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HOLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC
FORCING

PIERRE CARDALIAGUET AND BENJAMIN SEEGER

ABSTRACT. We obtain space-time Holder regularity estimates for solutions of first- and second-order Hamilton-
Jacobi equations perturbed with an additive stochastic forcing term. The bounds depend only on the growth
of the Hamiltonian in the gradient and on the regularity of the stochastic coefficients, in a way that is in-
variant with respect to a hyperbolic scaling.

1. INTRODUCTION

The objective of this paper is to study the Holder regularity of stochastically perturbed equations of the

form

Emain), du+ H(Du,z,t)dt = f(z) - dB
and

Emaing du + F(D*u, Du, z,t)dt = f(z) - dB,

where H : R x R x R — R and F : S x R? x R4 x R — R are coercive in Du, F is degenerate elliptic
in D?u € S% S% is the space of symmetric d x d matrices, f € C’E(Rd,Rm), and B is an m-dimensional
Brownian motion defined over a fixed probability space (Q2, F, P).

More precisely, we are interested in the regularizing effect that comes about from the coercivity in the Du-
variable. The goal is to show that bounded solutions of (1.1) and (1.2) are locally Hélder continuous with
high probability, with a Holder bound and exponent that are independent of the regularity of H or F' in
(x,t), or the ellipticity in the D?u-variable.

A major motivation for this paper is to study the average long-time, long-range behavior of solutions of
(1.1) and (1.2) with the theory of homogenization. Specifically, if u®(z,t) := eu(z/e,t/e) for e > 0 and
(z,t) € R? x R, then u® solves

E:scaledm(af’..%ljl du + H (Dus, §7 Z) dt = £'V/2f (g) . dB¢
or
E:Scaledmﬁf-.ﬁﬁ dut + F <€D2UE,DU€, g’ Z) dt = 51/2f (g) . dBE,

where B#(t) := £'/2B(t/e) has the same law as B. Observe that the new coefficients
fo(z) = f(a/fe),

which are required to be continuously differentiable in order to make sense of the equation (twice in the case
of (1.4)), blow up in C*(R%,R™) and C?(R% R™) as ¢ — 0. A major contribution of this paper is to obtain
estimates that, although they depend on ||Df| . and HD2 f Ho07 are bounded independently of ¢, and, in
fact, the probability tails of the Holder semi-norms converge to 0 as € — 0.

Date: September 25, 2020.



2 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

1.1. Main results. We give two types of results, for both first and second order equations. The first is an
interior Holder estimate for bounded solutions on space-time cylinders. We then use this result to prove an
instantaneous Holder regularization effect for initial value problems with bounded initial data.
For u defined on the cylinder

1:=DB1 x [-1,0] == {(2,t) e R xR : [z[ <1, -1 < ¢t <0},

we show that v is Holder continuous on the cylinder By x [-1/2,0], given that u is a solution of the
appropriate equation, and is nonnegative and has a random upper bound, that is, for some S : Q — [0, 00),

A:int domb
tntrorandon (’f%%] 0<u<S8 inQ. T:introfirstorder
Theorem 1.1. Assume, for some A >1, ¢ > 1, and K > 0, that

: i 1
R SIpl7 = A< H(p,2,t) < Alplt + A for all (p,,t) € R x RY x [~1,0],

A:£C1b .
e fECHRLR™), (fllao+ £l - IDf]l < K,
and u solves (1.1) in Q1 and satisfies (1.5). Fix M > 0 and p > 1. Then there exist a = «(A,q) > 0,
oc=0(A,q) >0, \o=X(A,K,M,q) >0, and C = C(A, K, M,p,q) > 0 such that, for all A > Ao,

ClAIE
Ao

t) —u(z,t
P sup futa, 1) ?(f(’ _)‘( 57 > A SPUS M) > A7)+
(2.6), (DB, jax[—1/2,0] |T — Z|* + [t — t]*/lamald

To state the assumptions for the regularity results for (1.2), we introduce the notation, for any X € S¢,

m4(X) :=maxv-Xv and m_(X):= minv- Xv.
lv[<1 lv[<1

That is, mo(X) and m_(X) are, respectively, the largest nonnegative and lowest nonpositive eigenvalue of
X. Note that, if F': S¢ — R is uniformly continuous and degenerate elliptic, then, for some constants v > 0
and A > 0 and for all X € S,

—vm,y (X) - A< F(X)<-vm_(X)+ A.
In order for the coercivity in the gradient to dominate the second-order dependence of F' at small scales, it
is necessary to assume that the growth of F' in Du is super-quadratic. T:introsecondorder

Theorem 1.2. Assume that, for some A>1,q>2, v >0, and K > 0,

1
A:Fsuperquadr&t'ésl —vmy(X) + Z|p‘q - A< F(X,p,x,t) < —vm_(X)+ Ap|?+ A

for all (X,p,z,t) € S x R? x R x [—1,0],

A:2C2bppng FeC®LR™), vt Iflle + 1fl - IDflle + v 1F 1 ID*f]l, < K.

and u solves (1.2) in Q1 and satisfies (1.5). Fiz M > 0 and p > 1. Then there ezist o« = a(A,q) > 0,
o=0(A,q) >0, \g =X (A, K,M,q) >0, and C = C(A, K, M,p,q) > 0 such that, for all X > X,

t) — w(®,t CIfIIP
(2.0).(35)EBy jax[-1/2,0] [T — Z|* + [t — t|e/(a=ala=1) AP

Although the bounds in Theorem 1.1 and 1.2 do depend on the regularity of f, the important point is that
the dependence is scale-invariant. Indeed, the function f¢ defined by f(z) := e/ f(x/¢) satisfies

1 1
1N =1 fllo s IDF Nl = 7z IDf o, and  [[D*F| = 55 [D°f]] -
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As a consequence, f€¢ satisfies (1.7) and (1.9) with some K > 0 independent of ¢ (the latter because, in
(1.8), v is replaced with ev). This leads to the following scale-invariant estimates for the regularizing effect
of (1.3) and (1.4). T:introfirstorderscaling

Theorem 1.3. For A > 1, M >0, and q > 1, assume that
1
P17 = A< Hp,2,1) < Alpl7 + 4

and f € CHRYLR™), and, for 0 < & < 1, let u® be the solution of (1.3) with ||u®(-,0)||, < M. Fiz
7>0,R>0, and T > 0. Then there exist C = C(R,7,T,A,||f|lcn . M,q) >0, a = a(A,q) > 0, and
o=0c(A,q) > 0 such that, for all X > 0,

€ (5 F p/2
P( sup (e, t) — w(@, )] >C+)\><CE

(w,t),(&,8)€Br x[7,T] |z — &|* + |t — t]o/(a-ela=1) T: il%gl?osecondorderscaling

Theorem 1.4. For A>1,v >0, M >0, and q¢ > 2, assume that
1
vy (X) S |pl? ~ A < F(X,p,,8) < —vm_(X) + Alpl? + 4

and f € CEHRLR™), and, for 0 < e < 1, let u® be the solution of (1.4) with ||u®(-,0)||,, < M. Fiz
7>0,R>0, and T > 0. Then there exist C = C(v,R,7,T, A, ||fllc2,M,q) >0, a = a(A,q) > 0, and
o =0(A,q) > 0 such that, for all X\ > 0,

€ t) — us (7 t~ C p/2
P sup |~u (2,1) Nu(x, ) >CH+ M| < .
(,),(@ D eBrx|r.T] |T — T[> + [t — t]/(aela=1) A7P

1.2. Background. The regularizing effects of Hamilton-Jacobi-Bellman equations like
E: clas(sii?)le dyu + F(D*u, Du,z,t) =0

has been studied by many authors, including Cardaliaguet [2], Cannarsa and Cardaliaguet [1], and Cardalia-
guet and Silvestre [3], Chan and Vasseur [4] and Stockols and Vasseur [16]. In these works, under a coercivity
assumption on F in the gradient variable (but no regularity condition on F'), bounded solutions are seen
to be Holder continuous, with estimate and exponents depending only on the growth of the F' in Du.
These results were used to obtain homogenization results for problems set on periodic or stationary-ergodic
spatio-temporal media; see, for instance, Schwab [13] and Jing, Souganidis, and Tran [6].

The equations (1.1) and (1.2) do not fit into this framework, due to the singular term on the right-hand side,
which is nowhere pointwise-defined. A simple transformation (see Definition 2.1 below) leads to a random
equation that is everywhere pointwise-defined of the form (1.10). More precisely, if u solves (1.2) and

a(z,t) = u(x,t) — f(z) - B(t),
then
Oyt + F(D*u+ D?f(x) - B(t), Diu+ Df(x) - B(t),z,t) = 0.
However, this strategy does not immediately yield scale-invariant estimates. Indeed, the transformed equa-
tion corresponding to (1.4) is, for € > 0,

1 T 1 T
~c 2~¢g 2 - € € — € —_ = =
B, +F<5D @+ 5D f(€>B (t), D +€1/2Df(€)B (t),g,e) ,

for which the results in the above references yield estimates that depend on €.
These issues were considered by Seeger [14] for the equation (1.1) with H independent of (z,t) and convex
in p. In this paper, we further extend the regularity results from [14] to apply also to second-order equations

and with more complicated (z,t)-dependence for F' and H. To do so, we follow [3] and prove that the
equations exhibit an improvement of oscillation effect at all sufficiently small scales, which is a consequence



4 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

only of the structure of the equation. The main difference with [3] is the addition of the random forcing
term f(x) - dB; which obliges to revisit the analysis of [3] in a substantial way.

1.3. Organization of the paper. In Section 2, we discuss the notion of pathwise viscosity solutions of
equations like (1.1) and (1.2), and we present a number of lemmas needed throughout the paper. The interior
estimates are proved in Sections 3 and 4, and the results for initial value problems are presented in Section
5. Finally, in Appendix A, we prove some results on controlling certain stochastic integrals.

1.4. Notation. If ¢ and b are real numbers, then we set a V b = max{a, b}, a A b = min{a, b} and denote
by [a] the smallest integer greater than or equal to a. We let S? be the set of symmetric real matrices of
size d x d. We say that a map F : S? — R is degenerate elliptic if, for X, Y € S? with X <Y, we have
F(X) > F(Y). Given H : R — R, H* is defined for o € R? by H*(«t) = sup,cga {a-p — H(p)}. Given
a subset C' of R? and —oco < tg < t; < 00, 0*(C x (tg,t1)) denotes the parabolic boundary of C x (to,1),
namely

8*(0 X (to,tl)) = (C X {to}) U (30 X (to,tl)).

2. PRELIMINARIES .
S:prelim

2.1. Pathwise viscosity solutions. Fix —oco <ty < t; < oo and let U C R? x (to,t1) be an open set. For
¢ € C((tg,t1),R™), a degenerate elliptic F € C(S? x RY x U x (tg,t1),R), and f € C?(R? R™), we discuss
the meaning of viscosity sub- and super-solutions of the equation

B CAY du+ F(D*u, Du,x,t)dt = f(x)-d¢, (a,1) € U.

The general theory of pathwise viscosity solutions, initiated by Lions and Souganidis [9-12,15], covers a wide
variety of equations for which f may also depend on u or Du. In the case of (2.1), the theory is much more
tractable, and solutions are defined through a simple transformation. D:solutions

Definition 2.1. A function u € USC(U) (resp. w € LSC(U)) is a sub- (resp. super-) solution of (2.1) if
the function @ defined, for (z,t) € U, by

u(z,t) = u(zw,t) — f(z) - C(t)
is a sub- (resp. super-) solution of the equation
Oyt + F(D*u+ D*f(x)((t), Dt + Df(x)((t),z,t) =0, (x,t) €U.

A solution u € C(U) is both a sub- and super-solution.

We remark that, if F' is independent of D?u, then we may take f € C*(RY,R™).
We will often denote the fact that u is a sub- (resp. super-) solution of (2.1), by writing
du+ F(D*u, Du,x,t)dt < f(z)-d¢ (vesp. du+ F(D*u, Du,x,t)dt > f(z) - d¢) .
At times, when it does not cause confusion, we also use the notation
Oyu+ F(D*u, Du,x,t) = f(z) - ((t),

even when ( is not continuously differentiable. This will become particularly useful in proofs that involve
scaling, in which case the argument of { may change.
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SS:formulae

2.2. Control and differential games formulae. Just as for classical viscosity solutions, some equations
allow for representation formulae with the use of the theories of optimal control or differential games. Before
we explain this, we give meaning to certain pathwise integrals that come up in the formulae.  L:intzetal

Lemma 2.1. Assume that s <t and f € C%'([s,t],R™). Then the map
¢ mo ot
CH(is R 3¢ [ f0)-Cdr = [ 1) - Err
S i=1 S
extends continuously to ¢ € C([s,t],R™).

Proof. The result is immediate upon integrating by parts, which yields, for ¢ € C*([s,t],R™),
t . t .
[ 10 = 500w - £6)¢05) ~ [ gt
) ’ L:intzeta3

Lemma 2.2. Assume that s < t, f € CLHRL,R™), W : [s,t] x A — R is a Brownian motion on some
probability space (A, F,P), a,o0 : [s,t] x A — R? are bounded and progressively measurable with respect to
the filtration of W, T € [s,t] is a W -stopping time, and

dX, = a.dr 4+ o.dW forr € [s,t].
Then the map

CHls. 0 R™) 3¢ [ 1) -{rar =3 [ £0x) - i e 2
S ’L:1 S
extends continuously to ¢ € C([s,t],R™), and, moreover,

B | [ £00) - Coyir] =B LRG0 €)= 1) )
[ [ e+ (D16 ar 4 D2 (X)) ) .

Proof. If ¢ € C1([s,t],R™), then It&’s formula yields, for i = 1,2,...,m,
d [J”(Xr) : CZ(T)] = [fl(Xr)Cl(r) + Dfi(Xr) : O‘rci(r) + ;<D2fi(XT)UT7UT><i(T)] dr
+ (DfYX,) - 0,C(r)) AWy,
and so

[ FCE = £ - FEE) - [0 (D00 an+ G0 (X000 ) dr

7% T
- / CZ(T)Df(Xr) cordW,.

The Ito isometry property implies that
L*([s,1]) 2 ¢" / CH(r)Df(X,) - 0, dW, € L*(A)

is continuous, and, in particular, the map extends to ¢* € C([s,t]). The result follows from the fact that
the other terms on the right-hand side of (2.2) are continuous with respect to ¢* € C([s,t]). The final
claim follows upon taking the expectation of both sides of (2.2) and appealing to the optional stopping
theorem. g
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For arbitrary continuous (, we freely interchange notations such as

[ e ma [ g éwar

Throughout the paper, ( is often taken to be a Brownian motion, defined on a probability space that is
independent of W.

We now consider some equations for which sub- and super-solutions can be compared from above or below
with particular formulae. For convenience, we write the equations backward in time. L:HJformula

Lemma 2.3. Assume C C R? is open, z9 € C, tg < t1, U is an open domain containing C X [ti,to],
¢ e C(R,R™), f € CYU), and H : R? — R is convex and superlinear. Let u € C(U) be a pathwise viscosity
sub- (resp. super-) solution, in the sense of Definition 2.1, of

—du+ H(Du)dt = f(z)-d¢ inU.
Then
u(xo,to) < (resp. >) inf {u('yT,T) +/ H* (=4, )dr +/ flyr)-d¢r v e Wl’oo([to,tl],Rd), Vo = xo} ,
to to

where, for fived v € W ([to, t1], RY),
stopplngt(zfl%ljl T =77 :=inf{t € (to,t1] : 7+ € OC}.

Proof. We prove the claim for sub-solutions, as it is identical for super-solutions.

Definition 2.1 implies that if
e, 1) = ule,0) + (@) - C(1) for (a,0) € T,
then @ is a sub-solution of the boundary-terminal-value problem

E:PQTYI& —Oit + H(DT] - Df(x) . C(t)) =0 inCx [to,tl) and
’ u(x,t) = u(z, t) + f(z) - () ift=1t; or x € 9C.

The unique solution of (2.4) (see [8]) is given by
wle,t) = int {ulir, )+ £00) 60+ [ TH50) = 5o DIG) -G dr s 9 € WAt 0] Y, 3 =}
where 7 is as in (2.3). Integrating by parts gives
[ 3 Dren) - i = 100360 = et - [ 1) -deo)
and, hence,
w(e,t) = FR)C(E) + inf {u<w> s [Far i [0 doe) sy e W] B, 2 = m} .

The result now follows because, by the comparison principle for (2.4), @ < w on C X [tg, t1]. g

We next give formulae for solutions of some Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations.

For —oc0 <ty < t1 < 00, assume that

(2.5“5I W : [to,t1] x A — R is a Brownian motion defined on a probability space (A, F,P),



HOLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC FORCING 7

with associated expectation E, and define the spaces of admissible controls
€ = {u e L™ ([to,tl] x A, Rd) : p is adapted with respect to W} and
G = {n e |l <M.
The Isaacs’ equations require us to use the spaces of strategies defined by
S ={B:C¢ = C: 1 =pzonlto,t] = B(u)(t) = B(u2)(t)} and
Sy ={peS:B(€)CCu}. L:HJBformula
Lemma 2.4. Assume C C R? is open and convex, o € C, tg < ti, U is an open domain containing

E x [to,t1], f € C?(U), H : R = R is convex and superlinear, and v > 0. Given (a,0) € € x €, denote by
= X®%%0:t0 the solution of

DEf
5 ortné%a}l dX, = aydr + o.dW, in [to,t1] and Xz, = xo,
and
SCOPPIREEIEA) T = 70000 = inf {t € (fo, ] : XO" € aC) .

(a) Let u € C(U) be a pathwise viscosity super-solution, in the sense of Definition 2.1, of
—du+ [~vm_(D*u) + H(Du)| dt = f(z)-d{ in U.
Then . i
I (=ag)ar+ [ (X,)- dcr} .
0

to
(b) Let w e C(U) be a pathwise viscosity sub-solution, in the sense of Definition 2.1, of

—du+ [—vmy (D*u) + H(Du)| dt = f(z)-d( inU.

u(xzo, tg) > inf E |:U(X-,—,T) +
(0,0)ECXE y5m

Then
u(zo,to) < inf sup E[ (X, 1)+ / H (-, dr—i—/ (X dg}],

€€ BES yom
where X and T are as in respectively (2.6) and (2.7) with o = B(«)

Proof. As a preliminary step, assume that («,0) € € x € and X and 7 are as in (2.6) and (2.7). Then
Lemma 2.2 gives

E { [ s -d@} — E[f(X,)(r) = F(X)C(D)]

YRR _E U; ¢(r)- <Df(XT) Lo+ %DQf(Xr)ffr ' Ur) d’”} '

(a) By Definition 2.1, if
ﬂ(ﬁ,t) = u(xvt) + f(it) : C(t)v
then u is a classical viscosity super-solution of
9yt — vm_ (D%~ D*f(x) - (1)) + H (D~ Df(x) - (1)) =0 in Cx [fo. 1),
w(x,t) = ulx,t)+ f(x)-C(t) ift=1t; or x € OC.
For (X,p,z,t) € S* x R? x U, we have
—vm_ (X = D*f(x)-((t) + H (p = Df(x) - {(1))

S — {—1a~Xa+la-D2f<x>a-<<t>—a-p+a~Df<x>-<<t>—H*<—a>},
lo|<V3v, ackd L 2 2

%
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and so standard results from the theory of stochastic control (see [8]) imply that the unique solution of (2.9)
is given by

w(z,t) == inf E |:U(XT,T) + f(X;)-<¢(7)

(.0)ECXE g
+ [ can - (- DX + Jor D000, )] ]
— s e+ it Bl [t [T,

(,0)ECXE /gy

where the last equality follows from (2.8). The result follows from the comparison principle for (2.9), which
implies that (z,t) > w(x,t) for (z,t) € C x [to, t1].

(b) By Definition 2.1, if
Uz, t) = u(x,t) + f(x) - C(1),
then @ is a classical viscosity sub-solution of
E:EFYRS, =0yt —vmy (D*a — D*f(x) - ((t)) + H (D@ — Df(x) - ((t)) =0 in C x [to, t1),
' a(z,t) = u(z,t) + f(z) - C(t) ift=t orzedC.
For (X,p,z,t) € S* x R? x U, we have
—vmy (X = D*f(x) - ¢(t)) + H (p — Df(x) - ((t))

~ s |a|2“5@{‘;" Xo+ 3o D@ C(6) ~ a-p+ a- Dfa) ()~ H'(~a)

, 1 1 i}
~ s {—20~Xa+ Lo D f(x)o () ~a-p+a-Df)- (1) - H <—a>},

and so standard results from the theory of stochastic differential games (see [5]) imply that, keeping in mind
that o = B(a) below, the unique solution of (2.10) is given by

wlet) = it swp E[ (X, 7) + F(X0) - ()
V2

+ [ can -0 (o D) + Jor D000, )| ]

= f(@)-C(t) + inf sup Em[ (X, 7) /H o) dr+/ f(x dcr},

anﬁeyr

where (2.8) gives the last equality. The result follows from the comparison principle for (2.9), which implies
that i(z,t) < w(x,t) for (x,t) € C X [to, 1] O

2.3. Comparison with homogenous equations. We now take ( to be a Brownian motion, and we assume
that

(2.1%}311 B:[-1,0] x Q@ — R™ is a standard Brownian motion on the probability space (2, F,P).

In this case, the forcing term Y ;- fi(x) - dB%(t) is nowhere pointwise defined, and the naive estimate

Zfz de

cannot be used in comparison principle arguments, as would be the case if B belonged to C*.

< flle l1dBllo
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The results given below provide another way to compare solutions of (1.1) and (1.2) with equation that
are independent of x and ¢. In the new equations, the forcing term is replaced with a random constant
that depends on f only through quantities as in (1.7) and (1.9), at the expense of slightly weakening the
coercivity bounds in the gradient variable. The main tool is to use Lemmas A.1 and A.2 to control the
stochastic integrals that arise from the representation formulae in Lemmas 2.3 and 2.4.

For ¢ > 1, define

q = 9 and cqi=(q— l)q*Q/(q*U,
qg—1
so that, in particular, for any constant a > 0,
conve * —(q' — 4
édli%:')l (a| : ‘q) = CqQ (e 1)| ’ |q : L:Dbarrier

Lemma 2.5. Let B be as in (2.11) and fit m > 0, K > 0, ¢ > 1, and k € (0,1/2). Then there exists a
random variable D : Q — Ry and Ao = \o(k,m, K, q) > 0 such that the following hold:
(a) For any p > 1, there exists a constant C = C(k, K,p,q) > 0 such that, for all X > Ao,

CmpP
AP

P(D> )\ <

(b) Let f € CY(R? R™) satisfy
[fllo <m and |[|fll 1+[Dfll.) <K,

and assume that A > 1, 1,62 : Q@ — (0,1), and —1 + &2 < rg < 0. Suppose that, for some R € (0, o],

w solves
1 q q )
0w + —|Dw|? — (€2> A< (€2> f(e1z) - B(ro+eat) and
A €1 €1
13} ¢ €9 ¢ .
Oyw + A|Dw|? + (6> A> (5) f(e1z) - B(ro +e2t) in Br x [—1,0],
1 1
fix an open convex set C C Bgr, o € C, and —1 <t1 <ty < 0. Then
EquJrn quflJrH
w-— (l.OvtO) -2 q AD S U}(.’L'(ht()) g w+($07t0) + 2 q AD7
€1 €1

where
Oiw_ +2A|Dw_|?=0 and

1
O+ S|P T =0 inCx (b, to], and

W =wy =w on 0*(C x (t1,10)).

Proof. Step 1. For (z,t) € Bg x [0,1], define w(x,t) := w(x,—t) and B(t) := B(0) — B(~t). Then

B :[0,1] x Q@ — R™ is a Brownian motion, and @ solves

I SR e\ e\’ 5
-+ —=|Dw|?— | =) A<= f(eix) B(—ro+eat) and
A €1 €1

q q .
&w+Awa+(?> Az(?) f(erz) - B(—ro +est) in Br x [0,1].
1 1
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We also define w4 (z,t) = wy(x, —t) and w_(z,t) = w_(z, —t), which solve
—Op_ 4+ 2A|Dw_|?=0 and
-0y + —|Dw4]|?=0 inC x [—tg, —t1), and
W_ =Wy =W on (C X {—tl}) U (60 X [—to, —tl]).

The classical Hopf-Lax formula and (2.12) then give, for (x,t) € C x [~to, —t1],

e
-~ 1) — inf ~ 24 q'*lw d
(1) (y,s>e<0x{ui?u(ac:x[to,m){w(y’s)ﬂq( : o —sfr=T [ ™"
7 - q,
W (z,t) = inf B(y.s) + eo(24)- -0 12 =¥ L
(@.9) (y,s>e<cX{n})u(acrx[to,m){ (v,5) + e (24) |t —sl7't

Step 2. Let k € (0,1/2) and D be as in Lemma A.l. Then, by that lemma, for any 0 < § < 1, v €
Wl’oo([—to, —tl],Rd), and 7 € [—to, —tl],

q/
€2
€1
q

intcontr&'l..lﬁ)jl j171 o
q/

61 —ro—eato

f(eryr) - B(=ro + e2r)dr
—to
—roteaT .
/ f(sl'y <T+TO>> - B(r)dr
—rog—eato €2
€1, <T+To) v g-itn
-
1S} IS}

€9
’ T ’ qufl%ﬂ{
5‘1/ [0 | dr + 2 7 E(Tﬁ—to)”.
€1

’
q —1
€2

7

IN

7 o t ®
KUY (T 4 to)

—to

Step 3. We prove the upper bound first. By Lemma 2.3 and the equality (2.12), we have, with probability
one,

T q/
ﬁ)(xo,—to)<inf{d)(%77)+chq/_1/ |%¢dr+<i2) A(T + to)
1

_to

e q T .
i <Ej> fe1me) - B(=ro + ear)dr = v € WH([~to, —t:],R) 3,
—to
where, as in (2.3), we define
T=7":=1nf{t € (—to,—t1] : v, € OC}.
We then set
S§=1A [(211’71 _ 1)1/q/cé/q,A1/q ,

which, in particular, implies that 67 < cq(2q/*1 fl)Aq"l. Then, in view of (2.13), for some constant Cy > 0,

T

w(zo, —to) Sinf{qj](%_’T)_;'_cq(QA)q’_l/

_to

. q
vildewipgey A () [1 ; ;qg;u—%}

€1

ol dr sy € Wt —m,m}

quflJrn
< @4 (w0, —to) + A——(1+ CyD).
€1
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Step 4. We next consider the lower bound. We again use (2.12) and Lemma 2.3 to obtain

T q
w(xg, —t) > inf {@(%,T) + e AT / 4|9 dr — (iz) A(T + to)
1

—to

+ <€2)q ' F(e1ie) - B(=ro + ar)dr : v € WH([—t, —tﬂde)} :

61 —to

Choosing
S:=1A Cé/q/(l _ 2*(!1'*1))1/11/‘4*1/11

yields 89 < cq(l — 2@ =1)4~(¢'~1)  As a consequence, Jensen’s inequality and (2.13) yield, for some

c, >0,
(z0, ~to) > int {ww,ﬂ a4y T [ sy e W (-t tm}
—t9
tildewlo quipm
FALy)] -~ A1+ CD)
€1
Eq/—l-‘rm

> w_ (9, —ty) — 2€q, A1+ C.D).

1

Step 5. We set D :=1+ (C, V C,)D, so that, after performing a time change, (2.14) and (2.15) lead to

Eq/—l-i-n 5 Eq'—1+/i B
w_(xg,ty) — -2 7 AD < w(zo, to) < wy(x0,t0) + A2 7 D.
€1 €1

Let \p be as in Lemma A.1. Then, for all
A >N = (1+(Cy vV ChAo) V 2,
we have, for C = C'(k,m, K,p,q) > 0 as in Lemma A.1,
A—1 - C(Cy Vv Cy)P < 2°C(Cy Vv C{])P.
C,vCy) — (A=1p AP

P(D>)\) =P (D >
L:Ebarriéd

Lemma 2.6. Let B be as in (2.11), and fir m >0, K >0, q > 1, v > 0, and xk € (0,1/2). Then there
exists a random variable £ : Q@ — Ry and \g = No(k,m, K, q) > 0 such that the following hold:

(a) For any p > 1, there exists a constant C = C(k, K,p,q) > 0 such that, for all X > A,
CmP

PE>)N)< v

(b) Let f € C?(RY,R™) satisfy
1floe <m and ||Ifllo (L+IIDfllo + v [|D?f| ) <K,

and assume that A > 1, rg € (—1,0], 1,62 : Q@ = (0,1) and —1 4 €3 < 1o < 0. Suppose that, for some
R € (0,00], w solves

q/ q/
Duw — Zvm, (D) + | Duft - (;) A< (2) fe2) - Blro+23t) and
1 1

d d
Oyw — z—gum,(D2w) + A|Dw|? + (?) A> (€> f(e1z) - B(ro +e2t) in Br x [—1,0],
i 1 1
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fix a convex open set C C Bgr, xg € C, and —1 <t <ty < 0. Then

q’—l+/~c q’—1+l~e

€ €
w_(z9,t9) — 2 p AE < w(xo,to) < wy(xo,t0) + 2 7 A€,
€1 €1

where

Ow_ — E—;l/m_(Dzw_) +2A|Dw_|?=0 and
€1
1
Orws = Zvmy (D?wy) + 5Dyl =0 inC x (t,to), and
1
W =wy =w on 0" (C x [t1,%0]).

Proof. Step 1. For (z,t) € Br x [0,1], define w(z,t) = w(z, 1), wi(z,t) = wi(z,—t), and B(t) ==
B(0) — B(—t). Then B :[0,1] x  — R™ is a Brownian motion, and w, w4 solve

€2

1 q q .
— O — E—gum+(D2ﬁ)) + —|Dw|? — () A< (82) f(e1z) - B(—ro+e2t) and
=) A €1 €1

q q .
— O — Ziym (D*w) + A|Dwl|? + <§2> A> <§2> ferz) - B(—ro +est) in B x [0,1]
1 1 1

and
O — gym_(mw_) +2A|Dw_|7=0 and
1

1
—8t’u~)+ - E; Vm+(D2’II}+) + ﬂ|D’U~1+|q =0 inCx [—to, —tl), and
1
P p— on (C x {—t:1}) U (9C x [—to, —t1]).

(L)

Step 2. Let W : [0,1] x A — R be a Brownian motion defined on a probability space (A, F,P) independent
of (2,F,P), fix (a,8) € ¢ xC_- 1 /355y ASSUMe that X : [—tg, —t1] X A is adapted with respect to W and

dX, = aydr + o.dW, in [—tg, —t1],
and let 7 € [—tg, —t1] be a W-stopping time.

For rg — egtg < r < —rg + €97, we then set

Xr :ElX (T+r0>,

€2

~ €1 T+ 710
o ,
€2 €2

- €1 r+ 179

Opr = WU s and
€5 €2

= o () ]

€2

Q
5
I

and we let € and ‘KM be defined just as ¢ and €, but with respect to the filtration of the Brownian motion
W. Then (a,0) € CxE o X is adapted with respect to W, —rg + o7 is a W- -stopping time, and

dX, = a,dr + 6,dW, for — rg — ot < r < —rg + €97
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It now follows from Lemma A.2 that, for some £ as in the statement of that lemma, and for all 0 < § <1,

El(ﬁ)ql ’ f(ler)é(roﬂzr)dr]

51 7t0

—ro+eaT _ B
IE/_ F(X) - Brydr

To—EQtU

’
int contro(]i.li%ﬁl £ (1]
N ’

q'—1 —roteaT ¢ —1+k

€ / g € E

2 (5qIE/ & |T dr + =2 (T +1t0)"
€1

IN

5(1], —'I"()—Ezto 5q

’ g / E(I/_l—‘rn 5
:ma/ ol dr + 2 S (7 4 )",
el b9

—to

Step 3. We now proceed with the proof of the lower bound. By Lemma 2.4(a), we have

T q
@(XT’ 7—) + CqA_(q —-1) / |ar‘q dr — (iz) A(T + t())
1

_to

12)(1'0, —to) Z inf E
(a,U)E%X%El_l\/E

t ildewinho&oﬁ%jl

61 7t0

€9 q’ T B
+ (> fle1 X)) - B(—ro + 52r)dr] ,

where, as in that lemma, for fixed (o, 0) € € x %51_1\/2— X = X%% and 7 = 7*7 satisfy

eoU)?
SO dx, = apdr + 0ndW, for € [—to, —t1], X_y =0, and 7 :=inf{t € [~to,—t:]: X, € C}.
We now set
S:=1A c;/q/(l _ 2*((1'*1))1/11",4*1/117
which implies, in particular, that 69 < ¢ (1 — 27 ~D)A=(@' =1 Tnvoking (2.16), we find that, for some
constant Cy > 0,

q’ T .
E <EQ> f(f‘:er) : B(—To + EQT)dT]
€1 —to
’ ’ T , sq/_1+5
> ey(1—2-@=Dy4 —1>E/ |7 dr — A2 ¢
—to E(f
The inequality (2.17) now becomes
(0, ~to) = inf E {wm,ﬂ +cq(24)7@ D / |a,.|q’dr]
(oz,cr)€<5><‘ib”€1,1\/E o
€2 ¢ —(1—r)
-{=) A [1 + Cqe, 5]
€1
Eq/—l-&-n
> - (0, —to) — 27— A(L + Cy€).
€1

Step 4. We next obtain the upper bound. Lemma 2.4(b) gives

’

T q
w(zo, —tog) < inf sup E lmb(XﬂT) +c ATt / |, |T dr + <€2> A(T + to)
A€ Bes _, €1
el "\ 2e2v

t ildewinho&o&bjl —to

+ <€2)q ’ fea1X,) - é(—ro —l—ey)dr} ,

51 _tO
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where, as in that lemma, for fixed a € ¥ and 3 € 5”6171\/— with 0 = B(«), X = X*? and 7 = 7% are as

2eo1

in (2.18). The inequality (2.16) then implies that, for all 6 € (0, 1),

, T , ¢ ¢-1tn g
w(zo, —tp) < inf sup E |:’LZI(X7—,T) + (cq AT+ 54 )/ a2 dr] + (?) A2
1

ae%ﬂeyil_l\/m —to 5‘{ 049
We then set
S=1A(20"" = 1)1/q’ctll/q’A1/q’
which, in particular, implies that 69" < ¢,(29~! —1)A9 !, and so, for some Cl >0,
’ T ’ quflﬂ’li
w(wo, —to) < inf sup E |:’LZ}(X7—,T) +cq(24)1 *1/ e, |7 dr} + -2 A1+ CgE)
aE? /365’5;1\/@ —to €1
R sglflJr/{ )
— U}+(.’E0, —to) + Eq/ A(l + ng)
1

The claimed upper bound for w now follows from another time reversal. O

We now introduce some smooth sub- and super-solutions of the homogenous second order equations that arise
in the previous result, which will be used in Section 4. The following lemma is proved in [3], in particular,
as Lemmas 4.2 and 4.6 and Corollary 4.3. L:CSbarriers

Lemma 2.7. Let ¢ > 2 and A > 1. Then there exist C = C(q, A,d) > 0 (which can be chosen arbitrarily
large), vo = v9(q, A,d) > 0 (which can be chosen arbitrarily small), and 6y = 0y(q, A,d) > 0 such that the
following hold:

(a) If n >0,
2 q'/2
Ulz,t) == CM
ta' -1

and 0 < v < vy, then

for (x,t) € R? x (0, 00),

1
0U —vm, (D?U) + ﬂ|DU|q >0 inR?x (0,00).
(b) Let R > 0, and assume that b : R — R is smooth and nonincreasing, b(t) =1 for 7 < 3/4, and b(7) =0
forT>1. If0 <8 < 6yRY and

V(z.t) := 3600 (”” t) _ o

fad] el d
R+4 RQt for (z,t) € R* x (0,1),
then

OV —vm_(D?*V) +2A|DV[1 <0 in R? x (0,1).

2.4. Improvement of oscillation. The main tool used in this paper is to establish an improvement of
oscillation of solutions on all small scales. The next result explains how this leads to Holder regularity
estimates. L:ioo

Lemma 2.8. Let R, 7,¢ > 0, assume that u : Br x [—7,0] satisfies
0<u<c onBgx|[-T1,0],
fiza€e (0,1), 6>0,0<pu<1, and 0 <a < R and 0 < b < 7. Assume that, whenever (xo,tg) €
Br_q X [=7 +b,0], the function
u(zo + ax, to + bt)
c

v(z,t) = for (z,t) € By x [—1,0]
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satisfies

if 0<r<1 and osc v <r® then 0sC < (pr).
BTX[—T‘B,O] B;H‘X[_(/'”n)ﬁvo]

Then

|u(z,t) — u(z, 1) c (1 1
oy e forf = o \ao YV perB )
(2.8),(#, D) €Brox[—m+b,0] [T — Z[* + [t — 1] pe \a* b

Proof. Choose (o, t0) € Br—qX%[—7+b,0] and define v as in the statement of the lemma. Then oscp, x[—1,0)v <
1, and so an inductive argument implies that

0sc v<,u’w‘ forallk=0,1,2,...

B“k X [—/Lkﬂ,o]

Now choose r € (0,1] and let k € N be such that pft! < < y*. Then

ko re
0SC vt < —.
B, x[—78,0] ne

Fix (y,5) € By x [—1,0] and set r := |y| V |s|'/#. We then have
Vs

v(0,0) —v(y, s)| <
[v(0,0) — v(y, s)] e e

Rescaling back to u, this means that, whenever (x,t), (Z,t) € Br—_q X [—7 + b, 0] satisfy
|lv — % <a and [t—1t <b,

we have

~ c 1 1 -
_ ~ < = (= - e _ a/ﬁ) )
utes) —u(@ 01 < 5 (5 v gz ) (o= a1 + =4
The result now follows easily, because, for |z — Z| > a,
lu(z,t) — u(z, 1) <
|z — F|* + [t —¢|*/F ~ a®

and if [t — | > b, then
|U(Jﬁ,t) —U(JNL‘,{” c
|z — Z|o + [t —t|o/B — /B

3. FIRST ORDER EQUATIONS
S:firstorder

In this section, we prove the regularity results for first order equations. We assume that
A(?BI B :[-1,0] x Q@ — R™ is a standard Brownian motion on some probability space (2, F, P),
and, for fixed
A:paranerers K>0, A>1, ¢>1, and S:Q—[0,00),
we assume that

A:f Holderb
auxtlolderbey FEC'®R*xR™ and ||fllo + Ifll IDfllo < K
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and
1 m
_ q _ i 7
du + {A|Du| A} dt < Zf (z)dB(t),
=1
1

E: fiISto(§.?115|

du + [A|Du|? + A] dt > fi(x)dB'(t), and

i=1
0<u<S inB;xI[-1,0] T:firstorder

Theorem 3.1. Assume (3.1) - (3.4), and let 0 < k < 1/2 and M > 1. Then there exists @ = a(k, A,q) €
(0,1), ¢ = ¢(k,,q) > 0, Ag = No(k, A, K, M,q) >0 and, for allp > 1, C = C(k,A, K, M,p,q) > 0 such
that, for all A > Ao,

(2.5),(y.)€By o X [1/2,0] |z — y|* + |s — t|o/(a—ale—1) - + Mr(g—a(g—1))p

Proof. We first specify the parameters that determine the Holder exponents, which depend only on x, A,
and g. Choose p so that

1 1 ’ ’ ’
(gl%])I O<pu< 3 and 512‘1 cgAT Tt <1,
and then take 6 sufficiently small that
1 1 / / / ’ ’
R 0<6<Z 127¢A" 'u? <146, and 20 < c,(24) 777

We now set

algl.%l o — min (log(l —0) Kq )

logp "kg+1-—k

and
&d3) Bi=q—alg—1).

Note that § — a = ¢(1 — a) > 0, and (3.7) and (3.8) together imply that Sx — « > 0.

We next identify a random scale p at which the improvement of oscillation effect is seen. Let D be the
random variable as in Lemma 2.5, set

S:=1V8,

and define
1
1 0 \re
9) = — — .
% P58 . (AD>
Note then that
A 1
p<1, pS< 3 and p"IAD < 6.

In what follows, for (xg,tg) € R? x R, we define

Qr(x0,t0) := Br(x0) X [to — rﬁ,to] and Q. := Q,(0,0).

Step 1: The initial zoom-in. Fix (xq,t0) € By/2 % [~1/2,0] and set

w(xo 4 pSz, to + pISt)

v(z, t) = 3

)
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which is well-defined for (x,t) € By x [—1,0] in view of (3.9). Then v satisfies
O + A|Dv|? + pTA > pf(xo + pSz) - B(to + pSt),
E:Vseliﬁfﬂl Oyv + %|Dv|q — pTA < pUf(xo+ pSz) - B(to + p?St), and
0<wv<1lin By x[-1,0].

Step 2: Induction step. We next show that
oscmpﬁrf.‘ﬁ])l if 0<r<1 and osco<r® then oscv < (ur)®.

s pr

Let r € (0,1] be such that oscg, v < r*. We then set

At) — inf
w(z,t) := v(re,r’t) —infg, v for (x,t) € Qq,

which satisfies

’ /

q q
Byw + —|Dwl|? — < A< <€2> F(zo +e12) - B(to + eat),

q q
dyw + A|Dwl|? + <§2> A> <52> f(zo + 1) - B(to + £at), and
1
1

0<w<1in B x[-1,0],

where g1 := Spr and &, := Sp?r®. As a consequence of (3.9), the random variables €1 and ey take values
in (0,1/2], so that the hypotheses in part (b) of Lemma 2.5 are satisfied. We also compute, using (3.7) and

(3.8),
53'_1/“ _ (SptP)yT Tt prarfee o
el (Spr)? S -

To prove (3.11), we show that either
upp(?.‘ﬁﬁl w(z,t) <1—0 forall (x,t) € B, x [—1”,0]

or
1ow€§3§3| w(z,t) >0 for all (z,t) € B, x [—u”,0].

We consider the two following cases:

Case 1. Assume first that

3% nf w(,—1) <26,

Fix (z,t) € B, x [-p”,0]. Then, by Lemma 2.5, we have

Eq’—1+n
w(z,t) <wy(x,t)+ 25%, AD < wy(x,t) + p"AD < wy(z,t) + 6,
where
wy(z,t) = inf {w(y7 s)+ cq(ZA)qllzy,q_/} .
(y,5)€0* (Baux[—1,t]) (t —s)a'—1
We have

t+1>1—uP > and xfyqlg?)q, a for all y € By,
1% 1% u

DO =
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and so, by (3.6),

. - g1 e —yl”
wy(x,t) < yé%fz“ {w(y, 1) + cq(24) (t+1)7'-1

< 6q/cq(2A)q/_1uq/ + inf w(y,—1)
yeB

2p

<1-460+20=1-20.
It follows that w(z,t) <1—20+6 =1—0, and so (3.12) holds in this case.

Case 2. Assume now that
3% w(y,—1) > 20 for all y € By,
Let (z,t) € B, x [-p”,0]. Then, similarly as in Step 1, Lemma 2.5 gives

w(z,t) > inf
(y,s)Ga* (BQLL X [71’7:])

{w(y, s)+ cq(2A)17ql (t|x__s)yq|,ql} — 6.

If y € By, and s = —1, then (3.15) implies that

A 1—q’ |y — x|q _
w(y, s) + ¢4(24) o1 0>20—-0=0,

while, if s € [-1,¢] and y € 9Bs,, then |y — | > u, and so, using (3.6) and the fact that w > 0,

q |y B $|Q/

w(y, s) + cq(24)'~ (e 0> —0+ g (24)7 u? > 0.

Either way, it is evident that (3.13) holds.

Combining (3.12) and (3.13) with the definition of « in (3.7), we obtain
oscw < 1—06< pu”,

m

which, after rescaling back to v, yields
oscv < (ur)®.

nr

Step 8: the Hélder estimate. We now invoke Lemma 2.8 with the values
a:=pS, b:=plS, and c:=3,
and, using (3.5) and (3.9), we get, for some constant C; = Cy(k, A4, q) > 0,

lu(z, t) — (i, 1) c (1 1 1 (St Sl-a/b
sup - 7a/f = pa\ga Va8 ) T \ e Y maim
(@,),(ED)EBy o x[1/2,0] [T — F[* + [t —#]*/F 7 p* \a* ~ b 1% p p?

e —q/B
‘LLO‘ <21ap \4 21_O‘/ﬂp1+(q—1)a/ﬁ) < Clp .
In view of (3.6) and (3.9), for some Cy = Ca(k, 4, ¢q) > 0,

A AD\ *
—q/B _ a/B
p (25) \/< 7 >

Since M is chosen to be larger than 1, we have (S— M), = (S— M), and so, for some C3 = C3(k, 4,q) > 0,

t) —u(z,t
sup |’U/(3i7 ) 'Uz(xa~ )| <Oy (Mq/B + (8 _ M)i/ﬁ —I-ID#) )
(@0, DBy o x[—1/2,0) [T — T + [t — t]*/8

IA

m""

<y (S‘q/ﬂwLD’%f’).
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Therefore, for any A > 0,

P( - juga 1) = u(@, ) >A>

(2.6),(&.D)EB, jax[—1/2,0] 1T — Z|* + [t — t|a/s

1 _ q/p
P ((S—M)i/ﬁ +DF > )\C';),JW)
C3
A\ — C3Ma/B L A= C3M/B
P(S—MYP 230 ) 4p(pew>2—"3— ).
= (( T * TeN

Taking A > 2C3M9/? yields
A—CsM9B )
2C3 ” 405
so that

t) —u(,t A A
P s (e, t) —u(@, D _ <(S MYP > > s (D . >
(@), By o x[1/2,0) [T — T + [t — t]*/8 4Cs 4Cs

Finally, if Ag is as in Lemma 2.5, then further taking A > 403)\(1)/ () yields the claim in view of the properties
of D. O

4. SECOND ORDER EQUATIONS
S:secondorder

We now turn to the case of second order equations. We let B be a Brownian motion as in (3.1), and, for

fixed
A:parameterqy >0, K>0, A>1, ¢>2 and S:Q— [0,00),
we assume that
(% FEC®RLR™) and v+ [flly + Il IDF o + 21l [ D?F] ., <
and

fi(w) - dB'(1),

NE

1
du+ | —vm, (D*u) + Z|Du|q - A] dt <
1

.
Il

A: secondo&ilgsl

du+ [—vm_(D*u) + A|Du|? + A] dt > ) f'(z)-dB'(t), and

[

«
Il
-

0<u<S in B xI[-1,0]. T:secondorder

Theorem 4.1. Assume (3.1) and (4.1) - (4.3), and let 0 < k < 1/2 and M > 1. Then there ex-
ists a« = a(k,A,q) € (0,1), ¢ = ¢(k,a,q) > 0, = Aok, A, K, M,q) > 0, and, for allp > 1, C =
C(k,A, K, M,p,q) > 0 such that, for all X\ > Ao,

. . ) —u Dl
(@.9),(u.t)€By o x [~1/2,0] [T — y|® + |5 — t|o/(a=ala=1)

£ 115
s(g—alg=1))p"

P((S=M)y >N /) 1 C

Proof. We set up the various parameters similarly as in the proof of Theorem 3.1, with a few changes to
account for the second order terms.
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We first choose 1 such that

1 O ’ ’
(ZT%SI O<pu< 1 and 56‘1 pd <1,
where C' = C(q, A,d) > 49 is the constant from Lemma 2.7, and we then take 6 sufficiently small that
1 C ’ ’ ’
th&f%%l 0<O< 2 56" pu? <1-50, and 6 < 4u? by,

where 6y = 6p(q, A,d) > 0 is as in Lemma 2.7.

Set

al&f%%l & = min { q—2 log(1—106) Kq }

g—1" logp "kKg+1—r

and
Eay f=q—alg—1).
Observe that (4.6) and (4.7) together imply that
1-0<pu®, f—-a=q(l—a), Pr—a>0, and [>2.
As in the proof of Theorem 3.1, we define, for (zg,ty) € R% x R,
Q. (o, t0) := B, (20) X [to — %, 1] and Q, := Q,(0,0).

We now set
S:=8v 1,

and, for £ the random variable from Lemma 2.6, and C' and 1 the values from Lemma 2.7, the random
variable p is the largest value such that

(@) 0<p<—,
28
ﬁl%%l (b) pr1AE <4,
(¢) 2‘1/71C'Kq//21/0_q//2pq'(q72)/2 <0, and
(d) Cp?2 < 4p.

Step 1: The initial zoom-in. Fix (xq,t0) € By/2 % [~1/2,0] and set

w(xo 4 pSz, to + piSt)
S
which is well-defined for (x,t) € By x [—1,0] in view of (4.8)(a). Then v satisfies

7

v(x,t) =

vpid~

v — m_ (D) + A|Dv|? 4 pTA > pof(xo + pSz) - B(to + pISt),

E:vsys(:f&%l qu72

1 A . .
v — 3 m4 (D%v) + Z|Dv\q —p?A < pf(xo + pSz) - B(tg + p?St), and

0<wv<1lin By x[-1,0].

Step 2: Induction step. We next show that

oscmp(réf‘ﬁ)%l if 0<r<1 and oscv<r® then oscv < (ur)*.

T ur
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Let 7 € (0,1] be such that oscg, v < r*. We then set
v(re, rPt) —infg, v

w(z, t) = - for (x,t) € By x [-1,0],
r
which satisfies
5 1 e\ e\ .
atw — —;ym+(D2w) + Z|Dw|q — (2> A S (2> f(xo + 615(5) . B(to + 82t)7
€7 €1 €1

q q
0w~ Svm_ (D) + Apult + (2) a2 (2] oo+ 210 Blta + ), and
1 1
0<w<1in By x[-1,0],

where &1 := Spr and &5 := SpirP. Tt is a consequence of (4.8)(a) that e1,e5 € (0,1/2], and, moreover, just
as in the proof of Theorem 3.1, using the fact that Sk > «,

¢ —1+k
€
2 = < pmq
€1
To prove (4.10), we show that either
uppe@fiﬁl w(z,t) <1—6 forall (z,t) € B, x [—1”,0]
or
lowe(réfi(%l w(z,t) >0 for all (z,t) € B, x [—u”,0].

We consider the two following cases:

Case 1. Assume first that
inf w(y,—1) < 26.

YyEBa,
Let (#,) € B, x [-1%,0]. Then (4.8)(b) and the upper bound from Lemma 2.6 imply that
. . sq,71+'{ - -
w(i, ) < wi(@,1) + F—r—AE < wi(&,1) + pPAE < wi(E,1) + 6,
€1
where
€2 2 1 .
. owy — Svmy (D*wy) + —|Dwy|?=0 in By, x (—1,0] and
(ZE'I%SI tWt+ 6% +( +) 2A| + 2p ( ]
wy = w on 0% (Bay, x [—1,0]).

Note that, by the maximum principle, we have 0 < w, < 1. Let C > 49" and 1 be as in Lemma 2.7, and,
for y € By, and (x,t) € By, x [—1,0], set

C qu—2 a/2
wyla0) =l -1+ o (lo= 9P+ S 1))
We compute
q—2,.6—2 K q—2
E—gu = u < qu_2 < (p) 10,
€1 S 14

and therefore, by Lemma 2.7(a), w, is a super-solution of (4.13). In addition,
+00 if x #£ vy,
wy(m =1 = {w(% -1) ifz=y,
and, for any (x,t) € 9By x [—1,0],

’

1) > C((1—202) % = €47 > 1> w(a,1),
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in view of the choice of C' > 49" and of u<1/4. So wy, > wy in By x [—1,0] by the comparison principle.
Because ¢ € [—p#,0], it follows that 1+ >1—p% > 1 and so, by (4.5) and (4.8)(c),

C . qu—Q R q,/2
(e (|30—?/|2 + ” (t+1)>

]_ ’ ’ ’ ’ _ o ’
~69' Opt 427 LOKT 2y /2pq @=2)/2 4 inf w(y, —1)
2 yeBZ,u

t,1) < inf ,—1) +
wy (2 )_yé%%{w(y )

IA

A

1-50+60+20=1-26.

We conclude that w(f,f) < 1—20+60 =1—0, so that (4.11) holds in this case.

Case 2. We now assume that

inf w(y,—1) > 2.
YEBa, (y )

Fix (#,f) € B, x [-1%,0]. As in Step 1, Lemma 2.6 gives

w(z, t) > w_(2,) — 0,

where
€2 2 .
e Ow_ — Svm_(D*w_) + 2A|Dw_|9=0 in By, x (—1,0] and
(£ e? ‘

w_ =w on 0% (Ba, x [—1,0]).
For (x,t) € By, x [—1,0] and for b and C as in Lemma 2.7(b), define
t+ 1) ~ Cpr?0
4 4p?
Then, by (4.5) and Lemma 2.7(b), V' is a sub-solution of (4.14). In addition,
V<0 ondBy, x[—-1,0] and V <26 on By, x {—1},

V(x,t) = 360b ('2”2 + (t+1).

and so V < w_ on 0*(Bayy, x[—1,0]). The comparison principle now implies that V' < w_ in all of By, x[-1, 0],
and, in particular, using (4.8)(d) and the fact that 5(3/4) = 1 and b is nonincreasing,

. p .2 |2 t+1 Cpi=29 . 3
> = — — > — | —0=20.
w_(z,t) > V(z,t) = 30b <2M +—7 12 (t+1)>30b 1 0 =20

Thus, in this case, (4.12) holds.

Whether (4.11) or (4.12) is satisfied, we have

oscv =r%oscw < (1 —0)r* < (ur)?,
ur w

and so (4.10) is established.

Step 3: the Hélder estimate. As in the proof of Theorem 3.1, we use Lemma 2.8 and (4.8)(a) to conclude
that, for some C1 = Ci(k, A, q) > 0,

t) —u(x,t
. (. — w2
(@,),(@D)EBy o x[—1/2,0] [T — F[* + [t — [/

All of the parts of (4.8) imply that, for some Cy = Cy(k, 4,¢q) > 0 and C5 = C3(k, 4, K, q) > 0,
p~ P < Cp(8YP 4 VRO 4 Oy,

< Clp—Q/B.

and the rest of the proof follows as in the proof of Theorem 3.1 and the properties of £ outlined in Lemma
2.6. g
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5. APPLICATIONS
S:apps

In this section, we show how Theorems 3.1 and 4.1 can be used to prove a regularizing effect for certain
initial value problems. Moreover, the regularity estimates are independent of a certain large-range, long-time
scaling, which is useful in the theory of homogenization.

We fix a finite time horizon T' > 0 and an initial condition
A uo € BUC(RY).

The uniform continuity of uy ensures the well-posedness of the equations below, but we note that the
regularizing effects we prove depend only on ||ug|| .

Throughout,
A”(?.%}gl B:[0,T] x 2 — R™ is a Brownian motion over a probability space (Q, F,P).

We first consider equations of first order, and we assume that, for some A > 1 and ¢ > 1,
d d .
A:firstor&g})ll I;TE C(R* x R x [0, 00)) satisfies
. Z|p|q — A< H(p,z,t) < Alp|?+ A for all (p,z,t) € RY x R? x [0, T7,
and
A:firstor&eﬁsl e C; (Rd R™).

For 0 < € < 1, we consider solutions of the scaled, forced equation
: i t Ui ;
Eiscaledfirstordes g+ H <Du€, r ) dt=e23 " f1 (2) - dBi(t) iR x (0,7] and w(-0)=uy onRY,
€' e €
i=1

and we prove the following result: T:firstorderscaling

Theorem 5.1. Assume (5.1) - (5.4), and, for 0 < e <1, let u® be the solution of (5.5). Fizp >1, 7 >0 and
R > 0. Then there exist C = C(R,7,T, A, ||fllc1, |ull s2,0) >0, a = a(A,q) >0, and 0 = 0(A,q) >0
such that, for all A > 0,

€ t) — ué (% E p/2
p sup |~u (z,) — u*(2,?)| o)< Ci '
(2.0),(5 D)€ Brx 1] [T — E| + [t — t]o/(a=ala=1) AP

Proof. We first note that we can assume, without loss of generality, that 7 > 1/2. Indeed, otherwise, we
consider the function

1 T
at(x,t) = Eus(27'x,27't) for (z,t) € R? x {0, 27_] ,

which solves

e | 7] . _1/2m~i<§.~i . mpd T T d
du —&—H(Du,g,g)dt—s ;f 5) dB'(t) in R x 0,27_ and @°(-,0) =49 on RY,

where, for (p,z,t) € R? x R? x [0, Z],

)27

H(p,z,t) := H(p,2rz,27t), do(z) = %UO(QTSC), f(z) = \/%f(%'x), and B(t) = \/%B(Zﬂt).

Then H satisfies (5.3) with A and ¢ unchanged, and B is a Brownian motion on [0, 27T]. As a consequence,
a = a4, q) > 0 remains unchanged, and the 7-dependence can be absorbed into R, T, || f|| -1, and ||uo| -
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Crucially, if f¢(z) := e'/2f(2/¢), then
£l =2 1flloe and £l IDS Nloo = 1floc 1Dl -

As a consequence, we may choose a fixed constant K > 0 such that the conclusions of Lemma 2.5 and
Theorem 3.1 hold with the function f¢, for all € € (0, 1].
In what follows, we fix 0 < k < 3.
Step 1: u is bounded. We first use Lemma 2.5 to describe the L>-bound for u on R¢ x [0, T]. In view of
(5.3), Lemma 2.5 with e; = g5 = 1, R = +00, and C = R? gives

uf (z,t) <uy(z,t)+ AD; on R? x [0,1],
where, for some Ay = A\ (k, || f|[o1,¢) > 0 and, given p > 1, some C' = C(x, || f| o1 0. q) > 0,

CeP/2

P(Dy>)) <~

for all A > )\

and
1
Opuy + ﬂ|Du+|q =0 onR?x[0,1], andu,(-,0)=wug onR%
The comparison principle yields u4 (x,t) < |lugl| . It follows that

u (z,t) < |lugll,, + C(1+Dy) on R x [0,1]

Set N := [T]. An inductive argument then gives random variables Dy, Ds,..., Dy : Q@ — Ry and
A2, A2, ..., Ay depending on &, || f||o1, and ¢ such that
N
u(z,t) < ||uoll +A2Dn on R% x [0, 7]
k=1
and, for all k =1,2,...,N, p> 1, and some C = C(k, || f|| o1 1) >0,
CeP/2

P (D, >\ < for all A > Ag.

A similar argument, using the lower bound of Lemma 2.5, gives
N
u(z,t) > —|lugll o —AD_Dp on R x [0, 7.
k=1

Adding a random constant to u°, which does not affect the equation solved by u®, we may then write
0<u®<S onR?x[0,T],

where
N

S=2|u||, +24> Dy
k=1
Setting M := 1V (2|luoll,), we then have, for all p > 1, A > A1 V A3 V --- V Ay, and some constant
C= C(I{, Hf“Cl 7A7p7QaT) > 07

St(ag]fsl P(S—M); >\ <P f:p >i <057p/2
' + > 2 k Al = v

Step 2: the Hélder estimate. Because 7 > 1/2; we can cover Br X [r,T] with cylinders on which, by
Theorem 3.1, u is Holder continuous. More precisely, there exists a, Ag and C as in the statement of the



HOLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC FORCING 25

current theorem, and ¢ = ¢(k, «, ¢) > 0, such that, for all p > 1 and A > Ag,

(s t) — e (3,0 , /2
P Sup |~u (l’, ) NU (Z, )‘ 1 >)\ SP((S*M)_F >C/\17a/q)+%.
(2,),(#,0) € Br x[r,T] |z — 2| + |t — t]o/(a—alg—1) Mrlg—a(g=1))p

Making Ao larger if necessary, depending on &, || f||:, and ¢, we invoke (5.6) and obtain the result with

o= (1-5) Aluta—ala - 1) == ata-1) (3 ).

The next result is for the second-order case. Assume that, for some A > 1, v > 0, and ¢ > 2,

FeCS? xR x R x [0,00)) satisfies

:secondorgory v (X) + S lpl? — A < F(X,p.,1) < —vm_(X) + Alpl? + A
for all (X,p,z,t) € S¢ x R x RY x [0, T7,
and
A:secondor{jglésl f e CHRLR™).

For 0 < € < 1, the scaled equation we consider is
: t L .
E scaledsecondofﬁ%ﬁl du®+F (EDQUE,DUE, E, ) dt = e'/? Z It (E) -dB'(t) inR¥x(0,7] and wu°(-,0)=wuo on R%
e'e €
i=1

and we prove the following result: T:secondorderscaling

Theorem 5.2. Assume (5.1), (5.2), (5.7), and (5.8), and, for 0 < e < 1, let u® be the solution of (5.9).
Fizp > 1,7 >0 and R > 0. Then there exists a constant C = C(R,7,T, A, ||fllc2 s |uoll s 2, q) > 0,
a=a(Al,q) >0, and o = (A4, q) > 0 such that

€ t) — ué (% i’ p/2
P sup |u(z, ) — u*(Z, )| = >C+ A gci .
(@)@ D eBrx[rT] [T — E[* + [t — t]/(aela=1) AP

Proof. Arguing as in the proof of Theorem 5.1, we may assume without loss of generality that 7 > 1/2.
Notice also that

t
F(X,p,x,t):=F (eX,p,x, ) for (X,p,z,t) € S x R x RY x [0, T
ele

satisfies (5.3) with ev replacing v, and, therefore, if we define f*(x) := e'/2f(z/e), we have ||f°| =
"2 fll« and

v+ [ Nl I1DF5 Nl +ev 1l [[D?F5] o < v+ Ifllo IDflloe + 1Nl [ D2 -

As a consequence, we may choose a constant K > 0 independently of ¢ > 0 for which the conclusions of
Lemma 2.6 and Theorem 4.1 hold with the function f€. The rest of the proof then follows exactly as in the
proof of Theorem 5.1. g
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APPENDIX A. CONTROLLING STOCHASTIC INTEGRALS .
S:intcontrol

Throughout the paper, we use the following results that give uniform control over certain stochastic integrals.
Assume below that

?ﬁ?lﬁ B:[-1,0] x Q@ = R™ is a standard Brownian motion over the probability space (Q;iEt&htroll

Lemma A.1. Letm >0, K >0, g > 1, and k € (0,1/2). Then there exists a random variable D : Q — R,
and Ao = \o(k, K, q) > 0 such that

(a) for any p > 1 and some constant C = C(k, K,p,q) > 0,

p
P(D>)\) < (’;—"Z for all A > Xo,

and
(b) for all v € Wh>([—1,0],R%), § € (0,1], -1 < s <t <0, and f satisfying
[flloe <m and |[|fll (1 +[Dfll) < K,
we have

t , [t , D
[ ren-an, | <o [pars S

Assume now that
W :[-1,0] x A — R is a Brownian motion defined over a probability space (A, F,P).

The probability space A is independent of 2. Below, we prove a statement that is true for P-almost every
sample path B of the Brownian motion from (A.1), which involves taking the expectation with respect to the
Brownian motion W. Effectively, B and W are independent Brownian motions, and [E can be interpreted as
the expectation conditioned with respect to B. L:intcontrol2

Lemma A.2. Letqg>1,0< Kk < %, m >0, and K > 0. Then there exists a random variable £ : Q@ — R

and Ao = Ao(k, K, q) > 0 such that

(a) for any p > 1 and some constant C = C(k, K, p,q) > 0,

P
P(E>)\) < CALZ for all A > X,

and

(b) for all 0 < § < 1; processes (o, 0, X) : [-1,0] x A — R x R? x R? that are W -adapted such that
proc?is'%l a,0 € L*([-1,0] x A) and dX, = a,dr + o.dW, forr e [-1,0];

W -stopping times —1 < s <t < 0; and f € C*(R?,R™) satisfying
(A% Il <m and [fllo L+ [Dfl +lloo']l [1D2F]L.) < K:

we have

/ t ’ 5
<o E/ | |7 dr + 6—q(t —s)".

|/ Fx) as,|

We note that the integrals against dB appearing in Lemmas A.1 and A.2 are interpreted as in Section 2,
and, in particular, subsection 2.2.

The proof of Lemma A.1 can be found in [14]. The arguments for Lemma A.2 are similar, but some further
details are needed to account for the use of It6’s formula and the interaction between B and W.
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We first give a parameter-dependent variant of Kolmogorov’s continuity criterion. Its statement and proof
are very similar to that in [14]. L:Kolmogorov

Lemma A.3. Define A = {(s,t) € [-1,0], s <t} and fix a parameter set M. Let (M,),em : Q@ — Ry
and (Z,)pem : & x Q — Ry be such that

Subaddj(ki.gl I Z,(s,u) < Z,(s,t) + Z,(t,u) forallpe Mand —1<s<t<u<0,

and, for some constants a >0, B € (0,1), p > 1,

Z,(s,t P
sup (H(sﬁ’)l/ - M,u) S Qa.
HEM (t - S) +i/p +

Then, for all 0 < k < B, there exist C1 = C1(k) > 0 and Cy = Ca(p, k, B) > 0 such that, for all A > 1,
Z t
P | sup sup ( u(s:) C’lMM> >\ < @.
peM (snea \ (t— )" AP

The next result gives an estimate for moments of sums of certain centered and independent random variabless

sup E
(s,t)eN

Lemma A.4. Let (Yi)i_; : Q@ — R be a sequence of centered and independent random variables such that,
for all p > 1 and for some u >0 and C = C(p) > 0,

ElYi|P < Cpb.

Then there exists a constant C' = C(p) > 0 such that

p
< énP/Q#P.

n

D Y

k=1

E

Proof. Let (ex)}_, be a sequence of independent Rademacher random variables, that is,
1
Pler=1)=P(g, =-1) = 3 forall k=1,2,...,n,

such that (e)7_, is independent of the sequence (Y%)7_,. It then follows (see Kahane [7]) that

ZEkYk

k=1

P
< 2PE

n p

>

k=1

E

Therefore, upon replacing Yy with Y%, we may assume without loss of generality that each Y} is symmetric,
that is, Y3 and —Y}, are identically distributed.

Observe next that if the result holds for some p > 1, then, for any ¢ < p, by Hélder’s inequality,
n q n

>l < (e300

k=1 k=1

Therefore, it suffices to prove the result for p = 2m with m € N.

py\ 4/P y
E ) < (énp/2'up)q P < éq/pnq/2ﬂq.

We compute
2m

_ Jivdz2 vt
_ZYklykz Ykz’

n
Y
k=1
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where the sum is taken over 1 < k1 < ko < -+ < ky < n and j; + jo + - -+ j¢ = 2m. In view of the
symmetry and independence of the Y}, all summands for which one or more of the j; values is odd have zero
expectation. Thus,

n 2m
BSn - Smr
k=1
where the sum is taken over 1 < k1 < kg < -+ < ks < n and 4y + 49 + -+ 1 = m. A combinatorial

argument implies that the cardinality of such terms is equal to (m:fl_ 1), while Hélder’s inequality gives

EYk21i1 Yk22i2 . Yk2€iz < (EYlem)h/m (EYkim)iQ/m - (Eylim)i/z/m < C,//Lzm7

and, therefore,
2m

n—1

Finally, we turn to the

Proof of Lemma A.2. Let 6, k be the space consisting of (o, 0, X, f) satisfying (A.2) and (A.3), define the
parameter set

M= (0,1) X Gk,
and, for each p = (4, 0,0, X, f) € M and (s,t) € A\, the stochastic process

subadditiveg K PO L
(X Z,(s,t) = (|E |67 | f(X,)-dB.|| —6""E [ |op|9dr) |
S S +
which can easily be seen to satisfy (A.4).
We first show that there exist constants My = M7 (K, q) > 0 and My = My(K,p,q) > 0 such that

Z,(s,t P
sup <”(S’)2Ml> ] < Mom?.

Pointwisem?%e'%tjl sup E i )1/
peM - S +

—1<s<t<0

Fix s,t € [-1,0] with s < t. We split into two cases, depending on the size of the interval [s, t].

Case 1. Assume first that

Deltaces 11 11
e t—s5< 0 A 0 .
i % IDFIIS " lloot]le —1.0 1D flls

By Lemma 2.2,

e[/ ) d8,| = BUCX) - (B~ B)

B [ / t (Df(%) ot étrwra:mf(xr))) (B, BSM .

Setting
A:= max |By, — B.,]

r1,r2€[s,t]
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and invoking (A.7) and the Young and Holder inequalities then gives, for some constant C = C(K, q) > 0,

'E |/ X as,|

t
1
<1 le A+ IDS1 AE [ aldr + 5 [loo'| D], A =)

3 t ) 1/q'
< fll <2A + A (E/ o, |9 dr) >

3 CA? / t /

and so
3
sup Z,(s,t) <m <A + C’Aq) :
HEM 2

Raising both sides to the power p, taking the expectation E over €2, and invoking the scaling properties of
Brownian motion yield, for some constant C = C(K,p, q) > 0 that changes from line to line,

E [sup Zﬂ(s,t)p] < CmP (EAP + EAPY)
HEM

< CmP(t — s)P/?,
and (A.6) then follows in this case.

Case 2. Assume now that

Delta?is%3 Hngo ||fHoo
S t—s> N .
IDFIL  Nootlla 1.0 1D*fll

Set

£ /g (Bl
(A9 b= o (1 g)lU/d | A ES

1D fll o ool 192 fll o
and let N € N be such that

t—s t—s
<N<—+1.
nos no

Note that (A.8) implies that h <t — s, and so
(A1 t—s<Nh<2(t—s)

For k=0,1,2,...,N — 1, set 74, := s+ kh and 7y = ¢, and, for kK =1,2,..., N, define
A = max |B, — B,]|.

w,VE [Tk —1,Tk]

Using Lemma 2.2, we write
N

E [/ F(X)) -dBT] - ;E /Tk F(X,) - dB,

=1-1II-III,

where
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N o
M=) E / Df(X,)ay - (B, — BT,H)dr] :
k=1 Tk—1

/Tk tr(o,0tD*f(X,)) - (B, — BTk_l)dr] )

and

1 N
111::5;33

We estimate
N

h N
< Iflle Do Ak and 11 < 2 floof| [ D2F] Y A,
k=1

k=1
and, for all € > 0, Young’s inequality yields

N -
1< [Dfe S AE [ o
k=1

Tk—1

N - 1/q’
<Dl R A (E/ |ar|q’dr>
k=1 Tk—1

1 N

q t ,
< DS B <q DAL+ 71&/ e, |4 dr> :
k=1 S

Combining the three estimates gives

’E [ / px)- dBr}

h
< (10 + 5 oot 1251 )ZAk
1 el '
DS b (ng;Ag " ?]E/S a7 dr) .

q 1/q'
g = 6 —_— .
(”DfHoo hl/q)

()76
q_
2R oY Ty
so that (A.11) becomes, for some C' = C(q) > 0,

‘E[/jﬂxr)-d&} (||f|| 5 ool 1% )ZAk

t
||Df||q hZAuaqE/ o, |7 dr.

k=1

RS

We now set

In particular,

el =

For k=1,2,..., N, the constants
ap = EAk and bk = EAZ
satisfy, for some a > 0 and b = b(q) > 0,

ar < ah'/? and b < bhY/2.
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Then (A.9) and (A.10) give
oy 2 ol 3 1/2 —1/2
1lloe + 5 oo 1 102l ) D ak < 5 1fllog N 20 < 3allf o (¢ = 5)h
k=1

< 3a(t —s) ||f]|}/ ([||Df||;(2 (t_s)_l/@q/)] [Ho tHl/anDQle/zD
< 3aKY2(t — s)'/?
and
N
IDAI RS b < b DFIIL NAMT/2 < 2b(t — ) || D f||2, b9/

k=1
+1

<20t — 5) | 192 |IDFILP (¢ — )20 < 2bK3(t —s)*F .

Therefore, because 0 < § < 1, we find that, for some constant M; = My (K, g,m) > 0,
N

(Zﬂ(s,t) Mt — 3)1/2)
N
Z k — Q) Z Al —by) )
k=1

The collections (Ag — ax)n-; and (A% — b)Y, consist of independent and centered random variables. The
scaling properties of Brownian motion yield, for any k = 1,2,..., N and py > 0 and constants A1 = A;(pg) >
0 and A2 = AQ(pOaQ) > 07

E|Ag —ai|™ < AhP/? and  E|AL — by|[P° < AghPo/2,

almostpointwi seTKniléijl

< M <||f| +C DS R

It is then a consequence of (A.10) and Lemma A.4 that, for some constants A = fll(p) > 0 and Ay =
A2 (pa Q) > 07

p

E < AINP/QhP/Q < 2P/2141(t _ S)P/Q

N
> (A —ar)
k=1

p

and

< AgNP/2ppa/2 < 9P/2 Ay (t — g)P/2ppla=1)/2,

N
ZAq—bk

The latter estimate and ( give

=1

9)

N
DA |5 (AL =b)| <272 Aa |DFIEE (¢ = st

< 22y | FIP O D o ()
< 9P/2 f, gPla—1)/2 I£I1% (t — 8)17/2’
and so, raising (A.12) to the power p and taking the expectation gives, for some My = My(m, K, p,q) > 0,

E {sup (ZM(S,t) — M (t— 3)1/2>p

} < My(t — s)P/2
nemM +

Dividing by (t — 5)?/? leads to (A.6).

We now take p large enough that

| =
SR
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Then (A.6) and Lemma A.3 imply that, for some C = C(k,m, K,p,q) > 0 and M = M(k,m, K, q) > 0, and
for all A > 1 and

S 2
P> 00
we have . o
t
P(Sup sup ”(3’)>M+/\>S m
peM —1<s<t<o (t —s)F \P

By changing C in a way that depends only on m and p, the same can be accomplished for all p > 1. The
proof is finished upon setting

Z,(s,t
X :=2M, &:= sup sup M,
peM —1<s<t<o (£ — )"

and replacing C' with 2PC. O
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