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H ÖLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC FORCING

We obtain space-time Hölder regularity estimates for solutions of first-and second-order Hamilton-Jacobi equations perturbed with an additive stochastic forcing term. The bounds depend only on the growth of the Hamiltonian in the gradient and on the regularity of the stochastic coefficients, in a way that is invariant with respect to a hyperbolic scaling.

Introduction

The objective of this paper is to study the Hölder regularity of stochastically perturbed equations of the form More precisely, we are interested in the regularizing effect that comes about from the coercivity in the Duvariable. The goal is to show that bounded solutions of (1.1) and (1.2) are locally Hölder continuous with high probability, with a Hölder bound and exponent that are independent of the regularity of H or F in (x, t), or the ellipticity in the D 2 u-variable.

A major motivation for this paper is to study the average long-time, long-range behavior of solutions of (1.1) and (1.2) with the theory of homogenization. Specifically, if u ε (x, t) := εu(x/ε, t/ε) for ε > 0 and (x, t) ∈ R d × R, then u ε solves (1.3)

E:scaledmain1 E:scaledmain1 du ε + H Du ε , x ε , t ε dt = ε 1/2 f x ε • dB ε or (1.4) E:scaledmain2 E:scaledmain2 du ε + F εD 2 u ε , Du ε , x ε , t ε dt = ε 1/2 f x ε • dB ε ,
where B ε (t) := ε 1/2 B(t/ε) has the same law as B. Observe that the new coefficients

f ε (x) := ε 1/2 f (x/ε),
which are required to be continuously differentiable in order to make sense of the equation (twice in the case of (1.4)), blow up in C 1 (R d , R m ) and C 2 (R d , R m ) as ε → 0. A major contribution of this paper is to obtain estimates that, although they depend on Df ∞ and D 2 f ∞ , are bounded independently of ε, and, in fact, the probability tails of the Hölder semi-norms converge to 0 as ε → 0.

1.1. Main results. We give two types of results, for both first and second order equations. The first is an interior Hölder estimate for bounded solutions on space-time cylinders. We then use this result to prove an instantaneous Hölder regularization effect for initial value problems with bounded initial data.

For u defined on the cylinder

Q 1 := B 1 × [-1, 0] := (x, t) ∈ R d × R : |x| ≤ 1, -1 ≤ t ≤ 0 ,
we show that u is Hölder continuous on the cylinder B 1/2 × [-1/2, 0], given that u is a solution of the appropriate equation, and is nonnegative and has a random upper bound, that is, for some S : Ω → [0, ∞),

(1.5)

A:introrandombound A:introrandombound 0 ≤ u ≤ S in Q 1 .
T:introfirstorder Theorem 1.1. Assume, for some A > 1, q > 1, and K > 0, that

A:Hsuperlinear A:Hsuperlinear

1 A |p| q -A ≤ H(p, x, t) ≤ A|p| q + A for all (p, x, t) ∈ R d × R d × [-1, 0], (1.7) 
A:fC1bound A:fC1bound

f ∈ C 1 (R d , R m ), f ∞ + f ∞ • Df ∞ ≤ K,
and u solves (1.1) in Q 1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there exist α = α(A, q) > 0, σ = σ(A, q) > 0, λ 0 = λ 0 (A, K, M, q) > 0, and C = C(A, K, M, p, q) > 0 such that, for all λ ≥ λ 0 , P sup

(x,t),(x, t)∈B 1/2 ×[-1/2,0]
|u(x, t) -u(x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > λ ≤ P ((S -M )

+ > λ σ ) + C f p ∞ λ σp .
To state the assumptions for the regularity results for (1.2), we introduce the notation, for any X ∈ S d , m + (X) := max That is, m + (X) and m -(X) are, respectively, the largest nonnegative and lowest nonpositive eigenvalue of X. Note that, if F : S d → R is uniformly continuous and degenerate elliptic, then, for some constants ν > 0 and A > 0 and for all X ∈ S d , -νm + (X) -A ≤ F (X) ≤ -νm -(X) + A.

In order for the coercivity in the gradient to dominate the second-order dependence of F at small scales, it is necessary to assume that the growth of F in Du is super-quadratic.

T:introsecondorder

Theorem 1.2. Assume that, for some A > 1, q > 2, ν > 0, and K > 0, (1.8)

A:Fsuperquadratic A:Fsuperquadratic    -νm + (X) + 1 A |p| q -A ≤ F (X, p, x, t) ≤ -νm -(X) + A|p| q + A for all (X, p, x, t) ∈ S d × R d × R d × [-1, 0],
(1.9)

A:fC2bound A:fC2bound f ∈ C 2 (R d , R m ), ν + f ∞ + f ∞ • Df ∞ + ν f ∞ D 2 f ∞ ≤ K,
and u solves (1.2) in Q 1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there exist α = α(A, q) > 0, σ = σ(A, q) > 0, λ 0 = λ 0 (A, K, M, q) > 0, and C = C(A, K, M, p, q) > 0 such that, for all λ ≥ λ 0 , P sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > λ ≤ P ((S -M )

+ > λ σ ) + C f p ∞ λ σp .
Although the bounds in Theorem 1.1 and 1.2 do depend on the regularity of f , the important point is that the dependence is scale-invariant. Indeed, the function f ε defined by f ε (x) := ε 1/2 f (x/ε) satisfies

f ε ∞ = ε 1/2 f ∞ , Df ε ∞ := 1 ε 1/2 Df ∞ , and D 2 f ε ∞ = 1 ε 3/2 D 2 f ∞ .
As a consequence, f ε satisfies (1.7) and (1.9) with some K > 0 independent of ε (the latter because, in (1.8), ν is replaced with εν). This leads to the following scale-invariant estimates for the regularizing effect of (1.3) and (1.4).

T:introfirstorderscaling

Theorem 1.3. For A > 1, M > 0, and q > 1, assume that

1 A |p| q -A ≤ H(p, x, t) ≤ A|p| q + A and f ∈ C 1 b (R d , R m )
, and, for 0 < ε < 1, let u ε be the solution of (1.3) with u ε (•, 0) ∞ ≤ M . Fix τ > 0, R > 0, and T > 0. Then there exist C = C(R, τ, T, A, f C 1 , M, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such that, for all λ > 0,

P sup (x,t),(x, t)∈B R ×[τ,T ] |u ε (x, t) -u ε (x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > C + λ ≤ Cε p/2 λ σp .
T:introsecondorderscaling Theorem 1.4. For A > 1, ν > 0, M > 0, and q > 2, assume that

-νm + (X) + 1 A |p| q -A ≤ F (X, p, x, t) ≤ -νm -(X) + A|p| q + A and f ∈ C 2 b (R d , R m )
, and, for 0 < ε < 1, let u ε be the solution of (1.4) with u ε (•, 0) ∞ ≤ M . Fix τ > 0, R > 0, and T > 0. Then there exist C = C(ν, R, τ, T, A, f C 2 , M, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such that, for all λ > 0,

P sup (x,t),(x, t)∈B R ×[τ,T ] |u ε (x, t) -u ε (x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > C + λ ≤ Cε p/2 λ σp .
1.2. Background. The regularizing effects of Hamilton-Jacobi-Bellman equations like (1.10)

E:classical E:classical ∂ t u + F (D 2 u, Du, x, t) = 0
has been studied by many authors, including Cardaliaguet [2], Cannarsa and Cardaliaguet [START_REF] Cannarsa | Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations[END_REF], and Cardaliaguet and Silvestre [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF], Chan and Vasseur [START_REF] Chan | De Giorgi techniques applied to the Hölder regularity of solutions to Hamilton-Jacobi equations[END_REF] and Stockols and Vasseur [START_REF] Stokols | De Giorgi techniques applied to Hamilton-Jacobi equations with unbounded righthand side[END_REF]. In these works, under a coercivity assumption on F in the gradient variable (but no regularity condition on F ), bounded solutions are seen to be Hölder continuous, with estimate and exponents depending only on the growth of the F in Du. These results were used to obtain homogenization results for problems set on periodic or stationary-ergodic spatio-temporal media; see, for instance, Schwab [START_REF] Schwab | Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media[END_REF] and Jing, Souganidis, and Tran [START_REF] Jing | Stochastic homogenization of viscous superquadratic Hamilton-Jacobi equations in dynamic random environment[END_REF].

The equations (1.1) and (1.2) do not fit into this framework, due to the singular term on the right-hand side, which is nowhere pointwise-defined. A simple transformation (see Definition 2.1 below) leads to a random equation that is everywhere pointwise-defined of the form (1.10). More precisely, if u solves (1.2) and

ũ(x, t) = u(x, t) -f (x) • B(t), then ∂ t ũ + F (D 2 ũ + D 2 f (x) • B(t), Dũ + Df (x) • B(t),
x, t) = 0. However, this strategy does not immediately yield scale-invariant estimates. Indeed, the transformed equation corresponding to (1.4) is, for ε > 0,

∂ t ũε + F εD 2 ũε + 1 ε 1/2 D 2 f x ε B ε (t), Dũ ε + 1 ε 1/2 Df x ε B ε (t), x ε , t ε = 0,
for which the results in the above references yield estimates that depend on ε.

These issues were considered by Seeger [START_REF] Seeger | Homogenization of a stochastically forced Hamilton-Jacobi equation[END_REF] for the equation (1.1) with H independent of (x, t) and convex in p. In this paper, we further extend the regularity results from [START_REF] Seeger | Homogenization of a stochastically forced Hamilton-Jacobi equation[END_REF] to apply also to second-order equations and with more complicated (x, t)-dependence for F and H. To do so, we follow [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF] and prove that the equations exhibit an improvement of oscillation effect at all sufficiently small scales, which is a consequence only of the structure of the equation. The main difference with [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF] is the addition of the random forcing term f (x) • dB t which obliges to revisit the analysis of [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF] in a substantial way.

1.3. Organization of the paper. In Section 2, we discuss the notion of pathwise viscosity solutions of equations like (1.1) and (1.2), and we present a number of lemmas needed throughout the paper. The interior estimates are proved in Sections 3 and 4, and the results for initial value problems are presented in Section 5. Finally, in Appendix A, we prove some results on controlling certain stochastic integrals.

1.4. Notation. If a and b are real numbers, then we set a ∨ b = max{a, b}, a ∧ b = min{a, b} and denote by a the smallest integer greater than or equal to a. We let S d be the set of symmetric real matrices of size d × d. We say that a map F :

S d → R is degenerate elliptic if, for X, Y ∈ S d with X ≤ Y , we have F (X) ≥ F (Y ). Given H : R d → R, H * is defined for α ∈ R d by H * (α) = sup p∈R d {α • p -H(p)}. Given a subset C of R d and -∞ < t 0 < t 1 < ∞, ∂ * (C × (t 0 , t 1 
)) denotes the parabolic boundary of C × (t 0 , t 1 ), namely

∂ * (C × (t 0 , t 1 )) = (C × {t 0 }) ∪ (∂C × (t 0 , t 1 )).

Preliminaries

S:prelim

2.1. Pathwise viscosity solutions. Fix -∞ < t 0 < t 1 < ∞ and let U ⊂ R d × (t 0 , t 1 ) be an open set. For ζ ∈ C((t 0 , t 1 ), R m ), a degenerate elliptic F ∈ C(S d × R d × U × (t 0 , t 1 ), R), and f ∈ C 2 (R d , R m ),
we discuss the meaning of viscosity sub-and super-solutions of the equation (2.1)

E:pathwise E:pathwise du + F (D 2 u, Du, x, t)dt = f (x) • dζ, (x, t) ∈ U.
The general theory of pathwise viscosity solutions, initiated by Lions and Souganidis [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: non-smooth equations and applications[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Souganidis | Pathwise solutions for fully nonlinear first-and second-order partial differential equations with multiplicative rough time dependence[END_REF], covers a wide variety of equations for which f may also depend on u or Du. In the case of (2.1), the theory is much more tractable, and solutions are defined through a simple transformation.

D:solutions Definition 2.1. A function u ∈ U SC(U ) (resp. u ∈ LSC(U )) is a sub-(resp. super-) solution of (2.1) if the function ũ defined, for (x, t) ∈ U , by ũ(x, t) = u(x, t) -f (x) • ζ(t)
is a sub-(resp. super-) solution of the equation

∂ t ũ + F (D 2 ũ + D 2 f (x)ζ(t), Dũ + Df (x)ζ(t), x, t) = 0, (x, t) ∈ U.
A solution u ∈ C(U ) is both a sub-and super-solution.

We remark that, if F is independent of D 2 u, then we may take

f ∈ C 1 (R d , R m ).
We will often denote the fact that u is a sub-(resp. super-) solution of (2.1), by writing

du + F (D 2 u, Du, x, t)dt ≤ f (x) • dζ resp. du + F (D 2 u, Du, x, t)dt ≥ f (x) • dζ .
At times, when it does not cause confusion, we also use the notation

∂ t u + F (D 2 u, Du, x, t) = f (x) • ζ(t),
even when ζ is not continuously differentiable. This will become particularly useful in proofs that involve scaling, in which case the argument of ζ may change.

SS:formulae 2.2. Control and differential games formulae. Just as for classical viscosity solutions, some equations allow for representation formulae with the use of the theories of optimal control or differential games. Before we explain this, we give meaning to certain pathwise integrals that come up in the formulae.

L:intzeta1

Lemma 2.1. Assume that s < t and f ∈ C 0,1 ([s, t], R m ). Then the map

C 1 ([s, t], R m ) ζ → t s f (r) • ζ(r)dr = m i=1 t s f i (r) • ζi (r)dr extends continuously to ζ ∈ C([s, t], R m ).
Proof. The result is immediate upon integrating by parts, which yields, for

ζ ∈ C 1 ([s, t], R m ), t s f (r) ζ(r)dr = f (t)ζ(t) -f (s)ζ(s) - t s ḟ (r)ζ(r)dr. L:intzeta2 Lemma 2.2. Assume that s < t, f ∈ C 1 b (R d , R m ), W : [s, t] × A → R is a
Brownian motion on some probability space (A, F, P), α, σ : [s, t] × A → R d are bounded and progressively measurable with respect to the filtration of W , τ ∈ [s, t] is a W -stopping time, and

dX r = α r dr + σ r dW for r ∈ [s, t].
Then the map

C 1 ([s, t], R m ) ζ → τ s f (X r ) • ζ(r)dr = m i=1 τ s f i (X r ) • ζi (r)dr ∈ L 2 (A)
extends continuously to ζ ∈ C([s, t], R m ), and, moreover,

E τ s f (X r ) • ζ(r)dr = E [f (X τ ) • ζ(τ ) -f (X s ) • ζ(s)] -E τ s ζ(r) • Df (X r ) • α r + 1 2 D 2 f (X r )σ r , σ r dr . Proof. If ζ ∈ C 1 ([s, t], R m ), then Itô's formula yields, for i = 1, 2, . . . , m, d f i (X r ) • ζ i (r) = f i (X r ) ζi (r) + Df i (X r ) • α r ζ i (r) + 1 2 D 2 f i (X r )σ r , σ r ζ i (r) dr + (Df i (X r ) • σ r ζ i (r))dW r , and 
so τ s f i (X r ) ζi (r)dr = f i (X τ )ζ i (τ ) -f i (X s )ζ i (s) - τ s ζ i (r) Df i (X r ) • α r + 1 2 D 2 f i (X r )σ r , σ r dr - τ s ζ i (r)Df (X r ) • σ r dW r .
(2.2)

Ito Ito
The Itô isometry property implies that

L 2 ([s, t]) ζ i → τ s ζ i (r)Df (X r ) • σ r dW r ∈ L 2 (A)
is continuous, and, in particular, the map extends to ζ i ∈ C([s, t]). The result follows from the fact that the other terms on the right-hand side of (2.2) are continuous with respect to ζ i ∈ C([s, t]). The final claim follows upon taking the expectation of both sides of (2.2) and appealing to the optional stopping theorem.

For arbitrary continuous ζ, we freely interchange notations such as

t s f r • dζ r and t s f (r) • ζ(r)dr.
Throughout the paper, ζ is often taken to be a Brownian motion, defined on a probability space that is independent of W .

We now consider some equations for which sub-and super-solutions can be compared from above or below with particular formulae. For convenience, we write the equations backward in time. 

L:HJformula Lemma 2.3. Assume C ⊂ R d is open, x 0 ∈ C, t 0 < t 1 , U is an open domain containing C × [t 1 , t 0 ], ζ ∈ C(R, R m ), f ∈ C 1 (U ),
-du + H(Du)dt = f (x) • dζ in U.
Then

u(x 0 , t 0 ) ≤ (resp. ≥) inf u(γ τ , τ ) + τ t0 H * (-γr )dr + τ t0 f (γ r ) • dζ r : γ ∈ W 1,∞ ([t 0 , t 1 ], R d ), γ t0 = x 0 ,
where, for fixed

γ ∈ W 1,∞ ([t 0 , t 1 ], R d ), (2.3) 
stoppingtime1 stoppingtime1 τ = τ γ := inf{t ∈ (t 0 , t 1 ] : γ t ∈ ∂C}.
Proof. We prove the claim for sub-solutions, as it is identical for super-solutions. 

-∂ t ũ + H(Dũ -Df (x) • ζ(t)) = 0 in C × [t 0 , t 1 ) and ũ(x, t) = u(x, t) + f (x) • ζ(t) if t = t 1 or x ∈ ∂C.
The unique solution of (2.4) (see [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness[END_REF]) is given by

w(x, t) = inf u(γ τ , τ ) + f (γ τ ) • ζ(τ ) + τ t [H * (-γr ) -γr • Df (γ r ) • ζ(r)] dr : γ ∈ W 1,∞ ([t, t 1 ], R d ), γ t = x ,
where τ is as in (2.3). Integrating by parts gives

τ t γr • Df (γ r ) • ζ(r)dr = f (γ τ )ζ(τ ) -f (x)ζ(t) - τ t f (γ r ) • dζ(r),
and, hence,

w(x, t) = f (x)ζ(t) + inf u(γ τ , τ ) + τ t H * (-γr )dr + τ t f (γ r ) • dζ(r) : γ ∈ W 1,∞ ([t, t 1 ], R d ), γ t = x .
The result now follows because, by the comparison principle for (2.4), ũ ≤ w on C × [t 0 , t 1 ].

We next give formulae for solutions of some Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations.

For -∞ < t 0 < t 1 < ∞, assume that (2.5)

W W

W : [t 0 , t 1 ] × A → R is a Brownian motion defined on a probability space (A, F, P), with associated expectation E, and define the spaces of admissible controls

C := µ ∈ L ∞ [t 0 , t 1 ] × A, R d : µ is adapted with respect to W and C M := {µ ∈ C : µ ∞ ≤ M } .
The Isaacs' equations require us to use the spaces of strategies defined by

S := {β : C → C : µ 1 = µ 2 on [t 0 , t] ⇒ β(µ 1 )(t) = β(µ 2 )(t)} and S M := {β ∈ S : β(C ) ⊂ C M } . L:HJBformula Lemma 2.4. Assume C ⊂ R d is open and convex, x 0 ∈ C, t 0 < t 1 , U is an open domain containing C × [t 0 , t 1 ], f ∈ C 2 (U ), H : R d → R is convex and superlinear, and ν > 0. Given (α, σ) ∈ C × C , denote by X = X α,σ,x0,t0 the solution of (2.6) SDEformula SDEformula dX r = α r dr + σ r dW r in [t 0 , t 1 ] and X t0 = x 0 , and 
(2.7) stoppingtime2 stoppingtime2 τ = τ α,σ,x0,t0 := inf t ∈ (t 0 , t 1 ] : X α,σ,x0,t0 t ∈ ∂C .
(a) Let u ∈ C(U ) be a pathwise viscosity super-solution, in the sense of Definition 2.1, of

-du + -νm -(D 2 u) + H(Du) dt = f (x) • dζ in U. Then u(x 0 , t 0 ) ≥ inf (α,σ)∈C ×C √ 2ν E u(X τ , τ ) + τ t0 H * (-α r )dr + τ t0 f (X r ) • dζ r . (b) Let u ∈ C(U ) be a pathwise viscosity sub-solution, in the sense of Definition 2.1, of -du + -νm + (D 2 u) + H(Du) dt = f (x) • dζ in U. Then u(x 0 , t 0 ) ≤ inf α∈C sup β∈S √ 2ν E u(X τ , τ ) + τ t0 H * (-α r )dr + τ t0 f (X r ) • dζ r ,
where X and τ are as in respectively (2.6) and (2.7) with σ = β(α).

Proof. As a preliminary step, assume that (α, σ) ∈ C × C and X and τ are as in (2.6) and (2.7). Then Lemma 2.2 gives

E τ t f (X r ) • dζ r = E [f (X τ )ζ(τ ) -f (X t )ζ(t)] -E τ t ζ(r) • Df (X r ) • α r + 1 2 D 2 f (X r )σ r • σ r dr . (2.8) intbypartsstep intbypartsstep (a) By Definition 2.1, if ũ(x, t) := u(x, t) + f (x) • ζ(t), then ũ is a classical viscosity super-solution of (2.9) E:BTVP2 E:BTVP2 -∂ t ũ -νm -D 2 ũ -D 2 f (x) • ζ(t) + H (Dũ -Df (x) • ζ(t)) = 0 in C × [t 0 , t 1 ), ũ(x, t) = u(x, t) + f (x) • ζ(t) if t = t 1 or x ∈ ∂C. For (X, p, x, t) ∈ S d × R d × U , we have -νm -X -D 2 f (x) • ζ(t) + H (p -Df (x) • ζ(t)) = sup |σ|≤ √ 2ν, α∈R d - 1 2 σ • Xσ + 1 2 σ • D 2 f (x)σ • ζ(t) -α • p + α • Df (x) • ζ(t) -H * (-α) ,
and so standard results from the theory of stochastic control (see [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness[END_REF]) imply that the unique solution of (2.9) is given by

w(x, t) := inf (α,σ)∈C ×C √ 2ν E u(X τ , τ ) + f (X τ ) • ζ(τ ) + τ t H * (-α r ) -ζ(r) • α r • Df (X r ) + 1 2 σ r • D 2 f (X r )σ r dr = f (x) • ζ(t) + inf (α,σ)∈C ×C √ 2ν E u(X τ , τ ) + τ t H * (-α r )dr + τ t f (X r ) • dζ r ,
where the last equality follows from (2.8). The result follows from the comparison principle for (2.9), which implies that ũ(x, t)

≥ w(x, t) for (x, t) ∈ C × [t 0 , t 1 ]. (b) By Definition 2.1, if ũ(x, t) := u(x, t) + f (x) • ζ(t),
then ũ is a classical viscosity sub-solution of (2.10)

E:BTVP3 E:BTVP3 -∂ t ũ -νm + D 2 ũ -D 2 f (x) • ζ(t) + H (Dũ -Df (x) • ζ(t)) = 0 in C × [t 0 , t 1 ), ũ(x, t) = u(x, t) + f (x) • ζ(t) if t = t 1 or x ∈ ∂C. For (X, p, x, t) ∈ S d × R d × U , we have -νm + X -D 2 f (x) • ζ(t) + H (p -Df (x) • ζ(t)) = sup α∈R d inf |σ|≤ √ 2ν - 1 2 σ • Xσ + 1 2 σ • D 2 f (x)σ • ζ(t) -α • p + α • Df (x) • ζ(t) -H * (-α) = inf |σ|≤ √ 2ν sup α∈R d - 1 2 σ • Xσ + 1 2 σ • D 2 f (x)σ • ζ(t) -α • p + α • Df (x) • ζ(t) -H * (-α) ,
and so standard results from the theory of stochastic differential games (see [START_REF] Fleming | On the existence of value functions of two-player, zero-sum stochastic differential games[END_REF]) imply that, keeping in mind that σ = β(α) below, the unique solution of (2.10) is given by

w(x, t) := inf α∈C sup β∈S √ 2ν E u(X τ , τ ) + f (X τ ) • ζ(τ ) + τ t H * (-α r ) -ζ(r) • α r • Df (X r ) + 1 2 σ r • D 2 f (X r )σ r dr = f (x) • ζ(t) + inf α∈C sup β∈S √ 2ν E x,t u(X τ , τ ) + τ t H * (-α r )dr + τ t f (X r ) • dζ r ,
where (2.8) gives the last equality. The result follows from the comparison principle for (2.9), which implies that ũ(x, t)

≤ w(x, t) for (x, t) ∈ C × [t 0 , t 1 ].

2.3.

Comparison with homogenous equations. We now take ζ to be a Brownian motion, and we assume that (2.11)

BM BM B : [-1, 0] × Ω → R m is
a standard Brownian motion on the probability space (Ω, F, P).

In this case, the forcing term

m i=1 f i (x) • dB i (t)
is nowhere pointwise defined, and the naive estimate

m i=1 f i (x) • dB i (t) ≤ f ∞ dB ∞
cannot be used in comparison principle arguments, as would be the case if B belonged to C 1 .

The results given below provide another way to compare solutions of (1.1) and (1.2) with equation that are independent of x and t. In the new equations, the forcing term is replaced with a random constant that depends on f only through quantities as in (1.7) and (1.9), at the expense of slightly weakening the coercivity bounds in the gradient variable. The main tool is to use Lemmas A.1 and A.2 to control the stochastic integrals that arise from the representation formulae in Lemmas 2.3 and 2.4.

For q > 1, define q := q q -1 and c q := (q -1)q -q/(q-1) , so that, in particular, for any constant a > 0,

(2.12)

convexdual convexdual (a| • | q ) * = c q a -(q -1) | • | q .
L:Dbarrier Lemma 2.5. Let B be as in (2.11) and fix m > 0, K > 0, q > 1, and κ ∈ (0, 1/2). Then there exists a random variable D : Ω → R + and λ 0 = λ 0 (κ, m, K, q) > 0 such that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ, K, p, q) > 0 such that, for all λ ≥ λ 0 ,

P(D > λ) ≤ Cm p λ p . (b) Let f ∈ C 1 (R d , R m ) satisfy f ∞ ≤ m and f ∞ (1 + Df ∞ ) ≤ K,
and assume that A > 1, ε 1 , ε 2 : Ω → (0, 1), and

-1 + ε 2 ≤ r 0 ≤ 0. Suppose that, for some R ∈ (0, ∞], w solves          ∂ t w + 1 A |Dw| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (ε 1 x) • Ḃ(r 0 + ε 2 t) and ∂ t w + A|Dw| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (ε 1 x) • Ḃ(r 0 + ε 2 t) in B R × [-1, 0], fix an open convex set C ⊂ B R , x 0 ∈ C, and -1 ≤ t 1 < t 0 ≤ 0. Then w -(x 0 , t 0 ) - ε q -1+κ 2 ε q 1 AD ≤ w(x 0 , t 0 ) ≤ w + (x 0 , t 0 ) + ε q -1+κ 2 ε q 1 AD, where        ∂ t w -+ 2A|Dw -| q = 0 and ∂ t w + + 1 2A |Dw + | q = 0 in C × (t 1 , t 0 ], and 
w -= w + = w on ∂ * (C × (t 1 , t 0 )). Proof. Step 1. For (x, t) ∈ B R × [0, 1], define w(x, t) := w(x, -t) and B(t) := B(0) -B(-t). Then B : [0, 1] × Ω → R m is a Brownian motion, and w solves          -∂ t w + 1 A |D w| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (ε 1 x) • Ḃ(-r 0 + ε 2 t) and -∂ t w + A|D w| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (ε 1 x) • Ḃ(-r 0 + ε 2 t) in B R × [0, 1].
We also define w+ (x, t) = w + (x, -t) and w-(x, t) = w -(x, -t), which solve

       -∂ t w-+ 2A|Dw -| q = 0 and -∂ t w+ + 1 2A |Dw + | q = 0 in C × [-t 0 , -t 1 )
, and

w-= w+ = w on (C × {-t 1 }) ∪ (∂C × [-t 0 , -t 1 ]).
The classical Hopf-Lax formula and (2.12) then give, for (x, t)

∈ C × [-t 0 , -t 1 ], w+ (x, t) = inf (y,s)∈(C×{-t1})∪(∂C×[-t0,-t1]) w(y, s) + c q (2A) q -1 |x -y| q |t -s| q -1 and w-(x, t) = inf (y,s)∈(C×{-t1})∪(∂C×[-t0,-t1])
w(y, s) + c q (2A) -(q -1) |x -y| q |t -s| q -1 .

Step 2. Let κ ∈ (0, 1/2) and D be as in Lemma A.1. Then, by that lemma, for any 0

< δ < 1, γ ∈ W 1,∞ ([-t 0 , -t 1 ], R d ), and τ ∈ [-t 0 , -t 1 ], ε 2 ε 1 q τ -t0 f (ε 1 γ r ) • Ḃ(-r 0 + ε 2 r)dr = ε q -1 2 ε q 1 -r0+ε2τ -r0-ε2t0 f ε 1 γ r + r 0 ε 2 • Ḃ(r)dr ≤ ε q -1 2 ε q 1 δ q -r0+ε2τ -r0-ε2t0 ε 1 ε 2 γ r + r 0 ε 2 q dr + ε q -1+κ 2 ε q 1 D δ q (τ + t 0 ) κ = δ q τ -t0 | γr | q dr + ε q -1+κ 2 ε q 1 D δ q (τ + t 0 ) κ .
(2.13) intcontroluse intcontroluse

Step 3. We prove the upper bound first. By Lemma 2.3 and the equality (2.12), we have, with probability one,

w(x 0 , -t 0 ) ≤ inf w(γ τ , τ ) + c q A q -1 τ -t0 | γr | q dr + ε 2 ε 1 q A(τ + t 0 ) + ε 2 ε 1 q τ -t0 f (ε 1 γ r ) • Ḃ(-r 0 + ε 2 r)dr : γ ∈ W 1,∞ ([-t 0 , -t 1 ], R d ) ,
where, as in (2.3), we define

τ = τ γ := inf {t ∈ (-t 0 , -t 1 ] : γ τ ∈ ∂C} .
We then set δ = 1 ∧ (2 q -1 -1) 1/q c 1/q q A 1/q , which, in particular, implies that δ q ≤ c q (2 q -1 -1)A q -1 . Then, in view of (2.13), for some constant C q > 0,

w(x 0 , -t 0 ) ≤ inf w(γ τ , τ ) + c q (2A) q -1 τ -t0 | γr | q dr : γ ∈ W 1,∞ ([-t 0 , -t 1 ], R d ) + A ε 2 ε 1 q 1 + 1 δ q ε -(1-κ) 2 D ≤ w+ (x 0 , -t 0 ) + A ε q -1+κ 2 ε q 1 (1 + C q D).
(2.14)

tildewupper tildewupper

Step 4. We next consider the lower bound. We again use (2.12) and Lemma 2.3 to obtain

w(x 0 , -t 0 ) ≥ inf w(γ τ , τ ) + c q A -(q -1) τ -t0 | γr | q dr - ε 2 ε 1 q A(τ + t 0 ) + ε 2 ε 1 q τ -t0 f (ε 1 γr ) • Ḃ(-r 0 + ε 2 r)dr : γ ∈ W 1,∞ ([-t 0 , -t 1 ], R d ) . Choosing δ := 1 ∧ c 1/q q (1 -2 -(q -1) ) 1/q A -1/q yields δ q ≤ c q (1 -2 -(q -1) )A -(q -1)
. As a consequence, Jensen's inequality and (2.13) yield, for some

C q > 0, w(x 0 , -t 0 ) ≥ inf w(γ τ , τ ) + c q (2A) -(q -1) τ -t0 | γr | q dr : γ ∈ W 1,∞ ([-t 0 , -t 1 ]) - ε q -1+κ 2 ε q 1 A(1 + C q D) ≥ w -(x 0 , -t 0 ) - ε q -1+κ 2 ε q 1 A(1 + C q D).
(2.15) tildewlower tildewlower

Step 5. We set D := 1 + (C q ∨ C q )D, so that, after performing a time change, (2.14) and (2.15) lead to

w -(x 0 , t 0 ) - ε q -1+κ 2 ε q 1 A D ≤ w(x 0 , t 0 ) ≤ w + (x 0 , t 0 ) + A ε q -1+κ 2 ε q 1 D.
Let λ 0 be as in Lemma A.1. Then, for all

λ ≥ λ 0 := (1 + (C q ∨ C q )λ 0 ) ∨ 2,
we have, for C = C(κ, m, K, p, q) > 0 as in Lemma A.1,

P( D > λ) = P D > λ -1 C q ∨ C q ≤ C(C q ∨ C q ) p (λ -1) p ≤ 2 p C(C q ∨ C q ) p λ p .
L:Ebarrier Lemma 2.6. Let B be as in (2.11), and fix m > 0, K > 0, q > 1, ν > 0, and κ ∈ (0, 1/2). Then there exists a random variable E : Ω → R + and λ 0 = λ 0 (κ, m, K, q) > 0 such that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ, K, p, q) > 0 such that, for all λ ≥ λ 0 ,

P(E > λ) ≤ Cm p λ p . (b) Let f ∈ C 2 (R d , R m ) satisfy f ∞ ≤ m and f ∞ 1 + Df ∞ + ν D 2 f ∞ ≤ K,
and assume that A > 1, r 0 ∈ (-1, 0], ε 1 , ε 2 : Ω → (0, 1) and -1 + ε 2 ≤ r 0 ≤ 0. Suppose that, for some R ∈ (0, ∞], w solves          ∂ t w - ε 2 ε 2 1 νm + (D 2 w) + 1 A |Dw| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (ε 1 x) • Ḃ(r 0 + ε 2 t) and ∂ t w - ε 2 ε 2 1 νm -(D 2 w) + A|Dw| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (ε 1 x) • Ḃ(r 0 + ε 2 t) in B R × [-1, 0], fix a convex open set C ⊂ B R , x 0 ∈ C, and -1 ≤ t 1 < t 0 ≤ 0. Then w -(x 0 , t 0 ) - ε q -1+κ 2 ε q 1 AE ≤ w(x 0 , t 0 ) ≤ w + (x 0 , t 0 ) + ε q -1+κ 2 ε q 1 AE, where            ∂ t w -- ε 2 ε 2 1 νm -(D 2 w -) + 2A|Dw -| q = 0 and ∂ t w + - ε 2 ε 2 1 νm + (D 2 w + ) + 1 2A |Dw + | q = 0 in C × (t 1 , t 0 ), and 
w -= w + = w on ∂ * (C × [t 1 , t 0 ]).
Proof.

Step 1. For (x, t) ∈ B R × [0, 1], define w(x, t) := w(x, -t), w± (x, t) := w ± (x, -t), and B(t) := B(0) -B(-t). Then B : [0, 1] × Ω → R m is a Brownian motion, and w, w± solve

         -∂ t w - ε 2 ε 2 1 νm + (D 2 w) + 1 A |D w| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (ε 1 x) • Ḃ(-r 0 + ε 2 t) and -∂ t w - ε 2 ε 2 1 νm -(D 2 w) + A|D w| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (ε 1 x) • Ḃ(-r 0 + ε 2 t) in B R × [0, 1] and            -∂ t w-- ε 2 ε 2 1 νm -(D 2 w-) + 2A|D w-| q = 0 and -∂ t w+ - ε 2 ε 2 1 νm + (D 2 w+ ) + 1 2A |D w+ | q = 0 in C × [-t 0 , -t 1 )
, and

w-= w+ = w on (C × {-t 1 }) ∪ (∂C × [-t 0 , -t 1 ]).
Step 2. Let W : [0, 1] × A → R be a Brownian motion defined on a probability space (A, F, P) independent of (Ω, F, P), fix (α,

β) ∈ C × C ε -1 1 √
2ε2ν , assume that X : [-t 0 , -t 1 ] × A is adapted with respect to W and

dX r = α r dr + σ r dW r in [-t 0 , -t 1 ],
and let τ ∈ [-t 0 , -t 1 ] be a W -stopping time.

For r 0 -ε 2 t 0 ≤ r ≤ -r 0 + ε 2 τ , we then set

                           Xr = ε 1 X r + r 0 ε 2 , αr = ε 1 ε 2 α r + r 0 ε 2 , σr = ε 1 ε 1/2 2 σ r + r 0 ε 2 , and 
Wr = ε 1/2 2 W r + r 0 ε 2 -W (-t 0 ) ,
and we let C and CM be defined just as C and C M , but with respect to the filtration of the Brownian motion W . Then (α, σ) ∈ C × C√ 2ν , X is adapted with respect to W , -r 0 + ε 2 τ is a W -stopping time, and

d Xr = αr dr + σr d Wr for -r 0 -ε 2 t 0 ≤ r ≤ -r 0 + ε 2 τ.
It now follows from Lemma A.2 that, for some E as in the statement of that lemma, and for all 0 < δ ≤ 1,

E ε 2 ε 1 q τ -t0 f (ε 1 X r ) • Ḃ(-r 0 + ε 2 r)dr = ε q -1 2 ε q 1 E -r0+ε2τ -r0-ε2t0 f ( Xr ) • Ḃ(r)dr ≤ ε q -1 2 ε q 1 δ q E -r0+ε2τ -r0-ε2t0 |α r | q dr + ε q -1+κ 2 ε q 1 E δ q (τ + t 0 ) κ = δ q E τ -t0 |α r | q dr + ε q -1+κ 2 ε q 1 E δ q (τ + t 0 ) κ .
(2.16)

intcontroluse2 intcontroluse2
Step 3. We now proceed with the proof of the lower bound. By Lemma 2.4(a), we have

w(x 0 , -t 0 ) ≥ inf (α,σ)∈C ×C ε -1 1 √ 2ε 2 ν E w(X τ , τ ) + c q A -(q -1) τ -t0 |α r | q dr - ε 2 ε 1 q A(τ + t 0 ) + ε 2 ε 1 q τ -t0 f (ε 1 X r ) • Ḃ(-r 0 + ε 2 r)dr ,
(2.17)

tildewinhomogge tildewinhomogge
where, as in that lemma, for fixed (α, σ)

∈ C × C ε -1 1 √ 2ε2ν , X = X α,σ and τ = τ α,σ satisfy (2.18) stochdata stochdata dX r = α r dr + σ r dW r for r ∈ [-t 0 , -t 1 ], X -t0 = x 0 , and τ := inf {t ∈ [-t 0 , -t 1 ] : X τ ∈ ∂C} . We now set δ := 1 ∧ c 1/q q (1 -2 -(q -1) ) 1/q A -1/q ,
which implies, in particular, that δ q ≤ c q (1 -2 -(q -1) )A -(q -1) . Invoking (2.16), we find that, for some constant C q > 0,

E ε 2 ε 1 q τ -t0 f (ε 1 X r ) • Ḃ(-r 0 + ε 2 r)dr ≥ -c q (1 -2 -(q -1) )A -(q -1) E τ -t0 |α r | q dr -C q A ε q -1+κ 2 ε q 1 E.
The inequality (2.17) now becomes

w(x 0 , -t 0 ) ≥ inf (α,σ)∈C ×C ε -1 1 √ 2ε 2 ν E w(X τ , τ ) + c q (2A) -(q -1) τ -t0 |α r | q dr - ε 2 ε 1 q A 1 + C q ε -(1-κ) 2 E ≥ w-(x 0 , -t 0 ) - ε q -1+κ 2 ε q 1 A(1 + C q E).
Step 4. We next obtain the upper bound. Lemma 2.4(b) gives

w(x 0 , -t 0 ) ≤ inf α∈C sup β∈S ε -1 1 √ 2ε 2 ν E w(X τ , τ ) + c q A q -1 τ -t0 |α r | q dr + ε 2 ε 1 q A(τ + t 0 ) + ε 2 ε 1 q τ -t0 f (ε 1 X r ) • Ḃ(-r 0 + ε 2 r)dr , (2.19) 
tildewinhomogle tildewinhomogle

where, as in that lemma, for fixed α ∈ C and β ∈ S ε -1 1 √ 2ε2ν with σ = β(α), X = X α,σ and τ = τ α,σ are as in (2.18). The inequality (2.16) then implies that, for all δ ∈ (0, 1),

w(x 0 , -t 0 ) ≤ inf α∈C sup β∈S ε -1 1 √ 2ε 2 ν E w(X τ , τ ) + (c q A q -1 + δ q ) τ -t0 |α r | q dr + ε 2 ε 1 q A + ε q -1+κ 2 ε q 1 E δ q .
We then set δ = 1 ∧ (2 q -1 -1) 1/q c 1/q q A 1/q , which, in particular, implies that δ q ≤ c q (2 q -1 -1)A q -1 , and so, for some C q > 0,

w(x 0 , -t 0 ) ≤ inf α∈C sup β∈S ε -1 1 √ 2ε 2 ν E w(X τ , τ ) + c q (2A) q -1 τ -t0 |α r | q dr + ε q -1+κ 2 ε q 1 A(1 + C q E) = w+ (x 0 , -t 0 ) + ε q -1+κ 2 ε q 1 A(1 + C q E).
The claimed upper bound for w now follows from another time reversal.

We now introduce some smooth sub-and super-solutions of the homogenous second order equations that arise in the previous result, which will be used in Section 4. The following lemma is proved in [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF], in particular, as Lemmas 4.2 and 4.6 and Corollary 4.3.

L:CSbarriers

Lemma 2.7. Let q > 2 and A > 1. Then there exist C = C(q, A, d) > 0 (which can be chosen arbitrarily large), ν 0 = ν 0 (q, A, d) > 0 (which can be chosen arbitrarily small), and θ 0 = θ 0 (q, A, d) > 0 such that the following hold:

(a) If η > 0, U (x, t) := C (|x| 2 + ηt) q /2 t q -1 for (x, t) ∈ R d × (0, ∞),
and 0 < ν < ην 0 , then

∂ t U -νm + (D 2 U ) + 1 2A |DU | q ≥ 0 in R d × (0, ∞).
(b) Let R > 0, and assume that b : R → R is smooth and nonincreasing, b(τ ) = 1 for τ < 3/4, and b(τ

) = 0 for τ > 1. If 0 < θ < θ 0 R q and V (x, t) := 3θb |x| R + t 4 - Cνθ R 2 t for (x, t) ∈ R d × (0, 1), then ∂ t V -νm -(D 2 V ) + 2A|DV | q ≤ 0 in R d × (0, 1).
2.4. Improvement of oscillation. The main tool used in this paper is to establish an improvement of oscillation of solutions on all small scales. The next result explains how this leads to Hölder regularity estimates.

L:ioo Lemma 2.8. Let R, τ, c > 0, assume that u : B R × [-τ, 0] satisfies 0 ≤ u ≤ c on B R × [-τ, 0],
fix α ∈ (0, 1), β > 0, 0 < µ < 1, and 0 < a < R and 0 < b < τ . Assume that, whenever

(x 0 , t 0 ) ∈ B R-a × [-τ + b, 0], the function v(x, t) := u(x 0 + ax, t 0 + bt) c for (x, t) ∈ B 1 × [-1, 0] satisfies if 0 < r ≤ 1 and osc Br×[-r β ,0] v ≤ r α , then osc Bµr×[-(µr) β ,0] ≤ (µr) α . Then sup (x,t),(x, t)∈B R-a ×[-τ +b,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ c µ α 1 a α ∨ 1 b α/β .
Proof. Choose (x 0 , t 0 ) ∈ B R-a ×[-τ +b, 0] and define v as in the statement of the lemma. Then osc B1×[-1,0] v ≤ 1, and so an inductive argument implies that osc

B µ k ×[-µ kβ ,0] v ≤ µ kα for all k = 0, 1, 2, . . . Now choose r ∈ (0, 1] and let k ∈ N be such that µ k+1 < r ≤ µ k . Then osc Br×[-r β ,0] v ≤ µ kα ≤ r α µ α .
Fix (y, s) ∈ B 1 × [-1, 0] and set r := |y| ∨ |s| 1/β . We then have

|v(0, 0) -v(y, s)| ≤ r α µ α ≤ |y| α ∨ |s| α/β µ α .
Rescaling back to u, this means that, whenever (x, t), (x, t)

∈ B R-a × [-τ + b, 0] satisfy |x -x| ≤ a and |t -t| ≤ b, we have |u(x, s) -u(x, t)| ≤ c µ α 1 a α ∨ 1 b α/β |x -x| α + |t -t| α/β .
The result now follows easily, because, for |x -x| > a,

|u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ c a α and if |t -t| > b, then |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ c b α/β .

First order equations

S:firstorder

In this section, we prove the regularity results for first order equations. We assume that (3.1)

A:BM1 A:BM1 B : [-1, 0] × Ω → R m
is a standard Brownian motion on some probability space (Ω, F, P), and, for fixed (

3.2)

A:parameters A:parameters K > 0, A > 1, q > 1, and S : Ω → [0, ∞), we assume that (3.3) Then there exists α = α(κ, A, q) ∈ (0, 1), c = c(κ, α, q) > 0, λ 0 = λ 0 (κ, A, K, M, q) > 0 and, for all p ≥ 1, C = C(κ, A, K, M, p, q) > 0 such that, for all λ ≥ λ 0 ,

A:fauxHolderbound A:fauxHolderbound f ∈ C 1 (R d × R m ) and f ∞ + f ∞ Df ∞ ≤ K and (3.4) E:firstorder E:firstorder                  du + 1 A |Du| q -A dt ≤ m i=1 f i (x)dB i (t), du + [A|Du| q + A] dt ≥ m i=1 f i (x)dB i (t)
P sup (x,s),(y,t)∈B 1/2 ×[-1/2,0] |u(x, s) -u(y, t)| |x -y| α + |s -t| α/(q-α(q-1)) > λ ≤ P (S -M ) + > cλ 1-α/q + C f p ∞ λ κ(q-α(q-1))p
Proof. We first specify the parameters that determine the Hölder exponents, which depend only on κ, A, and q. Choose µ so that (3.5) mu1 mu1 0 < µ < 1 2 and 1 2 12 q c q A q -1 µ q < 1, and then take θ sufficiently small that (3.6)

theta1 theta1 0 < θ < 1 2 , 1 2 
12 q c q A q -1 µ q ≤ 1 -4θ, and 2θ ≤ c q (2A) 1-q µ q .

We now set β := q -α(q -1).

Note that β -α = q(1 -α) > 0, and (3.7) and (3.8) together imply that βκ -α > 0.

We next identify a random scale ρ at which the improvement of oscillation effect is seen. Let D be the random variable as in Lemma 2.5, set Ŝ := 1 ∨ S, and define (3.9)

rho1 rho1 ρ := 1 2 Ŝ ∧ θ AD 1 κq . Note then that ρ ≤ 1, ρ Ŝ ≤ 1 2
, and ρ κq AD ≤ θ.

In what follows, for (x 0 , t 0 ) ∈ R d × R, we define

Q r (x 0 , t 0 ) := B r (x 0 ) × [t 0 -r β , t 0 ] and Q r := Q r (0, 0).
Step 1: The initial zoom-in. Fix (x 0 , t 0 ) ∈ B 1/2 × [-1/2, 0] and set v(x, t) := u(x 0 + ρ Ŝx, t 0 + ρ q Ŝt) Ŝ , which is well-defined for (x, t) ∈ B 1 × [-1, 0] in view of (3.9). Then v satisfies (3.10)

E:vsystem E:vsystem          ∂ t v + A|Dv| q + ρ q A ≥ ρ q f (x 0 + ρ Ŝx) • Ḃ(t 0 + ρ q Ŝt), ∂ t v + 1 A |Dv| q -ρ q A ≤ ρ q f (x 0 + ρ Ŝx) • Ḃ(t 0 + ρ q Ŝt), and 
0 ≤ v ≤ 1 in B 1 × [-1, 0].
Step 2: Induction step. We next show that (3.11)

oscimprove1 oscimprove1 if 0 < r ≤ 1 and osc Qr v ≤ r α , then osc Qµr v ≤ (µr) α .
Let r ∈ (0, 1] be such that osc Qr v ≤ r α . We then set

w(x, t) := v(rx, r β t) -inf Qr v r α for (x, t) ∈ Q 1 , which satisfies                ∂ t w + 1 A |Dw| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (x 0 + ε 1 x) • Ḃ(t 0 + ε 2 t), ∂ t w + A|Dw| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (x 0 + ε 1 x) • Ḃ(t 0 + ε 2 t), and 
0 ≤ w ≤ 1 in B 1 × [-1, 0],
where ε 1 := Ŝρr and ε 2 := Ŝρ q r β . As a consequence of (3.9), the random variables ε 1 and ε 2 take values in (0, 1/2], so that the hypotheses in part (b) of Lemma 2.5 are satisfied. We also compute, using (3.7) and (3.8),

ε q -1+κ 2 ε q 1 = ( Ŝρ q r β ) q -1+κ
( Ŝρr) q = ρ κq r βκ-α Ŝ ≤ ρ κq .

To prove (3.11), we show that either (3.12)

upperosc upperosc w(x, t) ≤ 1 -θ for all (x, t) ∈ B µ × [-µ β , 0] or (3.13) lowerosc lowerosc w(x, t) ≥ θ for all (x, t) ∈ B µ × [-µ β , 0].
We consider the two following cases:

Case 1. Assume first that (3.14) case1 case1 inf B2µ w(•, -1) ≤ 2θ. Fix (x, t) ∈ B µ × [-µ β , 0]
. Then, by Lemma 2.5, we have

w(x, t) ≤ w + (x, t) + ε q -1+κ 2 ε q 1 AD ≤ w + (x, t) + ρ κq AD ≤ w + (x, t) + θ,
where

w + (x, t) = inf (y,s)∈∂ * (B2µ×[-1,t])
w(y, s) + c q (2A) q -1 |x -y| q (t -s) q -1 .

We have

t + 1 ≥ 1 -µ β ≥ 1 2
and |x -y| q ≤ 3 q µ q for all y ∈ B 2µ , and so, by (3.6),

w + (x, t) ≤ inf y∈B2µ
w(y, -1) + c q (2A) q -1 |x -y| q (t + 1) q -1 ≤ 6 q c q (2A) q -1 µ q + inf y∈B2µ w(y, -1)

≤ 1 -4θ + 2θ = 1 -2θ.
It follows that w(x, t) ≤ 1 -2θ + θ = 1 -θ, and so (3.12) holds in this case.

Case 2. Assume now that

(3.15) case2 case2
w(y, -1) ≥ 2θ for all y ∈ B 2µ . w(y, s) + c q (2A) 1-q |x -y| q (t -s) q -1 -θ.

Let (x, t) ∈ B µ × [-µ β , 0].
If y ∈ B 2µ and s = -1, then (3.15) implies that w(y, s)

+ c q (2A) 1-q |y -x| q (t -s) q -1 -θ ≥ 2θ -θ = θ, while, if s ∈ [-1
, t] and y ∈ ∂B 2µ , then |y -x| ≥ µ, and so, using (3.6) and the fact that w ≥ 0,

w(y, s) + c q (2A) 1-q |y -x| q (t -s) q -1 -θ ≥ -θ + c q (2A) 1-q µ q ≥ θ.
Either way, it is evident that (3.13) holds.

Combining (3.12) and (3.13) with the definition of α in (3.7), we obtain

osc Qµ w ≤ 1 -θ ≤ µ α ,
which, after rescaling back to v, yields osc Qµr v ≤ (µr) α .

Step 3: the Hölder estimate. We now invoke Lemma 2.8 with the values a := ρ Ŝ, b := ρ q Ŝ, and c := Ŝ, and, using (3.5) and (3.9), we get, for some constant

C 1 = C 1 (κ, A, q) > 0, sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ c µ α 1 a α ∨ 1 b α/β = 1 µ α Ŝ1-α ρ α ∨ Ŝ1-α/β ρ qα/β ≤ 1 µ α 1 2 1-α ρ ∨ 1 2 1-α/β ρ 1+(q-1)α/β ≤ C 1 ρ -q/β .
In view of (3.6) and (3.9), for some

C 2 = C 2 (κ, A, q) > 0, ρ -q/β = (2 Ŝ) q/β ∨ AD θ 1 κβ ≤ C 2 Ŝq/β + D 1 κβ
.

Since M is chosen to be larger than 1, we have ( Ŝ -M ) + = (S -M ) + , and so, for some

C 3 = C 3 (κ, A, q) > 0, sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ C 3 M q/β + (S -M ) q/β + + D 1 κβ .
Therefore, for any λ > 0,

P sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β > λ ≤ P (S -M ) q/β + + D 1 κβ > λ -C 3 M q/β C 3 ≤ P (S -M ) q/β + > λ -C 3 M q/β 2C 3 + P D 1 κβ > λ -C 3 M q/β 2C 3 . Taking λ > 2C 3 M q/β yields λ -C 3 M q/β 2C 3 > λ 4C 3 , so that P sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β > λ ≤ P (S -M ) q/β + > λ 4C 3 + P D 1 κβ > λ 4C 3 .
Finally, if λ 0 is as in Lemma 2.5, then further taking λ > 4C 3 λ 1/(κβ) 0 yields the claim in view of the properties of D.

Second order equations

S:secondorder

We now turn to the case of second order equations. We let B be a Brownian motion as in (3.1), and, for fixed (4.1)

A:parameters2 A:parameters2 ν > 0, K > 0, A > 1, q > 2, and S : Ω → [0, ∞), we assume that (4.2) 3), and let 0 < κ < 1/2 and M ≥ 1. Then there exists α = α(κ, A, q) ∈ (0, 1), c = c(κ, α, q) > 0, λ 0 = λ 0 (κ, A, K, M, q) > 0, and, for all p ≥ 1, C = C(κ, A, K, M, p, q) > 0 such that, for all λ ≥ λ 0 ,

A:f2 A:f2 f ∈ C 2 (R d , R m ) and ν + f ∞ + f ∞ Df ∞ + ν f ∞ D 2 f ∞ ≤ K and (4.3) A:secondorder A:secondorder                  du + -νm + (D 2 u) + 1 A |Du| q -A dt ≤ m i=1 f i (x) • dB i (t), du + -νm -(D 2 u) + A|Du| q + A dt ≥ m i=1 f i (x) • dB i (t)
P sup (x,s),(y,t)∈B 1/2 ×[-1/2,0] |u(x, s) -u(y, t)| |x -y| α + |s -t| α/(q-α(q-1)) > λ ≤ P (S -M ) + > cλ 1-α/q + C f p ∞
λ κ(q-α(q-1))p .

Proof. We set up the various parameters similarly as in the proof of Theorem 3.1, with a few changes to account for the second order terms.

We first choose µ such that (4.4)

mu2 mu2 0 < µ < 1 4 and C 2 6 q µ q < 1,
where C = C(q, A, d) > 4 q is the constant from Lemma 2.7, and we then take θ sufficiently small that (4.5)

theta2 theta2 0 < θ < 1 2 , C 2 
6 q µ q ≤ 1 -5θ, and θ < 4µ q θ 0 , where θ 0 = θ 0 (q, A, d) > 0 is as in Lemma 2.7.

Set (4.6)

alpha2 alpha2

α := min q -2 q -1 , log(1 -θ) log µ , κq κq + 1 -κ and (4.7) beta2 beta2 β = q -α(q -1).
Observe that (4.6) and (4.7) together imply that

1 -θ ≤ µ α , β -α = q(1 -α), βκ -α ≥ 0, and β ≥ 2.
As in the proof of Theorem 3.1, we define, for (x

0 , t 0 ) ∈ R d × R, Q r (x 0 , t 0 ) := B r (x 0 ) × [t 0 -r β , t 0 ] and Q r := Q r (0, 0). We now set Ŝ := S ∨ 1,
and, for E the random variable from Lemma 2.6, and C and ν 0 the values from Lemma 2.7, the random variable ρ is the largest value such that (4.8)

rho2 rho2                (a) 0 < ρ ≤ 1 2 Ŝ , (b) ρ κq AE ≤ θ, (c) 2 q -1 CK q /2 ν -q /2 0 ρ q (q-2)/2 ≤ θ, and (d) Cρ q-2 ≤ 4µ 2 .
Step 1: The initial zoom-in.

Fix (x 0 , t 0 ) ∈ B 1/2 × [-1/2, 0] and set v(x, t) := u(x 0 + ρ Ŝx, t 0 + ρ q Ŝt) Ŝ ,
which is well-defined for (x, t) ∈ B 1 × [-1, 0] in view of (4.8)(a). Then v satisfies (4.9)

E:vsystem2 E:vsystem2              ∂ t v - νρ q-2 Ŝ m -(D 2 v) + A|Dv| q + ρ q A ≥ ρ q f (x 0 + ρ Ŝx) • Ḃ(t 0 + ρ q Ŝt), ∂ t v - νρ q-2 Ŝ m + (D 2 v) + 1 A |Dv| q -ρ q A ≤ ρ q f (x 0 + ρ Ŝx) • Ḃ(t 0 + ρ q Ŝt), and 
0 ≤ v ≤ 1 in B 1 × [-1, 0].
Step 2: Induction step. We next show that (4.10)

oscimprove2 oscimprove2 if 0 < r ≤ 1 and osc Qr v ≤ r α , then osc Qµr v ≤ (µr) α .
Let r ∈ (0, 1] be such that osc Qr v ≤ r α . We then set

w(x, t) := v(rx, r β t) -inf Qr v r α for (x, t) ∈ B 1 × [-1, 0], which satisfies                ∂ t w - ε 2 ε 2 1 νm + (D 2 w) + 1 A |Dw| q - ε 2 ε 1 q A ≤ ε 2 ε 1 q f (x 0 + ε 1 x) • Ḃ(t 0 + ε 2 t), ∂ t w - ε 2 ε 2 1 νm -(D 2 w) + A|Dw| q + ε 2 ε 1 q A ≥ ε 2 ε 1 q f (x 0 + ε 1 x) • Ḃ(t 0 + ε 2 t), and 
0 ≤ w ≤ 1 in B 1 × [-1, 0],
where ε 1 := Ŝρr and ε 2 := Ŝρ q r β . It is a consequence of (4.8)(a) that ε 1 , ε 2 ∈ (0, 1/2], and, moreover, just as in the proof of Theorem 3.1, using the fact that βκ ≥ α,

ε q -1+κ 2 ε q 1 ≤ ρ κq .
To prove (4.10), we show that either (4.11)

upperosc2 upperosc2 w(x, t) ≤ 1 -θ for all (x, t) ∈ B µ × [-µ β , 0] or (4.12) lowerosc2 lowerosc2 w(x, t) ≥ θ for all (x, t) ∈ B µ × [-µ β , 0].
We consider the two following cases: 

w(x, t) ≤ w + (x, t) + ε q -1+κ 2 ε q 1 AE ≤ w + (x, t) + ρ κq AE ≤ w + (x, t) + θ, where (4.13) 
E:w+ E:w+    ∂ t w + - ε 2 ε 2 1 νm + (D 2 w + ) + 1 2A |Dw + | q = 0 in B 2µ × (-1, 0] and w + = w on ∂ * (B 2µ × [-1, 0]).
Note that, by the maximum principle, we have 0 ≤ w + ≤ 1. Let C ≥ 4 q and ν 0 be as in Lemma 2.7, and, for y ∈ B 2µ and (x,

t) ∈ B 2µ × [-1, 0], set w y (x, t) := w(y, -1) + C (t + 1) q -1 |x -y| 2 + Kρ q-2 ν 0 (t + 1) q /2 . We compute ε 2 ε 2 1 ν = ρ q-2 r β-2 ν Ŝ ≤ νρ q-2 ≤ Kρ q-2 ν 0 ν 0 ,
and therefore, by Lemma 2.7(a), w y is a super-solution of (4.13). In addition,

w y (x, -1) = +∞ if x = y, w(y, -1) if x = y,
and, for any (x, t)

∈ ∂B 1 × [-1, 0], w y (x, t) ≥ C((1 -2µ) 2 ) q 2 ≥ C4 -q ≥ 1 ≥ w + (x, t),
in view of the choice of C ≥ 4 q and of µ < 1/4. So

w y ≥ w + in B 1 × [-1, 0] by the comparison principle. Because t ∈ [-µ β , 0], it follows that 1 + t > 1 -µ β > 1 2
, and so, by (4.5) and (4.8)(c),

w + (x, t) ≤ inf y∈B2µ w(y, -1) + C ( t + 1) q -1 |x -y| 2 + Kρ q-2 ν 0 ( t + 1) q /2 ≤ 1 2 6 q Cµ q + 2 q -1 CK q /2 ν -q /2 0 ρ q (q-2)/2 + inf y∈B2µ w(y, -1) ≤ 1 -5θ + θ + 2θ = 1 -2θ.
We conclude that w(x, t) ≤ 1 -2θ + θ = 1 -θ, so that (4.11) holds in this case.

Case 2. We now assume that inf y∈B2µ w(y, -1) > 2θ.

Fix (x, t) ∈ B µ × [-µ β , 0]. As in Step 1, Lemma 2.6 gives w(x, t) ≥ w -(x, t) -θ, where (4.14) 
E:w-E:w-    ∂ t w -- ε 2 ε 2 1 νm -(D 2 w -) + 2A|Dw -| q = 0 in B 2µ × (-1, 0] and w -= w on ∂ * (B 2µ × [-1, 0]).
For (x, t) ∈ B 2µ × [-1, 0] and for b and C as in Lemma 2.7(b), define

V (x, t) = 3θb |x| 2µ + t + 1 4 - Cρ q-2 θ 4µ 2 (t + 1).
Then, by (4.5) and Lemma 2.7(b), V is a sub-solution of (4.14). In addition,

V ≤ 0 on ∂B 2µ × [-1, 0] and V ≤ 2θ on B 2µ × {-1},
and so V ≤ w -on ∂ * (B 2µ ×[-1, 0]). The comparison principle now implies that V ≤ w -in all of B 2µ ×[-1, 0], and, in particular, using (4.8)(d) and the fact that b(3/4) = 1 and b is nonincreasing,

w -(x, t) ≥ V (x, t) = 3θb |x| 2µ + t + 1 4 - Cρ q-2 θ 4µ 2 ( t + 1) ≥ 3θb 3 4 -θ = 2θ.
Thus, in this case, (4.12) holds.

Whether (4.11) or (4.12) is satisfied, we have osc

Qµr v = r α osc Qµ w ≤ (1 -θ)r α ≤ (µr) α ,
and so (4.10) is established.

Step 3: the Hölder estimate. As in the proof of Theorem 3.1, we use Lemma 2.8 and (4.8)(a) to conclude that, for some

C 1 = C 1 (κ, A, q) > 0, sup (x,t),(x, t)∈B 1/2 ×[-1/2,0] |u(x, t) -u(x, t)| |x -x| α + |t -t| α/β ≤ C 1 ρ -q/β .
All of the parts of (4.8) imply that, for some C 2 = C 2 (κ, A, q) > 0 and

C 3 = C 3 (κ, A, K, q) > 0, ρ -q/β ≤ C2 ( Ŝq/β + E 1/(κβ) ) + C 3 ,
and the rest of the proof follows as in the proof of Theorem 3.1 and the properties of E outlined in Lemma 2.6.

Applications

S:apps

In this section, we show how Theorems 3.1 and 4.1 can be used to prove a regularizing effect for certain initial value problems. Moreover, the regularity estimates are independent of a certain large-range, long-time scaling, which is useful in the theory of homogenization.

We fix a finite time horizon T > 0 and an initial condition (5.1)

A:u0 A:u0 u 0 ∈ BU C(R d ).
The uniform continuity of u 0 ensures the well-posedness of the equations below, but we note that the regularizing effects we prove depend only on u 0 ∞ . Throughout, (5.2)

A:ivpBM A:ivpBM B : [0, T ] × Ω → R m
is a Brownian motion over a probability space (Ω, F, P).

We first consider equations of first order, and we assume that, for some A > 1 and q > 1, (5.3)

A:firstorderH A:firstorderH    H ∈ C(R d × R d × [0, ∞)) satisfies 1 A |p| q -A ≤ H(p, x, t) ≤ A|p| q + A for all (p, x, t) ∈ R d × R d × [0, T ],
and

(5.4)

A:firstorderf A:firstorderf f ∈ C 1 b (R d , R m
). For 0 < ε < 1, we consider solutions of the scaled, forced equation (5.5) E:scaledfirstorder E:scaledfirstorder

du ε + H Du ε , x ε , t ε dt = ε 1/2 m i=1 f i x ε • dB i (t) in R d × (0, T ] and u ε (•, 0) = u 0 on R d ,
and we prove the following result:

T:firstorderscaling Theorem 5.1. Assume (5.1) -(5.4), and, for 0 < ε ≤ 1, let u ε be the solution of (5.5). Fix p ≥ 1, τ > 0 and R > 0. Then there exist C = C(R, τ, T, A, f C 1 , u ∞ , p, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such that, for all λ > 0,

P sup (x,t),(x, t)∈B R ×[τ,T ] |u ε (x, t) -u ε (x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > C + λ ≤ Cε p/2 λ σp .
Proof. We first note that we can assume, without loss of generality, that τ > 1/2. Indeed, otherwise, we consider the function ũε (x, t)

:= 1 2τ u ε (2τ x, 2τ t) for (x, t) ∈ R d × 0, T 2τ ,
which solves

dũ ε + H Dũ ε , x ε , t ε dt = ε 1/2 m i=1 f i x ε • d Bi (t) in R d × 0, T 2τ and ũε (•, 0) = ũ0 on R d ,
where, for (p,

x, t) ∈ R d × R d × 0, T 2τ , H(p, x, t) := H(p, 2τ x, 2τ t), ũ0 (x) = 1 2τ u 0 (2τ x), f (x) = 1 √ 2τ f (2τ x), and B(t) = 1 √ 2τ B(2τ t).
Then H satisfies (5.3) with A and q unchanged, and B is a Brownian motion on [0, 2τ T ]. As a consequence, α = α(A, q) > 0 remains unchanged, and the τ -dependence can be absorbed into R, T , f C 1 , and u 0 ∞ .

Crucially, if f ε (x) := ε 1/2 f (x/ε), then

f ε ∞ = ε 1/2 f ∞ and f ε ∞ Df ε ∞ = f ∞ Df ∞ .
As a consequence, we may choose a fixed constant K > 0 such that the conclusions of Lemma 2. In what follows, we fix 0 < κ < 1 2 .

Step 1: u is bounded. We first use Lemma 2.5 to describe the L ∞ -bound for u on R d × [0, T ]. In view of (5.3), Lemma 2.5 with

ε 1 = ε 2 = 1, R = +∞, and C = R d gives u ε (x, t) ≤ u + (x, t) + AD 1 on R d × [0, 1],
where, for some λ 1 = λ 1 (κ, f C 1 , q) > 0 and, given p ≥ 1, some C = C(κ, f C 1 , p, q) > 0,

P (D 1 > λ) ≤ Cε p/2
λ p for all λ ≥ λ 1 and

∂ t u + + 1 2A |Du + | q = 0 on R d × [0, 1], and u + (•, 0) = u 0 on R d .
The comparison principle yields u + (x, t) ≤ u 0 ∞ . It follows that

u ε (x, t) ≤ u 0 ∞ + C(1 + D 1 ) on R d × [0, 1]
Set N := T . An inductive argument then gives random variables D 2 , D 3 , . . . , D N : Ω → R + and λ 2 , λ 2 , . . . , λ N depending on κ, f C 1 , and q such that

u ε (x, t) ≤ u 0 ∞ + A N k=1 D n on R d × [0, T ]
and, for all k = 1, 2, . . . , N , p ≥ 1, and some C = C(κ, f C 1 , p, q) > 0,

P (D k > λ) ≤ Cε p/2
λ p for all λ ≥ λ k .

A similar argument, using the lower bound of Lemma 2.5, gives

u ε (x, t) ≥ -u 0 ∞ -A N k=1 D n on R d × [0, T ].
Adding a random constant to u ε , which does not affect the equation solved by u ε , we may then write

0 ≤ u ε ≤ S on R d × [0, T ],
where

S := 2 u ε ∞ + 2A N k=1 D k .
Setting M := 1 ∨ (2 u 0 ∞ ), we then have, for all p ≥ 1, λ ≥ λ 1 ∨ λ 2 ∨ • • • ∨ λ N , and some constant C = C(κ, f C 1 , A, p, q, T ) > 0,

(5.6)

Stails Stails P ((S -M ) + > λ) ≤ P N k=1 D k > λ 2A ≤ Cε p/2 λ p .
Step 2: the Hölder estimate. Because τ > 1/2, we can cover B R × [τ, T ] with cylinders on which, by Theorem 3.1, u is Hölder continuous. More precisely, there exists α, λ 0 and C as in the statement of the current theorem, and c = c(κ, α, q) > 0, such that, for all p ≥ 1 and λ ≥ λ 0 , P sup

(x,t),(x, t)∈B R ×[τ,T ]
|u ε (x, t) -u ε (x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > λ ≤ P((S -M ) + > cλ 1-α/q ) + Cε p/2 λ κ(q-α(q-1))p .

Making λ 0 larger if necessary, depending on κ, f C 1 , and q, we invoke (5.6) and obtain the result with σ = 1 -α q ∧ (κ(q -α(q -1))) = (q -α(q -1)) 1 q ∧ κ .

The next result is for the second-order case. Assume that, for some A > 1, ν > 0, and q > 2,

(5.7)

A:secondorderF A:secondorderF          F ∈ C(S d × R d × R d × [0, ∞)) satisfies -νm + (X) + 1 A |p| q -A ≤ F (X, p, x, t) ≤ -νm -(X) + A|p| q + A for all (X, p, x, t) ∈ S d × R d × R d × [0, T ],
and

(5.8)

A:secondorderf A:secondorderf f ∈ C 2 b (R d , R m ).
For 0 < ε < 1, the scaled equation we consider is (5.9)

E:scaledsecondorder E:scaledsecondorder du ε +F εD 2 u ε , Du ε , x ε , t ε dt = ε 1/2 m i=1 f i x ε •dB i (t) in R d ×(0, T ] and u ε (•, 0) = u 0 on R d ,
and we prove the following result:

T:secondorderscaling Theorem 5.2. Assume (5.1), (5.2), (5.7), and (5.8), and, for 0 < ε ≤ 1, let u ε be the solution of (5.9). Fix p ≥ 1, τ > 0 and R > 0. Then there exists a constant C = C(R, τ, T, A, f C 2 , u 0 ∞ , p, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such that

P sup (x,t),(x, t)∈B R ×[τ,T ] |u ε (x, t) -u ε (x, t)| |x -x| α + |t -t| α/(q-α(q-1)) > C + λ ≤ Cε p/2 λ σp .
Proof. Arguing as in the proof of Theorem 5.1, we may assume without loss of generality that τ > 1/2. Notice also that

F ε (X, p, x, t) := F εX, p, x ε , t ε for (X, p, x, t) ∈ S d × R d × R d × [0, T ] satisfies (5.
3) with εν replacing ν, and, therefore, if we define

f ε (x) := ε 1/2 f (x/ε), we have f ε ∞ = ε 1/2 f ∞ and εν + f ε ∞ Df ε ∞ + εν f ε ∞ D 2 f ε ∞ ≤ ν + f ∞ Df ∞ + f ∞ D 2 f ∞ .
As a consequence, we may choose a constant K > 0 independently of ε > 0 for which the conclusions of Lemma 2.6 and Theorem 4.1 hold with the function f ε . The rest of the proof then follows exactly as in the proof of Theorem 5.1.

(a) for any p ≥ 1 and some constant C = C(κ, K, p, q) > 0,

P(E > λ) ≤ Cm p λ p for all λ ≥ λ 0 , and (b) for all 0 < δ ≤ 1; processes (α, σ, X) : [-1, 0] × A → R d × R d × R d that are W -adapted such that (A.2) processes processes α, σ ∈ L ∞ ([-1, 0] × A) and dX r = α r dr + σ r dW r for r ∈ [-1, 0]; W -stopping times -1 ≤ s ≤ t ≤ 0; and f ∈ C 1 (R d , R m ) satisfying (A.3) fs fs f ∞ ≤ m and f ∞ 1 + Df ∞ + σσ t ∞ D 2 f ∞ ≤ K; we have E t s f (X r ) • dB r ≤ δ q E t s |α r | q dr + E δ q (t -s) κ .
We note that the integrals against dB appearing in Lemmas A.1 and A.2 are interpreted as in Section 2, and, in particular, subsection 2.2.

The proof of Lemma A.1 can be found in [START_REF] Seeger | Homogenization of a stochastically forced Hamilton-Jacobi equation[END_REF]. The arguments for Lemma A.2 are similar, but some further details are needed to account for the use of Itô's formula and the interaction between B and W .

We first give a parameter-dependent variant of Kolmogorov's continuity criterion. Its statement and proof are very similar to that in [START_REF] Seeger | Homogenization of a stochastically forced Hamilton-Jacobi equation[END_REF].

L:Kolmogorov

Lemma A.3. Define := {(s, t) ∈ [-1, 0], s ≤ t} and fix a parameter set M. Let (M µ ) µ∈M : Ω → R + and (Z µ ) µ∈M : × Ω → R + be such that

(A.4) subadditive subadditive Z µ (s, u) ≤ Z µ (s, t) + Z µ (t, u) for all µ ∈ M and -1 ≤ s ≤ t ≤ u ≤ 0,
and, for some constants a > 0, β ∈ (0, 1), p ≥ 1, sup

(s,t)∈ E sup µ∈M Z µ (s, t) (t -s) β+1/p -M µ p + ≤ a.
Then, for all 0 < κ < β, there exist

C 1 = C 1 (κ) > 0 and C 2 = C 2 (p, κ, β) > 0 such that, for all λ ≥ 1, P sup µ∈M sup (s,t)∈ Z µ (s, t) (t -s) κ -C 1 M µ > λ ≤ C 2 a λ p .
The next result gives an estimate for moments of sums of certain centered and independent random variables. L:sums Lemma A.4. Let (Y k ) n k=1 : Ω → R be a sequence of centered and independent random variables such that, for all p ≥ 1 and for some µ > 0 and C = C(p) > 0,

E|Y 1 | p ≤ Cµ p . Then there exists a constant C = C(p) > 0 such that E n k=1 Y k p ≤ Cn p/2 µ p .
Proof. Let (ε k ) n k=1 be a sequence of independent Rademacher random variables, that is,

P(ε k = 1) = P(ε k = -1) = 1 2 for all k = 1, 2, . . . , n, such that (ε k ) n k=1 is independent of the sequence (Y k ) n k=1 .
It then follows (see Kahane [START_REF] Kahane | Some random series of functions[END_REF]) that

E n k=1 Y k p ≤ 2 p E n k=1 ε k Y k p .
Therefore, upon replacing Y k with ε k Y k , we may assume without loss of generality that each Y k is symmetric, that is, Y k and -Y k are identically distributed.

Observe next that if the result holds for some p ≥ 1, then, for any q < p, by Hölder's inequality,

E n k=1 Y k q ≤ E n k=1 Y k p q/p
≤ Cn p/2 µ p q/p ≤ Cq/p n q/2 µ q .

Therefore, it suffices to prove the result for p = 2m with m ∈ N.

We compute

n k=1 Y k 2m = Y j1 k1 Y j2 k2 • • • Y j k ,
where the sum is taken over

1 ≤ k 1 < k 2 < • • • < k ≤ n and j 1 + j 2 + • • • + j = 2m.
In view of the symmetry and independence of the Y k , all summands for which one or more of the j i values is odd have zero expectation. Thus,

E n k=1 Y k 2m = EY 2i1 k1 Y 2i2 k2 • • • Y 2i k ,
where the sum is taken over

1 ≤ k 1 < k 2 < • • • < k ≤ n and i 1 + i 2 + • • • + i = m.
A combinatorial argument implies that the cardinality of such terms is equal to m+n-1 n-1

, while Hölder's inequality gives

EY 2i1 k1 Y 2i2 k2 • • • Y 2i k ≤ EY 2m k1 i1/m EY 2m k2 i2/m • • • EY 2m k i /m ≤ Cµ 2m ,
and, therefore,

E n k=1 Y k 2m ≤ C m + n -1 n -1 µ 2m ≤ Cn m µ 2m .
Finally, we turn to the Proof of Lemma A.2. Let C m,K be the space consisting of (α, σ, X, f ) satisfying (A.2) and (A. We first show that there exist constants M 1 = M 1 (K, q) > 0 and M 2 = M 2 (K, p, q) > 0 such that (A.6)

pointwisemoment pointwisemoment sup -1≤s≤t≤0 E sup µ∈M Z µ (s, t) (t -s) 1/2 -M 1 p + ≤ M 2 m p .
Fix s, t ∈ [-1, 0] with s ≤ t. We split into two cases, depending on the size of the interval [s, t].

Case 1. Assume first that (A.7) and invoking (A.7) and the Young and Hölder inequalities then gives, for some constant C = C(K, q) > 0, Raising both sides to the power p, taking the expectation E over Ω, and invoking the scaling properties of Brownian motion yield, for some constant C = C(K, p, q) > 0 that changes from line to line, 

Deltacase1 Deltacase1 t -s ≤ f q ∞ Df q ∞ ∧ f ∞ σσ t ∞,[-1,0] D 2 f ∞ . By Lemma 2.2, E t s f (X r ) • dB r = E [f (X t ) • (B t -B s )]
E t s f (X r ) • dB r ≤ f ∞ ∆ + Df ∞ ∆E t s |α r |dr + 1 2 σσ t ∞ D 2 f ∞ ∆(t -s) ≤ f ∞ 3 2 ∆ + ∆ E t s |α r | q dr 1/q ≤ f ∞ 3 2 ∆ + C∆ q δ q + δ q E t s |α r | q dr,
E
Deltacase2 Deltacase2 t -s > f q ∞ Df q ∞ ∧ f ∞ σσ t ∞,[-1,0] D 2 f ∞ .

Set (A.9)

h h h := f ∞ Df ∞ (t -s) 1/q ∧ f ∞ σσ t ∞ D 2 f ∞ and let N ∈ N be such that t -s h ≤ N < t -s h + 1.
Note that (A.8) implies that h ≤ t -s, and so We estimate

|I| ≤ f ∞ N k=1 ∆ k and |III| ≤ h 2 σσ t ∞ D 2 f ∞ N k=1 ∆ k ,
and, for all ε > 0, Young's inequality yields

|II| ≤ Df ∞ N k=1 ∆ k E τ k τ k-1 |α r |dr ≤ Df ∞ h 1/q N k=1 ∆ k E τ k τ k-1 |α r | q dr 1/q ≤ Df ∞ h 1/q 1 qε q N k=1 ∆ q k + ε q q E t s |α r | q dr .
Combining the three estimates gives

E t s f (X r ) • dB r ≤ f ∞ + h 2 σσ t ∞ D 2 f ∞ N k=1 ∆ k + Df ∞ h 1/q 1 qε q N k=1 ∆ q k + ε q q E t s |α r | q dr .
(A.11)

unifst unifst
We now set ε := δ q Df ∞ h 1/q 1/q . In particular, ε q = q δ q Df ∞ h 1/q and ε q = (q ) q-1 δ q Df q-1 ∞ h 1/q , so that (A.11) becomes, for some C = C(q) > 0,

E t s f (X r ) • dB r ≤ f ∞ + h 2 σσ t ∞ D 2 f ∞ N k=1 ∆ k + C δ q Df q ∞ h N k=1 ∆ q k + δ q E t s |α r | q dr.
For k = 1, 2, . . . , N , the constants a k := E∆ k and b k := E∆ q k satisfy, for some a > 0 and b = b(q) > 0, a k ≤ ah 1/2 and b k ≤ bh q/2 .

Then (A.9) and (A.10) give

f ∞ + h 2 σσ t ∞ D 2 f ∞ N k=1 a k ≤ 3 2 f ∞ N h 1/2 a ≤ 3a f ∞ (t -s)h -1/2 ≤ 3a(t -s) f 1/2 ∞ Df 1/2 ∞ (t -s) -1/(2q ) ∨ σσ t 1/2 ∞ D 2 f 1/2 ∞ ≤ 3aK 1/2 (t -s) 1/2 and Df q ∞ h N k=1 b k ≤ b Df q ∞ N h 1+q/2 ≤ 2b(t -s) Df q ∞ h q/2 ≤ 2b(t -s) f q/2 ∞ Df q/2 ∞ (t -s) q 2q ≤ 2bK q 2 (t -s) q+1 2 .
Therefore, because 0 < δ ≤ 1, we find that, for some constant M 1 = M 1 (K, q, m) > 0,

Z µ (s, t) -M 1 (t -s) 1/2 + ≤ M 1 f ∞ N k=1 (∆ k -a k ) + C Df q ∞ h N k=1 (∆ q k -b k ) .
(A.12)

almostpointwisemoment almostpointwisemoment

The collections (∆ k -a k ) N k=1 and (∆ q k -b k ) N k=1 consist of independent and centered random variables. The scaling properties of Brownian motion yield, for any k = 1, 2, . . . , N and p 0 > 0 and constants A 1 = A 1 (p 0 ) > 0 and A 2 = A 2 (p 0 , q) > 0,

E |∆ k -a k | p0 ≤ A 1 h p0/2 and E |∆ q k -b k | p0 ≤ A 2 h p0q/2 .
It is then a consequence of (A.10) and Lemma A.4 that, for some constants Ã1 = Ã1 (p) > 0 and Ã2 = Ã2 (p, q) > 0, (∆ q k -b k ) p ≤ Ã2 N p/2 h pq/2 ≤ 2 p/2 Ã2 (t -s) p/2 h p(q-1)/2 .

The latter estimate and (A.9) give

Df pq ∞ h p E N k=1 (∆ q k -b k ) p ≤ 2 p/2 Ã2 Df pq ∞ (t -s) p/2 h p(q+1)/2 ≤ 2 p/2 Ã2 f p(q+1)/2 ∞ Df p(q-1)/2 ∞ (t -s) p 1 2 + q+1 2q ≤ 2 p/2
Ã2 K p(q-1)/2 f p ∞ (t -s) p/2 , and so, raising (A.12) to the power p and taking the expectation gives, for some M 2 = M 2 (m, K, p, q) > 0,

E sup µ∈M Z µ (s, t) -M 1 (t -s) 1/2 p + ≤ M 2 (t -s) p/2 .
Dividing by (t -s) p/2 leads to (A.6).

We now take p large enough that κ < 1 2 -1 p .

(1. 1 )

 1 E:main1 E:main1 du + H(Du, x, t)dt = f (x) du + F (D 2 u, Du, x, t)dt = f (x) • dB, where H : R d × R d × R → R and F : S d × R d × R d × R → R are coercive in Du, F is degenerate elliptic in D 2 u ∈ S d , S d is the space of symmetric d × d matrices, f ∈ C 2 b (R d , R m ), and B is an m-dimensional Brownian motion defined over a fixed probability space (Ω, F, P).

|v|≤1v•

  Xv and m -(X) := min |v|≤1 v • Xv.

, and 0 Theorem 3 . 1 .

 031 ≤ u ≤ S in B 1 × [-1, 0]. Assume (3.1) -(3.4), and let 0 < κ < 1/2 and M ≥ 1.

, and 0 Theorem 4 . 1 .

 041 ≤ u ≤ S in B 1 × [-1, 0]. Assume(3.1) and (4.1) -(4.

Case 1 .

 1 Assume first that inf y∈B2µ w(y, -1) ≤ 2θ. Let (x, t) ∈ B µ × [-µ β , 0]. Then (4.8)(b) and the upper bound from Lemma 2.6 imply that

  5 and Theorem 3.1 hold with the function f ε , for all ε ∈ (0, 1].

  3), define the parameter setM := (0, 1) × C m,K ,and, for each µ = (δ, α, σ, X, f ) ∈ M and (s, t) ∈ , the stochastic process (A.5)subadditiveguy subadditiveguy Z µ (s, t) := E δ q t s f (X r ) • dB r -δ q+q E t s |α r | q dr + ,which can easily be seen to satisfy (A.4).

  r σ t r D 2 f (X r )) • (B r -B s )dr . Setting ∆ := max r1,r2∈[s,t] |B r1 -B r2 |

(A. 10 ) 1 f 1 Df 1 tr(σ r σ t r D 2 f

 101112 Nh Nh t -s ≤ N h < 2(t -s)For k = 0, 1, 2, . . . , N -1, set τ k := s + kh and τ N = t, and, for k = 1, 2, . . . , N , define∆ k = max u,v∈[τ k-1 ,τ k ] |B u -B v | . (X r ) • dB r = I -II -III,whereI := N k=1 E f (X τ k ) • (B τ k -B τ k-1 ) , (X r )α r • (B r -B τ k-1)dr , (X r )) • (B r -B τ k-1 )dr .

≤

  Ã1 N p/2 h p/2 ≤ 2 p/2 Ã1 (t -s) p/2 and E N k=1

  and H : R d → R is convex and superlinear. Let u ∈ C(U ) be a pathwise viscosity sub-(resp. super-) solution, in the sense of Definition 2.1, of

  Then, similarly as in Step 1, Lemma 2.5 gives

	w(x, t) ≥	inf

(y,s)∈∂ * (B2µ×[-1,t])

Appendix A. Controlling stochastic integrals

S:intcontrol

Throughout the paper, we use the following results that give uniform control over certain stochastic integrals. Assume below that (A.1)

is a standard Brownian motion over the probability space (Ω, F, P).

L:intcontrol1

Lemma A.1. Let m > 0, K > 0, q > 1, and κ ∈ (0, 1/2). Then there exists a random variable D : Ω → R + and λ 0 = λ 0 (κ, K, q) > 0 such that (a) for any p ≥ 1 and some constant C = C(κ, K, p, q) > 0,

Assume now that

W : [-1, 0] × A → R is a Brownian motion defined over a probability space (A, F, P).

The probability space A is independent of Ω. Below, we prove a statement that is true for P-almost every sample path B of the Brownian motion from (A.1), which involves taking the expectation with respect to the Brownian motion W . Effectively, B and W are independent Brownian motions, and E can be interpreted as the expectation conditioned with respect to B.

Then (A.6) and Lemma A.3 imply that, for some C = C(κ, m, K, p, q) > 0 and M = M (κ, m, K, q) > 0, and for all λ ≥ 1 and p > 2 1 -2κ , we have

Cm p λ p . By changing C in a way that depends only on m and p, the same can be accomplished for all p ≥ 1. The proof is finished upon setting