
HAL Id: hal-02966135
https://hal.science/hal-02966135

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dictionary Learning with Statistical Sparsity in the
Presence of Noise

Shayan Aziznejad, Emmanuel Soubies, Michael Unser

To cite this version:
Shayan Aziznejad, Emmanuel Soubies, Michael Unser. Dictionary Learning with Statistical Sparsity
in the Presence of Noise. 28th European Signal Processing Conference - EUSIPCO 2020, Jan 2021,
Amsterdam, Netherlands. pp.2026-2029. �hal-02966135�

https://hal.science/hal-02966135
https://hal.archives-ouvertes.fr


Dictionary Learning with Statistical Sparsity in the
Presence of Noise

Shayan Aziznejad
Biomedical Imaging Group
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Abstract—We consider a new stochastic formulation of sparse
representations that is based on the family of symmetric α-stable
(SαS) distributions. Within this framework, we develop a novel
dictionary-learning algorithm that involves a new estimation
technique based on the empirical characteristic function. It finds
the unknown parameters of an SαS law from a set of its
noisy samples. We assess the robustness of our algorithm with
numerical examples.

Index Terms—Dictionary learning, sparse coding, sparse rep-
resentation, stable distribution, empirical characteristic function.

I. INTRODUCTION

The sparse representation of data is a fundamental approach
to modern signal processing; it has been extensively developed
in the past 20 years [1]. This approach appears in numerous
research areas such as compressed sensing [2], inverse prob-
lems [3], and image processing [4], to name a few. In this
framework, the data vector y ∈ RM is assumed to have a
sparse representation in the span of the columns (atoms) of
some transformation matrix A ∈ RM×P . In other words, one
can write that

y = Ax (1)

for some sparse vector x ∈ RP with few nonzero entries.
Finding the sparsest representation of y is then formulated as
the minimization

min
x∈RP

‖x‖0 s.t. y = Ax, (2)

where ‖x‖0 is the number of nonzero elements of x. Prob-
lem (2) is known to be NP-hard. However, there is a rich
literature on how to efficiently find (or approximate) the
solution of (2) (see [5] for a review).

A prominent element in this framework is the transformation
matrix (a.k.a. dictionary) A. Choosing a suitable dictionary
is a challenging task and highly depends on the application.
For example, in compressed sensing, Gaussian random ma-
trices are advantageous since they ensure stable recovery by
satisfying the restricted isometry property [6]. Meanwhile,
in image-compression algorithms, dictionaries such as the
discrete cosine tranform [7] or the various wavelet transforms
[8] are classical choices since they provide a sparse (hence,
compressible) representation for natural images. As an alter-
native to the classical approach, the framework of dictionary

learning has been proposed. In this data-driven scheme, the
transformation itself is learned from a set of data samples [9].

While classical sparse models are purely deterministic, the
theory of sparse stochastic processes has been developed in
the last decade to model sparsity in the stochastic world
[10]. Within this framework, the class of sparsity-promoting
distributions has been well characterized [11]. More precisely,
it has been shown that the realizations of a vector of i.i.d.
random variables with heavy-tailed distributions are sparse
[12]. Symmetric α-stable (SαS) distributions are a popular
family of heavy-tailed distributions which are appearing in
many research areas, for example in compressed sensing [13],
audio denoising [14] and modeling of financial data [15]. We
refer to [16] for a list of applications in signal processing.

In this paper, we consider dictionary learning with a statis-
tical prior according to which the components of the signal x
are i.i.d. with a SαS law. In the noiseless scenario, Pad et al.
proposed a novel algorithm [17] that we adapt here to the more
realistic case where an additive Gaussian noise is assumed to
corrupt the data samples. Our method is based on a robust
estimation of the noise variance jointly with the parameters
of the underlying SαS distribution. We numerically illustrate
the performance of our algorithm and verify its robustness to
noise.

II. PRELIMINARIES AND MODEL

In this section, we first recall some important properties of
SαS distributions. Then, we detail the stochastic formulation
of sparse representation that we are considering throughout
the paper.

A. Symmetric α-Stable Distributions

The SαS random variable X is defined via its characteristic
function given as

ΦX(ω) = E[ejωX ] = exp(−γ|ω|α), (3)

where γ > 0 and α ∈ (0, 2] are the dispersion and stability
parameters of X , respectively. The extremal case α = 2
coincides with the zero-mean Gaussian law whose variance
is σ2 = 2γ.

SαS distributions are closed under addition, in the sense
that any linear combination of independent α-stable random
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Fig. 1. Three realizations of SαS signals with different values of α. Each
signal has been divided by its max value.

variables is an α-stable random variable itself [18]. More pre-
cisely, if {Xn}Nn is an i.i.d. sequence of random variables with
SαS law, then the characteristic function of X =

∑N
n=1 wnXn

can be computed as

ΦX(ω) = exp(−γ‖w‖αα|ω|α), (4)

where w = (w1, . . . , wN ) ∈ RN .
For small values of α, it is known that the independent

realizations of a random variable with SαS law yields a sparse
signal [12]. As α increases, the sparsity of the signal decreases.
In the critical case α = 2 (zero-mean Gaussian distribution),
the realizations are purely non sparse. We illustrate this
behavior in Figure 1 where, in each subplot, 100 independent
samples of an SαS law with γ = 1 and with different values
of α have been generated.

B. Model

We consider that the data vector y follows the model

y = Ax + n, (5)

where x = (x1, . . . , xP ) ∈ RP is a realization of a vector of P
i.i.d. random variables that follow an SαS distribution, while
n ∈ RM is an additive white Gaussian noise (independent of
x) with the variance σ2. This model is similar to the classical
sparse-representation scheme (1) with two major differences.
• It considers additive Gaussian noise, which makes the

model more realistic.
• The prior information on the latent signal x is stochastic,

being a realization of a random vector with SαS law.

We assume that the stable law that generates the vector x
has dispersion parameter γ = 1. This covers in no loss of
generality, since γ can be absorbed as a scaling factor in the
columns of A.

Now, the aim of dictionary learning in this framework is
to learn the unknown matrix A from the training dataset
{y1, . . . ,yK}. This dataset is obtained by taking independent
instances from the stochastic model (5).

III. SPARSE-DISTRIBUTION TOMOGRAPHY

In this section, we briefly explain the sparse distribution
tomography (SparsDT) algorithm of Pad et al. for learning
the matrix A in the model (5) [17].

For any unit-norm vector u ∈ RM with ‖u‖2 = 1, the
random variable

Zu = uTy = uTAx (6)

follows a SαS distribution. Its characteristic function is

ΦZu(ω) = exp
(
−‖ATu‖αα|ω|α

)
. (7)

The set {z1, . . . , zK} of sample points of Zu, with zk = uTy,
allows one to estimate the parameters α (stability) and γ(u) =
‖ATu‖αα (dispersion) of the law of Zu. By repeating this
procedure for the set {u1, . . . ,uL}, one gets the system of
nonlinear equations

‖ATu`‖αα = γ(u`), ` = 1, . . . , L, (8)

for the unknown dictionary A. It was shown in [17] that, if
L is sufficiently large (namely, L ≥ MP ), then the solution
of (8) is unique (up to negation and permutations). Hence, by
solving the nonlinear system of equations (8), one recovers
the desired dictionary A.

Although SparsDT is an elegant algorithm that works per-
fectly in noiseless (or very low noise) regimes, we observe
that its performance decreases dramatically as the noise power
increases. This is due mainly to their estimation method
for finding the unknown parameters of the law of Zu from
its samples. In the next section, we propose an alternative
estimation method that takes additive Gaussian noise into
account and results in a robust version of SparsDT with
improved performance in high-noise regimes.

IV. PARAMETER ESTIMATION USING EMPIRICAL
CHARACTERISTIC FUNCTIONS

Consider the random variable Z = X+N , where X follows
a SαS law with the dispersion parameter γ > 0 and N is a
zero-mean Gaussian random variable that does not depend on
X and has the variance σ2. In this section, we propose a new
method to estimate the parameters α ∈ (0, 2], γ > 0, and
σ > 0 of this model from the set {z1, . . . , zK} of independent
samples of Z.

We start by forming the empirical characteristic function

Φ̃Z(ω) =
1

K

K∑
k=1

exp(jωzk). (9)
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From the generic form (3) of characteristic functions of SαS
random variables and together with the independence of X
and Z, one readily verifies that the characteristic function of
Z is indeed

ΦZ(ω) = exp

(
−γ|ω|α − σ2

2
ω2

)
. (10)

Now, the law of large numbers suggests that, for large values
of K, the empirical characteristic function of Z should be
close to its theoretical form (10). So, in order to estimate the
the unknown parameters of Z, we fit (10) to (9). To that end,
we define the vector ω = (ω1, . . . , ωT ) of modulation samples
and the function f̃ : R → R with f̃(ω) = − log(Φ̃Z(ω)) for
all ω ∈ R. After fitting (10) to (9), we want to have that

f̃(wt) ≈ γ|ωt|α +
σ2

2
ω2
t , t = 1, . . . , T.

Consequently, in order to find the unknown parameters of Z,
we propose to solve the least-squares minimization

min
α∈(0,2]
γ,σ≥0

T∑
t=1

(
f̃(ωt)− γ|ωt|α −

σ2

2
ω2
t

)2

. (11)

We first note that, by defining the intermediate cost function

J (α) = min
c1,c2>0

T∑
t=1

(
f̃(wt)− c1|ωt|α − c2ω2

t

)2
, (12)

Problem (11) is equivalent to

min
α∈(0,2]

J (α), (13)

with the implicit change of variables c1 = γ and c2 = σ2/2.
The promising property of this decoupling is that (12) is a sim-
ple linear least-squares problem that is known to have a unique
solution with closed form. By writing the optimality conditions
(partial derivatives of the cost function equal to 0) for (12), we
obtain that the solution pair c∗(α) = (c∗1(α), c∗2(α)) of (12)
must satisfy

T∑
t=1

|wt|α(f̃(wt)− c1|wt|α − c2w2
t ) = 0

T∑
t=1

|wt|2(f̃(wt)− c1|wt|α − c2w2
t ) = 0.

Solving this system of linear equations then yields

c∗(α) =

(
‖ω‖2α2α ‖ω‖2+α2+α

‖ω‖2+α2+α ‖ω‖44

)−1(
gα
g2

)
, (14)

where gp =
∑T
t=1 |ωt|pf̃(ωt) for p = α, 2. The conclusion

is that, for each value of α, there is a fast way of computing
the cost function J (α) and also the (respectively) optimal
coefficients γ = c∗1(α) and σ =

√
2c∗2(α).

The final step is to to find the stability parameter α that
minmizes (13). We recall that α lies in the finite-length interval

Fig. 2. Estimation of the stability (α) and the dispersion (γ) parameters of
an SαS random variable from a noisy sample set of size K = 10000. We
compare our proposed method (solid line) to the one of SparsDT (dashed
line). An average over 1000 repetitions has been taken to provide a smooth
curve.

(0, 2]. Hence, we can benefit from the rich existing litea-
ture on derivative-free methods for the optimization of one-
dimensional functions over compact domains (e.g., Bayesian
optimization [19]) to solve (13).

In Figure 2, we show that even a simple grid search with
stepsize h = 0.01 and ω = (0.1, 0.11, 0.12, . . . , 0.3) provides
a suitable estimation of stability parameter as α = 1.255 and
the dispersion parameter γ = 1.

V. NUMERICAL RESULTS

In this section, we compare the robustness of our method
with SparsDT through numerical examples. To that end, we
first generated a random Gaussian matrix A of size M = 20 by
P = 30. Then, we generated a training dataset {y1, . . . ,yK}
of size K = 1000, where each data vector is an independent
realization of (5) with α = 1.2 and γ = 1 and with different
noise levels (we swipe the variance of the noise over the range
[0, 10]).

To measure the performance of dictionary-learning methods,
we use the average correlation metric that was introduced in
[17]. In this metric, the distance between the learned dictionary
Â and the ground truth A is obtained in two stages; first, we
pair each column ân of Â to an unpaired column of A (one-to-
one assignment) that is maximally correlated to ân. Then, the
distance is computed by taking an average over the correlation
of these M pairs.
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Fig. 3. Effect of noise variance (σ2) to the performance of the SparsDT
algorithm (dashed line) and our modified version (solid line).

We provide our results in Figure 3. As can be seen, our
method is robust to noise. Indeed, in low-noise regimes,
SparsDT provides a better performance due to its accurate
estimate of the parameters of SαS laws. But, the SparsDT
approach is not robust to an increase in the noise variance.
By contrast, our method has a better performance (correlation
around 95 percent) even in high-noise regimes.
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VII. CONCLUSION

We have proposed a dictionary-learning method with a
statistical sparsity prior in the presence of noise. We have
assumed that the sparse signal is a realization of an i.i.d.
vector whose entries obey a symmetric α-stable (SαS) law.
We have proposed a modification to an existing algorithm that
made it robust to the noise variance. Our modification is based
on the estimation of the dispersion parameter of a SαS law
from a set of its noisy samples. We have validated numerically
the robustness of our approach. In our future works, we plan
to investigate different heavy-tailed distributions as statistical
sparsity prior and also to apply our method in the real-world
problems that follow the SαS model.
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