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Abstract. We obtain space-time Hölder regularity estimates for solutions of first- and second-order Hamilton-

Jacobi equations perturbed with an additive stochastic forcing term. The bounds depend only on the growth
of the Hamiltonian in the gradient and on the regularity of the stochastic coefficients, in a way that is in-

variant with respect to a hyperbolic scaling.

1. Introduction

The objective of this paper is to study the Hölder regularity of stochastically perturbed equations of the
form

(1.1)
E:main1E:main1

du+H(Du, x, t)dt = f(x) · dB
and

(1.2)
E:main2E:main2

du+ F (D2u,Du, x, t)dt = f(x) · dB,
where H : Rd × Rd × R → R and F : Sd × Rd × Rd × R → R are coercive in Du, F is degenerate elliptic
in D2u ∈ Sd, Sd is the space of symmetric d × d matrices, f ∈ C2

b (Rd,Rm), and B is an m-dimensional
Brownian motion defined over a fixed probability space (Ω,F,P).

More precisely, we are interested in the regularizing effect that comes about from the coercivity in the Du-
variable. The goal is to show that bounded solutions of (1.1) and (1.2) are locally Hölder continuous with
high probability, with a Hölder bound and exponent that are independent of the regularity of H or F in
(x, t), or the ellipticity in the D2u-variable.

A major motivation for this paper is to study the average long-time, long-range behavior of solutions of
(1.1) and (1.2) with the theory of homogenization. Specifically, if uε(x, t) := εu(x/ε, t/ε) for ε > 0 and
(x, t) ∈ Rd × R, then uε solves

(1.3)
E:scaledmain1E:scaledmain1

duε +H

(
Duε,

x

ε
,
t

ε

)
dt = ε1/2f

(x
ε

)
· dBε

or

(1.4)
E:scaledmain2E:scaledmain2

duε + F

(
εD2uε, Duε,

x

ε
,
t

ε

)
dt = ε1/2f

(x
ε

)
· dBε,

where Bε(t) := ε1/2B(t/ε) has the same law as B. Observe that the new coefficients

fε(x) := ε1/2f(x/ε),

which are required to be continuously differentiable in order to make sense of the equation (twice in the case
of (1.4)), blow up in C1(Rd,Rm) and C2(Rd,Rm) as ε→ 0. A major contribution of this paper is to obtain
estimates that, although they depend on ‖Df‖∞ and

∥∥D2f
∥∥
∞, are bounded independently of ε, and, in

fact, the probability tails of the Hölder semi-norms converge to 0 as ε→ 0.
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1.1. Main results. We give two types of results, for both first and second order equations. The first is an
interior Hölder estimate for bounded solutions on space-time cylinders. We then use this result to prove an
instantaneous Hölder regularization effect for initial value problems with bounded initial data.

For u defined on the cylinder

Q1 := B1 × [−1, 0] :=
{

(x, t) ∈ Rd × R : |x| ≤ 1, −1 ≤ t ≤ 0
}
,

we show that u is Hölder continuous on the cylinder B1/2 × [−1/2, 0], given that u is a solution of the
appropriate equation, and is nonnegative and has a random upper bound, that is, for some S : Ω→ [0,∞),

(1.5)
A:introrandomboundA:introrandombound

0 ≤ u ≤ S in Q1. T:introfirstorder

Theorem 1.1. Assume, for some A > 1, q > 1, and K > 0, that

(1.6)
A:HsuperlinearA:Hsuperlinear 1

A
|p|q −A ≤ H(p, x, t) ≤ A|p|q +A for all (p, x, t) ∈ Rd × Rd × [−1, 0],

(1.7)
A:fC1boundA:fC1bound

f ∈ C1(Rd,Rm), ‖f‖∞ + ‖f‖∞ · ‖Df‖∞ ≤ K,

and u solves (1.1) in Q1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there exist α = α(A, q) > 0,
σ = σ(A, q) > 0, λ0 = λ0(A,K,M, q) > 0, and C = C(A,K,M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> λ

)
≤ P ((S −M)+ > λσ) +

C ‖f‖p∞
λσp

.

To state the assumptions for the regularity results for (1.2), we introduce the notation, for any X ∈ Sd,

m+(X) := max
|v|≤1

v ·Xv and m−(X) := min
|v|≤1

v ·Xv.

That is, m+(X) and m−(X) are, respectively, the largest nonnegative and lowest nonpositive eigenvalue of
X. Note that, if F : Sd → R is uniformly continuous and degenerate elliptic, then, for some constants ν > 0
and A > 0 and for all X ∈ Sd,

−νm+(X)−A ≤ F (X) ≤ −νm−(X) +A.

In order for the coercivity in the gradient to dominate the second-order dependence of F at small scales, it
is necessary to assume that the growth of F in Du is super-quadratic. T:introsecondorder

Theorem 1.2. Assume that, for some A > 1, q > 2, ν > 0, and K > 0,

(1.8)
A:FsuperquadraticA:Fsuperquadratic

− νm+(X) +
1

A
|p|q −A ≤ F (X, p, x, t) ≤ −νm−(X) +A|p|q +A

for all (X, p, x, t) ∈ Sd × Rd × Rd × [−1, 0],

(1.9)
A:fC2boundA:fC2bound

f ∈ C2(Rd,Rm), ν + ‖f‖∞ + ‖f‖∞ · ‖Df‖∞ + ν ‖f‖∞
∥∥D2f

∥∥
∞ ≤ K,

and u solves (1.2) in Q1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there exist α = α(A, q) > 0,
σ = σ(A, q) > 0, λ0 = λ0(A,K,M, q) > 0, and C = C(A,K,M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> λ

)
≤ P ((S −M)+ > λσ) +

C ‖f‖p∞
λσp

.

Although the bounds in Theorem 1.1 and 1.2 do depend on the regularity of f , the important point is that
the dependence is scale-invariant. Indeed, the function fε defined by fε(x) := ε1/2f(x/ε) satisfies

‖fε‖∞ = ε1/2 ‖f‖∞ , ‖Dfε‖∞ :=
1

ε1/2
‖Df‖∞ , and

∥∥D2fε
∥∥
∞ =

1

ε3/2

∥∥D2f
∥∥
∞ .



HÖLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC FORCING 3

As a consequence, fε satisfies (1.7) and (1.9) with some K > 0 independent of ε (the latter because, in
(1.8), ν is replaced with εν). This leads to the following scale-invariant estimates for the regularizing effect
of (1.3) and (1.4). T:introfirstorderscaling

Theorem 1.3. For A > 1, M > 0, and q > 1, assume that

1

A
|p|q −A ≤ H(p, x, t) ≤ A|p|q +A

and f ∈ C1
b (Rd,Rm), and, for 0 < ε < 1, let uε be the solution of (1.3) with ‖uε(·, 0)‖∞ ≤ M . Fix

τ > 0, R > 0, and T > 0. Then there exist C = C(R, τ, T,A, ‖f‖C1 ,M, q) > 0, α = α(A, q) > 0, and
σ = σ(A, q) > 0 such that, for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t)− uε(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

T:introsecondorderscaling

Theorem 1.4. For A > 1, ν > 0, M > 0, and q > 2, assume that

−νm+(X) +
1

A
|p|q −A ≤ F (X, p, x, t) ≤ −νm−(X) +A|p|q +A

and f ∈ C2
b (Rd,Rm), and, for 0 < ε < 1, let uε be the solution of (1.4) with ‖uε(·, 0)‖∞ ≤ M . Fix

τ > 0, R > 0, and T > 0. Then there exist C = C(ν,R, τ, T,A, ‖f‖C2 ,M, q) > 0, α = α(A, q) > 0, and
σ = σ(A, q) > 0 such that, for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t)− uε(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

1.2. Background. The regularizing effects of Hamilton-Jacobi-Bellman equations like

(1.10)
E:classicalE:classical

∂tu+ F (D2u,Du, x, t) = 0

has been studied by many authors, including Cardaliaguet [2], Cannarsa and Cardaliaguet [1], and Cardalia-
guet and Silvestre [3], Chan and Vasseur [4] and Stockols and Vasseur [16]. In these works, under a coercivity
assumption on F in the gradient variable (but no regularity condition on F ), bounded solutions are seen
to be Hölder continuous, with estimate and exponents depending only on the growth of the F in Du.
These results were used to obtain homogenization results for problems set on periodic or stationary-ergodic
spatio-temporal media; see, for instance, Schwab [13] and Jing, Souganidis, and Tran [6].

The equations (1.1) and (1.2) do not fit into this framework, due to the singular term on the right-hand side,
which is nowhere pointwise-defined. A simple transformation (see Definition 2.1 below) leads to a random
equation that is everywhere pointwise-defined of the form (1.10). More precisely, if u solves (1.2) and

ũ(x, t) = u(x, t)− f(x) ·B(t),

then
∂tũ+ F (D2ũ+D2f(x) ·B(t), Dũ+Df(x) ·B(t), x, t) = 0.

However, this strategy does not immediately yield scale-invariant estimates. Indeed, the transformed equa-
tion corresponding to (1.4) is, for ε > 0,

∂tũ
ε + F

(
εD2ũε +

1

ε1/2
D2f

(x
ε

)
Bε(t), Dũε +

1

ε1/2
Df

(x
ε

)
Bε(t),

x

ε
,
t

ε

)
= 0,

for which the results in the above references yield estimates that depend on ε.

These issues were considered by Seeger [14] for the equation (1.1) with H independent of (x, t) and convex
in p. In this paper, we further extend the regularity results from [14] to apply also to second-order equations
and with more complicated (x, t)-dependence for F and H. To do so, we follow [3] and prove that the
equations exhibit an improvement of oscillation effect at all sufficiently small scales, which is a consequence
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only of the structure of the equation. The main difference with [3] is the addition of the random forcing
term f(x) · dBt which obliges to revisit the analysis of [3] in a substantial way.

1.3. Organization of the paper. In Section 2, we discuss the notion of pathwise viscosity solutions of
equations like (1.1) and (1.2), and we present a number of lemmas needed throughout the paper. The interior
estimates are proved in Sections 3 and 4, and the results for initial value problems are presented in Section
5. Finally, in Appendix A, we prove some results on controlling certain stochastic integrals.

1.4. Notation. If a and b are real numbers, then we set a ∨ b = max{a, b}, a ∧ b = min{a, b} and denote
by dae the smallest integer greater than or equal to a. We let Sd be the set of symmetric real matrices of
size d × d. We say that a map F : Sd → R is degenerate elliptic if, for X,Y ∈ Sd with X ≤ Y , we have
F (X) ≥ F (Y ). Given H : Rd → R, H∗ is defined for α ∈ Rd by H∗(α) = supp∈Rd {α · p−H(p)}. Given

a subset C of Rd and −∞ < t0 < t1 < ∞, ∂∗(C × (t0, t1)) denotes the parabolic boundary of C × (t0, t1),
namely

∂∗(C × (t0, t1)) = (C × {t0}) ∪ (∂C × (t0, t1)).

2. Preliminaries
S:prelim

2.1. Pathwise viscosity solutions. Fix −∞ < t0 < t1 <∞ and let U ⊂ Rd × (t0, t1) be an open set. For
ζ ∈ C((t0, t1),Rm), a degenerate elliptic F ∈ C(Sd × Rd × U × (t0, t1),R), and f ∈ C2(Rd,Rm), we discuss
the meaning of viscosity sub- and super-solutions of the equation

(2.1)
E:pathwiseE:pathwise

du+ F (D2u,Du, x, t)dt = f(x) · dζ, (x, t) ∈ U.

The general theory of pathwise viscosity solutions, initiated by Lions and Souganidis [9–12,15], covers a wide
variety of equations for which f may also depend on u or Du. In the case of (2.1), the theory is much more
tractable, and solutions are defined through a simple transformation. D:solutions

Definition 2.1. A function u ∈ USC(U) (resp. u ∈ LSC(U)) is a sub- (resp. super-) solution of (2.1) if
the function ũ defined, for (x, t) ∈ U , by

ũ(x, t) = u(x, t)− f(x) · ζ(t)

is a sub- (resp. super-) solution of the equation

∂tũ+ F (D2ũ+D2f(x)ζ(t), Dũ+Df(x)ζ(t), x, t) = 0, (x, t) ∈ U.

A solution u ∈ C(U) is both a sub- and super-solution.

We remark that, if F is independent of D2u, then we may take f ∈ C1(Rd,Rm).

We will often denote the fact that u is a sub- (resp. super-) solution of (2.1), by writing

du+ F (D2u,Du, x, t)dt ≤ f(x) · dζ
(
resp. du+ F (D2u,Du, x, t)dt ≥ f(x) · dζ

)
.

At times, when it does not cause confusion, we also use the notation

∂tu+ F (D2u,Du, x, t) = f(x) · ζ̇(t),

even when ζ is not continuously differentiable. This will become particularly useful in proofs that involve
scaling, in which case the argument of ζ̇ may change.
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SS:formulae

2.2. Control and differential games formulae. Just as for classical viscosity solutions, some equations
allow for representation formulae with the use of the theories of optimal control or differential games. Before
we explain this, we give meaning to certain pathwise integrals that come up in the formulae. L:intzeta1

Lemma 2.1. Assume that s < t and f ∈ C0,1([s, t],Rm). Then the map

C1([s, t],Rm) 3 ζ 7→
∫ t

s

f(r) · ζ̇(r)dr =

m∑
i=1

∫ t

s

f i(r) · ζ̇i(r)dr

extends continuously to ζ ∈ C([s, t],Rm).

Proof. The result is immediate upon integrating by parts, which yields, for ζ ∈ C1([s, t],Rm),∫ t

s

f(r)ζ̇(r)dr = f(t)ζ(t)− f(s)ζ(s)−
∫ t

s

ḟ(r)ζ(r)dr.

�L:intzeta2

Lemma 2.2. Assume that s < t, f ∈ C1
b (Rd,Rm), W : [s, t] × A → R is a Brownian motion on some

probability space (A,F ,P), α, σ : [s, t] × A → Rd are bounded and progressively measurable with respect to
the filtration of W , τ ∈ [s, t] is a W -stopping time, and

dXr = αrdr + σrdW for r ∈ [s, t].

Then the map

C1([s, t],Rm) 3 ζ 7→
∫ τ

s

f(Xr) · ζ̇(r)dr =

m∑
i=1

∫ τ

s

f i(Xr) · ζ̇i(r)dr ∈ L2(A)

extends continuously to ζ ∈ C([s, t],Rm), and, moreover,

E
[∫ τ

s

f(Xr) · ζ̇(r)dr

]
= E [f(Xτ ) · ζ(τ)− f(Xs) · ζ(s)]

− E
[∫ τ

s

ζ(r) ·
(
Df(Xr) · αr +

1

2
〈D2f(Xr)σr, σr〉

)
dr

]
.

Proof. If ζ ∈ C1([s, t],Rm), then Itô’s formula yields, for i = 1, 2, . . . ,m,

d
[
f i(Xr) · ζi(r)

]
=

[
f i(Xr)ζ̇

i(r) +Df i(Xr) · αrζi(r) +
1

2
〈D2f i(Xr)σr, σr〉ζi(r)

]
dr

+ (Df i(Xr) · σrζi(r))dWr,

and so∫ τ

s

f i(Xr)ζ̇
i(r)dr = f i(Xτ )ζi(τ)− f i(Xs)ζ

i(s)−
∫ τ

s

ζi(r)

(
Df i(Xr) · αr +

1

2
〈D2f i(Xr)σr, σr〉

)
dr

−
∫ τ

s

ζi(r)Df(Xr) · σrdWr.

(2.2)
ItoIto

The Itô isometry property implies that

L2([s, t]) 3 ζi 7→
∫ τ

s

ζi(r)Df(Xr) · σrdWr ∈ L2(A)

is continuous, and, in particular, the map extends to ζi ∈ C([s, t]). The result follows from the fact that
the other terms on the right-hand side of (2.2) are continuous with respect to ζi ∈ C([s, t]). The final
claim follows upon taking the expectation of both sides of (2.2) and appealing to the optional stopping
theorem. �
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For arbitrary continuous ζ, we freely interchange notations such as∫ t

s

fr · dζr and

∫ t

s

f(r) · ζ̇(r)dr.

Throughout the paper, ζ is often taken to be a Brownian motion, defined on a probability space that is
independent of W .

We now consider some equations for which sub- and super-solutions can be compared from above or below
with particular formulae. For convenience, we write the equations backward in time. L:HJformula

Lemma 2.3. Assume C ⊂ Rd is open, x0 ∈ C, t0 < t1, U is an open domain containing C × [t1, t0],
ζ ∈ C(R,Rm), f ∈ C1(U), and H : Rd → R is convex and superlinear. Let u ∈ C(U) be a pathwise viscosity
sub- (resp. super-) solution, in the sense of Definition 2.1, of

−du+H(Du)dt = f(x) · dζ in U.

Then

u(x0, t0) ≤ (resp. ≥) inf

{
u(γτ , τ) +

∫ τ

t0

H∗(−γ̇r)dr +

∫ τ

t0

f(γr) · dζr : γ ∈W 1,∞([t0, t1],Rd), γt0 = x0

}
,

where, for fixed γ ∈W 1,∞([t0, t1],Rd),

(2.3)
stoppingtime1stoppingtime1

τ = τγ := inf{t ∈ (t0, t1] : γt ∈ ∂C}.

Proof. We prove the claim for sub-solutions, as it is identical for super-solutions.

Definition 2.1 implies that if

ũ(x, t) := u(x, t) + f(x) · ζ(t) for (x, t) ∈ U,

then ũ is a sub-solution of the boundary-terminal-value problem

(2.4)
E:BTVPE:BTVP

{
−∂tũ+H(Dũ−Df(x) · ζ(t)) = 0 in C × [t0, t1) and

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.

The unique solution of (2.4) (see [8]) is given by

w(x, t) = inf

{
u(γτ , τ) + f(γτ ) · ζ(τ) +

∫ τ

t

[H∗(−γ̇r)− γ̇r ·Df(γr) · ζ(r)] dr : γ ∈W 1,∞([t, t1],Rd), γt = x

}
,

where τ is as in (2.3). Integrating by parts gives∫ τ

t

γ̇r ·Df(γr) · ζ(r)dr = f(γτ )ζ(τ)− f(x)ζ(t)−
∫ τ

t

f(γr) · dζ(r),

and, hence,

w(x, t) = f(x)ζ(t) + inf

{
u(γτ , τ) +

∫ τ

t

H∗(−γ̇r)dr +

∫ τ

t

f(γr) · dζ(r) : γ ∈W 1,∞([t, t1],Rd), γt = x

}
.

The result now follows because, by the comparison principle for (2.4), ũ ≤ w on C × [t0, t1]. �

We next give formulae for solutions of some Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations.

For −∞ < t0 < t1 <∞, assume that

(2.5)
WW

W : [t0, t1]×A → R is a Brownian motion defined on a probability space (A,F ,P),
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with associated expectation E, and define the spaces of admissible controls

C :=
{
µ ∈ L∞

(
[t0, t1]×A,Rd

)
: µ is adapted with respect to W

}
and

CM := {µ ∈ C : ‖µ‖∞ ≤M} .
The Isaacs’ equations require us to use the spaces of strategies defined by

S := {β : C → C : µ1 = µ2 on [t0, t] ⇒ β(µ1)(t) = β(µ2)(t)} and

SM := {β ∈ S : β(C ) ⊂ CM} . L:HJBformula

Lemma 2.4. Assume C ⊂ Rd is open and convex, x0 ∈ C, t0 < t1, U is an open domain containing
C × [t0, t1], f ∈ C2(U), H : Rd → R is convex and superlinear, and ν > 0. Given (α, σ) ∈ C × C , denote by
X = Xα,σ,x0,t0 the solution of

(2.6)
SDEformulaSDEformula

dXr = αrdr + σrdWr in [t0, t1] and Xt0 = x0,

and

(2.7)
stoppingtime2stoppingtime2

τ = τα,σ,x0,t0 := inf
{
t ∈ (t0, t1] : Xα,σ,x0,t0

t ∈ ∂C
}
.

(a) Let u ∈ C(U) be a pathwise viscosity super-solution, in the sense of Definition 2.1, of

−du+
[
−νm−(D2u) +H(Du)

]
dt = f(x) · dζ in U.

Then

u(x0, t0) ≥ inf
(α,σ)∈C×C√2ν

E
[
u(Xτ , τ) +

∫ τ

t0

H∗(−αr)dr +

∫ τ

t0

f(Xr) · dζr
]
.

(b) Let u ∈ C(U) be a pathwise viscosity sub-solution, in the sense of Definition 2.1, of

−du+
[
−νm+(D2u) +H(Du)

]
dt = f(x) · dζ in U.

Then

u(x0, t0) ≤ inf
α∈C

sup
β∈S√2ν

E
[
u(Xτ , τ) +

∫ τ

t0

H∗(−αr)dr +

∫ τ

t0

f(Xr) · dζr
]
,

where X and τ are as in respectively (2.6) and (2.7) with σ = β(α).

Proof. As a preliminary step, assume that (α, σ) ∈ C × C and X and τ are as in (2.6) and (2.7). Then
Lemma 2.2 gives

E
[∫ τ

t

f(Xr) · dζr
]

= E [f(Xτ )ζ(τ)− f(Xt)ζ(t)]

− E
[∫ τ

t

ζ(r) ·
(
Df(Xr) · αr +

1

2
D2f(Xr)σr · σr

)
dr

]
.

(2.8)
intbypartsstepintbypartsstep

(a) By Definition 2.1, if

ũ(x, t) := u(x, t) + f(x) · ζ(t),

then ũ is a classical viscosity super-solution of

(2.9)
E:BTVP2E:BTVP2

{
−∂tũ− νm−

(
D2ũ−D2f(x) · ζ(t)

)
+H (Dũ−Df(x) · ζ(t)) = 0 in C × [t0, t1),

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.

For (X, p, x, t) ∈ Sd × Rd × U , we have

− νm−
(
X −D2f(x) · ζ(t)

)
+H (p−Df(x) · ζ(t))

= sup
|σ|≤
√
2ν, α∈Rd

{
−1

2
σ ·Xσ +

1

2
σ ·D2f(x)σ · ζ(t)− α · p+ α ·Df(x) · ζ(t)−H∗(−α)

}
,
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and so standard results from the theory of stochastic control (see [8]) imply that the unique solution of (2.9)
is given by

w(x, t) := inf
(α,σ)∈C×C√2ν

E
[
u(Xτ , τ) + f(Xτ ) · ζ(τ)

+

∫ τ

t

[
H∗(−αr)− ζ(r) ·

(
αr ·Df(Xr) +

1

2
σr ·D2f(Xr)σr

)]
dr

]
= f(x) · ζ(t) + inf

(α,σ)∈C×C√2ν

E
[
u(Xτ , τ) +

∫ τ

t

H∗(−αr)dr +

∫ τ

t

f(Xr) · dζr
]
,

where the last equality follows from (2.8). The result follows from the comparison principle for (2.9), which
implies that ũ(x, t) ≥ w(x, t) for (x, t) ∈ C × [t0, t1].

(b) By Definition 2.1, if

ũ(x, t) := u(x, t) + f(x) · ζ(t),

then ũ is a classical viscosity sub-solution of

(2.10)
E:BTVP3E:BTVP3

{
−∂tũ− νm+

(
D2ũ−D2f(x) · ζ(t)

)
+H (Dũ−Df(x) · ζ(t)) = 0 in C × [t0, t1),

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.

For (X, p, x, t) ∈ Sd × Rd × U , we have

− νm+

(
X −D2f(x) · ζ(t)

)
+H (p−Df(x) · ζ(t))

= sup
α∈Rd

inf
|σ|≤
√
2ν

{
−1

2
σ ·Xσ +

1

2
σ ·D2f(x)σ · ζ(t)− α · p+ α ·Df(x) · ζ(t)−H∗(−α)

}
= inf
|σ|≤
√
2ν

sup
α∈Rd

{
−1

2
σ ·Xσ +

1

2
σ ·D2f(x)σ · ζ(t)− α · p+ α ·Df(x) · ζ(t)−H∗(−α)

}
,

and so standard results from the theory of stochastic differential games (see [5]) imply that, keeping in mind
that σ = β(α) below, the unique solution of (2.10) is given by

w(x, t) := inf
α∈C

sup
β∈S√2ν

E
[
u(Xτ , τ) + f(Xτ ) · ζ(τ)

+

∫ τ

t

[
H∗(−αr)− ζ(r) ·

(
αr ·Df(Xr) +

1

2
σr ·D2f(Xr)σr

)]
dr

]
= f(x) · ζ(t) + inf

α∈C
sup

β∈S√2ν

Ex,t
[
u(Xτ , τ) +

∫ τ

t

H∗(−αr)dr +

∫ τ

t

f(Xr) · dζr
]
,

where (2.8) gives the last equality. The result follows from the comparison principle for (2.9), which implies
that ũ(x, t) ≤ w(x, t) for (x, t) ∈ C × [t0, t1]. �

2.3. Comparison with homogenous equations. We now take ζ to be a Brownian motion, and we assume
that

(2.11)
BMBM

B : [−1, 0]× Ω→ Rm is a standard Brownian motion on the probability space (Ω,F,P).

In this case, the forcing term
∑m
i=1 f

i(x) · dBi(t) is nowhere pointwise defined, and the naive estimate∣∣∣∣∣
m∑
i=1

f i(x) · dBi(t)

∣∣∣∣∣ ≤ ‖f‖∞ ‖dB‖∞
cannot be used in comparison principle arguments, as would be the case if B belonged to C1.
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The results given below provide another way to compare solutions of (1.1) and (1.2) with equation that
are independent of x and t. In the new equations, the forcing term is replaced with a random constant
that depends on f only through quantities as in (1.7) and (1.9), at the expense of slightly weakening the
coercivity bounds in the gradient variable. The main tool is to use Lemmas A.1 and A.2 to control the
stochastic integrals that arise from the representation formulae in Lemmas 2.3 and 2.4.

For q > 1, define

q′ :=
q

q − 1
and cq := (q − 1)q−q/(q−1),

so that, in particular, for any constant a > 0,

(2.12)
convexdualconvexdual

(a| · |q)∗ = cqa
−(q′−1)| · |q

′
. L:Dbarrier

Lemma 2.5. Let B be as in (2.11) and fix m > 0, K > 0, q > 1, and κ ∈ (0, 1/2). Then there exists a
random variable D : Ω→ R+ and λ0 = λ0(κ,m,K, q) > 0 such that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ,K, p, q) > 0 such that, for all λ ≥ λ0,

P(D > λ) ≤ Cmp

λp
.

(b) Let f ∈ C1(Rd,Rm) satisfy

‖f‖∞ ≤ m and ‖f‖∞ (1 + ‖Df‖∞) ≤ K,

and assume that A > 1, ε1, ε2 : Ω → (0, 1), and −1 + ε2 ≤ r0 ≤ 0. Suppose that, for some R ∈ (0,∞],
w solves 

∂tw +
1

A
|Dw|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(ε1x) · Ḃ(r0 + ε2t) and

∂tw +A|Dw|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(ε1x) · Ḃ(r0 + ε2t) in BR × [−1, 0],

fix an open convex set C ⊂ BR, x0 ∈ C, and −1 ≤ t1 < t0 ≤ 0. Then

w−(x0, t0)− εq
′−1+κ

2

εq
′

1

AD ≤ w(x0, t0) ≤ w+(x0, t0) +
εq
′−1+κ

2

εq
′

1

AD,

where 
∂tw− + 2A|Dw−|q = 0 and

∂tw+ +
1

2A
|Dw+|q = 0 in C × (t1, t0], and

w− = w+ = w on ∂∗(C × (t1, t0)).

Proof. Step 1. For (x, t) ∈ BR × [0, 1], define w̃(x, t) := w(x,−t) and B̃(t) := B(0) − B(−t). Then

B̃ : [0, 1]× Ω→ Rm is a Brownian motion, and w̃ solves
−∂tw̃ +

1

A
|Dw̃|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(ε1x) · ˙̃B(−r0 + ε2t) and

−∂tw̃ +A|Dw̃|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(ε1x) · ˙̃B(−r0 + ε2t) in BR × [0, 1].
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We also define w̃+(x, t) = w+(x,−t) and w̃−(x, t) = w−(x,−t), which solve
−∂tw̃− + 2A|Dw−|q = 0 and

−∂tw̃+ +
1

2A
|Dw+|q = 0 in C × [−t0,−t1), and

w̃− = w̃+ = w̃ on (C × {−t1}) ∪ (∂C × [−t0,−t1]).

The classical Hopf-Lax formula and (2.12) then give, for (x, t) ∈ C × [−t0,−t1],

w̃+(x, t) = inf
(y,s)∈(C×{−t1})∪(∂C×[−t0,−t1])

{
w̃(y, s) + cq(2A)q

′−1 |x− y|q
′

|t− s|q′−1

}
and

w̃−(x, t) = inf
(y,s)∈(C×{−t1})∪(∂C×[−t0,−t1])

{
w̃(y, s) + cq(2A)−(q

′−1) |x− y|q
′

|t− s|q′−1

}
.

Step 2. Let κ ∈ (0, 1/2) and D be as in Lemma A.1. Then, by that lemma, for any 0 < δ < 1, γ ∈
W 1,∞([−t0,−t1],Rd), and τ ∈ [−t0,−t1],(

ε2
ε1

)q′ ∣∣∣∣∫ τ

−t0
f(ε1γr) · ˙̃B(−r0 + ε2r)dr

∣∣∣∣
=
εq
′−1

2

εq
′

1

∣∣∣∣∫ −r0+ε2τ
−r0−ε2t0

f

(
ε1γ

(
r + r0
ε2

))
· ˙̃B(r)dr

∣∣∣∣
≤ εq

′−1
2

εq
′

1

δq
′
∫ −r0+ε2τ
−r0−ε2t0

∣∣∣∣ε1ε2 γ̇
(
r + r0
ε2

)∣∣∣∣q′ dr +
εq
′−1+κ

2

εq
′

1

D
δq

(τ + t0)κ

= δq
′
∫ τ

−t0
|γ̇r|q

′
dr +

εq
′−1+κ

2

εq
′

1

D
δq

(τ + t0)κ.

(2.13)
intcontroluseintcontroluse

Step 3. We prove the upper bound first. By Lemma 2.3 and the equality (2.12), we have, with probability
one,

w̃(x0,−t0) ≤ inf

{
w̃(γτ , τ) + cqA

q′−1
∫ τ

−t0
|γ̇r|q

′
dr +

(
ε2
ε1

)q′
A(τ + t0)

+

(
ε2
ε1

)q′ ∫ τ

−t0
f(ε1γr) · ˙̃B(−r0 + ε2r)dr : γ ∈W 1,∞([−t0,−t1],Rd)

}
,

where, as in (2.3), we define

τ = τγ := inf {t ∈ (−t0,−t1] : γτ ∈ ∂C} .
We then set

δ = 1 ∧
[
(2q
′−1 − 1)1/q

′
c1/q

′

q A1/q
]
,

which, in particular, implies that δq
′ ≤ cq(2q

′−1−1)Aq
′−1. Then, in view of (2.13), for some constant Cq > 0,

w̃(x0,−t0) ≤ inf

{
w̃(γτ , τ) + cq(2A)q

′−1
∫ τ

−t0
|γ̇r|q

′
dr : γ ∈W 1,∞([−t0,−t1],Rd)

}
+A

(
ε2
ε1

)q′ [
1 +

1

δq
ε
−(1−κ)
2 D

]
≤ w̃+(x0,−t0) +A

εq
′−1+κ

2

εq
′

1

(1 + CqD).

(2.14)
tildewuppertildewupper
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Step 4. We next consider the lower bound. We again use (2.12) and Lemma 2.3 to obtain

w̃(x0,−t0) ≥ inf

{
w̃(γτ , τ) + cqA

−(q′−1)
∫ τ

−t0
|γ̇r|q

′
dr −

(
ε2
ε1

)q′
A(τ + t0)

+

(
ε2
ε1

)q′ ∫ τ

−t0
f(ε1γ̇r) · ˙̃B(−r0 + ε2r)dr : γ ∈W 1,∞([−t0,−t1],Rd)

}
.

Choosing

δ := 1 ∧ c1/q
′

q (1− 2−(q
′−1))1/q

′
A−1/q

yields δq
′ ≤ cq(1 − 2−(q

′−1))A−(q
′−1). As a consequence, Jensen’s inequality and (2.13) yield, for some

C ′q > 0,

w̃(x0,−t0) ≥ inf

{
w̃(γτ , τ) + cq(2A)−(q

′−1)
∫ τ

−t0
|γ̇r|q

′
dr : γ ∈W 1,∞([−t0,−t1])

}
− εq

′−1+κ
2

εq
′

1

A(1 + C ′qD)

≥ w−(x0,−t0)− εq
′−1+κ

2

εq
′

1

A(1 + C ′qD).

(2.15)
tildewlowertildewlower

Step 5. We set D̃ := 1 + (Cq ∨ C ′q)D, so that, after performing a time change, (2.14) and (2.15) lead to

w−(x0, t0)− εq
′−1+κ

2

εq
′

1

AD̃ ≤ w(x0, t0) ≤ w+(x0, t0) +A
εq
′−1+κ

2

εq
′

1

D̃.

Let λ0 be as in Lemma A.1. Then, for all

λ ≥ λ̃0 := (1 + (Cq ∨ C ′q)λ0) ∨ 2,

we have, for C = C(κ,m,K, p, q) > 0 as in Lemma A.1,

P(D̃ > λ) = P

(
D >

λ− 1

Cq ∨ C ′q

)
≤
C(Cq ∨ C ′q)p

(λ− 1)p
≤

2pC(Cq ∨ C ′q)p

λp
.

�L:Ebarrier

Lemma 2.6. Let B be as in (2.11), and fix m > 0, K > 0, q > 1, ν > 0, and κ ∈ (0, 1/2). Then there
exists a random variable E : Ω→ R+ and λ0 = λ0(κ,m,K, q) > 0 such that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ,K, p, q) > 0 such that, for all λ ≥ λ0,

P(E > λ) ≤ Cmp

λp
.

(b) Let f ∈ C2(Rd,Rm) satisfy

‖f‖∞ ≤ m and ‖f‖∞
(
1 + ‖Df‖∞ + ν

∥∥D2f
∥∥
∞

)
≤ K,

and assume that A > 1, r0 ∈ (−1, 0], ε1, ε2 : Ω → (0, 1) and −1 + ε2 ≤ r0 ≤ 0. Suppose that, for some
R ∈ (0,∞], w solves

∂tw −
ε2
ε21
νm+(D2w) +

1

A
|Dw|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(ε1x) · Ḃ(r0 + ε2t) and

∂tw −
ε2
ε21
νm−(D2w) +A|Dw|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(ε1x) · Ḃ(r0 + ε2t) in BR × [−1, 0],
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fix a convex open set C ⊂ BR, x0 ∈ C, and −1 ≤ t1 < t0 ≤ 0. Then

w−(x0, t0)− εq
′−1+κ

2

εq
′

1

AE ≤ w(x0, t0) ≤ w+(x0, t0) +
εq
′−1+κ

2

εq
′

1

AE ,

where 
∂tw− −

ε2
ε21
νm−(D2w−) + 2A|Dw−|q = 0 and

∂tw+ −
ε2
ε21
νm+(D2w+) +

1

2A
|Dw+|q = 0 in C × (t1, t0), and

w− = w+ = w on ∂∗(C × [t1, t0]).

Proof. Step 1. For (x, t) ∈ BR × [0, 1], define w̃(x, t) := w(x,−t), w̃±(x, t) := w±(x,−t), and B̃(t) :=

B(0)−B(−t). Then B̃ : [0, 1]× Ω→ Rm is a Brownian motion, and w̃, w̃± solve
−∂tw̃ −

ε2
ε21
νm+(D2w̃) +

1

A
|Dw̃|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(ε1x) · ˙̃B(−r0 + ε2t) and

−∂tw̃ −
ε2
ε21
νm−(D2w̃) +A|Dw̃|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(ε1x) · ˙̃B(−r0 + ε2t) in BR × [0, 1]

and 
−∂tw̃− −

ε2
ε21
νm−(D2w̃−) + 2A|Dw̃−|q = 0 and

−∂tw̃+ −
ε2
ε21
νm+(D2w̃+) +

1

2A
|Dw̃+|q = 0 in C × [−t0,−t1), and

w̃− = w̃+ = w̃ on (C × {−t1}) ∪ (∂C × [−t0,−t1]).

Step 2. Let W : [0, 1]×A → R be a Brownian motion defined on a probability space (A,F ,P) independent
of (Ω,F,P), fix (α, β) ∈ C × Cε−1

1

√
2ε2ν

, assume that X : [−t0,−t1]×A is adapted with respect to W and

dXr = αrdr + σrdWr in [−t0,−t1],

and let τ ∈ [−t0,−t1] be a W -stopping time.

For r0 − ε2t0 ≤ r ≤ −r0 + ε2τ , we then set

X̃r = ε1X

(
r + r0
ε2

)
,

α̃r =
ε1
ε2
α

(
r + r0
ε2

)
,

σ̃r =
ε1

ε
1/2
2

σ

(
r + r0
ε2

)
, and

W̃r = ε
1/2
2

[
W

(
r + r0
ε2

)
−W (−t0)

]
,

and we let C̃ and C̃M be defined just as C and CM , but with respect to the filtration of the Brownian motion
W̃ . Then (α̃, σ̃) ∈ C̃ × C̃√2ν , X̃ is adapted with respect to W̃ , −r0 + ε2τ is a W̃ -stopping time, and

dX̃r = α̃rdr + σ̃rdW̃r for − r0 − ε2t0 ≤ r ≤ −r0 + ε2τ.
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It now follows from Lemma A.2 that, for some E as in the statement of that lemma, and for all 0 < δ ≤ 1,∣∣∣∣∣E
[(

ε2
ε1

)q′ ∫ τ

−t0
f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]∣∣∣∣∣
=
εq
′−1

2

εq
′

1

∣∣∣∣E∫ −r0+ε2τ
−r0−ε2t0

f(X̃r) · ˙̃B(r)dr

∣∣∣∣
≤ εq

′−1
2

εq
′

1

δq
′
E
∫ −r0+ε2τ
−r0−ε2t0

|α̃r|q
′
dr +

εq
′−1+κ

2

εq
′

1

E
δq

(τ + t0)κ

= δq
′
E
∫ τ

−t0
|αr|q

′
dr +

εq
′−1+κ

2

εq
′

1

E
δq

(τ + t0)κ.

(2.16)
intcontroluse2intcontroluse2

Step 3. We now proceed with the proof of the lower bound. By Lemma 2.4(a), we have

w̃(x0,−t0) ≥ inf
(α,σ)∈C×C

ε
−1
1

√
2ε2ν

E

[
w̃(Xτ , τ) + cqA

−(q′−1)
∫ τ

−t0
|αr|q

′
dr −

(
ε2
ε1

)q′
A(τ + t0)

+

(
ε2
ε1

)q′ ∫ τ

−t0
f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]
,

(2.17)
tildewinhomoggetildewinhomogge

where, as in that lemma, for fixed (α, σ) ∈ C × Cε−1
1

√
2ε2ν

, X = Xα,σ and τ = τα,σ satisfy

(2.18)
stochdatastochdata

dXr = αrdr + σrdWr for r ∈ [−t0,−t1], X−t0 = x0, and τ := inf {t ∈ [−t0,−t1] : Xτ ∈ ∂C} .
We now set

δ := 1 ∧ c1/q
′

q (1− 2−(q
′−1))1/q

′
A−1/q,

which implies, in particular, that δq
′ ≤ cq(1 − 2−(q

′−1))A−(q
′−1). Invoking (2.16), we find that, for some

constant Cq > 0,

E

[(
ε2
ε1

)q′ ∫ τ

−t0
f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]

≥ −cq(1− 2−(q
′−1))A−(q

′−1)E
∫ τ

−t0
|αr|q

′
dr − CqA

εq
′−1+κ

2

εq
′

1

E .

The inequality (2.17) now becomes

w̃(x0,−t0) ≥ inf
(α,σ)∈C×C

ε
−1
1

√
2ε2ν

E
[
w̃(Xτ , τ) + cq(2A)−(q

′−1)
∫ τ

−t0
|αr|q

′
dr

]

−
(
ε2
ε1

)q′
A
[
1 + Cqε

−(1−κ)
2 E

]
≥ w̃−(x0,−t0)− εq

′−1+κ
2

εq
′

1

A(1 + CqE).

Step 4. We next obtain the upper bound. Lemma 2.4(b) gives

w̃(x0,−t0) ≤ inf
α∈C

sup
β∈S

ε
−1
1

√
2ε2ν

E

[
w̃(Xτ , τ) + cqA

q′−1
∫ τ

−t0
|αr|q

′
dr +

(
ε2
ε1

)q′
A(τ + t0)

+

(
ε2
ε1

)q′ ∫ τ

−t0
f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]
,

(2.19)
tildewinhomogletildewinhomogle
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where, as in that lemma, for fixed α ∈ C and β ∈ Sε−1
1

√
2ε2ν

with σ = β(α), X = Xα,σ and τ = τα,σ are as

in (2.18). The inequality (2.16) then implies that, for all δ ∈ (0, 1),

w̃(x0,−t0) ≤ inf
α∈C

sup
β∈S

ε
−1
1

√
2ε2ν

E
[
w̃(Xτ , τ) + (cqA

q′−1 + δq
′
)

∫ τ

−t0
|αr|q

′
dr

]
+

(
ε2
ε1

)q′
A+

εq
′−1+κ

2

εq
′

1

E
δq
.

We then set

δ = 1 ∧ (2q
′−1 − 1)1/q

′
c1/q

′

q A1/q,

which, in particular, implies that δq
′ ≤ cq(2q

′−1 − 1)Aq
′−1, and so, for some C ′q > 0,

w̃(x0,−t0) ≤ inf
α∈C

sup
β∈S

ε
−1
1

√
2ε2ν

E
[
w̃(Xτ , τ) + cq(2A)q

′−1
∫ τ

−t0
|αr|q

′
dr

]
+
εq
′−1+κ

2

εq
′

1

A(1 + C ′qE)

= w̃+(x0,−t0) +
εq
′−1+κ

2

εq
′

1

A(1 + C ′qE).

The claimed upper bound for w now follows from another time reversal. �

We now introduce some smooth sub- and super-solutions of the homogenous second order equations that arise
in the previous result, which will be used in Section 4. The following lemma is proved in [3], in particular,
as Lemmas 4.2 and 4.6 and Corollary 4.3. L:CSbarriers

Lemma 2.7. Let q > 2 and A > 1. Then there exist C = C(q, A, d) > 0 (which can be chosen arbitrarily
large), ν0 = ν0(q, A, d) > 0 (which can be chosen arbitrarily small), and θ0 = θ0(q, A, d) > 0 such that the
following hold:

(a) If η > 0,

U(x, t) := C
(|x|2 + ηt)q

′/2

tq′−1
for (x, t) ∈ Rd × (0,∞),

and 0 < ν < ην0, then

∂tU − νm+(D2U) +
1

2A
|DU |q ≥ 0 in Rd × (0,∞).

(b) Let R > 0, and assume that b : R→ R is smooth and nonincreasing, b(τ) = 1 for τ < 3/4, and b(τ) = 0

for τ > 1. If 0 < θ < θ0R
q′ and

V (x, t) := 3θb

(
|x|
R

+
t

4

)
− Cνθ

R2
t for (x, t) ∈ Rd × (0, 1),

then

∂tV − νm−(D2V ) + 2A|DV |q ≤ 0 in Rd × (0, 1).

2.4. Improvement of oscillation. The main tool used in this paper is to establish an improvement of
oscillation of solutions on all small scales. The next result explains how this leads to Hölder regularity
estimates. L:ioo

Lemma 2.8. Let R, τ, c > 0, assume that u : BR × [−τ, 0] satisfies

0 ≤ u ≤ c on BR × [−τ, 0],

fix α ∈ (0, 1), β > 0, 0 < µ < 1, and 0 < a < R and 0 < b < τ . Assume that, whenever (x0, t0) ∈
BR−a × [−τ + b, 0], the function

v(x, t) :=
u(x0 + ax, t0 + bt)

c
for (x, t) ∈ B1 × [−1, 0]
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satisfies

if 0 < r ≤ 1 and osc
Br×[−rβ ,0]

v ≤ rα, then osc
Bµr×[−(µr)β ,0]

≤ (µr)α.

Then

sup
(x,t),(x̃,t̃)∈BR−a×[−τ+b,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ c

µα

(
1

aα
∨ 1

bα/β

)
.

Proof. Choose (x0, t0) ∈ BR−a×[−τ+b, 0] and define v as in the statement of the lemma. Then oscB1×[−1,0] v ≤
1, and so an inductive argument implies that

osc
B
µk
×[−µkβ ,0]

v ≤ µkα for all k = 0, 1, 2, . . .

Now choose r ∈ (0, 1] and let k ∈ N be such that µk+1 < r ≤ µk. Then

osc
Br×[−rβ ,0]

v ≤ µkα ≤ rα

µα
.

Fix (y, s) ∈ B1 × [−1, 0] and set r := |y| ∨ |s|1/β . We then have

|v(0, 0)− v(y, s)| ≤ rα

µα
≤ |y|

α ∨ |s|α/β

µα
.

Rescaling back to u, this means that, whenever (x, t), (x̃, t̃) ∈ BR−a × [−τ + b, 0] satisfy

|x− x̃| ≤ a and |t− t̃| ≤ b,

we have

|u(x, s)− u(x̃, t̃)| ≤ c

µα

(
1

aα
∨ 1

bα/β

)(
|x− x̃|α + |t− t̃|α/β

)
.

The result now follows easily, because, for |x− x̃| > a,

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ c

aα

and if |t− t̃| > b, then

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ c

bα/β
.

�

3. First order equations
S:firstorder

In this section, we prove the regularity results for first order equations. We assume that

(3.1)
A:BM1A:BM1

B : [−1, 0]× Ω→ Rm is a standard Brownian motion on some probability space (Ω,F,P),

and, for fixed

(3.2)
A:parametersA:parameters

K > 0, A > 1, q > 1, and S : Ω→ [0,∞),

we assume that

(3.3)
A:fauxHolderboundA:fauxHolderbound

f ∈ C1(Rd × Rm) and ‖f‖∞ + ‖f‖∞ ‖Df‖∞ ≤ K
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and

(3.4)
E:firstorderE:firstorder



du+

[
1

A
|Du|q −A

]
dt ≤

m∑
i=1

f i(x)dBi(t),

du+ [A|Du|q +A] dt ≥
m∑
i=1

f i(x)dBi(t), and

0 ≤ u ≤ S in B1 × [−1, 0]. T:firstorder

Theorem 3.1. Assume (3.1) - (3.4), and let 0 < κ < 1/2 and M ≥ 1. Then there exists α = α(κ,A, q) ∈
(0, 1), c = c(κ, α, q) > 0, λ0 = λ0(κ,A,K,M, q) > 0 and, for all p ≥ 1, C = C(κ,A,K,M, p, q) > 0 such
that, for all λ ≥ λ0,

P

(
sup

(x,s),(y,t)∈B1/2×[−1/2,0]

|u(x, s)− u(y, t)|
|x− y|α + |s− t|α/(q−α(q−1))

> λ

)
≤ P

(
(S −M)+ > cλ1−α/q

′
)

+
C ‖f‖p∞

λκ(q−α(q−1))p

Proof. We first specify the parameters that determine the Hölder exponents, which depend only on κ, A,
and q. Choose µ so that

(3.5)
mu1mu1

0 < µ <
1

2
and

1

2
12q

′
cqA

q′−1µq
′
< 1,

and then take θ sufficiently small that

(3.6)
theta1theta1

0 < θ <
1

2
,

1

2
12q

′
cqA

q′−1µq
′
≤ 1− 4θ, and 2θ ≤ cq(2A)1−q

′
µq
′
.

We now set

(3.7)
alpha1alpha1

α = min

(
log(1− θ)

logµ
,

κq

κq + 1− κ

)
and

(3.8)
betabeta

β := q − α(q − 1).

Note that β − α = q(1− α) > 0, and (3.7) and (3.8) together imply that βκ− α > 0.

We next identify a random scale ρ at which the improvement of oscillation effect is seen. Let D be the
random variable as in Lemma 2.5, set

Ŝ := 1 ∨ S,
and define

(3.9)
rho1rho1

ρ :=
1

2Ŝ
∧
(

θ

AD

) 1
κq

.

Note then that

ρ ≤ 1, ρŜ ≤ 1

2
, and ρκqAD ≤ θ.

In what follows, for (x0, t0) ∈ Rd × R, we define

Qr(x0, t0) := Br(x0)× [t0 − rβ , t0] and Qr := Qr(0, 0).

Step 1: The initial zoom-in. Fix (x0, t0) ∈ B1/2 × [−1/2, 0] and set

v(x, t) :=
u(x0 + ρŜx, t0 + ρqŜt)

Ŝ
,
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which is well-defined for (x, t) ∈ B1 × [−1, 0] in view of (3.9). Then v satisfies

(3.10)
E:vsystemE:vsystem


∂tv +A|Dv|q + ρqA ≥ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt),

∂tv +
1

A
|Dv|q − ρqA ≤ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt), and

0 ≤ v ≤ 1 in B1 × [−1, 0].

Step 2: Induction step. We next show that

(3.11)
oscimprove1oscimprove1

if 0 < r ≤ 1 and osc
Qr

v ≤ rα, then osc
Qµr

v ≤ (µr)α.

Let r ∈ (0, 1] be such that oscQr v ≤ rα. We then set

w(x, t) :=
v(rx, rβt)− infQr v

rα
for (x, t) ∈ Q1,

which satisfies 
∂tw +

1

A
|Dw|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(x0 + ε1x) · Ḃ(t0 + ε2t),

∂tw +A|Dw|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(x0 + ε1x) · Ḃ(t0 + ε2t), and

0 ≤ w ≤ 1 in B1 × [−1, 0],

where ε1 := Ŝρr and ε2 := Ŝρqrβ . As a consequence of (3.9), the random variables ε1 and ε2 take values
in (0, 1/2], so that the hypotheses in part (b) of Lemma 2.5 are satisfied. We also compute, using (3.7) and
(3.8),

εq
′−1+κ

2

εq
′

1

=
(Ŝρqrβ)q

′−1+κ

(Ŝρr)q′
=
ρκqrβκ−α

Ŝ
≤ ρκq.

To prove (3.11), we show that either

(3.12)
upperoscupperosc

w(x, t) ≤ 1− θ for all (x, t) ∈ Bµ × [−µβ , 0]

or

(3.13)
lowerosclowerosc

w(x, t) ≥ θ for all (x, t) ∈ Bµ × [−µβ , 0].

We consider the two following cases:

Case 1. Assume first that

(3.14)
case1case1

inf
B2µ

w(·,−1) ≤ 2θ.

Fix (x, t) ∈ Bµ × [−µβ , 0]. Then, by Lemma 2.5, we have

w(x, t) ≤ w+(x, t) +
εq
′−1+κ

2

εq
′

1

AD ≤ w+(x, t) + ρκqAD ≤ w+(x, t) + θ,

where

w+(x, t) = inf
(y,s)∈∂∗(B2µ×[−1,t])

{
w(y, s) + cq(2A)q

′−1 |x− y|q
′

(t− s)q′−1

}
.

We have

t+ 1 ≥ 1− µβ ≥ 1

2
and |x− y|q

′
≤ 3q

′
µq
′

for all y ∈ B2µ,
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and so, by (3.6),

w+(x, t) ≤ inf
y∈B2µ

{
w(y,−1) + cq(2A)q

′−1 |x− y|q
′

(t+ 1)q′−1

}
≤ 6q

′
cq(2A)q

′−1µq
′
+ inf
y∈B2µ

w(y,−1)

≤ 1− 4θ + 2θ = 1− 2θ.

It follows that w(x, t) ≤ 1− 2θ + θ = 1− θ, and so (3.12) holds in this case.

Case 2. Assume now that

(3.15)
case2case2

w(y,−1) ≥ 2θ for all y ∈ B2µ.

Let (x, t) ∈ Bµ × [−µβ , 0]. Then, similarly as in Step 1, Lemma 2.5 gives

w(x, t) ≥ inf
(y,s)∈∂∗(B2µ×[−1,t])

{
w(y, s) + cq(2A)1−q

′ |x− y|q′

(t− s)q′−1

}
− θ.

If y ∈ B2µ and s = −1, then (3.15) implies that

w(y, s) + cq(2A)1−q
′ |y − x|q′

(t− s)q′−1
− θ ≥ 2θ − θ = θ,

while, if s ∈ [−1, t] and y ∈ ∂B2µ, then |y − x| ≥ µ, and so, using (3.6) and the fact that w ≥ 0,

w(y, s) + cq(2A)1−q
′ |y − x|q′

(t− s)q′−1
− θ ≥ −θ + cq(2A)1−q

′
µq
′
≥ θ.

Either way, it is evident that (3.13) holds.

Combining (3.12) and (3.13) with the definition of α in (3.7), we obtain

osc
Qµ

w ≤ 1− θ ≤ µα,

which, after rescaling back to v, yields

osc
Qµr

v ≤ (µr)α.

Step 3: the Hölder estimate. We now invoke Lemma 2.8 with the values

a := ρŜ, b := ρqŜ, and c := Ŝ,

and, using (3.5) and (3.9), we get, for some constant C1 = C1(κ,A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ c

µα

(
1

aα
∨ 1

bα/β

)
=

1

µα

(
Ŝ1−α

ρα
∨ Ŝ

1−α/β

ρqα/β

)

≤ 1

µα

(
1

21−αρ
∨ 1

21−α/βρ1+(q−1)α/β

)
≤ C1ρ

−q/β .

In view of (3.6) and (3.9), for some C2 = C2(κ,A, q) > 0,

ρ−q/β = (2Ŝ)q/β ∨
(
AD
θ

) 1
κβ

≤ C2

(
Ŝq/β +D

1
κβ

)
.

Since M is chosen to be larger than 1, we have (Ŝ −M)+ = (S−M)+, and so, for some C3 = C3(κ,A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ C3

(
Mq/β + (S −M)

q/β
+ +D

1
κβ

)
.
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Therefore, for any λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

> λ

)

≤ P

(
(S −M)

q/β
+ +D

1
κβ >

λ− C3M
q/β

C3

)
≤ P

(
(S −M)

q/β
+ >

λ− C3M
q/β

2C3

)
+ P

(
D

1
κβ >

λ− C3M
q/β

2C3

)
.

Taking λ > 2C3M
q/β yields

λ− C3M
q/β

2C3
>

λ

4C3
,

so that

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

> λ

)
≤ P

(
(S −M)

q/β
+ >

λ

4C3

)
+ P

(
D

1
κβ >

λ

4C3

)
.

Finally, if λ0 is as in Lemma 2.5, then further taking λ > 4C3λ
1/(κβ)
0 yields the claim in view of the properties

of D. �

4. Second order equations
S:secondorder

We now turn to the case of second order equations. We let B be a Brownian motion as in (3.1), and, for
fixed

(4.1)
A:parameters2A:parameters2

ν > 0, K > 0, A > 1, q > 2, and S : Ω→ [0,∞),

we assume that

(4.2)
A:f2A:f2

f ∈ C2(Rd,Rm) and ν + ‖f‖∞ + ‖f‖∞ ‖Df‖∞ + ν ‖f‖∞
∥∥D2f

∥∥
∞ ≤ K

and

(4.3)
A:secondorderA:secondorder



du+

[
−νm+(D2u) +

1

A
|Du|q −A

]
dt ≤

m∑
i=1

f i(x) · dBi(t),

du+
[
−νm−(D2u) +A|Du|q +A

]
dt ≥

m∑
i=1

f i(x) · dBi(t), and

0 ≤ u ≤ S in B1 × [−1, 0]. T:secondorder

Theorem 4.1. Assume (3.1) and (4.1) - (4.3), and let 0 < κ < 1/2 and M ≥ 1. Then there ex-
ists α = α(κ,A, q) ∈ (0, 1), c = c(κ, α, q) > 0, λ0 = λ0(κ,A,K,M, q) > 0, and, for all p ≥ 1, C =
C(κ,A,K,M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,s),(y,t)∈B1/2×[−1/2,0]

|u(x, s)− u(y, t)|
|x− y|α + |s− t|α/(q−α(q−1))

> λ

)

≤ P
(

(S −M)+ > cλ1−α/q
′
)

+ C
‖f‖p∞

λκ(q−α(q−1))p
.

Proof. We set up the various parameters similarly as in the proof of Theorem 3.1, with a few changes to
account for the second order terms.



20 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

We first choose µ such that

(4.4)
mu2mu2

0 < µ <
1

4
and

C

2
6q
′
µq
′
< 1,

where C = C(q, A, d) > 4q
′

is the constant from Lemma 2.7, and we then take θ sufficiently small that

(4.5)
theta2theta2

0 < θ <
1

2
,

C

2
6q
′
µq
′
≤ 1− 5θ, and θ < 4µq

′
θ0,

where θ0 = θ0(q, A, d) > 0 is as in Lemma 2.7.

Set

(4.6)
alpha2alpha2

α := min

{
q − 2

q − 1
,

log(1− θ)
logµ

,
κq

κq + 1− κ

}
and

(4.7)
beta2beta2

β = q − α(q − 1).

Observe that (4.6) and (4.7) together imply that

1− θ ≤ µα, β − α = q(1− α), βκ− α ≥ 0, and β ≥ 2.

As in the proof of Theorem 3.1, we define, for (x0, t0) ∈ Rd × R,

Qr(x0, t0) := Br(x0)× [t0 − rβ , t0] and Qr := Qr(0, 0).

We now set

Ŝ := S ∨ 1,

and, for E the random variable from Lemma 2.6, and C and ν0 the values from Lemma 2.7, the random
variable ρ is the largest value such that

(4.8)
rho2rho2



(a) 0 < ρ ≤ 1

2Ŝ
,

(b) ρκqAE ≤ θ,

(c) 2q
′−1CKq′/2ν

−q′/2
0 ρq

′(q−2)/2 ≤ θ, and

(d) Cρq−2 ≤ 4µ2.

Step 1: The initial zoom-in. Fix (x0, t0) ∈ B1/2 × [−1/2, 0] and set

v(x, t) :=
u(x0 + ρŜx, t0 + ρqŜt)

Ŝ
,

which is well-defined for (x, t) ∈ B1 × [−1, 0] in view of (4.8)(a). Then v satisfies

(4.9)
E:vsystem2E:vsystem2


∂tv −

νρq−2

Ŝ
m−(D2v) +A|Dv|q + ρqA ≥ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt),

∂tv −
νρq−2

Ŝ
m+(D2v) +

1

A
|Dv|q − ρqA ≤ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt), and

0 ≤ v ≤ 1 in B1 × [−1, 0].

Step 2: Induction step. We next show that

(4.10)
oscimprove2oscimprove2

if 0 < r ≤ 1 and osc
Qr

v ≤ rα, then osc
Qµr

v ≤ (µr)α.
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Let r ∈ (0, 1] be such that oscQr v ≤ rα. We then set

w(x, t) :=
v(rx, rβt)− infQr v

rα
for (x, t) ∈ B1 × [−1, 0],

which satisfies
∂tw −

ε2
ε21
νm+(D2w) +

1

A
|Dw|q −

(
ε2
ε1

)q′
A ≤

(
ε2
ε1

)q′
f(x0 + ε1x) · Ḃ(t0 + ε2t),

∂tw −
ε2
ε21
νm−(D2w) +A|Dw|q +

(
ε2
ε1

)q′
A ≥

(
ε2
ε1

)q′
f(x0 + ε1x) · Ḃ(t0 + ε2t), and

0 ≤ w ≤ 1 in B1 × [−1, 0],

where ε1 := Ŝρr and ε2 := Ŝρqrβ . It is a consequence of (4.8)(a) that ε1, ε2 ∈ (0, 1/2], and, moreover, just
as in the proof of Theorem 3.1, using the fact that βκ ≥ α,

εq
′−1+κ

2

εq
′

1

≤ ρκq.

To prove (4.10), we show that either

(4.11)
upperosc2upperosc2

w(x, t) ≤ 1− θ for all (x, t) ∈ Bµ × [−µβ , 0]

or

(4.12)
lowerosc2lowerosc2

w(x, t) ≥ θ for all (x, t) ∈ Bµ × [−µβ , 0].

We consider the two following cases:

Case 1. Assume first that
inf

y∈B2µ

w(y,−1) ≤ 2θ.

Let (x̂, t̂) ∈ Bµ × [−µβ , 0]. Then (4.8)(b) and the upper bound from Lemma 2.6 imply that

w(x̂, t̂) ≤ w+(x̂, t̂) +
εq
′−1+κ

2

εq
′

1

AE ≤ w+(x̂, t̂) + ρκqAE ≤ w+(x̂, t̂) + θ,

where

(4.13)
E:w+E:w+

∂tw+ −
ε2
ε21
νm+(D2w+) +

1

2A
|Dw+|q = 0 in B2µ × (−1, 0] and

w+ = w on ∂∗(B2µ × [−1, 0]).

Note that, by the maximum principle, we have 0 ≤ w+ ≤ 1. Let C ≥ 4q
′

and ν0 be as in Lemma 2.7, and,
for y ∈ B2µ and (x, t) ∈ B2µ × [−1, 0], set

wy(x, t) := w(y,−1) +
C

(t+ 1)q′−1

(
|x− y|2 +

Kρq−2

ν0
(t+ 1)

)q′/2
.

We compute
ε2
ε21
ν =

ρq−2rβ−2ν

Ŝ
≤ νρq−2 ≤

(
Kρq−2

ν0

)
ν0,

and therefore, by Lemma 2.7(a), wy is a super-solution of (4.13). In addition,

wy(x,−1) =

{
+∞ if x 6= y,

w(y,−1) if x = y,

and, for any (x, t) ∈ ∂B1 × [−1, 0],

wy(x, t) ≥ C((1− 2µ)2)
q′
2 ≥ C4−q

′
≥ 1 ≥ w+(x, t),
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in view of the choice of C ≥ 4q
′

and of µ < 1/4. So wy ≥ w+ in B1 × [−1, 0] by the comparison principle.

Because t̂ ∈ [−µβ , 0], it follows that 1 + t̂ > 1− µβ > 1
2 , and so, by (4.5) and (4.8)(c),

w+(x̂, t̂) ≤ inf
y∈B2µ

{
w(y,−1) +

C

(t̂+ 1)q′−1

(
|x̂− y|2 +

Kρq−2

ν0
(t̂+ 1)

)q′/2}

≤ 1

2
6q
′
Cµq

′
+ 2q

′−1CKq′/2ν
−q′/2
0 ρq

′(q−2)/2 + inf
y∈B2µ

w(y,−1)

≤ 1− 5θ + θ + 2θ = 1− 2θ.

We conclude that w(x̂, t̂) ≤ 1− 2θ + θ = 1− θ, so that (4.11) holds in this case.

Case 2. We now assume that

inf
y∈B2µ

w(y,−1) > 2θ.

Fix (x̂, t̂) ∈ Bµ × [−µβ , 0]. As in Step 1, Lemma 2.6 gives

w(x̂, t̂) ≥ w−(x̂, t̂)− θ,

where

(4.14)
E:w-E:w-

∂tw− −
ε2
ε21
νm−(D2w−) + 2A|Dw−|q = 0 in B2µ × (−1, 0] and

w− = w on ∂∗(B2µ × [−1, 0]).

For (x, t) ∈ B2µ × [−1, 0] and for b and C as in Lemma 2.7(b), define

V (x, t) = 3θb

(
|x|
2µ

+
t+ 1

4

)
− Cρq−2θ

4µ2
(t+ 1).

Then, by (4.5) and Lemma 2.7(b), V is a sub-solution of (4.14). In addition,

V ≤ 0 on ∂B2µ × [−1, 0] and V ≤ 2θ on B2µ × {−1},

and so V ≤ w− on ∂∗(B2µ×[−1, 0]). The comparison principle now implies that V ≤ w− in all of B2µ×[−1, 0],
and, in particular, using (4.8)(d) and the fact that b(3/4) = 1 and b is nonincreasing,

w−(x̂, t̂) ≥ V (x̂, t̂) = 3θb

(
|x̂|
2µ

+
t̂+ 1

4

)
− Cρq−2θ

4µ2
(t̂+ 1) ≥ 3θb

(
3

4

)
− θ = 2θ.

Thus, in this case, (4.12) holds.

Whether (4.11) or (4.12) is satisfied, we have

osc
Qµr

v = rα osc
Qµ

w ≤ (1− θ)rα ≤ (µr)α,

and so (4.10) is established.

Step 3: the Hölder estimate. As in the proof of Theorem 3.1, we use Lemma 2.8 and (4.8)(a) to conclude
that, for some C1 = C1(κ,A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t)− u(x̃, t̃)|
|x− x̃|α + |t− t̃|α/β

≤ C1ρ
−q/β .

All of the parts of (4.8) imply that, for some C2 = C2(κ,A, q) > 0 and C3 = C3(κ,A,K, q) > 0,

ρ−q/β ≤ C̃2(Ŝq/β + E1/(κβ)) + C3,

and the rest of the proof follows as in the proof of Theorem 3.1 and the properties of E outlined in Lemma
2.6. �
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5. Applications
S:apps

In this section, we show how Theorems 3.1 and 4.1 can be used to prove a regularizing effect for certain
initial value problems. Moreover, the regularity estimates are independent of a certain large-range, long-time
scaling, which is useful in the theory of homogenization.

We fix a finite time horizon T > 0 and an initial condition

(5.1)
A:u0A:u0

u0 ∈ BUC(Rd).

The uniform continuity of u0 ensures the well-posedness of the equations below, but we note that the
regularizing effects we prove depend only on ‖u0‖∞.

Throughout,

(5.2)
A:ivpBMA:ivpBM

B : [0, T ]× Ω→ Rm is a Brownian motion over a probability space (Ω,F,P).

We first consider equations of first order, and we assume that, for some A > 1 and q > 1,

(5.3)
A:firstorderHA:firstorderH

H ∈ C(Rd × Rd × [0,∞)) satisfies

1

A
|p|q −A ≤ H(p, x, t) ≤ A|p|q +A for all (p, x, t) ∈ Rd × Rd × [0, T ],

and

(5.4)
A:firstorderfA:firstorderf

f ∈ C1
b (Rd,Rm).

For 0 < ε < 1, we consider solutions of the scaled, forced equation

(5.5)
E:scaledfirstorderE:scaledfirstorder

duε +H

(
Duε,

x

ε
,
t

ε

)
dt = ε1/2

m∑
i=1

f i
(x
ε

)
· dBi(t) in Rd × (0, T ] and uε(·, 0) = u0 on Rd,

and we prove the following result: T:firstorderscaling

Theorem 5.1. Assume (5.1) - (5.4), and, for 0 < ε ≤ 1, let uε be the solution of (5.5). Fix p ≥ 1, τ > 0 and
R > 0. Then there exist C = C(R, τ, T,A, ‖f‖C1 , ‖u‖∞ , p, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0
such that, for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t)− uε(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

Proof. We first note that we can assume, without loss of generality, that τ > 1/2. Indeed, otherwise, we
consider the function

ũε(x, t) :=
1

2τ
uε(2τx, 2τt) for (x, t) ∈ Rd ×

[
0,
T

2τ

]
,

which solves

dũε + H̃

(
Dũε,

x

ε
,
t

ε

)
dt = ε1/2

m∑
i=1

f̃ i
(x
ε

)
· dB̃i(t) in Rd ×

(
0,
T

2τ

)
and ũε(·, 0) = ũ0 on Rd,

where, for (p, x, t) ∈ Rd × Rd ×
[
0, T2τ

]
,

H̃(p, x, t) := H(p, 2τx, 2τt), ũ0(x) =
1

2τ
u0(2τx), f̃(x) =

1√
2τ
f(2τx), and B̃(t) =

1√
2τ
B(2τt).

Then H̃ satisfies (5.3) with A and q unchanged, and B̃ is a Brownian motion on [0, 2τT ]. As a consequence,
α = α(A, q) > 0 remains unchanged, and the τ -dependence can be absorbed into R, T , ‖f‖C1 , and ‖u0‖∞.
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Crucially, if fε(x) := ε1/2f(x/ε), then

‖fε‖∞ = ε1/2 ‖f‖∞ and ‖fε‖∞ ‖Df
ε‖∞ = ‖f‖∞ ‖Df‖∞ .

As a consequence, we may choose a fixed constant K > 0 such that the conclusions of Lemma 2.5 and
Theorem 3.1 hold with the function fε, for all ε ∈ (0, 1].

In what follows, we fix 0 < κ < 1
2 .

Step 1: u is bounded. We first use Lemma 2.5 to describe the L∞-bound for u on Rd × [0, T ]. In view of
(5.3), Lemma 2.5 with ε1 = ε2 = 1, R = +∞, and C = Rd gives

uε(x, t) ≤ u+(x, t) +AD1 on Rd × [0, 1],

where, for some λ1 = λ1(κ, ‖f‖C1 , q) > 0 and, given p ≥ 1, some C = C(κ, ‖f‖C1 , p, q) > 0,

P (D1 > λ) ≤ Cεp/2

λp
for all λ ≥ λ1

and

∂tu+ +
1

2A
|Du+|q = 0 on Rd × [0, 1], and u+(·, 0) = u0 on Rd.

The comparison principle yields u+(x, t) ≤ ‖u0‖∞. It follows that

uε(x, t) ≤ ‖u0‖∞ + C(1 +D1) on Rd × [0, 1]

Set N := dT e. An inductive argument then gives random variables D2,D3, . . . ,DN : Ω → R+ and
λ2, λ2, . . . , λN depending on κ, ‖f‖C1 , and q such that

uε(x, t) ≤ ‖u0‖∞ +A

N∑
k=1

Dn on Rd × [0, T ]

and, for all k = 1, 2, . . . , N , p ≥ 1, and some C = C(κ, ‖f‖C1 , p, q) > 0,

P (Dk > λ) ≤ Cεp/2

λp
for all λ ≥ λk.

A similar argument, using the lower bound of Lemma 2.5, gives

uε(x, t) ≥ −‖u0‖∞ −A
N∑
k=1

Dn on Rd × [0, T ].

Adding a random constant to uε, which does not affect the equation solved by uε, we may then write

0 ≤ uε ≤ S on Rd × [0, T ],

where

S := 2 ‖uε‖∞ + 2A

N∑
k=1

Dk.

Setting M := 1 ∨ (2 ‖u0‖∞), we then have, for all p ≥ 1, λ ≥ λ1 ∨ λ2 ∨ · · · ∨ λN , and some constant
C = C(κ, ‖f‖C1 , A, p, q, T ) > 0,

(5.6)
StailsStails

P ((S −M)+ > λ) ≤ P

(
N∑
k=1

Dk >
λ

2A

)
≤ Cεp/2

λp
.

Step 2: the Hölder estimate. Because τ > 1/2, we can cover BR × [τ, T ] with cylinders on which, by
Theorem 3.1, u is Hölder continuous. More precisely, there exists α, λ0 and C as in the statement of the
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current theorem, and c = c(κ, α, q) > 0, such that, for all p ≥ 1 and λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t)− uε(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> λ

)
≤ P((S −M)+ > cλ1−α/q

′
) +

Cεp/2

λκ(q−α(q−1))p
.

Making λ0 larger if necessary, depending on κ, ‖f‖C1 , and q, we invoke (5.6) and obtain the result with

σ =

(
1− α

q′

)
∧ (κ(q − α(q − 1))) = (q − α(q − 1))

(
1

q
∧ κ
)
.

�

The next result is for the second-order case. Assume that, for some A > 1, ν > 0, and q > 2,

(5.7)
A:secondorderFA:secondorderF


F ∈ C(Sd × Rd × Rd × [0,∞)) satisfies

− νm+(X) +
1

A
|p|q −A ≤ F (X, p, x, t) ≤ −νm−(X) +A|p|q +A

for all (X, p, x, t) ∈ Sd × Rd × Rd × [0, T ],

and

(5.8)
A:secondorderfA:secondorderf

f ∈ C2
b (Rd,Rm).

For 0 < ε < 1, the scaled equation we consider is

(5.9)
E:scaledsecondorderE:scaledsecondorder

duε+F

(
εD2uε, Duε,

x

ε
,
t

ε

)
dt = ε1/2

m∑
i=1

f i
(x
ε

)
·dBi(t) in Rd×(0, T ] and uε(·, 0) = u0 on Rd,

and we prove the following result: T:secondorderscaling

Theorem 5.2. Assume (5.1), (5.2), (5.7), and (5.8), and, for 0 < ε ≤ 1, let uε be the solution of (5.9).
Fix p ≥ 1, τ > 0 and R > 0. Then there exists a constant C = C(R, τ, T,A, ‖f‖C2 , ‖u0‖∞ , p, q) > 0,
α = α(A, q) > 0, and σ = σ(A, q) > 0 such that

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t)− uε(x̃, t̃)|
|x− x̃|α + |t− t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

Proof. Arguing as in the proof of Theorem 5.1, we may assume without loss of generality that τ > 1/2.
Notice also that

F ε(X, p, x, t) := F

(
εX, p,

x

ε
,
t

ε

)
for (X, p, x, t) ∈ Sd × Rd × Rd × [0, T ]

satisfies (5.3) with εν replacing ν, and, therefore, if we define fε(x) := ε1/2f(x/ε), we have ‖fε‖∞ =

ε1/2 ‖f‖∞ and

εν + ‖fε‖∞ ‖Df
ε‖∞ + εν ‖fε‖∞

∥∥D2fε
∥∥
∞ ≤ ν + ‖f‖∞ ‖Df‖∞ + ‖f‖∞

∥∥D2f
∥∥
∞ .

As a consequence, we may choose a constant K > 0 independently of ε > 0 for which the conclusions of
Lemma 2.6 and Theorem 4.1 hold with the function fε. The rest of the proof then follows exactly as in the
proof of Theorem 5.1. �
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Appendix A. Controlling stochastic integrals
S:intcontrol

Throughout the paper, we use the following results that give uniform control over certain stochastic integrals.
Assume below that

(A.1)
appBMappBM

B : [−1, 0]× Ω→ Rm is a standard Brownian motion over the probability space (Ω,F,P).L:intcontrol1

Lemma A.1. Let m > 0, K > 0, q > 1, and κ ∈ (0, 1/2). Then there exists a random variable D : Ω→ R+

and λ0 = λ0(κ,K, q) > 0 such that

(a) for any p ≥ 1 and some constant C = C(κ,K, p, q) > 0,

P(D > λ) ≤ Cmp

λp
for all λ ≥ λ0,

and
(b) for all γ ∈W 1,∞([−1, 0],Rd), δ ∈ (0, 1], −1 ≤ s ≤ t ≤ 0, and f satisfying

‖f‖∞ ≤ m and ‖f‖∞ (1 + ‖Df‖∞) ≤ K,

we have ∣∣∣∣∫ t

s

f(γr) · dBr
∣∣∣∣ ≤ δq′ ∫ t

s

|γ̇r|q
′
dr +

D
δq

(t− s)κ.

Assume now that

W : [−1, 0]×A → R is a Brownian motion defined over a probability space (A,F ,P).

The probability space A is independent of Ω. Below, we prove a statement that is true for P-almost every
sample path B of the Brownian motion from (A.1), which involves taking the expectation with respect to the
Brownian motion W . Effectively, B and W are independent Brownian motions, and E can be interpreted as
the expectation conditioned with respect to B. L:intcontrol2

Lemma A.2. Let q > 1, 0 < κ < 1
2 , m > 0, and K > 0. Then there exists a random variable E : Ω→ R+

and λ0 := λ0(κ,K, q) > 0 such that

(a) for any p ≥ 1 and some constant C = C(κ,K, p, q) > 0,

P(E > λ) ≤ Cmp

λp
for all λ ≥ λ0,

and
(b) for all 0 < δ ≤ 1; processes (α, σ,X) : [−1, 0]×A → Rd × Rd × Rd that are W -adapted such that

(A.2)
processesprocesses

α, σ ∈ L∞([−1, 0]×A) and dXr = αrdr + σrdWr for r ∈ [−1, 0];

W -stopping times −1 ≤ s ≤ t ≤ 0; and f ∈ C1(Rd,Rm) satisfying

(A.3)
fsfs ‖f‖∞ ≤ m and ‖f‖∞

(
1 + ‖Df‖∞ +

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞

)
≤ K;

we have ∣∣∣∣E [∫ t

s

f(Xr) · dBr
]∣∣∣∣ ≤ δq′E∫ t

s

|αr|q
′
dr +

E
δq

(t− s)κ.

We note that the integrals against dB appearing in Lemmas A.1 and A.2 are interpreted as in Section 2,
and, in particular, subsection 2.2.

The proof of Lemma A.1 can be found in [14]. The arguments for Lemma A.2 are similar, but some further
details are needed to account for the use of Itô’s formula and the interaction between B and W .
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We first give a parameter-dependent variant of Kolmogorov’s continuity criterion. Its statement and proof
are very similar to that in [14]. L:Kolmogorov

Lemma A.3. Define 4 := {(s, t) ∈ [−1, 0], s ≤ t} and fix a parameter set M. Let (Mµ)µ∈M : Ω → R+

and (Zµ)µ∈M : 4× Ω→ R+ be such that

(A.4)
subadditivesubadditive

Zµ(s, u) ≤ Zµ(s, t) + Zµ(t, u) for all µ ∈M and − 1 ≤ s ≤ t ≤ u ≤ 0,

and, for some constants a > 0, β ∈ (0, 1), p ≥ 1,

sup
(s,t)∈4

E

[
sup
µ∈M

(
Zµ(s, t)

(t− s)β+1/p
−Mµ

)p
+

]
≤ a.

Then, for all 0 < κ < β, there exist C1 = C1(κ) > 0 and C2 = C2(p, κ, β) > 0 such that, for all λ ≥ 1,

P

(
sup
µ∈M

sup
(s,t)∈4

(
Zµ(s, t)

(t− s)κ
− C1Mµ

)
> λ

)
≤ C2a

λp
.

The next result gives an estimate for moments of sums of certain centered and independent random variables.L:sums

Lemma A.4. Let (Yk)nk=1 : Ω→ R be a sequence of centered and independent random variables such that,
for all p ≥ 1 and for some µ > 0 and C = C(p) > 0,

E|Y1|p ≤ Cµp.

Then there exists a constant C̃ = C̃(p) > 0 such that

E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
p

≤ C̃np/2µp.

Proof. Let (εk)nk=1 be a sequence of independent Rademacher random variables, that is,

P(εk = 1) = P(εk = −1) =
1

2
for all k = 1, 2, . . . , n,

such that (εk)nk=1 is independent of the sequence (Yk)nk=1. It then follows (see Kahane [7]) that

E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑
k=1

εkYk

∣∣∣∣∣
p

.

Therefore, upon replacing Yk with εkYk, we may assume without loss of generality that each Yk is symmetric,
that is, Yk and −Yk are identically distributed.

Observe next that if the result holds for some p ≥ 1, then, for any q < p, by Hölder’s inequality,

E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
q

≤

(
E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
p)q/p

≤
(
C̃np/2µp

)q/p
≤ C̃q/pnq/2µq.

Therefore, it suffices to prove the result for p = 2m with m ∈ N.

We compute ∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
2m

=
∑

Y j1k1 Y
j2
k2
· · ·Y j`k` ,
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where the sum is taken over 1 ≤ k1 < k2 < · · · < k` ≤ n and j1 + j2 + · · · + j` = 2m. In view of the
symmetry and independence of the Yk, all summands for which one or more of the ji values is odd have zero
expectation. Thus,

E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
2m

=
∑

EY 2i1
k1

Y 2i2
k2
· · ·Y 2i`

k`
,

where the sum is taken over 1 ≤ k1 < k2 < · · · < k` ≤ n and i1 + i2 + · · · + i` = m. A combinatorial
argument implies that the cardinality of such terms is equal to

(
m+n−1
n−1

)
, while Hölder’s inequality gives

EY 2i1
k1

Y 2i2
k2
· · ·Y 2i`

k`
≤
(
EY 2m

k1

)i1/m (
EY 2m

k2

)i2/m · · · (EY 2m
k`

)i`/m ≤ Cµ2m,

and, therefore,

E

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
2m

≤ C
(
m+ n− 1

n− 1

)
µ2m ≤ Cnmµ2m.

�

Finally, we turn to the

Proof of Lemma A.2. Let Cm,K be the space consisting of (α, σ,X, f) satisfying (A.2) and (A.3), define the
parameter set

M := (0, 1)× Cm,K ,

and, for each µ = (δ, α, σ,X, f) ∈M and (s, t) ∈ 4, the stochastic process

(A.5)
subadditiveguysubadditiveguy

Zµ(s, t) :=

(∣∣∣∣E [δq ∫ t

s

f(Xr) · dBr
]∣∣∣∣− δq+q′E∫ t

s

|αr|q
′
dr

)
+

,

which can easily be seen to satisfy (A.4).

We first show that there exist constants M1 = M1(K, q) > 0 and M2 = M2(K, p, q) > 0 such that

(A.6)
pointwisemomentpointwisemoment

sup
−1≤s≤t≤0

E

[
sup
µ∈M

(
Zµ(s, t)

(t− s)1/2
−M1

)p
+

]
≤M2m

p.

Fix s, t ∈ [−1, 0] with s ≤ t. We split into two cases, depending on the size of the interval [s, t].

Case 1. Assume first that

(A.7)
Deltacase1Deltacase1

t− s ≤
‖f‖q∞
‖Df‖q∞

∧
‖f‖∞

‖σσt‖∞,[−1,0] ‖D2f‖∞
.

By Lemma 2.2,

E
[∫ t

s

f(Xr) · dBr
]

= E [f(Xt) · (Bt −Bs)]

− E
[∫ t

s

(
Df(γr) · αr +

1

2
tr(σrσ

t
rD

2f(Xr))

)
· (Br −Bs)dr

]
.

Setting

∆ := max
r1,r2∈[s,t]

|Br1 −Br2 |
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and invoking (A.7) and the Young and Hölder inequalities then gives, for some constant C = C(K, q) > 0,∣∣∣∣E [∫ t

s

f(Xr) · dBr
]∣∣∣∣

≤ ‖f‖∞∆ + ‖Df‖∞∆E
∫ t

s

|αr|dr +
1

2

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞∆(t− s)

≤ ‖f‖∞

(
3

2
∆ + ∆

(
E
∫ t

s

|αr|q
′
dr

)1/q′
)

≤ ‖f‖∞

(
3

2
∆ +

C∆q

δq

)
+ δq

′
E
∫ t

s

|αr|q
′
dr,

and so

sup
µ∈M

Zµ(s, t) ≤ m
(

3

2
∆ + C∆q

)
.

Raising both sides to the power p, taking the expectation E over Ω, and invoking the scaling properties of
Brownian motion yield, for some constant C = C(K, p, q) > 0 that changes from line to line,

E

[
sup
µ∈M

Zµ(s, t)p
]
≤ Cmp (E∆p + E∆pq)

≤ Cmp(t− s)p/2,

and (A.6) then follows in this case.

Case 2. Assume now that

(A.8)
Deltacase2Deltacase2

t− s >
‖f‖q∞
‖Df‖q∞

∧
‖f‖∞

‖σσt‖∞,[−1,0] ‖D2f‖∞
.

Set

(A.9)
hh

h :=

[
‖f‖∞
‖Df‖∞

(t− s)1/q
′
]
∧

‖f‖∞
‖σσt‖∞ ‖D2f‖∞

and let N ∈ N be such that
t− s
h
≤ N <

t− s
h

+ 1.

Note that (A.8) implies that h ≤ t− s, and so

(A.10)
NhNh

t− s ≤ Nh < 2(t− s)

For k = 0, 1, 2, . . . , N − 1, set τk := s+ kh and τN = t, and, for k = 1, 2, . . . , N , define

∆k = max
u,v∈[τk−1,τk]

|Bu −Bv| .

Using Lemma 2.2, we write

E
[∫ t

s

f(Xr) · dBr
]

=

N∑
k=1

E

[∫ τk

τk−1

f(Xr) · dBr

]
= I− II− III,

where

I :=

N∑
k=1

E
[
f(Xτk) · (Bτk −Bτk−1

)
]
,
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II :=

N∑
k=1

E

[∫ τk

τk−1

Df(Xr)αr · (Br −Bτk−1
)dr

]
,

and

III :=
1

2

N∑
k=1

E

[∫ τk

τk−1

tr(σrσ
t
rD

2f(Xr)) · (Br −Bτk−1
)dr

]
.

We estimate

|I| ≤ ‖f‖∞
N∑
k=1

∆k and |III| ≤ h

2

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞

N∑
k=1

∆k,

and, for all ε > 0, Young’s inequality yields

|II| ≤ ‖Df‖∞
N∑
k=1

∆kE
∫ τk

τk−1

|αr|dr

≤ ‖Df‖∞ h1/q
N∑
k=1

∆k

(
E
∫ τk

τk−1

|αr|q
′
dr

)1/q′

≤ ‖Df‖∞ h1/q

(
1

qεq

N∑
k=1

∆q
k +

εq
′

q′
E
∫ t

s

|αr|q
′
dr

)
.

Combining the three estimates gives∣∣∣∣E [∫ t

s

f(Xr) · dBr
]∣∣∣∣ ≤ (‖f‖∞ +

h

2

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞

) N∑
k=1

∆k

+ ‖Df‖∞ h1/q

(
1

qεq

N∑
k=1

∆q
k +

εq
′

q′
E
∫ t

s

|αr|q
′
dr

)
.

(A.11)
unifstunifst

We now set

ε := δ

(
q′

‖Df‖∞ h1/q

)1/q′

.

In particular,

εq
′

=
q′δq

′

‖Df‖∞ h1/q
and εq =

(q′)q−1δq

‖Df‖q−1∞ h1/q′
,

so that (A.11) becomes, for some C = C(q) > 0,∣∣∣∣E [∫ t

s

f(Xr) · dBr
]∣∣∣∣ ≤ (‖f‖∞ +

h

2

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞

) N∑
k=1

∆k

+
C

δq
‖Df‖q∞ h

N∑
k=1

∆q
k + δq

′
E
∫ t

s

|αr|q
′
dr.

For k = 1, 2, . . . , N , the constants

ak := E∆k and bk := E∆q
k

satisfy, for some a > 0 and b = b(q) > 0,

ak ≤ ah1/2 and bk ≤ bhq/2.
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Then (A.9) and (A.10) give(
‖f‖∞ +

h

2

∥∥σσt∥∥∞ ∥∥D2f
∥∥
∞

) N∑
k=1

ak ≤
3

2
‖f‖∞Nh1/2a ≤ 3a ‖f‖∞ (t− s)h−1/2

≤ 3a(t− s) ‖f‖1/2∞
([
‖Df‖1/2∞ (t− s)−1/(2q

′)
]
∨
[∥∥σσt∥∥1/2∞ ∥∥D2f

∥∥1/2
∞

])
≤ 3aK1/2(t− s)1/2

and

‖Df‖q∞ h

N∑
k=1

bk ≤ b ‖Df‖q∞Nh1+q/2 ≤ 2b(t− s) ‖Df‖q∞ hq/2

≤ 2b(t− s) ‖f‖q/2∞ ‖Df‖
q/2
∞ (t− s)

q
2q′ ≤ 2bK

q
2 (t− s)

q+1
2 .

Therefore, because 0 < δ ≤ 1, we find that, for some constant M1 = M1(K, q,m) > 0,(
Zµ(s, t)−M1(t− s)1/2

)
+

≤M1

(
‖f‖∞

∣∣∣∣∣
N∑
k=1

(∆k − ak)

∣∣∣∣∣+ C ‖Df‖q∞ h

∣∣∣∣∣
N∑
k=1

(∆q
k − bk)

∣∣∣∣∣
)
.

(A.12)
almostpointwisemomentalmostpointwisemoment

The collections (∆k − ak)Nk=1 and (∆q
k − bk)Nk=1 consist of independent and centered random variables. The

scaling properties of Brownian motion yield, for any k = 1, 2, . . . , N and p0 > 0 and constants A1 = A1(p0) >
0 and A2 = A2(p0, q) > 0,

E |∆k − ak|p0 ≤ A1h
p0/2 and E |∆q

k − bk|
p0 ≤ A2h

p0q/2.

It is then a consequence of (A.10) and Lemma A.4 that, for some constants Ã1 = Ã1(p) > 0 and Ã2 =

Ã2(p, q) > 0,

E

∣∣∣∣∣
N∑
k=1

(∆k − ak)

∣∣∣∣∣
p

≤ Ã1N
p/2hp/2 ≤ 2p/2Ã1(t− s)p/2

and

E

∣∣∣∣∣
N∑
k=1

(∆q
k − bk)

∣∣∣∣∣
p

≤ Ã2N
p/2hpq/2 ≤ 2p/2Ã2(t− s)p/2hp(q−1)/2.

The latter estimate and (A.9) give

‖Df‖pq∞ hpE

∣∣∣∣∣
N∑
k=1

(∆q
k − bk)

∣∣∣∣∣
p

≤ 2p/2Ã2 ‖Df‖pq∞ (t− s)p/2hp(q+1)/2

≤ 2p/2Ã2 ‖f‖p(q+1)/2
∞ ‖Df‖p(q−1)/2∞ (t− s)p

(
1
2+

q+1
2q′

)
≤ 2p/2Ã2K

p(q−1)/2 ‖f‖p∞ (t− s)p/2,

and so, raising (A.12) to the power p and taking the expectation gives, for some M2 = M2(m,K, p, q) > 0,

E

[
sup
µ∈M

(
Zµ(s, t)−M1(t− s)1/2

)p
+

]
≤M2(t− s)p/2.

Dividing by (t− s)p/2 leads to (A.6).

We now take p large enough that

κ <
1

2
− 1

p
.
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Then (A.6) and Lemma A.3 imply that, for some C = C(κ,m,K, p, q) > 0 and M = M(κ,m,K, q) > 0, and
for all λ ≥ 1 and

p >
2

1− 2κ
,

we have

P

(
sup
µ∈M

sup
−1≤s≤t≤0

Zµ(s, t)

(t− s)κ
> M + λ

)
≤ Cmp

λp
.

By changing C in a way that depends only on m and p, the same can be accomplished for all p ≥ 1. The
proof is finished upon setting

λ0 := 2M, E := sup
µ∈M

sup
−1≤s≤t≤0

Zµ(s, t)

(t− s)κ
,

and replacing C with 2pC. �
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[1] Cannarsa, P., and Cardaliaguet, P. Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations.
Comm. Pure Appl. Math. 63, 5 (2010), 590–629.

[2] Cardaliaguet, P. A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the

gradient variable. ESAIM Control Optim. Calc. Var. 15, 2 (2009), 367–376.
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