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ON INVARIANT RANK TWO VECTOR BUNDLES ON P
2

SIMONE MARCHESI AND JEAN VALLÈS

Abstract. In this paper we characterize the rank two vector bundles on P
2 which are

invariant under the action of Gp := Stabp(PGL(3)), that fixes a point in the projective

plane, GL := StabL(PGL(3)), that fixes a line, and T = Gp ∩ GL. Moreover, we prove

that the geometrical configuration of the jumping locus induced by the invariance does

not, on the other hand, characterize the invariance itself. Indeed, we find infinity families

that are almost uniform but not almost homogeneous.

1. Introduction

The description and classification of vector bundles, which are invariant under the action

of a determined group, has been widely studied. For instance, rank r vector bundle over Pn

which are invariant under the canonical action of PGL(n + 1,C) are called homogeneous.

Their complete classification is known up to rank n + 2, see [8] for a reference, and they

are given only by direct sums involving line bundles, a twist of the tangent bundle, a twist

of the cotangent bundle on P
n or their symmetric or anti-symmetric powers.

Furthermore, particular situations have induced to consider the action of specific sub-

groups of the projective linear group. For example, Ancona and Ottaviani prove in [1] that

the Steiner bundles on P
n which are invariant under the action of the special linear group

SL(2,C) are the ones introduced by Schwarzenberger in [15]. Further in this direction, the

second named author proves in [16] that any rank 2 stable vector bundle on P
2 which is

invariant under the action of SL(2,C) is a Schwarzenberger bundle.

In this paper we will consider rank 2 vector bundles on the projective plane P2, and the

chosen subgroups of PGL(3) = PGL(3,C) have been inspired by the following observations.

In a previous paper, see [10], both authors have studied Nearly free vector bundles coming

from line arrangements.

First of all, recall that it is of great interest also the studying and description of the action

of a group on an hyperplane arrangement. For example, hyperplane arrangements which

are invariants by the action of the group defined by reflections are free, and therefore their

associated vector bundle is a direct sum of line bundles and hence homogeneous (see [13]

for more details).

Recall moreover that a nearly free vector bundle F , which were introduced by Dimca and

Sticlaru in [3], can be defined by the short exact sequence

0 → OP2(−b− 1)
M
→ OP2(−a)⊕ OP2(−b)2 → F → 0,
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with (a, b) ∈ N
2 called the exponent of the vector bundle.

In particular, we proved the following two results

• Let F be a nearly free vector bundle. Then, there exists a point p such that a line

l ∈ P
2 is a jumping line of F if and only if l passes through p. Moreover, each

jumping line has order of jump equal to 1. We call p the jumping point associated

to the vector bundle.

• Given a point p ∈ P
2 and a couple of integers (a, b) ∈ C

2 with a ≤ b, there exists,

up to isomorphism, one and only one nearly free vector bundle with exponents

(a, b) whose pencil of jumping lines has p as base point. Moreover, we can think

its defining matrix M as

tM = [x, y, zb−a+1].

Furthermore, we proved that the geometrical configuration of the jumping locus S(F),

described in the first item, “almost” characterises nearly free vector bundles (see [10, The-

orem 2.8]).

Inspired by the essential nature of the jumping point p, we focus on the rank 2 vector

bundles on P
2 which are invariant under the action of the subgroupGp ⊂ PGL(3) that fixes

the point p in the projective plane. Believing that it is probably too optimistic to hope for

a complete classification for all subgroups, we focus on the ones which fix linear subspaces

of the projective plane. We therefore consider the action of the subgroups GL ⊂ PGL(3),

which fixes the line L in the projective space, and T ⊂ PGL(3) fixing a line L and a point

p belonging to this line.

Observing that T = Gp ∩GL, we deal first with the T-invariant case, deducing the others

from this one. The results obtained can be concentrated in the following statement.

Theorem 1. Let F an indecomposable rank two vector bundle on P2. Then

• F is invariant under the action of Gp if and only if it is a nearly free vector bundle

with jumping point p;

• F is invariant under the action of GL if and only if it is homogeneous;

• F is invariant under the action of T if and only if it is a nearly free vector bundle

with jumping point p.

Finally, in Section 7, we investigate a little deeper the relation, for a rank 2 vector

bundle F on P
2, between the invariance for the action of a given group and the geometrical

configuration of its jumping locus. In this direction, recall that if we consider the whole

PGL(3), hence F to be homogeneous, then all the lines L ⊂ P
2 induce the same splitting

type. Vector bundles satisfying such property are called uniform.

It is known, due to the work of many (see for example [2,5,7,8,14,17]), that every uniform

vector bundle on P
n with rank r ≤ n+ 1 is also homogeneous. On the other hand, it has

been of interest to find examples of uniform vector bundles, which are not homogeneous,

of the lowest possible rank, see for example [4, 6, 9] and [12, Thm 3.3.2].

We will observe that the equivalence between the invariance and the jumping locus is

already broken for the rank 2 case, and we will provide the complete classification of
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vector bundles which are almost uniform, i.e. whose jumping locus is given by all the lines

passing through a fixed point p, all having the same order of jump.

2. Action of Gp, GL and T

We consider now the subgroup Gp = Stabp(PGL(3,C)) that fixes a point p ∈ P
2, the

subgroup GL = Stabp(PGL(3,C)) that fixes a line L ⊂ P
2 and, when p ∈ L, we consider

also the subgroup defined by the intersection T = Gp ∩ GL. In order to have a good

description of the matrices representing the elements of the considered groups, let us

choose the point p = (1 : 0 : 0) and the line L = {z = 0} in P
2.

In this section we describe the action of these three subgroups of PGL(3).

First of all, notice that they can be described as subgroups of matrices in the following

way:

Gp = {





1 ∗ ∗

0 a b

0 c d



 , ad− bc 6= 0}, GL = {





a b ∗

c d ∗

0 0 1



 , ad− bc 6= 0} and

T = {





a ∗ ∗

0 b ∗

0 0 c



 , abc 6= 0}.

2.1. Action of Gp. First of all, let us describe how the group Gp acts on the points and

lines of the projective plane.

Lemma 2.1. The group Gp acts transitively on the following sets:

(1) points of P2 \ {p},

(2) lines L such that p ∈ L,

(3) lines L such that p /∈ L.

Proof. It is clear that the action of Gp on these three sets is well defined. We would like

to prove that these actions are transitive. In order to prove item (1), we recall that G

acts transitively on the set of quadruples of points of P2, hence the subgroup Gp acts

transitively on the set of triples of P2 \ {p}. This 4-transitivity of G implies that G acts

transitively on the pair of lines, which moreover implies the transitivity of the action of

Gp on both sets of lines, proving the last two items. �

2.2. Action of GL. Let us focus now on the subgroup GL.

Lemma 2.2. The group GL acts transitively on the following sets:

(1) points of P2 \ L,

(2) points of the line L,

(3) the product (P2 \ L)× (P2 \ L).
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Proof. All items can be proven directly choosing appropriate matrices.

To prove the first one, notice that the matrix




1 ∗ a

0 1 b

0 0 c





sends the point (0 : 0 : 1) to any point (a : b : c) with c 6= 0.

(2) To prove the second one, notice that the matrix




a b ∗

c 1 ∗

0 0 1





sends the point (1 : 0 : 0) to any point (a : c : 0). Observe that if a = 0, we ask that b 6= 0.

(3) The matrix




a c 0

b d 0

0 0 1





sends the pair of points {(1 : 0 : 1), (0 : 1 : 1)} to any other pair {(a : b : 1), (c : d : 1)}. �

2.3. Action of T. As done for the previous groups, let us prove the transitivity properties

of T that will be needed.

Lemma 2.3. The group T acts transitively on the following sets:

(1) L \ {p} in the projective plane,

(2) P̌2 \ {p∨} in the dual projective plane.

(3) {p∨} \ {L∨} in the dual projective plane.

Proof. To prove the first item, it is sufficient to observe that any point (u : 1 : 0) ∈ L\{p}

is the image of (0 : 1 : 0) by




1 u 0

0 1 0

0 0 1



 .

To prove the second item, it is enough to show that the line x = 0 can be sent on any line

Lv,w = {x = vy + wz} by an element of the group T. Indeed the matrices (c ∈ C)




1 v cv + w

0 1 c

0 0 1





send the point (0 : α : β) to (αv + β(cv + w) : α+ cβ : β) ∈ Lv,w.

To prove the third item, we have to show that any line y + wz = 0 can be sent to

another line of the same type, i.e. y + w
′

z = 0. It is enough to show that y = 0 can be

sent to the line y + wz = 0, for any w ∈ C.

The matrices of type




1 a b

0 1 −w

0 0 1



 ,
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for (a, b) ∈ C, are the required ones. �

3. Nearly Free vector bundles

In this section we will focus on the family of Nearly free vector bundles, proving that

they are invariant for the action of the groups Gp and T, but not for the action of GL.

Consider the family of rank two vector bundles En parametrized by the positive integers

n ∈ N
∗ and defined by the following short exact sequence:

0 −−−−→ OP2(−n)
(y,z,xn)
−−−−−→ O2

P2(1− n)⊕ OP2 −−−−→ En −−−−→ 0.

These bundles belong to the family of Nearly Free vector bundles, first introduced in [3].

Notice that when n = 1 we have E1 = TP2(−1), when n = 2 the bundle E2 is semi-stable

and when n ≥ 3 the bundle En is unstable, because in this case c1(En) < 0 and H0(En) 6= 0.

In [10], we have proven that, fixing a point p ∈ P
2 and supposing that p = (1 : 0 : 0) up

to a change of coordinates, the point p determines any nearly free vector bundle up to

isomorphism and they are all described by the same exact sequence as the one defining En.

The point p has been denominated jumping point, indeed a line is a jumping line for En
when n > 1 if and only if it passes through p. Moreover, when n > 1, such point appears

as the zero locus of the unique non zero global section of H0(En).

Let us denote by NF (p) = {En, n ∈ N
∗} the set of all such bundles.

Since it is clear that a direct sum of two line bundles is invariant under the action of any

subgroup of PGL(3), we can consider only the group action on indecomposable bundles.

We conclude this section studying the action, and the possible invariance, of the con-

sidered groups on the bundles in NF (p).

Lemma 3.1. The behaviour of NF (p) under the action of the three considered subgroups

is the following:

(1) Any element in NF (p) is invariant under the action of Gp and T.

(2) The only invariant vector bundle in NF (p) under the action of GL is E1 = TP2(−1).

Proof. —Let us prove first that any element in NF (p) isGp-invariant. BeingT = Gp∩GL,

this will also prove the invariance of any bundle in NF (p) under the action of T.

Consider the dual exact sequence

0 −−−−→ E∨
n −−−−→ O2

P2(n− 1)⊕ OP2

(y,z,xn)
−−−−−→ OP2(n) −−−−→ 0,

and the action, on the sequence, given by the element g =





1 u v

0 a b

0 c d



 ∈ Gp.

We obtain

0 −−−−→ g∗E∨
n −−−−→ O2

P2(n − 1)⊕ OP2

(ay+bz,cy+dz,(x+uy+vz)n)
−−−−−−−−−−−−−−−−−→ OP2(n) −−−−→ 0,
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which fits into the following commutative diagram

0 −−−−→ g∗E∨
n −−−−→ O2

P2(n − 1)⊕ OP2

(ay+bz,cy+dz,(x+uy+vz)n)
−−−−−−−−−−−−−−−−−→ OP2(n) −−−−→ 0

≃





y
N





y





y

0 −−−−→ E∨
n −−−−→ O2

P2(n − 1)⊕ OP2

(y,z,xn)
−−−−−→ OP2(n) −−−−→ 0,

with

N =





a c fn−1

b d gn−1

0 0 1





and fn−1 and gn−1 are degree n− 1 polynomials verifying

(x+ uy + vz)n = xn + yfn−1 + zgn−1.

The isomorphism induced in the left map of the diagram proves the invariance.

— Let us prove the second item.

If n = 1 the bundle E1 is homogeneous and fixed by the whole group PGL(3).

If n > 1, we have recalled that the bundle En, and therefore the locus of the jumping lines,

is determined by its jumping point p. But this point is not fixed by all the elements in

GL, proving that En is not invariant under its action. �

4. Splitting type of invariant bundles

In this section we will describe the possible splitting types of vector bundles which are

invariant under the three subgroups, that is the way their restriction on any line splits.

As we will see better in Section 7, this geometric description of the jumping locus is not

equivalent to the invariance.

Let us now consider a two vector bundle F which is not uniform. Then the splitting

type is constant for any line l belonging to a non empty open set U ⊂ P̌
2. This is usually

referred to as the general splitting type. Let us assume that F ⊗ Ol = Ol(a) ⊕ Ol(b) for

l ∈ U , denoting by δ = |a − b| the gap appearing for such general splitting. This gap

is minimal on U , in other words, for any line l in the projective plane, we have that

δ ≤ δ(l) = |al − bl| where F ⊗ Ol = Ol(al)⊕ Ol(bl).

Since F is not uniform, the set S(F)set = {l, δ(l) > δ}, whose lines are called jumping

lines, is not empty.

These jumping lines posses a scheme structure that we will denote by S(F).

To simplify the description of this scheme let us assume that the bundle F is normalized,

that is c1 = c1(F) ∈ {−1, 0}.

• When c1(F) = 0 and F is stable (resp. semistable) then δ = 0 and S(F) is a curve

(resp. a union of lines that can have multiplicity) of degree c2(F).

• When c1(F) = −1 and F is stable then δ = 1 and S(F) is, in general, a finite

scheme but it could also contain a divisor. If it is a finite scheme then its length

is the binomial number
(

c2(F)
2

)

.
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• When F is unstable then δ ≥ 2 and there exists n > 0 such that H0(F(c1−n)) 6= 0

and H0(F(c1 − n − 1)) = 0. Then h0(F(c1 − n)) = 1 and the unique non zero

section vanishes in codimension 2. The lines meeting this zero scheme form the

scheme S(F) of jumping lines.

4.1. Splitting type of Gp invariant bundles.

Lemma 4.1. Let F be a non uniform Gp-invariant rank two vector bundle on P
2. Then,

Sset(F) = p∨ and δ(l) is constant for any l ∋ p.

Remark 4.2. This is a set-theoretic description. The scheme of jumping lines is then a

multiple structure on p∨.

Proof. Since F is not uniform, S(F) has dimension at most 1. By Lemma 2.1, S(F)

cannot contain a line L such that p /∈ L and, because of the invariance combined with

the transitivity of the chosen action, it coincides with the whole set p∨ of lines through p.

Moreover, any jumping line has the same splitting type. �

4.2. Splitting type of GL invariant bundles.

Lemma 4.3. Let F be a non uniform GL-invariant rank two vector bundle on P
2. Then,

F is stable, c1(F) = −1 and S(F) is a finite scheme of length
(

c2(F)
2

)

supported by {L∨}.

Proof. Since by Lemma 2.2 the group GL acts transitively on P̌2 \ {L∨}, the set Sset(F)

cannot contain a line distinct from L. As we said before, if c1(F) = 0 or if F is unstable

then its scheme of jumping lines contains necessarily a curve. Then, F is stable and

c1(F) = −1. Since its scheme of jumping lines is finite its length is
(

c2(F)
2

)

. �

4.3. Splitting type of T invariant bundles.

Lemma 4.4. Let F be a non uniform T-invariant rank two vector bundle on P
2. Then,

Sset(F) = p∨ or Sset(F) = {L∨}. The second case cannot occur if c1 = 0 or if F is

unstable. More precisely, there are three possible splitting types:

• El = Ol(k)⊕ Ol(−k + c1) with k ≥ 0 when l∨ ∈ P̌2 \ p∨,

• El = Ol(k + h)⊕ Ol(−k − h+ c1) with h ≥ 0 when l∨ ∈ p∨ \ {L∨} and

• El = Ol(k + h+ i)⊕ Ol(−k − h− i+ c1) with h ≥ 0, i ≥ 0 when l = L.

Proof. Denote the generic splitting of F by Ol(k)⊕Ol(−k+c1); in particular, if F is stable

(or semi-stable), we have k = 0. The descriptions given is the second and third item follow

directly from the transitivity of the action of T described in Lemma 2.3. Indeed, all the

(possible) jumping lines are the ones passing through the point p; moreover, they must

have all the same splitting type except for the line L fixed by the action, where the gap

δL could be bigger.

Specifically, if h > 0 then the set of jumping lines is the line in the dual projective

plane Sset(F) = p∨; on the other hand, if h = 0 and i > 1, this set is just a point

Sset(F) = {L∨}. �

Remark 4.5. Under the hypothesis and using the notation of the previous result, notice

that the case h = 0 and i > 0, which gives that Sset(F) = p∨, can only occur if if c1 = −1

and F stable.
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5. The case c1(Fnorm) = 0 and Sset(F) = p∨.

From the description in the previous section, we have that a non decomposable rank two

vector bundle F with even c1 has a curve of jumping lines. Assuming that F is normalized

and that such curve is a line, eventually with multiplicity, we prove the following result.

Theorem 5.1. A non decomposable rank two vector bundle F such that c1(F) = 0 and

Sset(F) = p∨, where p is a point in P
2, is either unstable or semistable.

Proof. Assume that F is stable. The splitting type on a general line l through p is

Ol(−h) ⊕ Ol(h) with h > 0. This means that, for a general line l through p we have

h0(F|l(−h)) = 1. Thanks to this fact, we can construct a special non zero section of

F(n − h) for some n ≥ h in the following way. Let us consider the following diagram,

constructed blowing up the point p in P
2

P̃
2

p̃
��

q̃
// p∨

P
2

Because of the possible splitting types, we get that q̃∗p̃
∗(F(−h)) is an invertible sheaf on

p∨, that is Op∨(−n) with n > h thanks to the stability of F . This gives a non zero map

q̃∗Op∨ −→ p̃∗(F(−h)) ⊗ q̃∗Op∨(n).

Remind that p̃∗q̃
∗Op∨(n) = In

p (n), then taking the direct image on P
2, we obtain a short

exact sequence

(1) 0 −−−−→ OP2 −−−−→ F(n− h) −−−−→ IΓ(2n− 2h+ c1) −−−−→ 0.

with IΓ ⊂ In
p . This gives some numerical conditions. The length of Γ is c2(F(n − h)) =

c2(F)+(n−h)2 and this length is greater or equal than n2 by construction. Indeed, locally

at p = (1 : 0 : 0), the zero set Γ is a complete intersection defined by two polynomials in

⊕k≥0H
0(In

p (n+ k)), in particular its length is at least n2. This means that we have

c2(F) ≥ h(2n − h).

Moreover, since F is stable, c2(F) is the degree of the curve S(F) which means that, if

f = 0 is the linear form defining p∨ in P̌2 then S(F) is defined by f c2(F) = 0.

Let l be a general jumping line.

Using the method implemented by Maruyama in [11] to determine the multiplicity of the



ON INVARIANT RANK TWO VECTOR BUNDLES ON P2 9

singular point l of the curve of jumping lines of F , we consider an elementary transforma-

tion of F , given by the jumping line, which induces the following diagram:

(2) 0

��

0

��

0 // OP2(h− n) //

≃

��

F1
//

��

IΓ1
(n − h− 1)

��

// 0

0 // OP2(h− n) // F //

��

IΓ(n − h)

��

// 0

Ol(−h)

��

≃
// Ol(−h)

��

0 0

Recall that Maruyama’s method states that, denoting (Fi)|l ≃ Ol(ai)⊕Ol(bi) with ai ≥ bi,

the multiplicity is computed as multl∨S(F ) =
∑k

j=0 ai, where ak is the first integer in the

decreasing sequence {ai}i≥0 with ak ≤ 0. Iterating the previous diagram, using subsequent

elementary transformations, we get that multl∨S(F ) ≤ hn. Combining the obtained

inequalities, we have that h(2n−h) ≤ nh. The only possibility is h = n which proves that

F is semistable but not stable.

The main ingredient to prove the last inequality is to look at the local description of the

previous diagram. Locally at the point p = (1 : 0 : 0), Γ is defined by two non homogeneous

polynomials (f, g), that we describe in terms of their homogeneous components

f =

deg(f)
∑

k=n

fk, g =

deg(g)
∑

k=m

gk.

Observe that the lowest degree of the homogeneous components must be n for one of the

two defining polynomials (which we suppose to be f) and greater or equal than n for the

other one (in our case m ≥ n). Else, we would have that Γ contains the fat point defined

by a power of Ip greater then n, which is impossible. We will mainly focus on the n-th

homogeneous component fn of f , which we describe as

fn =
∑

i+j=n

αi,jy
izj .

Because of the hypothesis on the splitting type for the generic jumping line, we can consider

a generic change of coordinates of P2, which fixes the point p, that allows us to suppose

that all the coefficients αi,j are non zero and to consider, as generic jumping line, the one

defined by y = 0.

This implies that, because of Diagram 2, the polynomial

f (1) =
f −

(

α0,nz
n +

∑

t>n βtz
t
)

y
,
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with βt non zero for a finite number of values of t, belongs to the ideal defining Γ1. In

particular, its homogeneous part of degree n − 1 comes from fn and henceforth all the

possible monomials yizj, in this case with i+ j = n− 1, appear with non zero coefficient.

Therefore, we have that

(F1)|l ≃ Ol(−h+ s1)⊕ Ol(h− 1− s1), with s1 ≥ 0.

Observe that the integer s1 appears because, depending on the homogeneous parts of

higher degree in the considered polynomials, we could get a lower order, at the point p, in

the intersection of the line l with Γ1.

Iterating the previous process, we have that at the k-th step we must have

(Fk)|l ≃ Ol(−h+ sk)⊕ Ol(h− k − sk), with sk ≥ 0.

and the iteration end at most at the (n− 1)-st step. Indeed, we obtain f (n−1) = z + · · · ,

which gives a splitting for Fn−1 with both degree less or equal than zero.

�

6. Main results

In this section we will finally characterize the vector bundles which are invariant under

the action of the considered subgroups.

Theorem 6.1. A non decomposable rank two vector bundle F is T-invariant if and only

if is a Nearly Free vector bundle.

Before proving this theorem, let us show that it implies the characterization of the

invariance for the subgroups Gp and GL.

Corollary 6.2. A non decomposable rank two vector bundle F is Gp-invariant if and only

if belongs to NF (p).

Proof. We have already seen that any bundle in NF (p) is Gp-invariant.

Conversely, we have to prove that these are the only invariant bundles. Since T =

Gp ∩ GL, the invariant bundles under the action of Gp must also be invariant under the

action of T, proving the result. �

Corollary 6.3. A rank two vector bundle F is invariant under the action of GL if and

only if F is homogeneous.

Proof. Theorem 6.1 proves that the invariant bundles under the action of T = Gp ∩ GL

all belong to NF (p). Moreover, Lemma 2.2 shows that a Nearly free bundle F that is not

homogeneous is not GL-invariant, proving the result. �

Proof of Theorem 6.1. Let F be a non decomposable normalized rank two vector bundle

which is T-invariant. Moreover, we will use the notation for the possible splitting types

introduced in Section 4.3.

— Assume first that F is either unstable or semistable.

Then there is a “negative” section:

0 −−−−→ OP2(k) −−−−→ F −−−−→ IZ(−k + c1) −−−−→ 0,
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where k ≥ 0 and Z is empty or a finite scheme of length c2(F(−k)). This section is unique

(except when k = c1 = 0, Z = ∅ and F = O2
P2), which implies that g(Z) = Z for any

g ∈ T. This imposes Z to be a local complete intersection supported on the point p;

indeed if Zred = p+Z
′

with Z
′

not supported on p, then it cannot be invariant according

to Lemma 2.3. Hence Z is a complete intersection supported on p and containing the fat

point defined by (y, z)h; this implies that Z can be defined by the ideal (f1(y, z), f2(y, z))

with deg fj = h+ ij , for j = 1, 2, and 0 ≤ i1 ≤ i2.

This means that, as done before, F admits a resolution of type

0 → OP2(−h− i1 − i2 + t)
A
→ OP2(−i2 + t)⊕ OP2(−i1 + t)⊕ OP2(k) → F → 0,

with t = −h−k+c1 and A = [f1(y, z), f2(y, z), f(x, y, z)], where f denotes a homogeneous

form of degree 2k + 2h+ i1 + i2 − c1.

Notice that the action given by an element g = g(a,b,c) ∈ T sends the linear forms x, y and

z to, respectively, x− ay + (ac− b)z, y − cz and z. Moreover, denoting by Ag the matrix

obtained from A by the action of g, we have, by invariance, the following commutative

diagram

0 −−−−→ OP2(−h− i1 − i2 + t)
A

−−−−→ OP2(−i2 + t)⊕ OP2(−i1 + t)⊕ OP2(k) −−−−→ F −−−−→ 0

λ





y
H





y

∥

∥

∥

0 −−−−→ OP2(−h− i1 − i2 + t)
Ag

−−−−→ OP2(−i2 + t)⊕ OP2(−i1 + t)⊕ OP2(k) −−−−→ g∗F −−−−→ 0,

where

H =





α 0 0

h1 β 0

h2 h3 γ



 ,

denoting by λ, α, β and γ non vanishing scalars, by h1, h2 and h3 three homogeneous forms

of degree respectively i2 − i1, 2k + h+ i2 − c1 and 2k + h+ i1 − c1.

From the commutativity of the diagram, we have that f1 must be invariant, up to scalar,

for every element of the group. Observing the a monomial of type yαzβ goes to λ(y−cz)αzβ

and, due to the invariance, we must have f1 = zh+i1 and f2 = yh+i2 .

Considering the relation

(y − cz)h+i2 = yh+i2 + h1z
h+i1

and expanding the power on the left side of the equality, we find that there are no middle

terms, in other words h + i = 1, which means that h = 1 and i1 = i2 = 0. Therefore A

can be written as
[

z, y, x2k+c1+1
]

, which implies F to be Nearly Free.

— Assume now F to be stable.

If c1(F) = 0, then because of the T-invariance, we would have Sred(F) = p∨ and therefore

a contradiction by Theorem 5.1; hence, c1(F) = −1. Let L ∋ p the unique line fixed by

T. Then the equivariant composition

F −−−−→ F|L −−−−→ OL(−h− i− 1)
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induces an exact sequence, usually called an elementary transformation,

0 −−−−→ G(−1) −−−−→ F −−−−→ OL(−h− i− 1) −−−−→ 0

where G is a rank two stable or semistable vector bundle with c1G = 0 that is invariant

under T. Indeed, since L is fixed and F is invariant under the action of T, for any g ∈ T

we have the following commutative diagram

0 −−−−→ G(−1) −−−−→ F −−−−→ OL(−h− i− 1) −−−−→ 0




y

≃





y

∥

∥

∥

0 −−−−→ g∗(G(−1)) −−−−→ g∗F −−−−→ OL(−h− i− 1) −−−−→ 0.

Completing the diagram, this proves that G ≃ g∗G, in other words G is also invariant

under the action of T.

Again by Theorem 5.1, G is semistable. Then a non zero section of G gives a non zero

section of F(1), fitting in

0 −−−−→ OP2 −−−−→ F(1) −−−−→ IΓ(1) −−−−→ 0,

that vanishes along a 0-dimensional scheme Γ.

If h0(F(1)) = 1 the scheme Γ is T-invariant which proves that Γ is supported exactly

on p. Then Γ is a complete intersection of two polynomials (f(y, z), g(y, z)) respectively

of degree n+ i1 and n+ i2 with i1 ≤ i2. We obtain a resolution of F , now given by

0 → OP2(−2n− i1 − i2)
A
→ OP2(−1)⊕ OP2(−n− i1)⊕ OP2(−n− i2) → F → 0,

with A = [ℓ(x, y, z), f, g] . The hypothesis of invariance of F , applying analogous compu-

tation to the unstable and semistable case described in the previous part, implies that the

only possibility is given by n = 1 and i1 = i2 = 0 and therefore F is nearly free. Moreover,

because of its stability, we have F ≃ TP2(−2).

If h0(F(1)) > 1 then either h = i = 0, which would mean that F is uniform and

therefore homogeneous, or h0(G) > 1, which means that G = O2
P2 , having k = 0 because

of the stability of F . In the latter case, the exact sequence defining the elementary

transformation gives us the resolution of F , which is

0 −−−−→ OP2(−n)
(f,g,L)
−−−−→ O2

P2 ⊕ OP2(1− n) −−−−→ F(1) −−−−→ 0.

where we have denoted by n = h+ i+ 1. In particular, Γ is a complete intersection of a

curve of degree n = c2(F) and the line L. Exactly as before, the invariance of F implies

that n = 1 which means that F ≃ TP2(−2). �

7. Special geometric configurations of the jumping locus

In Section 4.1 we have noticed that if a rank 2 vector bundle F on P
2 is invariant

under the action of Gp, then, if not uniform, its jumping locus is given by all lines passing

through p. Moreover, all jumping lines have the same order.

It is natural to ask ourselves the natural question
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Is the invariance equivalent to the obtained special geometric configuration

of the jumping locus?

From [10, Theorem 2.8], we already know the answer to be negative. Nevertheless, the

result can be generalized to any order of jump, finding interesting families of stable bundles.

Theorem 7.1. Let p ∈ P
2 be a point and F be a rank 2 vector bundle on P

2 that we can

assume to be normalized, i.e. c1(F) = {−1, 0}. Assume that S(F) = {L,L ∋ p} and that

F ⊗ OL = OL(r) ⊕ OL(−r + c1), with r ∈ N and for any L ∈ S(F). Then, we have the

following options

• If F is either unstable or semistable then F is defined by the resolution

0 −→ OP2(−2r − k + c1)
A

−→ OP2(k)⊕ OP2(−r − k + c1)
2 −→ F −→ 0,

where k ∈ N such that H0(F(k)) 6= 0 and H0(F(k − 1)) = 0, i.e. gives a global

section of minimal degree. Moreover, the matrix A is given, assuming p = (0 :

0 : 1), by f(x, y, z), g(x, y) and h(x, y), with f any homogeneous form of degree

2r + 2k − c1 and g and h degree r forms such that

0 =
(

H0(OL(r − 1)) · g
)

∩
(

H0(OL(r − 1)) · h
)

⊂ H0(OL(2r − 1)).

for any line L not passing through p.

In particular, if r = 1, F is a nearly free vector bundle.

• If F is stable, then c1(F) = −1, c2(F) = (r+ 1)2 and the bundle is defined by the

resolution

0 −→ OP2(−2r − 2)
A

−→ OP2(−1)⊕ OP2(−r − 1)2 −→ F −→ 0.

Moreover, after choosing p = (0 : 0 : 1), A = (f(x, y, z), g(x, y), h(x, y))) for any

degree 2r+1 form f not passing through p and and g and h are degree r+1 forms

such that

0 =
(

H0(OL(r − 1)) · g
)

∩
(

H0(OL(r − 1)) · h
)

⊂ H0(OL(2r)).

for any line L not passing through p.

Proof. Throughout the proof, we will choose p = (0 : 0 : 1).

Let us first consider F to be unstable or semistable. Hence the bundle F is defined by

0 −→ OP2(k) −→ F −→ IΓ(−k + c1) −→ 0,

being Γ a 0-dimensional scheme supported on p. Since the jump is constant, we have that

JΓ ⊂ J r
P . and Γ is locally intersection complete concentrated on one point. This means

that Γ is a complete intersection of two forms (f, g) of degree r with multiplicity r at p,

that is two set of r lines concurrent in p (with no common component in order to define

a codimension two set Γ). Therefore the resolution of F is given by

0 −→ OP2(−2r − k + c1)
A

−→ OP2(k)⊕ OP2(−r − k + c1)
2 −→ F −→ 0.

where A = [f(x, y, z), g(x, y), h(x, y)], with f homogeneous form of degree 2r + 2k − c1
and g and h of degree r.

A line L is a jumping line for F if and only if H0(F|L(−k− 1+ c1)) 6= 0 so, after dualizing
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the resolution of F , the jumping condition, for a given line L, is equivalent to the map

H0(OL(r − 1)2)
M
−→ H0(OL(2r − 1))

not to be injective. Notice that M is once again defined using the degree r forms g and

h. It is straightforward to check that, if L ∋ p, the two forms become independent and

therefore we have a jumping line of the required order r.

On the other hand, when we consider a line L 6∋ p, we have that L is not a jumping line

for F if and only if

0 =
(

H0(OL(r − 1)) · g
)

∩
(

H0(OL(r − 1)) · h
)

⊂ H0(OL(2r − 1)).

Let F be stable with c1 = 0.

Using an analogous construction as in the proof of Theorem 5.1, the dual of the resolution

of F , shifted by n− r − 1, is

0 −→ F(−1) −→ OP2(n− r − 1)⊕ O
2
P2(r − 1) −→ OP2(n+ r − 1) −→ 0.

As before, a line L is a jumping line for F if and only if H0(F|L(−1)) 6= 0, in other words

if and only if the following map, between two vector spaces of dimension n+ r

H0(OL(n − r − 1)⊕ O
2
L(r − 1))

M
−→ H0(OL(n+ r − 1))

is not injective.

Let us introduce the following notation. Denote g(x, y) =
∑

i αix
n−iyi, h(x, y) =

∑

i βix
n−iyi, which describe the two n forms defined by n lines through p = (0 : 0 : 1)

and let f(x, y, z) be a form of degree 2r. Our goal is to prove that there is always another

line L, not passing through p, and therefore given by the equation z = ax + by, which

is a jumping line. This will give a contradiction with the geometric assumption on the

jumping locus.

Substituting the equation of the line we have f(x, y, ax + by) =
∑

0≤i≤2r γi(a, b)x
2r−iyi

where γi(a, b) are degree 2r polynomials (non homogeneous).

By linear combination of lines and columns the matrix M is equivalent to
[

I2r 0

0 N

]

,

where I2r denotes the identity matrix of dimension 2r and N is a (n− r+1)× (n− r+1)

matrix of degree 2r polynomials in (a, b). Notice that the determinant of N is polynomial

(again not necessarily homogeneous), in the variables a and b, of degree d = (2r)n−r+1

and, by our description, the determinant of the matrix M is equal to the determinant of

N .

The existence of a jumping line for F that do not pass through p is equivalent to the

existence of a point (a, b) with det(N(a, b)) = 0.

Consider the “homogenization” of N , i.e. homogenize each entry of the matrix in order

to get a matrix whose entries are homogeneous forms of degree 2r. Suppose the wanted

point (a, b) does not exist, this means that after homogenization, denoted by (a : b : c),

we have det(N) = cd. In particular det(M(a : b : 0)) = 0, which implies that if we fix
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f = z2r, all the lines of the stable bundle defined by (g, h, z2r) are jumping lines, which

contradicts Grauert-Mulich’s theorem.

If F is stable with c1 = −1, it is possible to adapt the previous argument and find, in

an analogous way, a contradiction.

�
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