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COMPRESSED PRINCIPAL COMPONENT ANALYSIS OF
NON-GAUSSIAN VECTORS

MARC MIGNOLET∗ AND CHRISTIAN SOIZE†

Abstract. A novel approximate representation of non-Gaussian random vectors is introduced
and validated, which can be viewed as a Compressed Principal Component Analysis (CPCA). This
representation relies on the eigenvectors of the covariance matrix obtained as in a Principal Compo-
nent Analysis (PCA) but expresses the random vector as a linear combination of a random sample
of N of these eigenvectors. In this model, the indices of these eigenvectors are independent discrete
random variables with probabilities proportional to the corresponding eigenvalues. Moreover, the
coefficients of the linear combination are zero mean unit variance random variables. Under these
conditions, it is first shown that the covariance matrix of this CPCA matches exactly its PCA coun-
terpart independently of the value of N . Next, it is also shown that the distribution of the random
coefficients can be selected, without loss of generality, to be a symmetric function. Then, to represent
the vector of these coefficients, a novel set of symmetric vector-valued multidimensional polynomials
of the canonical Gaussian random vector is derived. Interestingly, it is noted that the number of
such polynomials is only slowly growing with the maximum polynomial order thereby providing a
framework for a compact approximation of the target random vector. The identification of the de-
terministic parameters of the expansion of the random coefficients on these symmetric vector-valued
multidimensional polynomial is addressed next. Finally, an example of application is provided that
demonstrates the good matching of the distributions of the elements of the target random vector
and its approximation with only a very limited number of parameters.

Key words. Principal component analysis, Compressed principal component analysis, Non-
Gaussian vector, Random eigenvectors, Symmetric polynomials, Random fields, Stochastic processes,
Inverse problem, Stochastic model, Reduction method, Uncertainty quantification, Stochastic mod-
eling
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1. Introduction. The objective of this paper is to propose the Compressed Prin-
cipal Component Analysis (CPCA) that is a novel small parameterized representation
of any non-Gaussian second-order random variable X = (X1, . . . , Xn) with values in
Rn. This representation would be useful for solving statistical inverse problems related
to any stochastic computational model for which there is an uncertain vector-valued
system-parameter that is modeled by a random vector X.

To explain the benefits of this representation, consider the framework of a clas-
sical statistical inverse problem. Let us assume that a parameterized representation
of X has been constructed and is written as X = g(z,Ξ) in which Ξ = (Ξ1, . . . ,
ΞN ) is the RN -valued normalized Gaussian random variable (centered and with a co-
variance matrix that is the identity matrix) the probability distribution of which is
denoted by PΞ(dξ) on RN . The parameterization of the representation corresponds
to the vector z = (z1, . . . , zM ) of hyperparameters, which belongs to an admissible set
that is a subset Cz of RM . The measurable mapping ξ 7→ g(z, ξ) is defined through
the construction of the representation. Consequently, if z is fixed to a given value
zopt, then the probability distribution PX of X is completely defined as the image of
PΞ(dξ) under the mapping ξ 7→ g(zopt, ξ). Let us consider a computational model
with an uncertain system-parameter x that is modeled by random variable X. Let
Q be the vector-valued random quantity of interest that is constructed as an obser-
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vation of the random output of the stochastic computational model, and which can
be written as Q = f(X) = f(g(z,Ξ)). It is assumed that the measurable mappings f
and g are such that the probability distribution PQ(dq; z) of Q given z in CZ admits
a probability density function pQ(q; z) with respect to the Lebesgue measure dq. Let
a target be available for the QoI, which corresponds to nr independent realizations
{qexp,r, r = 1, . . . , nr} coming for instance from experiments or from simulations. Sev-
eral statistical approaches exist for solving statistical inverse problems. We refer the
reader to [24, 52, 17, 45] for an overview concerning the general methodologies for sta-
tistical and computational inverse problems, including general least-square inversion
and the maximum likelihood method [40, 49], and including the Bayesian approach
[49, 9, 7, 51]. To simplify the presentation, let us assume that the maximum likelihood
method is used for identifying an optimal value zopt in Cz of hyperparameter z,

(1.1) zopt = arg max
z∈Cz

L(z) ,

in which L(z) =
∑nr
r=1 log pQ(qexp,r, z) is the log-likelihood function defined on Cz.

For any given z in Cz and for r in {1, . . . , nr}, the value log pQ(qexp,r, z) of the log-pdf
is estimated with the computational model (or a surrogate model derived from the
computational model) and the known canonical Gaussian density pΞ of Ξ. This is
accomplished using a stochastic solver, e.g., a Monte Carlo solver [39], and a density
estimation technique such as the multivariate kernel density one [6, 22, 45]. In general,
the optimization problem defined by Eq. (1.1) is not convex and consequently, the
numerical cost for computing an approximation of zopt increases with the dimension
M . So, one challenge is to reduce the number M of coefficients that has to be
identified using an adapted representation X = g(z,Ξ) and this reduction is the
primary objective of this investigation.

The most general representation is the Polynomial Chaos Expansion (PCE) be-
cause it allows for representing any probability distribution PX(dx) of any second-
order non-Gaussian random field. In computational sciences and engineering, the
development and the use of PCE for representing random fields have been pioneered
by Roger Ghanem in 1990-1991 [20] who proposed to combine a Karhunen-Loeve
expansion (that allows using a statistical reduced model) with a PCE of the statis-
tical reduced model. This type of construction has then been re-analyzed and used
for solving boundary value problems using the spectral approach (see for instance
[37, 12, 15, 19, 21, 33, 25]). The PCE has also been extended for an arbitrary prob-
ability measure [59, 26, 27, 47, 58, 16]) and for sparse representation [3, 4, 5, 1, 30].
Further, new algorithms have been proposed for obtaining a robust computation of
realizations of high degrees polynomial chaos [46, 35]. This type of representation has
also been extended for the case of the polynomial chaos expansion with random coef-
ficients [48], for the construction of a basis adaptation in homogeneous chaos spaces
[55, 54, 57], and for an arbitrary multimodal multidimensional probability distribu-
tion [44]. It should be noted that the space sampling of a random field or the time
sampling of a stochastic process yields a random vector for which all the above meth-
ods for the PCE can be used, the Karhunen-Loeve expansion being replaced by a
Principal Component Analysis (PCA).

The use of the PCE for constructing a parameterized representation of a non-
Gaussian random field that models the parameter of a boundary value problem, in
order to identify it solving a statistical inverse problem has been initiated in [13,
18, 14] and used and revisited in [11, 23, 10, 42, 35, 36, 8, 34, 45] for statistical
inverse problems in low or in high stochastic dimension. For the statistical inverse
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identification of the coefficients of the PCE, the Bayesian approach has been proposed
in [18, 32, 2, 43, 38, 29, 50, 41, 56].

Using the PCA, a classical finite approximation Xm
PCA of X yields the following

representation Xm
PCA = mX +

∑m
α=1

√
λα Γαϕ

α, in which mX is the mean vector of X
and where λα and ϕα are the eigenvalues and the eigenvectors of the covariance matrix
of X. The centered random vector Γ = (Γ1, . . . ,Γm) whose covariance matrix is the

identity matrix, can be represented by the truncated PCE, Γ
(M)
α =

∑M
k=1 z

k
α Ψk(Ξ)

in which {Ψk}k are the multivariate normalized Hermite polynomials for which the
multi-indices are renumbered with single index k. In such a case, Xm

PCA is rewritten

as X(m,M)
PCA . For m = n, the mean-square convergence of the sequence of random

variables {X(n,M)
PCA }M is guaranteed as M goes to infinity. For a fixed value of m and

M , the number of coefficients zkα that have to be identified is m ×M and that can
be exceedingly large for solving the optimization problem defined by Eq. (1.1). This
is the reason why there is an interest for constructing a reduced representation, the
CPCA, in order to minimize the number of coefficients that have to be identified in
the representation.

Such dimensionality reduction of the representation, which allows for facilitating
the identification of the coefficients, remains a challenge. To the author’s knowledge,
in addition to the sparse representation, two other approaches have been proposed in
[31, 55]. In [55], the authors propose to adapt the PCE to the QoI by introducing
a rotation of the Gaussian subspace. This rotation, which depends on the QoI, has
to be identified for each QoI and provides a reduction of full polynomial expansions
through the identified rotation. In this work, we propose an alternative that allows for
drastically reducing the number of polynomials, and therefore for reducing the number
of coefficients that have to be identified, independently of the QoI. This means that
the reduced representation is constructed independently of the QoI and can then be
used for any QoI. The main idea of this novel representation is to use symmetric
polynomials associated with the canonical Gaussian measure, the number of which
is very small with respect to all the Hermite polynomials. However, it can be seen
that such symmetric polynomials cannot be used for representing the non-Gaussian
random vector Γ that is involved in the PCA of X because they do not exhibit this
symmetry property. Consequently, a novel PCA with random eigenvectors, referred to
as CPCA, is proposed and is written as XN

CPCA = mX +
∑N
α=1

√
µ/N Hαϕ

Jα , in which
µ =

∑m
α=1 λα, where J1, . . . , JN are N independent copies of a random variable J with

values in the set {1, . . . ,m} of integers, and for which the probability distribution is
proportional to eigenvalues λ1, . . . , λm. This CPCA will be detailed in Section 2 and is
based on the use of a novel set {ψk(Ξ)}k of symmetric vector-valued multidimensional
polynomial of the canonical Gaussian random vector Ξ. Accordingly, the random
vector H = (H1, . . . ,HN ) is written as H =

∑M
k=1 zk ψ

k(Ξ) in which the coefficients
of the representation are gathered in vector z = (z1, . . . , zM ) whose length M is very
small. This construction is presented in Section 3.

2. Compressed principal component analysis with random eigenvec-
tors. Prior to introducing the novel compressed principal component analysis (CPCA)
with random eigenvectors, it is useful to briefly review the standard Principal Com-
ponent Analysis (PCA).

2.1. Principle used for the construction. Let X = (X1, . . . , Xn) be a second-
order random vector defined on a probability space (Θ, T ,P) with values in Rn the
probability distribution of which is PX(dx) = pX(x) dx where x 7→ pX(x) is the prob-
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ability density function defined on Rn. Denoting by E{}̇ the operator of mathematical
expectation, the mean vector in Rn of X is mX = E{X}. Moreover, the covariance
matrix of X is [CX] = E{(X−mX) (X−mX)T } where .T is the operation of matrix
transposition.

The principal component representation Xm
PCA of the vector X is then

(2.1) Xm
PCA = mX +

m∑
α=1

√
λα Γαϕ

α ,

where m ≤ n, and for α = 1, . . . , n, λα and ϕα = (ϕα1 , . . . , ϕ
α
n) are the eigenvalues

and eigenvectors of [CX]. Owing to the symmetry of the covariance matrix, the
eigenvectors ϕ1, . . . ,ϕn form an orthonormal basis of Rn. In addition, Γα are zero
mean, unit variance uncorrelated random variables defined as

(2.2) Γα =
1√
λα

(ϕα)T (X−mX) .

The random vector Xm
PCA of Eq. (2.1) converges in mean square to X as m → n with

error

(2.3) εPCA(m) =
E{‖X−Xm

PCA‖2}
E{‖X‖2}

= 1−
∑m
α=1 λα

tr[CX]

where ‖.‖ and tr[.] are the Euclidean norm of a vector and the trace of a matrix.

2.2. Definition of the CPCA with random eigenvectors. With the above
notations, the compressed principal component approximation XN

CPCA of the vector X
is defined as

(2.4) XN
CPCA = mX +

√
µ

N

N∑
α=1

Hαϕ
Jα ,

where N is a parameter of the approximation, which can be less than, equal to, or
greater than m

(2.5) µ =

m∑
α=1

λα ,

and the real-valued random variables {H}α have zero mean, unit variance and are
uncorrelated. Finally, J = (J1, . . . , JN ) denotes a random vector that is independent
of H and for which the components J1, . . . , JN are N independent copies of a random
variable J with values in the set {1, . . . ,m} of integers and with distribution

(2.6) Prob{J = α} =
λα
µ

for α = 1, . . . ,m .

2.3. Some observations and properties.
2.3.1 The random vector of Eqs (2.4) and (2.5) represents in general, e.g., for m > 2N ,
an approximation of the PCA random vector X. The accuracy of this approximation
will be quantified here by the overlap defined as

(2.7) εovl =
1

n

√√√√ n∑
i=1

(ε
(i)
ovl)

2 ,
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with

(2.8) ε
(i)
ovl =

∫ ∞
−∞
|pXi(x)− p̂Xi(x)| dx , i = 1, . . . , n ,

where pXi(x) is the probability density function of the component Xi corresponding
to the model of Eqs (2.4) and p̂Xi(x) is the estimate of this function obtained from
available data, simulated or experimental.
2.3.2 Combining Eqs (2.2) and (2.4), the random variable Γα of the PCA of XN

CPCA is
written as

(2.9) Γα =

√
µ

Nλα

N∑
β=1

Hβ (ϕα)TϕJβ =

√
µ

Nλα

N∑
β=1

Hβ δαJβ ,

where δαβ denotes the Kronecker symbol.
2.3.3 Given the distribution of the random indices Jα, Eq. (2.6), one has

(2.10) E{g(J1, . . . , Jp)} =

m∑
α1=1

. . .

m∑
αp=1

λα1
. . . λαp
µp

g(α1, . . . , αp) .

Some noteworthy applications of the above property are as follows

(2.11) E{(ϕJα)TϕJβ} =

m∑
α=1

m∑
β=1

λαλβ
µ2

(ϕα)Tϕβ =

m∑
α=1

λ2α
µ2

,

given the orthogonality of the eigenvectors ϕα and when α 6= β. When α = β, the
normality of the eigenvectors implies that E{(ϕJα)TϕJα} = 1. Moreover, one also
has from Eq. (2.10) that

(2.12) E{ϕJα(ϕJα)T } =

m∑
α=1

λα
µ
ϕα(ϕα)T .

Note in Eqs (2.11) and (2.12) that the left hand sides of these equations do not depend
on α which is thus a dummy index.
Consider next the characteristic function of XN

CPCA denoted as ψN (u) = E{exp(iuTXN
CPCA)}.

Using Eq. (2.4) and splitting the expectation in expectations over the random vari-
ables Hα and Jα separately, denoted by EH and EJ, respectively, it is found that

(2.13) ψN (u) = exp(iuTmX)EH{EJ{exp(i

√
µ

N

N∑
α=1

Hα uTϕJα)}}.

Moreover, using Eq. (2.10), the above equation can be rewritten as
(2.14)

ψN (u) = exp(iuTmX)

m∑
α1=1

. . .

m∑
αN=1

λα1
. . . λαN
µN

EH{exp(i

√
µ

N

N∑
β=1

Hβ uTϕαβ )} .

Denoting then by φH(v) = E{exp(ivTH)} the characteristic function of the random
vector H leads finally to the equality
(2.15)

ψN (u) = exp(iuTmX)

m∑
α1=1

. . .

m∑
αN=1

λα1 . . . λαN
µN

φH(

√
µ

N
uTϕα1 , . . . ,

√
µ

N
uTϕαN ) .
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2.3.4 Taking the mathematical expectation of Eq. (2.4) it is directly found that
E{XN

CPCA} = mX. Moreover, one obtains

(2.16) E{(XN
CPCA −mX) (XN

CPCA −mX)T } = (µ/N)

N∑
α=1

N∑
β=1

E{HαHβ ϕ
Jα (ϕJβ )T }

= (µ/N)

N∑
α=1

E{H2
α}E{ϕJα (ϕJα)T } =

m∑
α=1

λαϕ
α (ϕα)T

using Eq. (2.12). However, the last expression in the above equation corresponds to
the reconstruction of the covariance matrix E{(Xm

PCA −mX) (Xm
PCA −mX)T } from its

eigenvalues and eigenvectors. This finding demonstrates that the compressed prin-
cipal component approximation matches the first two moments of its standard PCA
counterpart.

3. Expansion with a vector-valued symmetric polynomial chaos. To
complete the representation of Eq. (2.4), it remains to characterize the random vector
H = (H1, . . . ,HN ). In the following sections, it is shown first (section 3.1) that, in
approximating a given random vector X in the form of Eq. (2.4), it is sufficient to con-
sider random vectors H with a probability density function h 7→ pH(h) continuous on
RN that is a symmetric function with respect to h1, . . . , hN , the components of h. This
means that for any permutation σ belonging to the set Sσ of the N ! permutations of
integers 1, 2, . . . , N , we have pH(hσ) = pH(h) in which hσ = (hσ(1), . . . , hσ(N)). This
property could also be rewritten in terms of components as follows,

(3.1) pH(hσ(1), . . . , hσ(N)) = pH(h1, . . . , hN ) , ∀ σ ∈ Sσ .

In the next section (section 3.2), a representation of random vectors H with symmetric
probability density function is introduced in the form of

(3.2) H =

M∑
k=1

zk ψ
k(Ξ)

in which ψk(Ξ) is a set of vector-valued symmetric polynomials depending on the
canonical Gaussian random vector Ξ = (Ξ1, . . . ,ΞN ) and where the coefficients of the
representation are gathered in vector z = (z1, . . . , zM ). The polynomials ψk(Ξ) =
(ψk1 (Ξ), . . . , ψkN (Ξ)) are referred to as symmetric here to indicate the property

(3.3) ψkσ(Ξ) = (ψkσ(1)(Ξ), . . . , ψkσ(N)(Ξ)) = ψk(Ξσ) , ∀ σ ∈ Sσ .

Finally, in the last section (section 3.3), a construction of the symmetric polynomials
ψk(Ξ) will be introduced.

3.1. Symmetry of the probability density function pH(h). It is demon-
strated in this section that the probability density function pXN

CPCA
(x) obtained from

Eq. (2.4) with random vectors H having probability density function pUH(h) or its
symmetrized version

(3.4) pH(h) =
1

N !

∑
σ∈Sσ

pUH(hσ).
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are identical. To prove this property, introduce first the Rn-valued random variable
Y as

(3.5) Y =

√
N

µ
(XN

CPCA −mX) =

N∑
α=1

Hαϕ
Jα ,

Then, consider the contribution ppY(y) to the probability density function pY(y) in-
duced by one specific permutation pUH(hσ). It can be expressed as

(3.6) ppY(y) = E{δ0(ŷ(H,J)− y)}

with H follows the probability measure pUH(hσ) dh, δ0() denotes the Dirac measure at
the origin, and

(3.7) ŷ(H,J) =

N∑
α=1

Hαϕ
Jα .

Next, define the permutation σ̂ as the inverse of σ, i.e., such that (Hσ)σ̂ = H and let

Ĥ = Hσ or H = Ĥσ̂. Then,

(3.8) ŷ(H,J) =

N∑
α=1

Ĥσ̂(α)ϕ
Jα =

N∑
β=1

Ĥβ ϕ
Jσ(β) =

N∑
β=1

Ĥβ ϕ
Ĵβ = ŷ(Ĥ, Ĵ) ,

where the second to last equality results from the change of index Jσ(β) = Ĵβ . Sub-
stituting (3.8) into (3.6) yields

(3.9) ppY(y) = E{δ0(ŷ(Ĥ, Ĵ)− y)} .

Then, comparing Eqs (3.6) and (3.9), it is concluded that the permutation σ
has no effect on ppY(y). Thus, the probability density function of Y determined
from pUH(hσ) or its symmetrized version pH(h) given in Eq. (3.4) are identical. From
Eq. (3.5), one further concludes that the same property holds for the probability
density function of X.

3.2. Expansion of random vector H. On the basis of the symmetry of their
probability density function, the random vectors H will be expressed in the form of
Eq. (3.2) where the polynomials ψk(Ξ) are symmetric as defined by Eq. (3.3). In this
section, it is shown that the corresponding probability density function of H is indeed
symmetric. This function can be expressed as

(3.10) pH(h) = E{δ0(h̃(Ξ)− h)} ,

where

(3.11) H = h̃(Ξ) , h̃(Ξ) =

M∑
k=1

zk ψ
k(Ξ) ,

which, given Eq. (3.3), satisfies h̃σ(Ξ) = h̃(Ξσ). Using this property, Eq. (3.10)
becomes

pH(hσ) = E{δ0(h̃(Ξ)− hσ)} = E{δ0(h̃σ̂(Ξ)− h)}(3.12)

= E{δ0(h̃(Ξσ̂)− h)} = E{δ0(h̃(Ξ̂)− h)} = pH(h) ,
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where, as before, σ̂ denotes the inverse of the permutation σ. Moreover, the random
vector is Ξ̂ = Ξσ̂ and has the same distribution as Ξ as the Gaussian measure is
symmetric.

Since Eq. (3.12) is valid for any permutation σ ∈ Sσ the probability density
function of H is symmetric.

3.3. Construction of the symmetric polynomials ψk(ξ). This section presents
the construction of a novel set of symmetric vector-valued multidimensional poly-
nomials ψk(ξ). To clarify this process, let any such symmetric polynomial ho-

mogeneous of order r in the variables ξ = (ξ1, . . . , ξN ) be denoted as Q(r)(ξ) =

(Q(r)
1 (ξ), . . . ,Q(r)

N (ξ)). Expanding Q(r)
α (ξ) in terms of the component ξα yields

(3.13) Q(r)
α (ξ) =

r∑
s=0

w(α)
s ξsα Q

(r−s)
α (ξ′(α))

where w
(α)
s are parameters and Q

(r−s)
α (ξ′(α)) denotes a multidimensional polynomial

of degree r–s in the N -1 component vector ξ′(α) = (ξ1, . . . , ξα−1, ξα+1, . . . , ξN ).

The next task is to establish the conditions on the parameters w
(α)
s and on the

polynomials Q
(r−s)
α (ξ′(α)) so that Q(r)(ξ) is symmetric, i.e., Q(r)

σ (ξ) = Q(r)(ξσ). To
this end, consider first the ensemble of permutations σ′ of 1, . . . , α − 1, α + 1, . . . , N

that leave the component α untouched. The component α of Q(r)
σ′ (ξ) is then

(3.14) {Q(r)
σ′ (ξ)}α =

r∑
s=0

w(α)
s ξsα Q

(r−s)
α (ξ′

(α)
σ′ ).

To satisfy the symmetry condition, this component should also equal
∑r
s=0 w

(α)
s ξsα

Q
(r−s)
α (ξ′

(α)
). For both expressions to be equal for any permutation σ′, it is necessary

and sufficient that Q
(r−s)
α (ξ′

(α)
) be a scalar symmetric polynomial in the variables

ξ′
(α)

.
Consider next permutations that affect the index α, which specifically is mapped

from index β. Then, Q(r)
β (ξ) must be mapped into Q(r)

α (ξ). Accordingly,

(3.15)

r∑
s=0

w(β)
s ξsα Q

(r−s)
β (ξ′(α)) must equal

r∑
s=0

w(α)
s ξsαQ

(r−s)
α (ξ′(α)).

The above condition is satisfied when neither the coefficients w
(α)
s nor the polynomials

Q
(s)
α () depend on α for all s. Accordingly, these coefficients and polynomials will be

denoted henceforth as ws and Q(s)(). With this finding, Eq. (3.13) becomes

(3.16) Q(r)
α (ξ) =

r∑
s=0

ws ξ
s
α Q

(r−s)(ξ′(α)) ,

The next step is the construction of the scalar symmetric polynomials Q(s)(ξ′(α)).
We use the fact that any scalar symmetric polynomial can be represented using the
power-sums (see [28]). On that basis, we propose to write the polynomial Q(s)(ξ′(α))
as

(3.17) Q(s)(ξ′(α)) =
∑
t

q
(s)
t {

N−1∏
u=1

(Su(ξ′
(α)

))pt(u)} .
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in which

(3.18) Su(ξ′
(α)

) =

N−1∑
`=1

(ξ′
(α)
` )u , u = 1, . . . , N − 1

are the power-sums and where q
(s)
t are coefficients. Moreover, pt(u) are nonnegative

integer powers such that

(3.19)

N−1∑
u=1

u pt(u) = s ,

and the summation over t in Eq. (3.17) extends over all such possible combinations
of powers. Recombining Eqs (3.16) and (3.17), yields

(3.20) Q(r)
α (ξ) =

r∑
s=0

∑
t

y
(r,s)
t ξsα

N−1∏
u=1

(Su(ξ′
(α)

))pt(u) ,

where y
(r,s)
t = wsq

(r−s)
t are parameters and the summation over t extends over all

combinations of the powers pt(u) such that

(3.21)

N−1∑
u=1

u pt(u) + s = r , s ≤ r .

The symmetric vector-valued multidimensional polynomials of component α equal
to ξsα

∏N−1
u=1 (Su(ξ′

α
))pt(u), corresponding to different values of r, s, and t are linearly

independent and thus can be selected to form each of the desired polynomials ψk(ξ).
Note however the condition E{Hα} = 0 required by the model. To satisfy this
condition, a constant ck will be subtracted so that E{ψkα(Ξ)} = 0. That is,

(3.22) ψkα(ξ) = ξsα

N−1∏
u=1

(Su(ξ′
α

))pt(u) − ck .

Note that the constant ck corresponds in fact to the 0th-order polynomial ignored in
the previous developments.

The number M of symmetric vector-valued polynomials {ψk(Ξ), k = 1, . . . ,M}
in Eq. (3.22) is shown in Table 1 as function of N and nd, the maximum order
considered. Observe in particular that this number remains constant for N > nd + 1
and is further independent of both n and m, the number of components in the vector
X and the number of PCA eigenvectors retained.

As examples, shown below are the α components, α = 1, . . . , N , of the symmetric
vector-valued multidimensional polynomials of degree r = 1 and 2 (for N > 2)

ψ1
α(ξ) = ξα , ψ2

α(ξ) =

N∑
β=1,β 6=α

ξβ ,(3.23)

ψ3
α(ξ) = ξ2α − 1 , ψ4

α(ξ) = ξα

N∑
β=1,β 6=α

ξβ ,(3.24)

ψ5
α(ξ) =

 N∑
β=1,β 6=α

ξβ

2

− (N − 1) , ψ6
α(ξ) =

N∑
β=1,β 6=α

(ξ2β − 1) .(3.25)
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Table 1
Table 1. Number M of vector symmetric polynomials vs. the number of eigenvalues (N) and

the polynomial maximum degree (nd)

N nd
1 2 3 4 5 6 7

2 2 5 9 14 20 27 35
3 2 6 12 21 33 49 69
4 2 6 13 24 40 63 94
5 2 6 13 25 43 70 108
6 2 6 13 25 44 73 115
7 2 6 13 25 44 74 118
8 2 6 13 25 44 74 119
9 2 6 13 25 44 74 119

Two matlab functions are presented as supplementary material that construct the
set of vector-valued polynomial given input values of N , nd, and samples ξ. These
functions should be called consecutively as
[Rpoly,MatRpoly]=sub scal symm poly(N-1,Nd)
[Npoly,MatRPsi]=sub symm poly eval(N,Nd,Rpoly,MatRpoly,MatRxi)
see instructions inside the functions.

4. Identification of the parameters. The focus of the CPCA approach is on
modeling a random vector X with ne available independent realizations x(`), ` =
1, . . . , ne, referred to as ”experiments” in the sequel, in the form of Eqs (2.4) and
(3.2). This modeling involves the determination of estimates (denoted by an overlined
hat) of the mean mX, the eigenvalues λα, the corresponding eigenvector ϕα, and the
parameters zk of Eq. (3.2).

The first three quantities will be estimated using the sample mean and covariance
matrix, i.e.,

(4.1) m̂X =
1

ne

ne∑
`=1

x(`)

(4.2) [ĈX] =
1

ne − 1

ne∑
`=1

(x(`) − m̂X) (x(`) − m̂X)T

Then, the solution of the eigenvalue problem

(4.3) [ĈX] ϕ̂α = λ̂α ϕ̂
α

yields the required estimates of the PCA eigenvectors, ϕ̂α, and eigenvalues λ̂α.
To complete the identification procedure, it then remains to estimate the coeffi-

cients zk of Eq. (3.2). Several standard strategies are available for this task such as
the maximum likelihood approach. Other methods are based on the minimization of
a distance between the distributions induced by the model and by the measurements.
In this paper, two identification approaches are proposed.

4.1. Direct minimization of the overlap error. The first identification method
is based on a direct minimization of the overlap error defined in Eqs (2.7) and (2.8)
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which is written as

(4.4) zopt = arg min
z
εovl(z) ,

where z is required to satisfy the constraints

(4.5) E{HαHβ} = δαβ .

Given the symmetry of the vector-valued multidimensional polynomials ψk(Ξ), the
resulting conditions are identical for all components α (unit variance) or pair (α, β)
of distinct components (uncorrelatedness). Accordingly, these conditions can be av-
eraged separately over all values α = β and α 6= β yielding only two constraints. In
terms of ne realized values, these constraints can be written as

(4.6)
1

N ne

ne∑
`=1

h(`)T h(`) = 1 ,

and

(4.7)
1

ne(N2 −N)

ne∑
`=1

N∑
α=1

N∑
β=1
β 6=α

h(`)α h
(`)
β = 0 .

With Eq. (3.2), these constraints can be rewritten as

(4.8) zT [A] z = 1 and zT [B] z = 0 ,

where the vector z = (z1, . . . , zM ) and the matrices [A] and [B] have components

(4.9) [A]kk′ =
1

N ne

ne∑
`=1

ψk(ξ̂
(`)

)T ψk
′
(ξ̂

(`)
) ,

(4.10) [B]kk′ =
1

ne(N2 −N)

ne∑
`=1

N∑
α=1

N∑
β=1
β 6=α

ψkα(ξ̂
(`)

)ψk
′

β (ξ̂
(`)

) .

One challenge associated with this effort is its computational cost. Indeed, at each
iteration it is necessary to estimate the distribution of each element of the random
vector XN

CPCA. Since n, the number of these components, may be very large, the
computational cost may be excessive. Thus, an alternate approach is also proposed
in the next section.

4.2. Least square identification. In this section, a least squares identification
of the coefficients zk is proposed as

(4.11) zopt = arg min
z
εLS(z) ,

where εLS(z) is either of εX(z) or εH(z) defined below and satisfying the constraints
of Eqs (4.8)-(4.10). The first error is

(4.12) εX(z) = E


∥∥∥∥∥X−mX −

√
µ

N

N∑
α=1

M∑
k=1

zk ψ
k
α(Ξ)ϕJα

∥∥∥∥∥
2
 ,



12 MARC MIGNOLET AND CHRISTIAN SOIZE

which is estimated by

(4.13) ε̂X(z) =
1

ne

ne∑
`=1

∥∥∥∥∥x(`) − m̂X −
√
µ

N

N∑
α=1

M∑
k=1

zk ψ
k
α(ξ(`)) ϕ̂j

(`)
α

∥∥∥∥∥
2

,

where ξ(`) and j(`) are the `th realizations of the random vectors Ξ and J associated
with x(`). The second error is

(4.14) εH(z) = E


∥∥∥∥∥H −

M∑
k=1

zk ψ
k(Ξ)

∥∥∥∥∥
2
 ,

which is estimated by

(4.15) ε̂H(z) =
1

ne

ne∑
`=1

∥∥∥∥∥h(`) −
M∑
k=1

zk ψ
k(ξ(`))

∥∥∥∥∥
2

where h(`) denotes the `th realization of the random vector H associated with x(`).
The above strategies appear computationally efficient but they require the experimen-
tal values ξ(`) and j(`), which are not available. This issue is resolved below considering
the error ε̂H(z) of Eq. (4.15). Similar steps can be followed when considering the error
ε̂X(z) of Eq. (4.13).

STEP 1: In the absence of experimental values for J, a set of independent
realizations j(`) are generated according to the distribution of Eqs (2.5) and (2.6)

with λα replaced by λ̂α.

STEP 2: Estimates of the corresponding experimental values of ĥ
(`)

= (ĥ
(`)
1 , . . . ,

ĥ
(`)
N ) are obtained for each ` = 1, . . . , ne by minimizing the error

(4.16) ε
(`)
CPCA =

∥∥∥∥∥x(`) − m̂X −
√
µ

N

N∑
α=1

ĥ(`)α ϕ̂j
(`)
α

∥∥∥∥∥
2

.

This optimization effort leads to the linear system of equations

(4.17) [φ̂
(`)

]T [φ̂
(`)

] ĥ
(`)

=

√
N

µ
[φ̂

(`)
]T (x(`) − m̂X) ,

where

(4.18) [φ̂
(`)

] = [ϕ̂j
(`)
1 . . . ϕ̂j

(`)
N ] ,

and from which ne realizations of the vector H are obtained. Note that the empirical

mean constructed from the identified values of ĥ
(`)

is enforced to be zero by removing
it from the identified values.

STEP 3: The next step of the process is the construction of experimental values

ξ̂
(`)

, i.e., realizations of the Gaussian random vector Ξ with covariance matrix equal

to the identity matrix, but which have to be statistically dependent of ĥ
(`)

so that
the least squares minimization problem of Eq. (4.15) is well posed. To ensure this

dependence, the values ξ̂
(`)

will be determined from ĥ
(`)

in an iterative process seeking
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to approximate at best the independence and Gaussian properties of the random
variables {Ξα}α.

Specifically, denote by [Gk] a n × ne matrix at iteration k. It is intended that

[G1] = [ĥ
(1)
. . . ĥ

(ne)
] and at convergence of the sequence {[Gk]}k, the columns of [Gk]

are ne independent realizations [ξ̂
(1)
. . . ξ̂

(ne)
] of the Gaussian vector Ξ. A transfor-

mation of matrix [Gk] is first achieved to create uncorrelatedness. That is,

(4.19) [Gk+1] = [Lk]−1 [Gk]

where the matrix [Lk] is the decomposition (e.g., Cholesky) of the correlation matrix
[C[Gk]], i.e.,

(4.20) [Lk] [Lk]T = [C[Gk]] =
1

ne − 1
[Gk] [Gk]T .

The next sub-iteration maps each component of [Gk+1]α` to the corresponding com-
ponent of [Gk+2]α` to achieve Gaussianity of each variable Ξα. Specifically,

(4.21) [Gk+2]α` = F−1G (Fα([Gk+1]α`))

where FG(.) and Fα(.) denote the cumulative distribution functions of the normal
distribution and the one corresponding to the samples [Gk+1]α`, ` = 1, . . . , ne, for
each α. Note that the exponent -1 indicates here the inverse function.

STEP 4: Having constructed samples ξ̂
(`)

, the entire set of polynomials ψk can
be constructed according to Eq. (3.22). The constants ck are evaluated so that the

empirical mean of ψkα(Ξ) estimated using ξ̂
(`)

as realizations of Ξ is zero for every
polynomial.

STEP 5: The imposition of the constraints of Eqs (4.8)-(4.10) is carried out
using the Lagrange multiplier approach leading to the system of equations

(4.22)

(
ne∑
`=1

[Ψ(`)]T [Ψ(`)] + Λ1 [A] + Λ2 [B]

)
z =

ne∑
`=1

[Ψ(`)]T ĥ
(`)

where

(4.23) [Ψ(`)] = [ψ1(ξ̂
(`)

) . . . ψM (ξ̂
(`)

)]

and Λ1 and Λ2 are the Lagrange multipliers. The determination of the parameters
zk is most easily carried out by viewing the solution of Eq. (4.22) as z = z(Λ1,Λ2).
Then, Eq. (4.8) appear as 2 nonlinear algebraic equations for Λ1 and Λ2 the solution
of which first yields these multipliers and then the corresponding vector z.

STEP 6: The last step of the identification is the estimation of the error asso-
ciated with the CPCA modeling. It is proposed here to quantify it using the overlap
measures of Eqs (2.7) and (2.8). The nonparametric estimation of pXi(x) based on

the use of Eqs (2.4) and (3.2) is achieved with new realizations ξ(`) and j(`). The
number of simulations, denoted here as ns, should be selected large enough to obtain
a reliable estimate of the probability density functions pXi(x) and regardless of the
value of ne.

STEP 7: Since the least squares approach does not optimize Eqs (2.7) and (2.8)
but rather Eq. (4.15), it is beneficial to repeat the above process for several values of
N and nd and then select the optimum CPCA approximation as the one yielding the
lowest overlap error.
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5. Numerical illustration. The construction of a CPCA representation was
achieved for a non-Gaussian random vector constructed from the sampling in space
of a 3-dimensional zero mean homogeneous real-valued Gaussian process Z(s), s =
(s1, s2, s3) indexed by R3, with autocorrelation function

(5.1) RZZ(s̄) = E[Z(s)Z(s + s̄)] =

3∏
α=1

sin2(pα)

p2α

where

(5.2) pα = (πs̄α)/(2Lα), α = 1, 2, 3

in which Lα denotes the correlation length in direction α.
The process Z(s) was sampled at 9 locations in each direction with coordinates

s̄α = 0, 0.125, 0.25, . . . , 1 and stacked to form the n = 93 = 729 component zero mean
random vector XG which is fully defined by its covariance matrix

(5.3) KXGXG = E[XG(XG)T ]

The element αβ of this matrix is

(5.4) [KXGXG ]αβ = RZZ(s̄(β) − s̄(α))

where s̄(α) is the 3-dimensional vector of the coordinates of the component α of XG.
The generation of samples of the Gaussian random vector XG is easily achieved by

first proceeding with a Cholesky decomposition of the positive-definite matrix KXGXG

as KXGXG = LLT . Then, a component α of the random vector XG can be expressed
as

(5.5) XG
α =

729∑
β=1

Lαβ Ξ̄β

where Ξ̄β , β = 1, . . . , 729 are independent zero mean unit variance Gaussian random
variables.

The non-Gaussian process of interest here will be expressed similarly to Eq. (5.5)
as

(5.6) Xα =

729∑
β=1

Lαβ Ξ̄3
β .

For the results presented below, the correlation lengths were selected as Lα = 1
and ne = 20 000 samples of the vector X were simulated and utilized. This large
number of samples was selected to insure a converged behavior of the CPCA modeling
process permitting the clear assessment of the methodology. The convergence was
confirmed by increasing further ne up to 160 000. Then, shown in Figs 1 and 2 are
the PCA eigenvalues λi and the corresponding PCA error εPCA plotted vs. the number
of PCA eigenvalues m for the non-Gaussian process of Eq. (5.6). To exemplify the
CPCA construction, the approximation corresponding to m = 15 is first selected. It
corresponds to a low error εPCA=0.037. The CPCA modeling was performed using
both the direct minimization of the error of Eqs (2.7) and (2.8) and the least squares
approach of Eq. (4.22) for various values of N and the polynomial order nd for both
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Fig. 2. Error εPCA(m) vs. number of eigenvectors m.

methods. Note that the error εovl(N,nd) was obtained with the number of simulation
ns selected as 20 000 and the Gaussian kernel approach [6, 53] was used to estimate
all probability density functions.

The direct minimization of the error was achieved first and shown in Fig. 3 are
the corresponding minimum values obtained for various values of N and nd ≥ 2
starting with the common initial condition z1 = 1 and all other coefficients zk set to
zero. The case nd = 1, not shown here for clarity, which corresponds to the random
components Hα being independent standard Gaussian random variables achieves a
minimum overlap error of 0.21. It is seen in Fig. 3 that the error decreases as a
function of N and nd but achieves near convergence for nd = 3 and N = 3. The
increase in the overlap error occurring between nd = 3 and N = 3 and nd = 4 and
N = 3 is believed to be associated with a local minimum which the minimization
process was found to exhibit. Moreover, note that the solutions corresponding to
nd = 2 are definitely below the 0.21 value obtained for nd = 1 demonstrating the role
of the quadratic polynomials even though the distribution of the components of the
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random vector X is odd, i.e., pX(x) = pX(−x) given its construction of Eq. (5.6). Also
shown in Fig. 3 is the least squares solution, which was found to lead to a minimal
overlap error equal to 0.164 and also occurring for nd = 3 and N = 3. As a perspective
for the results of Fig. 3, note that a Gaussian modeling of the random vector X would
lead to an overlap error of 0.303.

The smoothed histograms of the 729 values of ε
(i)
ovl, see Fig. 4, show that the

accuracy of the CPCA approximations varies from one component to another. In

particular, note that the peak of this histogram occurs for ε
(i)
ovl = 0.06−0.07 depending

on the method used even though the norm ε
(i)
ovl = 0.140− 0.164 owing to the long tail

shown in Fig. 4.

Also shown on this figure is the error ε
(i)
ovl, which would be obtained by modeling

each component Xα of the random vector X as a Gaussian random variable. Even
though the CPCA approximations involve only 6 (for nd = 2 and N = 3) or 12 (for
nd = 3 and N = 3) coefficients, see Table 1, they yield a dramatic reduction of the
overlap error in comparison to the Gaussian approximation.

A more detailed perspective on the modeling of each component can be obtained
by comparing the marginal probability density functions of typical components Xα of
the random vector X. This comparison is shown in Figs 5-10 for some typical compo-
nents for the least squares solution corresponding to nd = 3 and N = 3. The matching
obtained with the two approximations, nd = 2 or 3 and N = 3, obtained with direct

minimization is very similar for similar values of the overlap error ε
(i)
ovl. In particular,

no obvious asymmetry was noted for either approximation. The components chosen

for Figs 5-10 are α=157, 329, and 129 to which correspond the errors ε
(i)
ovl=0.0251,

0.0643, and 0.1654, respectively. For the first two cases, the matching between the
CPCA distribution and its simulated (”Experiment”) counterpart is excellent, both
near the peak and in the tail. For the last case, the peak is not well captured but
the agreement in the tail is still excellent. These results are a dramatic improvement
over the Gaussian approximations also presented on these figures which match neither
near the peak nor in the tail. Also presented in Figs. 5, 7, and 9 are the probability
density functions obtained for the corresponding PCA approximations X15

PCA,α (curve
”Truncation”) which match closely their simulation counterparts demonstrating that
the choice of m=15 eigenvectors is an appropriate selection. To complement the above
analysis, shown in Figs 11 and 12 are the identical marginal distributions of the com-
ponents Hα of the random vector H corresponding to the optimum selections N = 3,
nd = 2 and nd = 3 as well as the least squares solution N = 3 and nd = 3. Note in
this figure the clear asymmetry corresponding to the nd = 2 case and induced by the
quadratic polynomials.

Finally, it was of interest to assess the CPCA approach for various values of
m. This effort is summarized in Fig. 13 showing the minimum (over N for nd=3)
value of εovl obtained with both the least squares and direct overlap minimization
approaches. Consistently with Fig. 3, it is seen that the least squares approach leads
to only small increases in error as compared to the direct overlap minimization. Also
shown on this figure are the corresponding errors obtained for the PCA approximation
as well as for a Gaussian modeling of each component independently. For small
values of m, the error is primarily due to the PCA truncation but the resulting
components are approximately Gaussian so that both the Gaussian approximation and
the CPCA lead to similar errors. As m increases, the truncation error decreases and
the components of the resulting random vector exhibit a more non-Gaussian (sharper
peak) behavior. These trends are conflicting for the Gaussian approximation, which
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first decreases, reflecting the decrease in the truncation error, but then increases owing
to the increased non-Gaussian character of the components Xα. This is not the case
for the CPCA approach, that leads to an error εovl which decreases monotonically
stabilizing for m=9.
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Fig. 4. Smoothed histograms of the errors ε
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ovl, m=15, various optima with direct minimization

and least squares approach (”LS”) as well as for a Gaussian approximation.

6. Discussion and conclusions. The present investigation has introduced a
new approximate representation of non-Gaussian random vectors X, referred to as
Compressed Principal Component Analysis (CPCA), as a linear combination of a
random sample of N eigenvectors of the PCA, see Eq. (2.4). In this representation,
the random indices Jα of the eigenvectors are independent and have a distribution
specified in terms of the PCA eigenvalues, see Eq. (2.6). The random coefficients Hα of
the linear combination are by definition zero mean, uncorrelated, have unit variance,
and are independent of the random indices Jα. Even without further characterization
of the distribution of these coefficients, it was shown that the first and second order
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(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation,
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(157)
ovl =0.0251.
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Fig. 6. Probability density functions pX(x), of variable X157, logarithmic scale. Original data
(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation, and

CPCA optimum least squares solution with N=3 and nd=3, ε
(157)
ovl =0.0251.

moments of the CPCA approximation are equal to those of the corresponding PCA
representation.

A key property demonstrated next is that the probability distribution of the
random coefficients Hα can be taken, without loss of generality, to be a symmetric
function. This rather unique property allows to represent the vector of these coeffi-
cients in terms of a small number of deterministic parameter, zk, in its expansion on
a novel set {ψk(Ξ)}k of symmetric vector-valued multidimensional polynomial of the
canonical Gaussian random vector Ξ, see Eqs (3.2) and (3.22)-(3.25).
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Fig. 7. Probability density functions pX(x), of variable X329, linear scale. Original data
(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation,

and CPCA optimum least squares solution with N=3 and nd=3, ε
(329)
ovl =0.0643.
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Fig. 8. Probability density functions pX(x), of variable X329, logarithmic scale. Original data
(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation, and

CPCA optimum least squares solution with N=3 and nd=3, ε
(329)
ovl =0.0643.

The identification of the parameters zk from realizations of the random vector
X was addressed next. A first optimization problem was proposed, i.e., the mini-
mization of the overlap error of Eqs (2.7) and (2.8), which measures the difference
between the distributions of the components Xα as determined from the available
data and as modeled from the CPCA representation. Since finding the solution of
this optimization problem could be computationally expensive, a much cheaper, sub-
optimum alternative was also proposed, i.e., the minimization of either of the two
least squares errors of Eqs (4.14)-(4.16). The validation example has confirmed that
this least squares identification approach is indeed sub-optimum with respect to the
overlap error but nevertheless provides a good approximation of the optimum solution
obtained by a direct optimization of the overlap error. Moreover, the least squares
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Fig. 9. Probability density functions pX(x), of variable X129, linear scale. Original data
(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation,

and CPCA optimum least squares solution with N=3 and nd=3, ε
(129)
ovl =0.1654.

−20 −10 0 10 20

10
−4

10
−3

10
−2

10
−1

x

P
X
 (

x
)

 

 

CPCA

Experiment

Gaussian

Trunc. PCA

Fig. 10. Probability density functions pX(x), of variable X129, logarithmic scale. Original data
(”Experiment”), PCA truncated to m=15 terms (”Trunc. PCA”), its Gaussian approximation, and

CPCA optimum least squares solution with N=3 and nd=3, ε
(129)
ovl =0.1654.

solution is obtained at a much reduced computational cost, which does not increase
notably with increasing size of the random vector X and is thus applicable to large
computational problems.

As discussed in Section 2.3, the CPCA representation is in general an approx-
imation of its PCA counterpart. This is certainly expected when the number 2N
of random variables it involves is less than the PCA order m. However, this is also
the case when 2N > m as it is not expected that the characteristic function of the
modeled vector, see Eq. (2.15), can match exactly any given characteristic function.
Nevertheless, the strengths of the CPCA representation are that:

(i) it involves a rather small, very small in comparison to Polynomial Chaos
representations, number of parameters, see Table 1.
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Fig. 11. Probability density function pH(h), linear scale, m=15, various optima with direct
minimization and least squares approach (”LS”).
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Fig. 12. Probability density function pH(h), logarithmic scale, m=15, various optima with
direct minimization and least squares approach (”LS”).

(ii) the matching of the distributions of the components Xα as determined from
the available data and as modeled from the CPCA representation was found to be good
to excellent, depending on the component considered, for the strongly non-Gaussian
example considered. Rather interestingly, it was observed that the matching of these
two distributions in their tail was consistently very good, an important feature. Such
good approximations were obtained with 12 or less parameters zk.

(iii) the accuracy of the approximation can be simply quantified by the overlap
error of Eqs (2.7) and (2.8).

Additional numerical results not presented here for brevity have further shown
that the CPCA representation of a Gaussian random vector X can also be achieved
thus suggesting that the modeling approach is widely applicable. Moreover, it was
found that identification strategies based on the PCA variables Γα, minimizing either
an overlap error on those variables or a least squares metric similar to Eqs (4.14)-
(4.16) did not lead to a good CPCA approximation. However, the least squares
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Fig. 13. Minimum error εovl(N,nd) vs. m for PCA truncated to m=15 terms (”Trunc.
PCA”), its Gaussian approximation, and the CPCA optima obtained by direct optimization and
least squares approach over the value of N for nd=3.

identification approach of Eqs (4.12)-(4.13) was successful, leading to results similar
to those presented here in connection with the approach of Eqs (4.14)-(4.16). It is
however slightly more expensive than this approach.
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