer. We also emphasize that the unsteady equilibrium is clear on the curve of point ξ = 0 in each of the two figures, and it does not appear on point ξ = -1 because it is far away from the contact surface. Finally, we represent in 6(d) the error for T 01 = T 02 = 400K. We can consider it less than 0.5% hence the adequacy of 20 roots in the sums ( 23) and (28).

The heat transfer in our problem was well described according to thermalphysics properties (13 and 14) of the two layers (cf. section 2). For equal ICs, we will present in this part (from full Maple procedure) its behavior according to the number of roots in the solution (23), and then according to each parameter keeping the others constants. This parametric study consists in fixing the thermal-physical property (be it conductivity, diffusivity,...) of the first layer by changing the other. Table 2 shows the chosen values of fixed parameters according to every case. The error with respect to number of roots N r is illustrated in figure 7(a), where we select this time the same example as in [START_REF] De | Transient heat conduction in one-dimensional composite slab. a 'natural' analytic approach[END_REF] : κ = 2, γ = 2, ω = 1, Biot 1 = 1, and Biot 2 = 2 (table 2). According to these curves, we conclude as we have previously reported that 20 roots is sufficient to have a good description of the phenomenon. In figure 7(b), we describe how the heat flux reacts as a function of κ. We notice that if we increase the κ values for chosen time (τ = 0.67), cooling process of the two layers becomes more slow, especially in the second layer. Similarly, one can observe the same reaction of heat transfer vs the thickness report γ by means of figure 7(c) since the thin layer cools faster than the thick one. In figure 7(d), we restrict our self to three curves at τ = 0.70 due to the divergences for other values of ω in Newton method. We remark that the cooling speed of composite material is inversely proportional to the diffusivity report. The last two graphs 7(e) and 7(f) study the effect of Biot numbers. Since they depend on convection coefficients, increasing one of the two will lead to a faster cooling especially in the same index's layer.

Three-layer material

In this case, we consider the example where κ 2 = 2, γ 2 = 2, ω 2 = 1,Biot 1 = 1, κ 3 = 1.5, γ 3 = 3, ω 3 = 1, and Biot 3 = 2. The function ( 27) is represented in figure 8, and the set of roots are collected in table 3. For ICs: T amb = 300K,T 01 = 400K, T 02 = 450K, and T 03 = 500K, we obtain F 2 = 1.5 and F 3 = 2. The unsteady equilibrium between each two adjacent layers takes place at F 12 eq ≈ 1.33 and F 23 eq ≈ 1.71. Figure 9(a) shows 3d representation of heat transient. Figure 9(b) shows its behavior in the first moments according to the position where we can observe the unsteady equilibriums at τ = 0 mentioned above, and the thermal equilibrium starting from τ = 10 approximately. We give also more detail in figures 9(c), 9(d), and 9(e) where we observe clearly the jumps in temperature in the first layer which is achieved before that in the second layer.

Next, the final (thermal) equilibrium occurs. There is no jump in the third layer since its initial temperature is higher. An additional detail concerning this point is that in the first layer the points near the material boundary their heat go directly to the final equilibrium, while when the first layer half exceeds, the unsteady equilibrium is clearly seen according to the distance from the first contact surface (between S 1 and S 2 ). The same development occurs for the second layer when the half is exceeded, while the temperatures in the third layer goes to the final equilibrium without jumping. The continuity of Θ between layers (at contact surfaces) is assured and can also be observed in the curves ξ = 0 and ξ = 2. The cooling speed of points near the outer surface can also be observed compared to the internal points. To clarify the accuracy of our results, we give the error behavior in figure 9(f) for equal ICs (400K) which we can consider to be small (≤ 0.5%) and therefore the results are accurate enough. For non-equal ICs, the curves at zero time (in figures 6(a) and 9(b)) present a quasi phase transition, hence we cannot define the error at this point.

Finally, note that we can pass from three-layer case Θ to bilayer case Θ by setting T 02 = 500K and γ 2 = γ 3 = 2.

Conclusion

We have seen in this paper a full description of the analytical dimensionless method to solve the 1.D heat equation, which shows how the heat is transferred and developed through bilayer and three-layer material. By SVM, we have found that by using the differential equation with all initial and boundary conditions, the problem is reduced to finding β eigenvalues, as well as the constants C using the orthogonality property between space solutions. In the examples we studied, we found that there is an unsteady equilibrium in the form of jumps in the temperature of points near the contact surface of the cold medium, and then, after a few moments, the system takes ambient temperature. In the case of a two layers system, cooling was studied in terms of the dimensionless thermal-physics properties of the material, and we found it to develop proportionally with each of the conductivities, diffusivities, and thicknesses, while it developed inversely with Biot numbers. For more depth, we suggest studying the phenomenon with an external heat source, in two and three dimensions, with different initial and boundary conditions, and using Monte Carlo simulation methods in the determination of the Eigen values and integral constant. If this is attainable, then we can solve more complex systems such as non-linear problem by only numerical algorithms. 
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 1 Figure 1: Representation of bilayer material.
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 5 Figure 5: 3D representation of heat transfer in bilayer material.
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 6 Figure 6: The temperature curves and error : (a) With respect to the position in different times, (b) In S 1 for different positions in the first moments, (c) In S 2 for different positions in the first moments, (d) The error with respect to the position for equal ICs.
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 7 Figure 7: Parametric study : (a) The error according to the number of roots N r (b) The behavior of Θ(ξ, 0.67) with respect to dimensionless conductivity, (c) The behavior of Θ(ξ, 0.29) with respect to dimensionless thickness, (d) The behavior of Θ(ξ, 0.70) with respect to dimensionless diffusivity, (e) The behavior of Θ(ξ, 1.67) with respect to Biot 1 , (f) The behavior of Θ(ξ, 1.67) with respect to Biot 2 .
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 8 Figure 8: The function E (β )
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 9 Figure 9: Heat transient in three-layer material : (a) 3d representation, (b) According to dimensional thickness, (c) Over the first layer in the first moments at different points, (d) Over the second layer at different points in the first moments, (e) Over the third layer at different points in the first moments, and (f) The error in analytic solution Θ .

Table 1 :

 1 First 20 eigenvalues.

	n	β n		
	1 1.174564997	6 9.311800164	11 18.18431142	16 27.07242465
	2 2.670341640	7 10.99791545	12 19.80816753	17 28.75147230
	3 4.100755655	8 12.76394020	13 21.72556781	18 30.68935659
	4 5.902293511	9 14.59650467	14 23.42691725	19 32.32010618
	5 7.463000332	10 16.25466773	15 25.23379476	20 34.24837236
	Table			

Table 2 :

 2 Order of magnitude of the changed parameters.

	Function/Parameter	κ	γ ω Biot 1 Biot 2	N r	τ
		Error ( )	2	2 1	1	2		/	0
		Θ(κ)	/	2 1	1	2		20	0.67
		Θ(γ)	2	/ 1	1	2		≥ 20 0.29
		Θ(ω)	3.5 2 /	1	2		≥ 19 0.70
		Θ(Biot 1 )	2	2 1	/	2		20	1.67
		Θ(Biot 2 )	2	2 1	2	/		≥ 20 1.67
	n	β n					
	1 0.48083168352	8	5.4842540149	15 11.0593674516
	2 1.2487286073	9 6.35502775910	16 11.7107807117
	3 1.9024835264	10 7.26679506011	17 12.6028902418
	4 2.4653865265	11 7.94248068412	18 13.5145156619
	5 3.2770267696	12 8.58742101313	19 14.1869741720
	6 4.1788685297	13 9.47325889514	20	14.84179123
	7 4.8553529238	14 10.3854900215		

Table 3 :

 3 The set of roots of the function E (β ).

Acknowledgments

T. Sahabi would like to thank Pr. F. de Monte for his assistance in this research in terms of providing references and answering questions, and Pr. Mohamed El Ganaoui for his encouragement and providing references.