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SCATTERING RESONANCES IN UNBOUNDED TRANSMISSION
PROBLEMS WITH SIGN-CHANGING COEFFICIENT

CAMILLE CARVALHO AND ZOÏS MOITIER

Abstract. It is well-known that classical optical cavities can exhibit localized phenom-
ena associated to scattering resonances (using the Black Box Scattering Theory), leading
to numerical instabilities in approximating the solution. Those localized phenomena con-
centrate at the inner boundary of the cavity and are called whispering gallery modes.
In this paper we investigate scattering resonances for unbounded transmission problems
with sign-changing coefficient (corresponding to optical cavities with negative optical
propertie(s), for example made of metamaterials). Due to the change of sign of optical
properties, previous results cannot be applied directly, and interface phenomena at the
metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We
establish the existence of scattering resonances for arbitrary two-dimensional smooth
metamaterial cavities. The proof relies on an asymptotic characterization of the reso-
nances, and extending the Black Box Scattering Theory to problems with sign-changing
coefficient. Our asymptotic analysis reveals that, depending on the metamaterial’s prop-
erties, scattering resonances situated closed to the real axis are associated to surface
plasmons. Examples for several metamaterial cavities are provided.

1. Introduction

Unbounded transmission problems with sign-changing coefficients arise in electromag-
netics, in particular when one considers Maxwell’s equations in the time harmonic regime
(with Transverse Electric or Transverse Magnetic polarization) in dielectric-metamaterial
structures (typically a bounded metamaterial cavity surrounded by a dielectric). Contrary
to common materials, metamaterials such as the Negative-Index Metamaterials (NIM)
exhibit unusual optical properties: for instance a real-valued negative effective dielectric
permittivity and/or a negative effective permeability at some frequency range. There is a
great interest in modeling metamaterial cavities to confine and control light. In particular,
at optical frequencies, localized interface surface waves called surface plasmons can arise
at dielectric-metamaterial interfaces [29]. The field of plasmonics is very active as surface
plasmons offer strong light enhancement, with applications to next-generation sensors,
antennas, high-resolution imaging, cloaking and other [40]. However, surface plasmons
are very sensitive to the geometry and therefore challenging to capture, experimentally
and numerically [8, 25]. Mathematically, surface plasmons are solutions of the homoge-
neous Maxwell’s equations, they are oscillatory waves along the dielectric-metamaterial
interface while exponentially decreasing in both transverse directions.

In classical transmission problems (meaning dielectric-dielectric structures), it has been
shown that light can be confined by exciting the so-called Whispering Gallery Modes
(WGM) [38]. WGM are essentially supported in the neighborhood of the interior cav-
ity boundary and are associated to scattering resonances [6]. It is well-known that the
approximation of light scattering in dielectric optical micro-cavities can be drastically
affected by WGM, in particular if the excitation wavenumber of the source is close to
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a WGM resonance [32, 6]. In those cases the norm of the truncated resolvent operator
explodes, which is observed numerically by the solution blowing-up (peaks): we call this
scattering instabilities. Knowing the exact value of the scattering resonances is in general
challenging (or impossible). However, one can obtain an asymptotic characterization of
the scattering resonances, as done in [6].

The above results do not directly apply to metamaterial cavities due to the change of
sign of the optical parameter(s) and the additional interface plasmonic behaviors. More
precisely, well-posedness of the problem needs more attention, and spectral properties to
define a black box Hamiltonian (including self-adjointness, lower semi-bound, etc.) may
not be true. Also, surface plasmons have been mainly characterized and investigated in
the context of the quasi-static approximation (e.g. [12, 23, 8, 4, 17, 14, 13]) — where an
analytic expression can be found — therefore there is a need to obtain a characterization
for the full problem (no quasi-static) to identify the associated metamaterial scattering
resonances.

The goal of this paper is to establish those results for various two-dimensional meta-
material cavities (arbitrary smooth shape, with one arbitrary varying negative optical
parameter). Using the T-coercivity theory [10, 8, 9], and in the spirit of [6], we establish
that the associated spectral operator of scalar transmissions problem with sign-changing
coefficient is a black box Hamiltonian, and we carry out an asymptotic approximation of
the metamaterial scattering resonances. In this case we find that there is an additional
interface resonance family (compared to classical cavities) related to surface plasmons,
and a specific scaling is required to asymptotically characterize them. This family can be
located close to the real axis, and is responsible for scattering instabilities.

The paper is organized as follows. We present the problem and main results in Sec-
tion 2. To illustrate the metamaterial scattering resonances and their effect, we provide
a pedagogical example (case of a circular metamaterial cavity with constant negative
coefficient) in Section 3. Section 4 presents the general approach for arbitrary meta-
material cavities, including the constructions of the asymptotic approximation at any
order. Section 5 proves their connection to the truncated resolvent operator (extension
of the Black Box Scattering Theory) and their consequence on scattering instabilities.
Section 6 presents numerical illustrations of the metamaterial scattering resonances, and
Section 7 presents our concluding remarks. Appendix A provides theoretical results about
the problem operator, and Appendix B provides additional results and proofs needed in
Section 4.

2. Problem setting and main result

2.1. Mathematical settings. Let us start by introducing the unbounded transmission
problem with sign-changing coefficient, and its spectral analogous. We consider an open
bounded connected set Ω ⊂ R2 with smooth boundary Γ = ∂Ω, that represents a trans-
parent (penetrable) optical cavity characterized by ac ∈ C∞

(
Ω; (−∞, 0)

)
. The cavity is

surrounded by a homogeneous background. We denote a ∈ L∞(R2) the piece-wise smooth
function such that

a ≡ ac on Ω and a ≡ 1 on R2 \ Ω. (2.1)
We consider the problem: For f ∈ L2

comp(R2), g ∈ H
1
2 (Γ), and k ∈ C \ {0}, find u ∈

H1
loc(R2) such that 

− div
(
a−1∇u

)
− k2u = f in R2

[u]Γ = 0, [a ∂nu]Γ = g across Γ

u k-outgoing
(2.2)
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and the associated spectral problem: Find (`, u) ∈ C \R−×H1
loc(R2) such that u 6≡ 0 and

− div
(
a−1∇u

)
= `2u in R2

[u]Γ = 0, [a ∂nu]Γ = 0 across Γ

u `-outgoing
. (2.3)

Above, H1
loc(R2) :=

{
u ∈ L2

loc(R2)
∣∣ ∀χ ∈ C∞comp(R2), χu ∈ H1(R2)

}
and n : Γ → S1 is

the unit normal vector outward to Ω. Given X, we denote [X]Γ (γ) = limx→γ+ X(x) −
limx→γ− X(x), for any γ ∈ Γ, the jump condition across Γ. The jump conditions [u]Γ = 0
and [a ∂nu]Γ = 0 will be referred to as the transmission conditions. We say that v is
k-outgoing if it satisfies the outgoing wave condition:

v(r, θ) =
∑
m∈Z

wm(r) eimθ =
∑
m∈Z

cm H(1)
m (kr) eimθ (2.4)

with polar coordinates (r, θ) such that r > supx∈Ω |x|, θ ∈ R/2πZ, H(1)
m the Hankel function

of the first kind of order m, and (cm)m∈Z ∈ CZ. For a pair (`, u) solution of Eq. (2.3), `
is called a scattering resonance and the function u is a resonant mode associated to `.

We define P : u 7→ − div(a−1∇u) the L2(R2) operator from Eq. (2.3) with the domain
D(P ) := {u ∈ L2(R2) | − div(a−1∇u) ∈ L2(R2)}1. We also define the local version of the
domain Dloc(P ) :=

{
u ∈ L2

loc(R2)
∣∣ ∀χ ∈ C∞comp(R2), χu ∈ D(P )

}
.

For classical cavities (ac > 0), one can show that Eq. (2.2) is well-posed in H1
loc(R2),

the operator (P,D(P )) is self-adjoint, its spectrum is real and admits a lower bound.
This allows us in particular to work in the framework of the black box scattering [20,
Definition. 4.6], where one can check that there is an underlying black box Hamiltonian
(see Lemma 5.2 for more details). We can define Res : k 7→ (P − k2)

−1 the resolvent2
associated to P . An asymptotic characterization of the scattering resonances close to
the real axis (called quasi-resonances km) is provided in [6], and with the black box
scattering theory it is proved that true resonances (`m)m are super-algebraically close to
quasi-resonances km. As a consequence the solution of Eq. (2.2) blows-up for k = km
(and the norm of the truncated resolvent Res(km) explodes).

Due to the change of sign of a, the black box scattering theory doesn’t directly ap-
ply in our case. First, well-posedness is not guaranteed as P : H1

loc(R2) → H−1
loc(R2),

Pu = − div(a−1∇u) is not necessarily a Fredholm operator (or in other words the coer-
civity of the associated weak form of Eq. (2.2) is not guaranteed). Additionally, spectral
requirements on P to be a black box Hamiltonian are not obvious. Finally, it is not
clear whether there exist resonances close to the real axis that are associated to localized
interface modes (potentially related to surface plasmons).

The goal of this paper is to extend the black box scattering framework and to provide an
asymptotic characterization of scattering resonances to unbounded transmission problems
with sign-changing coefficient.

Remark 2.1.
• The k-outgoing condition defined in Eq. (2.4) is equivalent to v satisfying the so-called
Sommerfeld radiation condition if, and only if, k > 0. This outgoing condition is more
general, and will be also used for the associated spectral problem, where one can have
k ∈ C.
1One can show that D(P ) =

{
u ∈ H1(R2)

∣∣∣ u|Ω ∈ H2(Ω), u|R2\Ω ∈ H2(R2 \ Ω),
[
a−1∂nu

]
Γ

= 0
}
.

This second definition will be heavily used in Section 4, Section 5.
2Res is defined on the first quadrant of the complex plane (<(k) > 0 and =(k) > 0). Using the black

box scattering framework (see [20]), we can extend the resolvent to C \ R−.
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• Depending on the polarization (TE / TM), the optical cavity is characterized by a
permittivity a = ε and a permeability µ = 1 or a permeability a = µ and a permittivity
ε = 1. Metamaterials are commonly characterized by ε < 0 and/or µ < 0. The cavity
is embedded in a homogeneous background characterized by µ = 1, and ε = 1.
• Equation (2.2) includes the scattering by a plane wave.

2.2. Main result. Our main goal is to establish the existence of a discrete sequence of
scattering resonances close to the positive real axis, which is done in two steps. First,
we derive approximate solutions of the resonance problem Eq. (2.3) called quasi-pairs [6,
Definition. 2.1] (Theorem 2.3); then we show that there exist true resonances close to the
approximate ones (Theorem 2.4), which rely on extending the black box scattering theory
for Eq. (2.3). For ease of reading, we (re)define quasi-pairs as follows:

Definition 2.2. A quasi-pair for the resonance problem Eq. (2.3) is formed by a sequence
(λm)m≥1 of real numbers, and a sequence (um)m≥1 of complex valued functions that satisfy
the following conditions:
(1) For any m ≥ 1, the functions um are uniformly compactly supported and

um ∈ D(P ), with ‖um‖L2(R2) = 1.

(2) We have the following quasi-pair estimate

‖Pum − λm um‖L2(R2) = O
(
m−∞

)
, as m→ +∞, (2.5)

with the notation am = O(m−∞) to indicate that for all N ∈ N, there exists CN > 0
such that |am| ≤ CN m

−N , for all m ≥ 1.
(3) Additionally, we say that um is localized around Γ ⊂ R2 if, for all δ > 0, its support

is mainly in Γδ := {x ∈ R2 | dist(x,Γ) < δ} neighborhood of Γ in the sense that

‖um‖L2(Γδ)
= 1−O

(
m−∞

)
, as m→ +∞. (2.6)

We call (um)m≥1 quasi-modes, and
(
km :=

√
λm
)
m≥1

quasi-resonances.

Theorem 2.3. If ac(γ) 6= −1, for all γ ∈ Γ, then we can construct (λm, um)m≥1 quasi-
pairs of the resonance problem Eq. (2.3) Moreover, we have λm =

(
2πm
L

)2
Λ
(

L
2πm

)
where

L is the length of the curve Γ and Λ ∈ C∞
([

0, L
2π

])
(see Eq. (4.16a)). The quasi-mode is

of the form um = exp
(
i 2πm
L

Θ
)

Φ with Θ,Φ smooth functions with respect to L
2πm

and Φ
is exponentially decreasing on both sides of the interface Γ (see Eq. (4.16b)). Addition-
ally, the sign of λm is given to leading order by the sign of 1 + ac|−1

Γ , and (λm)m≥1 are
independent of the construction.

Theorem 2.4. If ac(γ) 6= −1, for all γ ∈ Γ, let (λm, um)m≥1 be the quasi-pairs of Theo-
rem 2.3. Then there exists a sequence of true scattering resonances (`m)m≥1 of Eq. (2.3)
close to the quasi-resonances

(√
λm
)
m≥1

in the sense that

`2
m = λm +O

(
m−∞

)
, as m→ +∞.

In addition:
• If a(γ) < −1, for all γ ∈ Γ, then (`m)m≥1 are scattering resonances with < (`2

m) > 0

and −1� = (`2
m) < 0.

• If −1 < a(γ) < 0, for all γ ∈ Γ, then (`m)m≥1 are scattering resonances with
< (`2

m) < 0 and −1� = (`2
m) ≤ 0.

Contrary to the classical cavities (ac > 0), the value of ac can lead to two different be-
haviors: from Theorem 2.3 we only have one sequence of resonances close to the positive
real axis in the case a(γ) < −1 (where (km)m ∈ R), and none in the case −1 < a(γ) < 0
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(where (km)m ∈ iR), see [33, 6]. From Theorem 2.4 one can show that the truncated resol-
vent explodes at the quasi-resonances, and thus scattering instabilities occur for Eq. (2.2).

Corollary 2.5. If a(γ) < −1, for all γ ∈ Γ, then there exists a real sequence (km)m≥1 with
limm→+∞ km = +∞ such that for all χ ∈ C∞comp(R2) with χ ≡ 1 on an open neighborhood
of Ω and for all N ∈ N, there exists a constant CN > 0,

|||χRes(km)χ||| ≥ CNm
N , ∀m ≥ 1.

The above results also rely on well-posedness of Eq. (2.2), and on establishing that P
is a black box Hamiltonian. This can be done using the T-coercivity framework [10, 8, 9],
allowing to compensate for the change of sign of a and establishing Fredholm properties
(and others) under some conditions. Section 5 and Appendix A detail those results.
Well-posedness of Eq. (2.2) in Hadamard’s sense leads to the existence of a stability
constant C(k) > 0 such that ‖u‖L2 ≤ C(k)

(
‖f‖L2 + ‖g‖L2(Γ)

)
(see Lemma A.2). From

Corollary 2.5 we deduce the following:

Corollary 2.6. If a(γ) < −1, for all γ ∈ Γ, then there exists a real sequence (km)m≥1

with limm→+∞ km = +∞ such that for all N ∈ N, there exists a constant CN > 0,

C(km) ≥ CNm
N , ∀m ≥ 1.

Equation (2.2) suffers from scattering instabilities for k = km.

The construction of the real sequence (λm)m (consequently (km)m) is the fundamental
element in the above results. To illustrate how to proceed, we present a simple case in
Section 3 where all calculations can be done explicitly, and we generalize the approach to
arbitrary smooth cavities in Section 4.

3. A pedagogical example

In this section we consider Eq. (2.2) set on a circular cavity with constant negative ac:
Ω is a disk of radius R > 0, and ac = −η2 with η > 0. Taking advantage of the geometry,
we look for solution of the form:

u(x) = u(r, θ) =
∑
m∈Z

um(r, θ) =
∑
m∈Z

wm(r) eimθ, (3.1)

with (r, θ) ∈ R+×R/2πZ the polar coordinates corresponding to the Cartesian coordinates
x, and wm(r) = 1

2π

∫ 2π

0
u(r, θ) e−imθ dθ, m ∈ Z, the angular Fourier coefficients. Similarly,

we assume we can write f(x) =
∑

m∈Z fm(r) eimθ, for x ∈ R2 with fm ∈ L2
comp(R), and we

can write g(x) =
∑

m∈Z gm eimθ, for x ∈ Γ with g ∈ H
1
2 (Γ).

Remark 3.1. An example where Eq. (2.2) naturally arises is the scattering by a transparent
obstacle of a plane wave. If one considers uin(x1, x2) = eikx2 , with wavenumber k and
direction (0, 1)ᵀ, then Eq. (2.2) is satisfied by the scattered field usc := u− uin with data
f in := div

(
a−1∇uin

)
+ k2uin and gin := −

[
a−1 ∂nu

in
]

Γ
. Additionally, one can check that

fm is supported only in the cavity: fm(r) = k2(ac − 1) Jm(k r), r ∈ (0, R), where Jm
denotes the Bessel function of the first kind of order m. This expansion is obtained using
the Jacobi-Anger expansion of uin [37, Eq. 10.12.1] that converges absolutely on every
compact set of R2.
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Plugging Eq. (3.1) in Eq. (2.2), we obtain a family of 1D problems indexed by m ∈ Z:
Find wm ∈ H1

loc(R+, r dr) such that

−1

r
∂r (r ∂rwm) +

m2

r2
wm − ack2wm = fm in (0, R)

−1

r
∂r (r ∂rwm) +

m2

r2
wm − k2wm = fm in (R,+∞)[

a−1wm
′]
{R} = gm across {R}

w0
′(0) = 0 or wm(0) = 0 for m 6= 0 on {0}

wm(r) ∝ H(1)
m (kr) r > R

(3.2)

with ∝ meaning “up to a constant”. For m 6= 0, the term m2

r2 wm imposes a homogeneous
Dirichlet boundary condition at zero [7]. The solution is continuous at r = 0, using the
outgoing wave condition we write

wm(r) =


αm

Im(η k r)

Im(η k R)
+ fac(r) if r ≤ R

βm
H

(1)
m (k r)

H
(1)
m (k R)

+ fR(r) if r > R

(3.3)

with Im denoting the modified Bessel function of the first kind of order m, and fac , fR
denoting particular solutions. Our goal in this section is to investigate the associated
operator (in particular the resolvent operator), therefore we do not need to write the
particular solutions explicitly. Above, the coefficients (αm, βm) are solution of

Aηm(kR)

(
αm
βm

)
=

(
fac(R)− fR(R)

gm + ac
−1f ′ac(R)− f ′R(R)

)
, Aηm(z) =

(
1 −1

− 1
η
I′m(η z)
Im(η z)

−H
(1)
m

′
(z)

H
(1)
m (z)

)
. (3.4)

The above system comes from the transmission conditions at r = R.

Remark 3.2. Since k > 0 and the problem is well-posed for η 6= 1 (see Lemma A.2),
coefficients (αm, βm) are uniquely defined and det(Aηm(kR)) 6= 0, with

det(Aηm(z)) := −η−1 I
′
m(η z)

Im(η z)
− H

(1)
m

′
(z)

H
(1)
m (z)

, ∀z ∈ C∗. (3.5)

Now that we have an explicit expression of (Aηm(kR))m∈Z, we can analyze its be-
havior for various wavenumbers k and values of ac (namely η). For numerical pur-
poses, we truncate Eq. (3.1) to order M , leading to consider the sequence of operators(
Aη−M(kR), . . . , Aη0(kR), . . . , AηM(kR)

)
. We choose hereM = 32 and R = 1. The resolvent

of this spectral numerical scheme is A−1
k where

Ak := diag
(
Aη−M(kR), . . . , Aη0(kR), . . . , AηM(kR)

)
. (3.6)

To look at the stability of this scheme, we look at the spectral norm of A−1
k noted

∣∣∣∣∣∣A−1
k

∣∣∣∣∣∣
2
.

Figure 1 represents the log plot of
∣∣∣∣∣∣A−1

k

∣∣∣∣∣∣
2
with respect to k, for various values of ac.

One observes that
∣∣∣∣∣∣A−1

k

∣∣∣∣∣∣
2
remains bounded when ac ∈ (−1, 0), while there exists a

sequence (km)m such that
∣∣∣∣∣∣A−1

km

∣∣∣∣∣∣
2
peaks when ac ∈ (−∞,−1). In the latter, the se-

quence
(∣∣∣∣∣∣A−1

km

∣∣∣∣∣∣
2

)
m≥1

grows exponentially [32, 26]. We refer to those peaks as scattering
instabilities.

The above results provide the following:
• While Eq. (2.2) is well-posed for all k > 0, the associated resolvent operator explodes
for a sequence of wavenumbers (km)m≥1.
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Figure 1. Semi-log plot of the function k 7→
∣∣∣∣∣∣A−1

k

∣∣∣∣∣∣
2
with respect to k for ac ∈

{−0.9,−0.8,−0.7} (left), for ac ∈ {−1.3,−1.2,−1.1} (right). The value k8 marked on
the graph corresponds to the reference value used in Figs. 4 and 5.

• This phenomenon occurs only for ac < −1.
In what follows we investigate the associated spectral problem to identify the resonances
causing the scattering instabilities. We then use semi-classical analysis to characterize
the sequence (km)m≥1, and study their relationship to surface plasmons.

3.1. Scattering resonances for the disk. As done in the previous section, Eq. (2.3)
set on a disk can be rewritten as a family of one-dimensional problems indexed by m ∈ Z:
Find (`, wm) ∈ C \ R− × H1

loc(R+, r dr) \ {0}, such that

−1

r
∂r (r ∂rwm) +

m2

r2
wm − ac`2wm = 0 in (0, R)

−1

r
∂r (r ∂rwm) +

m2

r2
wm − `2wm = 0 in (R,+∞)[

a−1w′m
]
{R} = 0 across {R}

w0
′(0) = 0 or wm(0) = 0 for m 6= 0 on {0}

wm(r) ∝ H(1)
m (`r) r > R

(3.7)

Similarly, we write

wm(r) =


αm

Im(η ` r)

Im(η `R)
if r ≤ R

βm
H

(1)
m (` r)

H
(1)
m (`R)

if r > R

(3.8)

however this time, the pair (`, wm) is solution of Eq. (3.7) if, and only if, there exists
(αm, βm)ᵀ ∈ ker (Aηm(`R)) \ (0, 0)ᵀ, with Aηm(`R) defined in Eq. (3.4). Given m ∈ Z, and
using Eq. (3.5), we define the set of resonances

R[ac, R](m) =
{
` ∈ C \ R−

∣∣∣ det (Aηm(`R)) = 0 and − π

2
< arg(`) ≤ π

2

}
. (3.9)

Finally, we define the set of resonances of Problem Eq. (2.3)

R[ac, R] :=
⋃
m∈Z
R[ac, R](m). (3.10)

Remark 3.3. Given ` ∈ R[ac, R](m), one finds αm = c and βm = c with c ∈ C∗ since the
resonant modes are defined up to some normalization.
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Remark 3.4. Since I−m = Im and H
(1)
−m = (−1)m H

(1)
m , for all m ∈ Z, see [37, Eq. 10.27.1

and 10.4.2], by symmetry all the resonances `, corresponding to m 6= 0, are of multiplicity
2, and the two associated modes are conjugate, given by um(r, θ) := wm(r) e±imθ. It turns
out R[ac, R] =

⋃
m∈NR[ac, R](m).

The resonances set (R[ac, R](m))m defined in Eq. (3.9) cannot be computed analytically,
however one can use contour integration techniques on Eq. (3.5) to compute a subset
RN [ac, R] :=

⋃N
m=0R[ac, R](m) ⊂ R[ac, R] (see [28, 39]). Figure 2 represents the set

R64[ac, 1] for the unit disk and for various permittivities ac. The color bar indicates the
value of m.
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Figure 2. Graph of the sets R64[−0.9, 1] (left column) and R64[−1.1, 1] (right column)
in the complex plane (<(`2),=(`2)), the bottom row is a zoom on the interface reso-
nances. Those sets are computed using complex contour integration [39] on the analytic
function Eq. (3.5).

In classical cavities (ac > 0), resonances of Eq. (2.3) are split into two categories (at
least for ac > 1 [6]): inner resonances Rinn[ac, R] associated to resonant modes essentially
supported inside the cavity Ω, and outer resonances Rout[ac, R] associated to resonant
modes essentially supported in the exterior of the cavity R2 \Ω. The inner resonance cat-
egory includes the so-called Whispering Gallery Modes (WGM), associated to resonances
`WGM such that −1� =(`WGM) < 0 [18, 6]. In particular the approximation of Eq. (2.2)
can be deteriorated if one chooses k = <(`WGM), where those modes can be excited [32,
Sec. 6.2]. When ac < 0 we split the resonances into three categories. From Figs. 2 to 4,
we conclude:
• The outer resonances Rout[ac, 1] (represented as triangles in Fig. 2) are resonances with
a negative imaginary part. The outer resonant modes are essentially supported outside
the cavity.
• The inner resonances Rinn[ac, 1] (represented as dots in Fig. 2) are pure imaginary
eigenvalues of the operator P on L2(R2) (consequently <(`2

inn) < 0). They contain
whispering gallery modes. Inner resonances can be seen as outer resonances from the
inverted cavity problem (ac = 1 and a = −η−2 outside).
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• The resonances represented by ‘+’ in Fig. 2 (a zoom is provided Fig. 2c, Fig. 2d) are
associated to resonant modes essentially supported on the interface Γ (see Fig. 5 for an
example). We refer to those modes as surface plasmons waves (SPW), and we call this
family the interface resonances Rpla[ac, 1]. We denote the interface resonances (`m)m≥1

so that Rpla[ac, 1] = {`m | m ∈ N∗}.

`out ≈ 5.229− i2.664 `inn ≈ i25.013 `8 ≈ i2.664

Figure 3. Real part of some resonant modes u8(r, θ) for ac = −0.9 with their corre-
sponding resonances below.

`out ≈ 3.174− i4.129 `inn ≈ i15.965 `8 ≈ 2.377− i4.194 · 10−6

Figure 4. Real part of some resonant modes u8(r, θ) for ac = −1.1 with their corre-
sponding resonances below.
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Figure 5. Log-Log plots of the radial component r 7→ w8(r) of the three types of
resonances shown in Figs. 3 and 4 for ac = −0.9 (left) and ac = −1.1 (right).

In the end, we write R[ac, R] = Rout[ac, R] ∪ Rinn[ac, R] ∪ Rpla[ac, R]. The interface
resonances are quite peculiar as their nature changes depending on ac. As illustrated
in Fig. 2, they are (for most cases imaginary) resonances such that <(`2

m) < 0 when
−1 < ac < 0, while they correspond to complex resonances such that <(`2

m) > 0 when
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ac < −1. For the latter, one observes that their real part diverges towards +∞ asm→∞,
and their negative imaginary part tends to 0 exponentially fast as m→∞. Additionally,
a closer observation gives us that <(`2

m) ∝ m2. Figure 5 represents the behavior of w8 for
the three types of resonances far from the boundary for ac ∈ {−1.1,−0.9}. As discussed
above, the support of the inner and outer resonant modes is mainly inside and outside the
cavity, respectively. The modes associated to interface resonances are locally exponentially
decreasing moving away from the interface, which is the mathematical characterization
of surface plasmons [29, 8]. In the next section, we characterize to leading order these
interface resonances family (`m)m≥1 by performing asymptotic expansion as m → ∞. In
particular, we will confirm that `m ∝ m.

Remark 3.5. As seen above, it is convenient to identify the change of behavior of the
interface resonances using <(`2

m). In what follows we provide asymptotic expansions of
(`2
m)m≥1 instead of the resonances (`m)m≥1.

Remark 3.6. Going back to the Eq. (2.2), it turns out that the dashed blue line in Fig. 1
corresponds to the real part an interface resonance: k8 = <(`8) ≈ 2.377, and `8 ∈
Rpla[−1.1, 1]. Additionally, given data associated to k > 0, the interface modes associated
to ` ∈ Rpla[−0.9, 1] (in other words <(`2) < 0) cannot be excited as illustrated in Fig. 1.
One can also perform the same computations for a lossy circular cavity. In that case
the interface resonances plunge further into the complex plane (their imaginary part gets
further away from the real axis). Excitation of those resonances is then more difficult to
observe.

3.2. Interpretation with Schrödinger operator for the disk. From Section 3.1 we
found that plasmonic resonances (`m)m are such that <(`2

m) changes sign depending on ac
(i.e. η). In this section we use asymptotic expansions to explain this change of behavior
at leading order. To do so we provide an analogy with the Schrödinger operator. We
define λ̆ = m−2 `2, and we rewrite Problem Eq. (3.7) as

−m−2 1

r
∂r
(
r ∂rw

±
m

)
+

1

r2
w±m = a(r) λ̆w±m in (0, R) ∪ (R,+∞)

w−m(R) = w+
m(R) and − η−2 ∂rw

−
m(R) = ∂rw

+
m(R) across {R}

w−0
′
(0) = 0 and w+

m ∈ S ([R,+∞))

(3.11)

with λ̆ the new spectral parameter, w±m restrictions of wm in each material, and S (R+)
denoting the Schwartz space. We replace the outgoing wave condition by the requirement
that w+

m belongs to the Schwartz space in order to characterize exponentially decreasing
behaviors from both sides of the interface (i.e. surface plasmons). To identify this behav-
ior, first we rescale the problem Eq. (3.11) by ξ = r/R − 1 such that r = R corresponds
to ξ = 0. We then define v±m(ξ) = w±m(R (1 + ξ)), satisfying in particular

−m−2 L v±m + V v±m = a(ξ)R2λ̆ v±m in (−1, 0) and (1,+∞),

where L (ξ, ∂ξ) = 1
1+ξ

∂ξ((1 + ξ) ∂ξ) is a positive elliptic operator (Laplacian like) and
V (ξ) = 1

(1+ξ)2 is a potential. In that sense, the operator v 7→ (−m−2 L + V )v can be
interpreted as a Schrödinger operator. To construct localized modes at the interface,
we consider the principal part of −m−2L + V with its coefficients frozen at ξ = 0,
corresponding to −m−2∂2

ξ + 1. It is then natural to rescale by ρ = mξ, and the leading
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order behavior becomes
−∂2

ρϕ
− + ϕ− = −η2R2λ̆ ϕ− in (−∞, 0)

−∂2
ρϕ

+ + ϕ+ = R2λ̆ ϕ+ in (0,+∞)

ϕ−(0) = ϕ+(0) and η−2 ∂ρϕ
−(0) = ∂ρϕ

+(0) across {0},
ϕ± ∈ S (R±)

(3.12)

with ϕ±(ρ) = v±m(ξ). Note that the condition v−m(−1) = ϕ−(−m) = 0 becomes ϕ− ∈
S (R−) to keep a localized behavior as m → +∞. Solutions of Eq. (3.12) are given
by (λ̆, ϕ±) = (R−2(1 − η−2), e−η

∓1 |ρ|), where the modes are exponentially decreasing on
both sides of the interface ρ = 0. Back to Eq. (3.11), we have found a pair (λm, w

±
m)

characterizing (`2, w±m), with the leading behavior given by

λm =
m2

R2

(
1− η−2

)
+O(m−1), and w±m(r) = exp

(
−η∓1m

∣∣∣ r
R
− 1
∣∣∣)+O(m−1). (3.13)

We conclude:
• when ac < −1 (η > 1), surface plasmons waves are associated to scattering resonances
with <(`2) > 0 (at first order);
• when −1 < ac < 0 (0 < η < 1), surface plasmons waves are associated to scattering
resonances with <(`2) < 0 (at first order).

We have then asymptotically characterized SPW by building pairs (λm, wm)m≥1. Upon
proper justification that wm(r)eimθ ∈ D(P ) and that k = km :=

√
(λm) affects the

resolvent, the obtained results match the observed behaviors in previous sections, and
provide accurate predictions.

The case of the circular cavity with constant ac is quite intuitive, and the leading order
computations can be done explicitly. In the next sections we generalize the approach, to
any order, for the general case (arbitrary shaped smooth boundary, and varying coeffi-
cients ac ∈ C∞(Ω; (−∞,−1) ∪ (−1, 0))), and justify the connection between the formal
expansions (Section 4) and the resolvent operator (as well as the scattering instabili-
ties, consequently) (Section 5). To that aim, we will use semi-classical WKB (Wentzel-
Kramers-Brillouin) expansions along the interface and matched asymptotic expansions in
the transverse direction to the interface in a tubular neighborhood of the interface. The
higher order terms allow to show a super-algebraic behavior of the peaks seen in Fig. 1,
explaining the exponential increase asymptotically.

4. Quasi-pair for unbounded transmission problems with sign-changing
coefficient

In this section we prove Theorem 2.3 which consists of constructing approximate solu-
tions of the resonance problem Eq. (2.3). Those solutions are called quasi-pairs, in the
sense of Definition 2.2. The proof is organized as follows:
• We define a tubular neighborhood where we set up the problem, and we define formal
expansions (Section 4.1).
• We compute the expansion terms by solving a family of problems indexed by the order
of the expansions (Section 4.2).
• We show that the obtained expansions are quasi-pairs in the sense of Definition 2.2
(Lemma 4.9), and that the quasi-resonances are independent of the construction (Corol-
lary 4.13). Details are given in Section 4.3.

We end Section 4 with comments on the first expansion terms of (λm)m≥1.
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4.1. Formal expansion setup. Recall that Ω ⊂ R2 is a cavity with smooth boundary
Γ, see Section 2.1. Let L be the length of Γ, and η :=

√
−ac a positive smooth function

up to the interface so that we have ac = −η2. We define a tubular neighborhood Vδ of
the interface Γ. Let γ : TL → Γ be a counterclockwise curvilinear parametrization of the
curve Γ with the notation TL := R/LZ. Let n = (γ′2,−γ′1)ᵀ be the unit exterior normal
to Ω and κ = det (γ′, γ′′) : TL → R be the signed curvature. We define the open tubular
neighborhood, see [35], by

Vδ := {γ(s) + ξn(s) | (s, ξ) ∈ TL × (−δ, δ)} (4.1)
which is schematically represented in Fig. 6.

•γ′(s)

n(s)

δ

δ

•

x = γ(s) + ξn(s)

Vδ

Figure 6. Tubular neighborhood and notations: s denotes an arc-length parametriza-
tion of the curve γ, and ξ is the normal variable.

We now consider the problem:
Pu = λu in Ω ∩ Vδ and

(
R2 \ Ω

)
∩ Vδ

[u]Γ = 0 and
[
a−1 ∂nu

]
Γ

= 0 across Γ,

u = 0 on ∂Vδ
(4.2)

where P = − div(a−1∇) with a defined in Eq. (2.1). By Definition 2.2, the quasi-pairs
are compactly supported therefore the outgoing condition does not play a role in their
construction. We replace in particular the outgoing wave condition by a homogeneous
Dirichlet boundary condition in order to construct localized quasi-pairs.

The change of variables from the tubular coordinates (s, ξ) ∈ TL × (−δ, δ) to the
Cartesian coordinates x ∈ Vδ is a smooth diffeomorphism for 0 < δ < (maxTL |κ|)

−1. In
this tubular coordinate system the operator P becomes

P = −g−1 divs,ξ
(
a−1G∇s,ξ

)
(4.3)

where g(s, ξ) = 1 + ξκ(s) > 0 and G(s, ξ) =

(
g(s, ξ)−1 0

0 g(s, ξ)

)
.

For the general case we use a WKB (Wentzel-Kramers-Brillouin) framework [5] in order
to provide an asymptotic expansion of the spectral parameter as the number of oscillations
along the interface Γ, denoted m in Section 3.2, goes to infinity. We introduce a small
parameter h > 0 (later to be linked to m) and the ansatz for the quasi-pair (λ, u):

u(s, ξ) = w(s, ξ) exp
(
i
h
θ(s)

)
and λ = h−2 λ̆ (4.4)

where 1
h
θ : [0, L] → C is the fast phase along the interface, w : TL × (−δ, δ) → C is the

slow amplitude, and λ̆ ∈ C is the spectral parameter. In order for the function u in
Eq. (4.4) to be a smooth function in Vδ \ Γ, we need to add the constraint that the
function s 7→ e

i
h
θ(s) ∈ C∞(TL). The phase function is chosen to be complex to simplify
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the computations, however we can always put the imaginary part into the amplitude w.
Following [5], we formally expand the unknowns w, θ, and λ̆ with respect to h as

w(s, ξ) =
∑
n≥0

wn(s, ξ) hn, θ(s) =
∑
n≥0

θn(s) hn, and λ̆ =
∑
n≥0

λ̆n h
n. (4.5)

The system Eq. (4.2) with the new unknowns Eq. (4.4) becomes
Lh[a](w, θ) = λ̆ w in TL × [(−δ, 0) ∪ (0, δ)]

[w]TL×{0} = 0 and
[
a−1 ∂ξw

]
TL×{0} = 0 across TL × {0}

w = 0 on TL × {−δ, δ}
. (4.6)

Above, Lh[a](w, θ) = h2 e−
i
h
θ P
(
w e

i
h
θ
)
, and it can be decomposed as

Lh[a](w, θ) = L3
h[a](w, θ, θ) + L2

h[a](w, θ) + L1
h[a](w) (4.7)

where Ljh[a] are j-linear for j ∈ {1, 2, 3} and
L3
h[a](w, θ, ϑ) = g−2 a−1w ∂sθ ∂sϑ, (4.8a)

L2
h[a](w, θ) = −h i

(
g−2 a−1 ∂sw ∂sθ + g−1 ∂s

(
g−1 a−1w ∂sθ

))
, (4.8b)

L1
h[a](w) = −h2 g−1

(
∂ξ
(
g a−1 ∂ξw

)
+ ∂s

(
g−1 a−1 ∂sw

))
. (4.8c)

In the above decomposition, only L1
h[a] involves derivatives with respect to ξ. Since g

(resp. η =
√
−ac > 0) is a smooth function on TL × (−δ, δ) (resp. TL × (−δ, 0]), then G

is smooth, and we write the formal Taylor expansions at ξ = 0:

g(s, ξ) = 1 + ξκ(s), G(s, ξ) =
∑
n≥0

∂nξG(s, 0)

n!
ξn, η(s, ξ) =

∑
n≥0

ηn(s)

n!
ξn, (4.9)

where ηn(s) = ∂nξ η(s, 0). Since g and η do not vanish on TL×{0}, the formal expansions
of g−1, g−2, and η−2 about ξ = 0 can be computed with Eq. (4.9).

Like in Section 3.2, we introduce the scaled variable ρ = h−1ξ for the normal variable
ξ ∈ (−δ, δ), and we define

ϕ±(s, ρ) = w(s, hρ), for (s, ρ) ∈ TL × R±.
Then, with g = g(s, hρ) we rewrite

L1
h[a](ϕ±) = −g−1 ∂ρ

(
a−1 g ∂ρϕ

±)− h2 g−1 ∂s
(
a−1 g−1 ∂sϕ

±) . (4.10)

Problem Eq. (4.6) becomes the formal problem: Find (ϕ±n )n∈N ∈ C∞(TL,S (R±))N,(
exp( i

h
θn)
)
n∈N ∈ C∞(TL)N, and (λ̆n)n∈N ∈ CN such that

Lh[a]
(∑

n ϕ
±
n h

n,
∑

n θn h
n
)

=
(∑

n λ̆n h
n
)(∑

n ϕ
±
n h

n
)

in TL × R∗±∑
n ϕ
−
n (s, 0)hn =

∑
n ϕ

+
n (s, 0)hn on TL × {0}

−η0(s)−2 ∑
n ∂ρϕ

−
n (s, 0)hn =

∑
n ∂ρϕ

+
n (s, 0)hn on TL × {0}

. (4.11)

Note that for simplicity we extend the scaled domain TL× (− δ
h
, δ
h
) to the domain TL×R

in order to be independent of h in Eq. (4.11), and we replace the homogeneous Dirichlet
boundary condition on TL × {− δ

h
, δ
h
} by the conditions ρ 7→ ϕ±(s, ρ) ∈ S (R±) for all

s ∈ TL. One can always multiply the quasi-mode by a cutoff function ξ 7→ χ(ξ) to be
in the domain TL × (− δ

h
, δ
h
), as done later in Eq. (4.16). With Eq. (4.7) and Eq. (4.9),

we can formally expand the operators Ljh[−η2] =
∑

n≥0 L
j,−
n hn and Ljh[1] =

∑
n≥0 L

j,+
n hn
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where Lj,±n are independent of h, for j ∈ {1, 2, 3}. From Problem Eq. (4.11) we obtain
the family of problems (Pn)n∈N by identifying powers of h: Find ϕ±n ∈ C∞(TL,S (R±)),
exp( i

h
θn) ∈ C∞(TL), and λ̆n ∈ C such that
∑
p∈N4

n

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
+
∑
p∈N3

n

L2,±
p1

(
ϕ±p2

, θp3

)
+
∑
p∈N2

n

L1,±
p1

(
ϕ±p2

)
=
∑
p∈N2

n

λ̆p1 ϕ
±
p2

ϕ−n (s, 0) = ϕ+
n (s, 0) and − η0(s)−2 ∂ρϕ

−
n (s, 0) = ∂ρϕ

+
n (s, 0)

(4.12)

with the notation Nd
n = {p ∈ Nd | p1 + · · ·+ pd = n}.

4.2. Computation of the expansion terms. First, we set some notation that will be
useful through out the rest of the section.

Notation 4.1. We recall that η0 = η|Γ =
√
− ac|Γ. Since we assume that 1 + ac|−1

Γ =

1 − η−2
0 6= 0, we can define the scalar ς = ±1 to be the sign of 1 − η−2

0 , the functions
τ0 =

∣∣1− η−2
0

∣∣− 1
2 , and τ̂0 = τ0

〈τ0〉 where 〈·〉 is the mean along the interface Γ define by

〈f〉 :=
1

L

∫
TL
f(s) ds, ∀f ∈ L1(TL).

One can obtain the expressions for the Lj,±0 .

Lemma 4.2. The first terms of the expansions of L3
h[a], L2

h[a], and L1
h[a], are given by

L3,−
0 (φ, θ, ϑ) = −η−2

0 φ ∂sθ ∂sϑ, L2,−
0 (φ, θ) = 0, L1,−

0 (φ) = η−2
0 ∂2

ρφ,

L3,+
0 (φ, θ, ϑ) = φ ∂sθ ∂sϑ, L2,+

0 (φ, θ) = 0, L1,+
0 (φ) = −∂2

ρφ.

Proof. From the expressions (4.8a), (4.8b), and (4.10) and using the expansions (4.9) with
the change of variable ξ = hρ gives the expressions in the lemma. �

Using Lemma 4.2, we rewrite Problem (P0) as: Find ϕ±0 ∈ C∞(TL,S (R±)), θ0 ∈
C∞([0, L]), and λ̆0 ∈ C such that (ϕ−0 , ϕ

+
0 ) 6≡ (0, 0), exp( i

h
θ0) ∈ C∞(TL), and

∂2
ρϕ
−
0 −

(
θ′0

2
+ η2

0 λ̆0

)
ϕ−0 = 0 in TL × R−

∂2
ρϕ

+
0 −

(
θ′0

2 − λ̆0

)
ϕ+

0 = 0 in TL × R+

ϕ−0 (s, 0) = ϕ+
0 (s, 0) on TL × {0}

−η0(s)−2 ∂ρϕ
−
0 (s, 0) = ∂ρϕ

+
0 (s, 0) on TL × {0}

. (4.13)

Lemma 4.3. One can choose h = L
2πm

for m ∈ N∗ so that (ϕ±0 , θ0, λ̆0) is given by

λ̆0 =
ς

〈τ0〉2
, θ0(s) =

∫ s

0

τ̂0(t) dt, and ϕ±0 (s, ρ) = α(s) exp
(
−|ρ| τ̂0(s) η0(s)∓1) ,

with α ∈ C∞(TL,C∗), is solution of Problem (P0) defined in Eq. (4.13).

The proof is detailed in Appendix B.1.

Remark 4.4. • If we unravel the scaling and return to tubular coordinates, for m ≥ 1 and
(s, ξ) ∈ TL × R, we formally have a pair (λm, um)

λm =

(
2πm

L

)2 [
λ̆0 +O

(
m−1

)]
,

um(s, ξ) = ei
2πm
L [θ0(s)+O(m−1)]

{
ϕ−0
(
s, 2πm

L
ξ
)

if ξ ≤ 0

ϕ+
0

(
s, 2πm

L
ξ
)

if ξ > 0
+O

(
m−1

)
,
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which characterizes surface plasmons at leading order.
• We remark that the leading order term, solution of Eq. (4.13), can be seen as the
leading order solution of a planar problem of the form − div(a−1∇v) = νv on TL × R
with a(s, y) = −η2

0 on the lower half-plane, a ≡ 1 on the upper half-plane, and ν ∈ R.

Remark 4.5. The construction relies on several choices that are not unique.
• One can choose the main phase to satisfy θ′0 = τ̂0 or θ′0 = −τ̂0. Then one can construct
two modes corresponding to um and um (see Remark 4.14), where · is the complex
conjugate.
• The function θ0 is defined up to a constant c. Then um in Remark 4.4 is defined up to
ei

2πm
L

c. For simplicity, we consider c = 0 as we normalize in the end.
• The functions ϕ±0 are defined up to a function α : TL → C∗, which contributes to the
phase of um and therefore affects the number of oscillations along the interface. One
can always shift indices so that (λm, um)m≥1−qα , for some qα ∈ Z, corresponds to a wave
with m oscillations along the interface.
• We choose h = L

2πm
to simplify the computations however other choices can be made,

as long as we have h ∝ m−1.

Now, to compute the higher order term of the expansion, from Eq. (4.12), Lemma 4.2,
and Lemma 4.3, for n ≥ 1, we can rewrite Problem (Pn) as: Find ϕ±n ∈ C∞(TL,S (R±)),
exp(i hn−1 θn) ∈ C∞(TL), and λ̆n ∈ C such that

∂2
ρϕ
−
n − τ̂ 2

0 η
2
0 ϕ
−
n =

(
2τ̂0 θ

′
n + η2

0 λ̆n

)
ϕ−0 + η2

0 S
−
n−1 in TL × R−

∂2
ρϕ

+
n − τ̂ 2

0 η
−2
0 ϕ+

n =
(

2τ̂0 θ
′
n − λ̆n

)
ϕ+

0 − S+
n−1 in TL × R+

ϕ−n (s, 0) = ϕ+
n (s, 0) on TL × {0},

−η0(s)−2 ∂ρϕ
−
n (s, 0) = ∂ρϕ

+
n (s, 0) on TL × {0}

(4.14)

where

S±n−1 =
n−1∑
p=1

λ̆n−p ϕ
±
p −

n−1∑
p=0

L1,±
n−p
(
ϕ±p
)
−
∑
p∈I3n

L2,±
p1

(
ϕ±p2

, θp3

)
− L2,±

n

(
ϕ±0 , θ0

)
−
∑
p∈I4n

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
− L3,±

n

(
ϕ±0 , θ0, θ0

)
(4.15)

with Idn =
{
p ∈ [[0, n− 1]]d

∣∣ p1 + · · ·+ pd = n
}
.

Lemma 4.6. Define (ϕ±0 , θ0, λ̆0) according to Lemma 4.3. For n ≥ 1, there exists a solu-
tion (ϕ±n , θn, λ̆n) ∈ C∞(TL,S (R±))×C∞(TL)×C of Problem (Pn) defined in Eq. (4.14).
In particular, ϕ±n is given by

ϕ±n (s, ρ) = P±n (s, ρ) exp
(
−|ρ| τ̂0(s) η0(s)∓1) ,

with polynomials P±n ∈ C∞(TL,P)3.

The proof is detailed in Appendix B.2.

Remark 4.7. In addition to Remark 4.5, (θn)n≥0 and (ϕn)n≥0 are not uniquely defined
at each step of the construction. However, the sequence (λ̆n)n≥0 will be unique (see
Corollary 4.13).

3We denote P the space of polynomial of a single variable with complex coefficients.
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4.3. Proof of the Theorem 2.3. Based on formal series
∑

n ϕ
±
n h

n,
∑

n θn h
n, and∑

n λ̆n h
n with h = L

2πm
, we now construct quasi-pairs in the sense of Definition 2.2.

This step is necessary to justify that our formal expansions capture scattering resonances.
First we use Borel’s Lemma [27, Thm. 1.2.6] for λ̆ and θ, and a direct generalization on
the Fréchet space C∞(TL,S (R±)) [6, Lem. A.5] for ϕ± to establish:

Lemma 4.8. There exist Φ± ∈ C∞([0, L
2π

] × TL,S (R±)), Θ ∈ C∞([0, L
2π

] × TL), and
Λ ∈ C∞([0, L

2π
]) such that, for N ≥ 1, h ∈ [0, L

2π
], s ∈ TL, and ρ ∈ R±, we have

Φ±(h; s, ρ) =
N−1∑
n=0

ϕ±n (s, ρ)hn + hN R±N(h; s, ρ)

Θ(h; s) =
N−1∑
n=0

θn(s)hn + hN RΘ
N(h; s)

Λ(h) =
N−1∑
n=0

λ̆n h
n + hN RΛ

N(h)

where R±N ∈ C∞([0, L
2π

]× TL,S (R±)), RΘ
N ∈ C∞([0, L

2π
]× TL), RΛ

N ∈ C∞([0, L
2π

]).

From those functions, we now define the scalars λm and the functions um in the tubular
neighborhood as

λm =
(

2πm
L

)2
Λ
(

L
2πm

)
=
(

2πm
L

)2
∑
n∈N

λ̆n
(

2πm
L

)n (4.16a)

um(s, ξ) = χ(ξ) exp
(
i 2πm
L

Θ
(

L
2πm

; s
)){Φ−

(
L

2πm
; s, 2πm

L
ξ
)

if ξ ≤ 0

Φ+
(

L
2πm

; s, 2πm
L
ξ
)

if ξ > 0
, (4.16b)

where χ is a cutoff function, χ ∈ C∞comp((−δ, δ)) and χ ≡ 1 on
[
− δ

2
, δ

2

]
. In what follows,

we establish that Eq. (4.16) is a quasi-pair. First we have:

Lemma 4.9. The pair (λm, um)m≥1 defined in Eq. (4.16) satisfies the following:

(i) um is uniformly compactly supported and smooth in Ω and R2 \ Ω.
(ii) um satisfies [um]Γ = O (m−∞) and [a−1 ∂num]Γ = O (m−∞).
(iii) um admits the norm expansion

‖um‖L2(R2) = bm−
1
2 +O(m−

3
2 ) with b > 0.

(iv) Let Rm := Pum − λm um be the reminder defined in Ω and R2 \ Ω, then we have

‖Rm‖L2(Ω) + ‖Rm‖L2(R2\Ω) = O
(
m−∞

)
.

(v) If two quasi-pairs (λm, um)m≥1, (µ
m
, vm)

m≥1
satisfy (i)–(iv), and the quasi-modes

have the same leading phase θ0(s) =
∫ s

0
τ̂0(t) dt then:∫

R2

um vm dx = z0m
−1 +O(m−2) and

∫
R2

um vm dx = O(m−∞)

with z0 ∈ C∗.

Remark 4.10. Items (iii) and (v) of Lemma 4.9 give us∫
R2

um
‖um‖L2(R2)

vm
‖vm‖L2(R2)

dx = z′0 +O(m−1), with z′0 ∈ C∗.
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Remark 4.11. At this point um 6∈ D(P ) because the transmission conditions are not
exactly satisfied, therefore it is not yet a quasi-pair in the sense of Definition 2.2.

Proof of Lemma 4.9. Recall that we set h = L
2πm

, and to simplify notations we denote
χh : ρ 7→ χ(ρh), Φ±h : (s, ρ) 7→ Φ±(h; s, ρ), Θh : s 7→ Θ(h; s), and Λh = Λ(h).

(i) By definition of (um)m≥1 in Eq. (4.16b), (i) is satisfied.

(ii) Using Lemma 4.8 and that each functions ϕ±n satisfies the transmission conditions
via Lemma 4.6, one can show that [um]Γ = O(m−N) and [a−1 ∂num]Γ = O(m−N) for all
N ≥ 0, which is the definition of O(m−∞).

(iii) We introduce the weighted L2 semi-norm on TL × R±

‖f‖2
L2
±[h] =

∫
TL

∫
R±∩(− δ

h
, δ
h

)

|f(s, ρ)|2 h(1 + κ(s)ρh) dρ ds. (4.17)

Form Eq. (4.16), we obtain

‖um‖
2
L2(R2) =

∥∥∥χhΦ−h e i
h

Θh

∥∥∥2

L2
−[h]

+
∥∥∥χhΦ+

h e
i
h

Θh

∥∥∥2

L2
+[h]

.

From Lemma 4.3 and Lemma 4.8 for N = 1, we have

Θh(s) =

∫ s

0

τ̂0(t) dt+ θ1(s)h+ h2RΘ
2 (h; s)

Φ±h (s, ρ) = α(s) exp
(
−|ρ| τ̂0(s) η0(s)∓1)+ hR±1 (h; s, ρ)

where RΘ
2 ∈ C∞([0, L

2π
]× TL) and R±1 ∈ C∞([0, L

2π
]× TL,S (R±)). We deduce that∣∣∣∣∥∥∥χhΦ±h e i

h
Θh

∥∥∥2

L2
±[h]
−
∥∥∥χh α e−|ρ| τ̂0η

∓1
0 ei θ1

∥∥∥2

L2
±[h]

∣∣∣∣ ≤ C±1 h
2

for C±1 some positive constant. We write
∥∥∥χh α e−|ρ| τ̂0η

∓1
0 ei θ1

∥∥∥2

L2
±[h]

= I±1 + I±2 + I±3 ,

I±1 = h

∫
TL

∫
R±
|α(s)|2e∓2ρ τ̂0(s)η0(s)∓1

e−2=θ1(s) dρ ds = h

∫
TL

|α(s)|2e−2=θ1(s)

2τ̂0(s)η0(s)∓1 ds,

I±2 = h

∫
TL

∫
R±

(|χ(ρh)|2 − 1)|α(s)|2e∓2ρ τ̂0(s)η0(s)∓1

e−2=θ1(s) dρ ds,

I±3 = h2

∫
TL

∫
R±
|χ(ρh)α(s)|2e∓2ρ τ̂0(s)η0(s)∓1

e−2=θ1(s) κ(s)ρ dρ ds.

One can show that I±2 = O(h∞) using Lemma B.1. Since χ is bounded and the function
(h; s, ρ) 7→ |α|2e∓2ρ τ̂0η

∓1
0 e−2=θ1κρ is in C∞([0, L

2π
]×TL,S (R±)) there exists a constant C±3

such that |I±3 | ≤ C±3 h
2. Combining the results we get

‖um‖
2
L2(R2) = b2m−1 +O(m−2)

with

b2 =
L

2π

I+
1 + I−1
h

=
L

2π

∫
TL
|α(s)|2 e−2=(θ1(s)) η0(s)−1 + η0(s)

2τ̂0(s)
ds > 0.

(iv) Revisiting the change of variables in tubular coordinates and the scaling, we get

‖Rm‖L2(Ω) = h−2
∥∥∥ei h−1 Θh

(
Lh[a]( ·,Θh)− Λh

) (
χh Φ−h

)∥∥∥
L2
−[h]

, (4.18a)

‖Rm‖L2(R2\Ω) = h−2
∥∥∥ei h−1 Θh

(
Lh[a]( ·,Θh)− Λh

) (
χh Φ+

h

)∥∥∥
L2

+[h]
(4.18b)
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with Lh[a] defined in Eq. (4.6). Lemma 4.8 with N = 1 and Lemma 4.3 give the estimation
=Θh = O(h), so there exists cΘ > 0 such that |ei h−1 Θh| ≤ cΘ. Introducing the commutator
[Lh[a]( ·,Θh), χh] of the differential operator Φ 7→ Lh[a](Φ,Θh) with the scaled cutoff
function χh, we deduce from Eq. (4.18)

‖Rm‖L2(Ω) ≤ cΘ h
−2
(
N− +N ′−

)
and ‖Rm‖L2(R2\Ω) ≤ cΘ h

−2
(
N+ +N ′+

)
(4.19)

where N± =
∥∥χh(Lh[a]( ·,Θh)− Λh

)
Φ±h
∥∥

L2
±[h]

and N ′± =
∥∥[Lh[a]( ·,Θh), χh] Φ±h

∥∥
L2
±[h]

.
Let’s start with N±. We write for N ≥ 1,

Lh[a](Φ±h ,Θh) =
N−1∑
n=0

hn
(
L±,3n (Φ±h ,Θh,Θh) + L±,2n (Φ±h ,Θh) + L±,1n (Φ±h )

)
+ hN

(
R±,3N (h; Φ±h ,Θh,Θh) + R±,2N (h; Φ±h ,Θh) + R±,1N (h; Φ±h )

)
where R±,jN (h) are j-linear second order differential operators such that all the coefficients
in χhR

±,j
N (h) are smooth bounded functions for j ∈ {1, 2, 3}. We use Lemma 4.8 with

different N for each occurrence of Φ±h and Θh, and we obtain

Lh[a](Φ±h ,Θh)− ΛhΦ
±
h

= hN

[
N−1∑
n=0

∑
p∈N3

N−n

L±,3n (R±p1
(h), RΘ

p2
(h), RΘ

p3
(h)) + R±,3N (h;R±0 (h), RΘ

0 (h), RΘ
0 (h))

+
N−1∑
n=0

∑
p∈N2

N−n

L±,2n (R±p1
(h), RΘ

p2
(h)) + R±,2N (h;R±0 (h), RΘ

0 (h))

+
N−1∑
n=0

(
L±,1n − λ̆n

)
R±N−n(h) + R±,1N (h;R±0 (h))−RΛ

N(h)R±0 (h)

]

(4.20)

where we used the relations in Eq. (4.12), giving us that for all Q ∈ N∑
p∈N4

Q

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
+
∑
p∈N3

Q

L2,±
p1

(
ϕ±p2

, θp3

)
+
∑
p∈N2

Q

(
L1,±
p1
− λ̆p1

)
ϕ±p2

= 0.

The coefficients in the operator χhLh[a]( ·,Θh) are smooth bounded functions in TL×R±
(see Eqs. (4.10), (4.8a) and (4.8b)). From Eq. (4.20), we get N± ≤ hN ‖F±(h)‖L±[h] where
F± ∈ C∞([0, L

2π
]× TL,S (R±)), so we have N± ≤ CN h

N for CN a constant independent
of h as h → 0. Now, we consider the two commutator norms N ′±. We observe that the
coefficients of the operators [Lh[a]( ·,Θh), χh] are zero in TL × (− δ

2h
, 0) and TL × (0, δ

2h
).

From this observation, we deduce that

N ′±
2

=

∫
TL

∫
I±(h)

|G±(h; s, ρ)|2 dρ ds

where G± ∈ C∞([0, L
2π

] × TL,S (R±)) and I±(h) are as in Lemma B.1 for ρ = δ
2
. We

deduce that N ′± = O(h∞), and we get ‖Rm‖L2(Ω) + ‖Rm‖L2(R2\Ω) = O
(
hN−2

)
for all

N > 1.
(v) Let (θn)n≥0 (resp. (ϑn)n≥0) be a sequence of phases constructed for um (resp. vm)

and α (resp. β) the function in Lemma 4.3. A similar computation as in (iii) gives that
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R2 um vm dx = z0 h+O (h2) where

z0 =
∑
±

∫
TL
α(s)β(s)eiθ1(s)−iϑ1(s)

∫
R±

e∓2ρ τ̂0(s)η0(s)∓1

dρ ds

=

∫
TL
α(s)β(s) eiθ1(s)−iϑ1(s) η0(s)−1 + η0(s)

2τ̂0(s)
ds.

From the expression of θ1 and ϑ1 in Using Lemma B.2, we get iθ1(s)− iϑ1(s) = −2f(s)−∫ s
0
α′(t)
α(t)

+ β′(t)
β(t)

dt where f is a real function independent of α and β. A derivative compu-
tation shows that the functions

s 7→ α(s) exp

(
−
∫ s

0

α′(t)

α(t)
dt

)
≡ α0 ∈ C∗ and s 7→ β(s) exp

(
−
∫ s

0

β′(t)

β(t)
dt

)
≡ β0 ∈ C∗

are constant so z0 = α0β0

∫
TL

η0(s)−1+η0(s)
2τ̂0(s)

e−2f(s) ds 6= 0. Denoting R (resp. S) the remain-
der in the construction of um (resp. vm), we have∫

R2

um vm dx =

∫
TL
F (h; s) ei

4πm
L

θ0(s) ds

where

F (h; s) = eiR
Θ
1 (h;s)+iSΘ

1 (h;s)∑
±

∫
R±
χu(hρ)χv(hρ)R±0 (h; s, ρ)S±0 (h; s, ρ)h(1 + ρκ(s)h) dρ.

Note that F ∈ C∞([0, L
2π

]× TL). Since θ′0 = τ̂0 > 0, θ0 is a smooth diffeomorphism form
TL to TL, we perform the change of variable x = θ0(s)∫

TL
F (h; s) ei

4πm
L

θ0(s) ds =

∫
TL

(θ−1
0 )′(x)F (h; θ−1

0 (x)) ei
4π
L
mx dx.

From the fact that the function (h;x) 7→ (θ−1
0 )′(x)F (h; θ−1

0 (x)) ∈ C∞([0, 2π
L

] × TL) and
the Riemann-Lebesgue lemma, we get∫

TL
(θ−1

0 )′(x)F (h; θ−1
0 (x)) ei

4π
L
mx dx = O(m−∞).

�

We now add a correction to um in order to satisfy the transmission conditions. Consider
(λm, um)m≥1 in Eq. (4.16), satisfying Lemma 4.9. We define

ǔm(s, ξ) = χ(ξ)

{
0 if ξ ≤ 0

[um]TL×{0} (s) + ξ
[
a−1 ∂ξum

]
TL×{0} (s) if ξ > 0

.

Using Lemma 4.9, we have ‖ǔm‖L2(R2) = O(m−∞) therefore um − ǔm ∈ D(P ) and (P −
λm)(um − ǔm) = O(m−∞). We then replace um by

um =
um − ǔm

‖um − ǔm‖L2(R2)

(4.21)

which now makes (λm, um)m≥1 a quasi-pair in the sense of Definition 2.2. To prove Theo-
rem 2.3, we simply need to show that (λm)m≥1 are real and independent of the construc-
tion. To that aim we will check that (λ̆n)n≥1 are real and unique (see Remark 4.7).
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Lemma 4.12. Let (λm, um)m≥1 and (µ
m
, vm)

m≥1
two quasi-pairs in the sense of Defini-

tion 2.2 corresponding to the same integer m and having the same leading order phase
θ0 : s 7→

∫ s
0
τ̂0(t) dt. Then we have the following estimate λm − µm = O (m−∞).

Proof. Let Rm, Sm be the residuals Rm = Pum − λm um and Sm = Pvm − µm vm. By
definition, the residuals satisfy ‖Rm‖L2(R2) = O(m−∞) and ‖Sm‖L2(R2) = O(m−∞). Using
the symmetry of the operator P , we get(

λm − µm
)∫

R2

um vm dx =

∫
R2

um Sm dx−
∫
R2

Rm vm dx = O
(
m−∞

)
.

From Remark 4.10 one can show that there exists z0 ∈ C∗ such that
∫
R2 um vm dx =

z0 +O(m−1). Then λm − µm = O(m−∞) as m→ +∞. �

Corollary 4.13. The quasi-resonances (λm)m≥1 are real and are independent of the con-
struction.

Proof. By applying Lemma 4.12 to (λm, um)m≥1 and (λm, um)m≥1 we get =λm = O(m−∞)

which implies that =λ̆n = 0 for all n ∈ N. Then taking (λm, um)m≥1 and (µ
m
, vm)

m≥1
two

quasi-pairs in the sense of Definition 2.2, from Remark 4.5, we can always assume that they
have the same leading phase θ0 : s 7→

∫ s
0
τ̂0(t) dt (by taking vm instead of vm). Therefore,

Lemma 4.12 and the fact that the quasi-resonances are real give us λm − µm = O(m−∞),
which implies that λ̆n = µ̆n. �

Results from Corollary 4.13, Lemma 4.9 and Eq. (4.21) imply Theorem 2.3. In the next
section we use Theorem 2.3 and the black box scattering theory to prove Theorem 2.4,
Corollary 2.5, Corollary 2.6, to establish the connection between the quasi-pairs and the
scattering resonances, plus their effect on the scattering instabilities. We end this section
with a few remarks.

Remark 4.14. With Corollary 4.13, given a quasi-pair (λm, um)m≥1, we have a second
quasi-orthogonal quasi-pair (λm, um)m≥1 with the same quasi-resonance in the sense that,
from (v) in Lemma 4.9,

∫
R2 um um dx = O (m−∞) . The quasi-resonances have an asymp-

totic multiplicity of 2, related to the chosen sign of the leading phase θ0 (see Remark 4.5).

Remark 4.15. We can generalize the hypothesis of Theorem 2.3 to complex-valued function
ac ∈ C∞(Ω,C∗) as long as ac|Γ 6= −1 and ρ 7→ ϕ±0 (s, ρ) in Lemma 4.3 are exponentially
decreasing for ρ→ ±∞. In other words we need

<
(
τ̂0(s) η0(s)±1) > 0 where τ0(s) =

(
1− η0(s)−2)− 1

2 and τ̂0 =
τ0

〈τ0〉
and considering the principal branch of the square root. However, if ac is complex non-
real, the operator P is non-self-adjoint and Lemma 4.12, Corollary 4.13, Remark 4.14 are
not true anymore.

4.4. First expansion terms of λm. We provide here a few terms of the asymptotic
expansions of λm to identify their key features. The coefficients λ̆n are computed using
formulas in the proof of Lemma 4.6 via SymPy [31], and symbolic codes are available in
the Github repository [34].

General cavity with varying coefficient. We set the coefficients η0(s) = η(s, 0) and η1(s) =
∂ξη(s, 0), we obtain

λm =

(
2πm

L

)2
ς

〈τ0〉2

[
1−

〈
η2

0 − 1

η0

κ+
η1

η0
2(η0

2 − 1)

〉(
L

2πm

)
+O

(
m−2

)]
. (4.22)
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Looking at the first terms one can see that:
• The sign comes from the leading term and depends on ac < −1 or −1 < ac < 0.
• The curvature κ appears only starting at the second term, it has a weak effect on the
expansion.
• The terms blow up in the limit η0 → 1 (which correspond to ac → −1). This is expected
as for ac ≡ −1 since surface plasmon waves correspond to zero eigenvalues.

One can compute higher order terms such as λ̆2, however it becomes rather cumbersome
and lengthy to present here (expressions can be found in [34]). We provide below a specific
case where the expression λ̆2 is not too large.

Circular cavity of radius R with radially varying coefficient η(r). Following previous re-
sults, we then set η0 = η(R), η1 = ∂rη(R), η2 = ∂2

rη(R), and we obtain

λm =
m2

R2

(
1− η−2

0

) [
1−

(
η2

0 − 1

η0R
+

η1

η2
0(η2

0 − 1)

)(
R

m

)
+ λ̆2

(
R

m

)2

+O
(
m−2

)]
(4.23)

where

λ̆2 = −(η4
0 + 1)(η4

0 − η2
0 + 1)

2η4
0R

2
+
η1(η8

0 + 2η6
0 − 3η2

0 + 2)

5η5
0(η4

0 − 1)R
− η

2
1(3η4

0 + 4η2
0 − 1)

2η6
0(η4

0 − 1)
+

η2

2η3
0(η2

0 − 1)
.

5. Black Box Scattering Theory for unbounded transmission problems
with sign-changing coefficient

5.1. Proof of Theorem 2.4. In this section we prove Theorem 2.4, which is a conse-
quence of the theorem of Tang and Zworski (see [42]) from the black box scattering
framework. The proof is a direct consequence of the following elements:
• the operator (P,D(P )) is a black box Hamiltonian in the sense of [20, Definition. 4.1]
(see Lemma 5.2);
• one can estimate the number of eigenvalues of the reference operator P ] (a truncated
version of the operator P ) defined in Definition 5.3 (see Lemma 5.4). This allows to
establish that the set of resonances, which is discrete, is not too large (one can count
them).

Remark 5.1. From Remark 4.14, we have two quasi-orthogonal quasi-pairs and, as in [6,
Theorem 7.D], we have two resonances close to the quasi-resonance. This will be illus-
trated in Section 6.

In what follows we prove Lemma 5.2 and Lemma 5.4. Let us denote D := B(0, R0) the
open disk of radius R0 so that the cavity Ω is compactly embedded in D. We denote 1D,
1R2\D the restriction on D, R2 \ D, respectively.

Lemma 5.2. The operator (P,D(P )) on L2(R2) is a black box Hamiltonian in the sense
of [20, Definition. 4.1], meaning that the following is satisfied:

(4.1.1): we have the orthogonal decomposition L2(R2) = L2(D)⊕ L2(R2 \ D).

(4.1.4): the operator (P,D(P )) is self-adjoint and 1R2\DD(P ) ⊂ H2(R2 \ D).

(4.1.5): outside of D the operator is equal to the Laplacian.

(4.1.6): for all v ∈ H2(R2) such that v|B(0,R0+ε) ≡ 0 for ε > 0 then v ∈ D(P ).

(4.1.12): the operator 1D (P + i)−1 : L2(R2)→ L2(D) is compact.
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Proof. The condition (4.1.1) is satisfied by definition. The condition (4.1.4) is a conse-
quence of Lemma A.3 and Footnote 1. The condition (4.1.5) is satisfied by definition
of (P,D(P )): 1R2\D (Pu) = −∆

(
1R2\D(u)

)
for u ∈ D(P ). The condition (4.1.6) is a

consequence of Footnote 1. For the condition (4.1.12), we define A : L2(R2) → L2(D),
u 7→ ι1D (P + i)−1, with the embedding ι : H1(D) → L2(D). The operator A is compact
because −i is in the resolvent set (Lemma A.3), the projection 1D goes from D(P ) to
H1(D) (Footnote 1), and ι is compact [15, Thm. 9.16]. �

Now that the operator (P,D(P )) is a black box Hamiltonian, the solutions of Eq. (2.3)
are well-defined. Then we define the reference operator and estimate its eigenvalues.
From Lemma 5.2 we deduce that Conditions (1), (2), (3) in [42] are satisfied. Lemma 5.4
establishes that the last condition, Condition (4) in [42], is satisfied.

Definition 5.3. From the operator (P,D(P )) on L2(R2), we define the reference operator
(P ],D(P ])) on L2

(
(R/R]Z)2) with R] > R0 by P ] : u 7→ − div

(
a−1
] ∇u

)
and

D(P ]) =
{
u ∈ L2

(
(R/R]Z)2) ∣∣ P ]u ∈ L2

(
(R/R]Z)2)}

where a] = ac 1Ω + 1(R/R]Z)2\Ω is the “restriction” of a to (R/R]Z)2.

Lemma 5.4. The reference operator (P ],D(P ])) is self-adjoint, has discrete spectrum,
and we have the following weak Weyl estimate

Card
(
Spec(P ]) ∩ [−µ, µ]

)
= O (µ) for µ ≥ 1.

Proof. The proof that the reference operator is self-adjoint is the similar as in the proof
of Lemma A.3 (see also [16, Theorem 4.2]). The spectrum is discrete because (R/R]Z)2

is a compact set. The weak Weyl estimation comes from [30, Section. 3], particularly
from Corollary 8. The proofs are the same, one simply replaces H1

0(Ω) by the zero mean
function in H1

(
(R/R]Z)2). �

Lemma 5.4 shows that Condition (4) in [42] is satisfied with n] = 2. Now that the
resonance set is well-defined and characterized by quasi-pairs, we can prove Corollary 2.5.
We will use the following result:

Lemma 5.5. For k ∈ C \R−, we denote Res(k) : L2
comp(R2)→ Dloc(P ) the meromorphic

continuation of the resolvent. For k > 0 and χ ∈ C∞comp(R2), we define Resχ(k) : L2(R2)→
D(P ) the cut-off resolvent by Resχ(k) = χRes(k)χ, as in [32, Section. 3.2].

Proof. The meromorphic continuation of the resolvent is given by Theorem 4.4 in [20] and
Lemma 5.2. �

5.2. Proof of Corollary 2.5. Let χ ∈ C∞comp(R2) with χ ≡ 1 on an open neighborhood of
Ω. From the definition of the quasi-pair (λm, um)m≥1, let km =

√
λm and vm = χum. The

family (k2
m, vm)m≥1 is still a quasi-pair, therefore, we have Pvm − k2

mvm = Rm with the
estimation ‖Rm‖L2(R2) = O (m−∞). This gives um = Resχ(km) (χRm) so, for all N ∈ N,
there exists CN > 0 such that

1 = ‖um‖L2(R2) = ‖Resχ(km) (χRm)‖ ≤ |||Resχ(km)|||C−1
N m−N

which gives the result.



UNBOUNDED SIGN-CHANGING TRANSMISSION PROBLEMS 23

5.3. Proof of Corollary 2.6. Now let km :=
√
λm ∈ C 1

2 for m ≥ 1. Results from
Section 4 give us − div(a−1∇um)−k2

mum = Rm with the remainder estimate ‖Rm‖L2(R2) =

O(m−∞). Lemma A.2 with g = 0 and f = Rm, gives us
‖um‖L2(R2) ≤ C(km) ‖Rm‖L2(R2) .

Since ‖um‖L2(R2) = 1 by definition and for all N ≥ 1, there exists c̃N > 0 such that
‖Rm‖L2(R2) ≤ c̃Nm

−N then c̃−1
N mN ≤ C(km), for all m ≥ 1.

6. Numerical illustration of metamaterial scattering resonances

Using Theorem 2.4 and Corollary 2.5 (proved in Section 5), we now have a way to iden-
tify and characterize scattering resonances `, induced by surface plasmon waves. Those
scattering resonances exist when ac(γ) < −1 for all γ ∈ Γ, and are located close to the
real axis. Choosing k = <(`) will lead to scattering instabilities for Eq. (2.2). In what
follows we provide several numerical examples showing the norm of the resolvant oper-
ator exploding close to scattering resonances. First we use the Finite Element Method
(FEM) to compute the scattering resonances ` of the cavity close to the real axis, then we
compute the norm of the discretized cut-off resolvent operator for various k. We provide
details below about the two steps. We consider three cases:

(A) Circular cavity of radius 1 with constant ac ≡ −1.1 as represented in Fig. 7a.
(B) Circular cavity of radius 1 with linearly varying permittivity aam,aMc : (x, y) 7→

am+aM
2

+ aM−am
2

x, with (am, aM) = (−1.2,−1.1), as represented in Fig. 7b.
(C) Peanut cavity with constant ac ≡ −1.1 as represented in Fig. 7c. The peanut

boundary is parameterized by r(θ) = 1− 3
10

cos(2θ) with θ ∈ R/2πZ.

(A) Disk (B) Disk, varying ac (C) Peanut

Figure 7. Sketch representing the three considered configurations (A), (B), and (C),
for the numerical illustration.

Step 1: computing resonances. In order to solve Eq. (2.3), we truncate the computa-
tional domain with a circular perfectly matched layer (PML) as done in [33] (represented
in green in Fig. 8), and we consider T-conforming meshes (ad hoc locally symmetric
meshes along the interface Γ) to guarantee FEM optimal convergence and avoid spurious
eigenvalues [17, 9]. In practice, we build such meshes using GMSH [22] and consider
quadrangular elements of degree 3 embedded in a tubular neighborhood as defined in
Eq. (4.1). We build a circular PML with radii r0 = 1.25, r1 = r0 + 0.25 for the disk, and
r0 = 1.25× 1.3, r1 = r0 + 0.25× 1.3 for the peanut.

The FEM computations are done using finite elements of degree 8 using XLife++ [43],
leading to 33 713 degrees of freedom for all three cases. Table 1 contains computed scat-
tering resonances values `fem for various numbers of curvilinear oscillations m ∈ {3, 6, 12},
for the three cases. As mentioned in Remarks 4.5, 4.14 and 5.1, for a given m, there are
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Mesh for the disk Mesh for the peanut

Figure 8. Structured mesh for the circular cavity (left) and the peanut shape cavity
(right). The cavity is represented in blue, the exterior domain in orange, and the PML
in green. The mesh is locally symmetric along the interface Γ.

two resonances. We plot in Fig. 9 the two associated resonant modes for cases (B) and
(C) associated to m = 12. One can observe that the size of angular oscillations changes
when ac varies (case (B)).

`fem m = 3 m = 6 m = 12

(A) 1.1472− i10−2 2.072− i10−3 3.89308− i10∗

1.1472− i10−2 2.072− i10−3 3.89308− i10∗

(B) 0.966− i10−1.6 2.0681− i10−2 4.21203− i10−5

0.966− i10−1.6 2.0681− i10−2 4.21231− i10−5

(C) 0.46− i10−0.86 1.5455− i10−1.91 3.2954955− i10−3.32

0.93− i10−1.49 1.6912− i10−2.65 3.2990404− i10−4.44

Table 1. Approximate value of the scattering resonances `fem in the three cases and
for m ∈ {3, 6, 12}. The number of digits displayed is evaluated using an estimated
numerical error, and we have put a “∗” when the value is below the estimated error.

Figure 9. Real part of the 2 resonant modes associated to m = 12 curvilinear oscilla-
tions, associated to the resonances in Table 1: for case (B) (left, middle left), for case
(C) (middle right, right). The gray dashed lines represent the symmetry axes of the
problem and hence the symmetries of the modes.

Step 2: norm of the discretized cut-off resolvent operator. In Section 3 we com-
puted the discrete norm of the reduced cut-off resolvent operator

∣∣∣∣∣∣A−1
k

∣∣∣∣∣∣
2
, obtained using

separation of variables. Here, we compute the discrete norm of a finite element version
of the resolvent operator. We equivalently rewrite Eq. (2.2) on a bounded domain using
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a Dirichlet-to-Neumann map (DtN), leading to Eq. (A.3) presented in Appendix A. We
use FEM with T-conforming meshes such as the ones in Fig. 8 but without the PML to
approximate Eq. (A.3), and we denote Mk the finite element matrix of the associated
operator. Then we compute the associated discrete norm

∣∣∣∣∣∣M−1
k

∣∣∣∣∣∣
2
of the finite element

cut-off resolvent operator using the spectral norm by a power method on (Mᵀk)
−1 M−1

k

on a uniform k-grid with geometric refinement around the real part of the scattering
resonances.

The FEM computations are done using finite elements of degree 8 (leading to 28 337
degrees of freedom for all three cases), 65 Fourier modes for the DtN [36], and k-grids of
160 elements for case (A), 150 elements for cases (B), (C) respectively.

Figure 10 presents results for case (A), where we can compare
∣∣∣∣∣∣M−1

k

∣∣∣∣∣∣
2
(dashed orange

line) with
∣∣∣∣∣∣A−1

k

∣∣∣∣∣∣
2
(blue line) from the analytic computations in Section 3. Note that

the numerical schemes used in both cases are not the same, hence we do not expect
the results to identically match. However, the sharp peaks coincide exactly, they occur
at k = <(`fem) (`fem being the FEM scattering resonances computed in Step 1), and
they exponentially grow as k increases (the y-axis is on a logarithmic scale). The gray
vertical lines correspond to the real part of the scattering resonances `fem. For larger
wavenumbers k, the FEM captures the scattering instabilities, but it fails to capture the
peaks’ intensity. This is due to the fact that the mesh is in this case not refined enough
(despite high FEM order).

0 1 2 3 4

k

100

102

104

106

108

1010

re
v
o
lv

en
t

n
o
rm

analytic

FEM

Case (A)

Figure 10. Semi-log plot of the function k 7→
∥∥M−1

k

∥∥
2
for the disk cavity with ac =

−1.1. The blue line correspond to the same analytic computation as in Section 3. The
dotted orange lines correspond to FEM computations. The vertical grid lines are aligned
on the real part of the scattering resonances.

Figure 11 presents results for cases (B), (C), where we do not have an analytic computa-
tion to compare to. As before, we observe that the norm of the cut-off resolvent operator
peaks for k = <(`fem) (indicated by the gray vertical lines in the figures), and the peaks
grow exponentially with respect to k. As mentioned before, we have two resonant modes
corresponding to the same number of curvilinear oscillations m, but they might have
slightly different true resonances. For case (C), we clearly observe this phenomenon (dou-
ble peaks). Note that for small m (i.e. small real part of the scattering resonances), the
norm of the resolvent does not explode. This is due to scattering resonances having a
more significant imaginary part.

Numerical results above illustrate the effect of scattering resonances induced by surface
plasmon waves, for various metamaterial cavities (in shape and in coefficient).
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Figure 11. Semi-log plot of the function k 7→
∥∥M−1

k

∥∥
2
in logarithmic scale for the two

cases (B) and (C). The vertical grid lines are aligned on the real part of the scattering
resonances.

7. Conclusion

Similar to classical optical cavities, the scattering by negative metamaterial cavities can
be significantly affected by localized waves at the boundary of the cavity. In this paper
we have shown with the black box scattering framework that there exist metamaterial
scattering resonances close to the real axis, causing the norm of resolvent operator to
explode. Using asymptotic expansions, we have characterized those resonances and as-
sociated resonant modes, to arbitrary order, and for various cavity properties (arbitrary
smooth shape, varying negative permittivity, etc.). It turns out, scattering resonances
are associated to localized waves corresponding to surface plasmons waves. This study
has been carried out without reducing to the quasi-static case, and the considered spec-
tral parameter is the wavenumber in contrast to [23, 41, 1, 2]. Our asymptotic analysis
revealed that, given some incident source associated to k > 0, surface plasmon waves
can only be excited when ac < −1 (in the case −1 < ac < 0 the scattering resonances
are purely imaginary). We have established that the existence of quasi-pairs implies the
existence of scattering resonances close to the positive real axis which also implies the
explosion of the stability constant when ac < −1. FEM computations confirm that the
norm of the numerical resolvent operator exhibits high intensity narrow peaks associated
to the scattering resonances close to the positive real axis.

Our approach provides an asymptotic characterization of emerging surface plasmon
waves for general metamaterial cavities, to arbitrary order. One could consider extract-
ing those asymptotic plasmonic behaviors from the problem to relax FEM (no peaks),
as done in the singular complement method [19]. One could also, using the same ex-
pansion methods, find asymptotic characterization in the context of dispersive material
cavities (in particular the case where ac := εc is the permittivity and depends on the
wavenumber k, such as Drude’s or Lorentz’ model). In that case, our analysis confirms
that surface plasmons waves can only be excited for frequencies lower than the surface
plasmon frequency [29], however, since the domain of the operator depends on the spectral
parameter, the link between quasi-pairs and scattering resonances is not clear. Extensions
to polygonal metamaterial cavities and dispersive metamaterials will be considered. In
the quasi-static case, the spectral analysis for that case reveals hypersingular plasmonic
behaviors and has been well investigated [24, 13]. The proposed asymptotic expansions
approach is valid for arbitrary optical parameter ac (and complex-valued ones to some
extent), one could also consider arbitrary double negative optical parameters bc and work
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with the double-negative PDE − div(a−1∇u)− b k2 u = 0 (e.g. [11, 21, 3]). Then, to de-
duce from the quasi-pairs existence the presence of scattering resonances becomes difficult
because the operator is no longer self-adjoint. All the derivation has been provided for
two-dimensional problems, one could consider three-dimensional cavities.
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Appendix A. Properties of the operator P

We recall the operator P : u 7→ − div(a−1∇u). Given ω ⊆ R2, we define the bilinear
form

bω(u, v) =

∫
ω

a−1∇u · ∇v dx, u, v ∈ H1(ω). (A.1)

Then b := bR2 is the associated bilinear form of (P,D(P )), one can write b(u, v) = (Pu, v)L2

for u ∈ D(P ), v ∈ H1(R2), and is the associated bilinear form of Eq. (2.2) for P : H1(R2)→
H−1(R2) (b(u, v) = 〈Pu, v〉 for u, v ∈ H1(R2), where 〈·, ·〉 is the duality bracket H−1(R2)×
H1(R2) ).

Lemma A.1. If ac(γ) 6= −1, for all γ ∈ Γ, the bilinear form bω defined in Eq. (A.1) is
weakly T-coercive. More precisely, there exists an isomorphism T ∈ L(H1(ω)), a compact
operator C ∈ L(L2(ω)), α > 0, and β ∈ R such that bω satisfies a Gärding’s inequality of
the form:

bω(u, Tu) ≥ α ‖u‖2
H1(ω) − β ‖Cu‖

2
L2(ω) , ∀u ∈ H1(ω).

Proof. When ac < 0 is constant, one can use T provided in [9] and the proof follows the
one of [9, Lemma 2]. When ac ∈ C∞(Ω) non-constant, since ∂Ω is a smooth interface,
it can always be seen as locally straight, then Theorems 3.10 and 4.3 in [10] apply and
provide the needed results. �

Lemma A.2. If ac(γ) 6= −1, for all γ ∈ Γ, the operator P is Fredholm of index 0 and
Eq. (2.2) is well-posed. Moreover, there exists a stability constant C(k) > 0 such that

‖u‖L2(R2) ≤ C(k)
(
‖f‖L2(R2) + ‖g‖L2(Γ)

)
. (A.2)

Proof. Let D(0, ρ) be a disk a radius ρ such that Ω is compactly embedded in D(0, ρ),
and f ∈ L2(D(0, ρ)). Following [8], we use a Dirichlet-to-Neumann map, denoted S, to
rewrite Eq. (2.2) in D(0, ρ): Find u ∈ H1(D(0, ρ)) such that

− div
(
a−1∇u

)
− k2u = f in D(0, ρ)

[u]Γ = 0 and
[
a−1 ∂nu

]
Γ

= g across Γ

∂ru = Su on ∂D(0, ρ)

(A.3)

Lemma 1 in [8] shows that problems Eq. (A.3)-Eq. (2.2) admits at most one solution.
Following [8, Section 2], using the properties of S and the fact that K : u 7→ −k2u is com-
pact, one simply needs to establish that the operator P : u 7→ − div (a−1∇u) is Fredholm
to conclude. From [16, Proposition 2.6], it is equivalent to show that b|D(0,ρ) in Eq. (A.1)
is weakly T-coercive, which is established by Lemma A.1. Well-posedness of Eq. (A.3) in
Hadamard’s sense gives u that there exists C̃(k) > 0 such that

‖u‖H1(D(0,ρ)) ≤ C̃(k)
(
‖g‖L2(Γ) + ‖f‖L2(D(0,ρ))

)
.

https://github.com/rparini/cxroots
https://doi.org/10.1021/nl802317d
https://doi.org/10.1093/imamat/hxz016
https://doi.org/10.4310/MRL.1998.v5.n3.a1
https://uma.ensta-paristech.fr/soft/XLiFE++/
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For Eq. (2.2), using Poincaré’s inequality this leads to

‖u‖L2(R2) ≤ C(k)
(
‖g‖L2(Γ) + ‖f‖L2(R2)

)
. (A.4)

�

Lemma A.3. If ac(γ) 6= −1, for all γ ∈ Γ, then (P,D(P )) is self-adjoint, and its spectrum
is such that Specess(P ) = R+ and Specdis(P ) ⊂ R∗−.

Proof. The proof is given by applying Theorem 4.2, Propositions 4.5 and 4.6 in [16,
Chapter 4]. Consider λ ∈ C \ R and the problem: Find u ∈ H1(R2) such that b(u, v) −
λ(u, v)L2 = (f, v)L2 , ∀v ∈ H1(R2), with f ∈ L2(R2). Using Lemma A.1, b is weakly
T-coercive and the above problem is well-posed (Lemma A.2). This shows that P is self-
adjoint. Given λ ∈ Specess(P ), consider (un)n ∈ D(P ) such ‖un‖L2(R2) = 1, un ⇀ 0 weakly
in L2 and such that ‖Pun − λun‖L2 → 0. Using Lemma A.1, we have

(Pun, Tun)L2(R2) ≥ α ‖un‖2
H1(R2) − β ‖Cun‖

2
H1(R2) ≥ −β ‖Cun‖

2
L2(R2)

and we note that
(Pun, Tun)L2(R2) = λ(un, Tun)L2 = λ+ λ(un, (T− I)un)L2(R2).

Since un ⇀ 0 weakly in L2, one can show that ‖Cun‖2
L2(R2) → 0, (un, (T − I)un)L2(R2) →

0 strongly, which leads to λ ≥ 0 . On the other hand, for λ ≥ 0, one can build a
Weyl sequence (un)n ∈ D(P ) such ‖un‖L2(R2) = 1, un ⇀ 0 weakly in L2 and such that
‖Pun − λun‖L2 → 0. Rellich lemma allows us to show that there are no eigenvalues in
Specess(P ). Finally, P doesn’t admit a lower bound (details can be found in [16, Section
4.2.2]): one can consider a sequence (un)n ∈ D(P ) with support strictly included in Ω
such that the numercial range (Pun, un)L2 → −∞ (recall that ac < 0), which shows that
Specdis(P ) ⊂ R∗−. �

Appendix B. Proofs and additional results for the asymptotic
expansions

B.1. Proof of Lemma 4.3.

Proof. We solve Eq. (4.13) as ordinary differential equations with s ∈ TL as a parameter.
The conditions ϕ±0 (s, ·) ∈ S (R±) give the following restrictions θ′0(s)2 +η0(s)2λ̆0 ∈ C\R−
and θ′0(s)2 − λ̆0 ∈ C \ R−. If one of the above restrictions is false, then there are no
solutions ϕ±(s, ·) in S (R±). Under those restrictions, there exists α(s), β(s) ∈ R such
that α(s)β(s) 6= 0,

ϕ−0 (s, ρ) = α(s)eρ
√
θ′0(s)2+η0(s)2λ̆0 , and ϕ+

0 (s, ρ) = β(s)e−ρ
√
θ′0(s)2−λ̆0 ,

where the square roots are chosen to be in C 1
2 . The first transmission condition ϕ−0 (s, 0) =

ϕ+
0 (s, 0) implies that α(s) = β(s). Then the second transmission condition

−η0(s)−2 ∂ρϕ
−
0 (s, 0) = ∂ρϕ

+
0 (s, 0)

give us

−η0(s)−2
√
θ′0(s)2 + η0(s)2λ̆0 = −

√
θ′0(s)2 − λ̆0,

leading to the eikonal equation

θ′0(s)
2

=
λ̆0

1− η0(s)−2 = ςλ̆0

∣∣1− η0(s)−2
∣∣−1

.
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While this equation does not have a unique solution, one simply selects one (see Re-
mark 4.5). Here we choose

θ0(s) =

√
ςλ̆0

∫ s

0

∣∣1− η0(t)−2
∣∣− 1

2 dt

and from the condition exp
(
i
h
θ0

)
∈ C∞(TL), we deduce that exp

(
i
h
θ0(L)

)
= exp

(
i
h
θ0(0)

)
which implies that there exists m ∈ N such that

2πm =
θ0(L)− θ0(0)

h
=

√
ςλ̆0

h

∫ L

0

∣∣1− η0(t)−2
∣∣− 1

2 dt.

By choosing h = L
2πm

for m ∈ N∗, we get 1 =
√
ςλ̆0

〈∣∣1− η−2
0

∣∣− 1
2

〉
=
√
ςλ̆0 〈τ0〉 which

gives λ̆0 = ς 〈τ0〉−2. Then with the relation τ 2
0 = ς(1− η−2

0 )
−1 we obtain that√

θ′0(s)2 + η0(s)2λ̆0 = τ̂0(s) η0(s) > 0 and
√
θ′0(s)2 − λ̆0 = τ̂0(s) η0(s)−1 > 0,

which concludes the proof. �

B.2. Proof of Lemma 4.6.

Proof. For (s, ρ) ∈ TL × R±, we define e±(s, ρ) = exp
(
−|ρ| τ̂0(s) η0(s)∓1). We proceed

by induction on n. For n = 0, Lemma 4.3 gives (ϕ±0 , θ0, λ̆0) the solution of (P0) defined
in Eq. (4.13). Let n ≥ 1, from the definition of S±n−1 in Eq. (4.15), there exists Q±n−1 ∈
C∞(TL,P) such that S±n−1 = Q±n−1 e

±. Using Lemma A.1 in [6], we can solve the two ODEs
in Eq. (4.14) with the source terms S±n−1. We find that there exists P̃±n ∈ C∞(TL,P)

such that ϕ̃±n = ρP̃±n e±, ∂2
ρϕ̃
−
n − τ̂ 2

0 η
2
0 ϕ̃
−
n = η2

0 S
−
n−1, and ∂2

ρϕ̃
+
n − τ̂ 2

0 η
−2
0 ϕ̃+

n = −S+
n−1.

Then, solving the two ODEs in Eq. (4.14) with the source terms (2τ̂0θ
′
0 + η2

0λ̆n)ϕ−0 and
(2τ̂0θ

′
0 − λ̆n)ϕ−0 , for (s, ρ) ∈ TL × R±, we obtain

ϕ−n (s, ρ) = α(s)ρ

(
η0(s) λ̆n
2τ̂0(s)

+
θ′n(s)

η0(s)
+
P̃−n (s, ρ)

α(s)

)
e−(s, ρ), (B.1a)

ϕ+
n (s, ρ) = α(s)ρ

(
η0(s) λ̆n
2τ̂0(s)

− η0(s) θ′n(s) +
P̃+
n (s, ρ)

α(s)

)
e+(s, ρ). (B.1b)

The first transmission condition ϕ−n (·, 0) = ϕ+
n (·, 0) is satisfied because ϕ±n (·, 0) = 0.

Using the second transmission condition −η−2
0 ∂ρϕ

−
n (·, 0) = ∂ρϕ

+
n (·, 0) and the expressions

in Eq. (B.1), we get

−η−2
0

(
η0(s) λ̆n
2τ̂0(s)

+
θ′n(s)

η0(s)
+
P̃−n (s, 0)

α(s)

)
=
η0(s) λ̆n
2τ̂0(s)

− η0(s) θ′n(s) +
P̃+
n (s, 0)

α(s)
.

Solving for θ′n and integrating yields

θn(s) =

∫ s

0

λ̆n

2τ̂0(t)(1− η0(t)−2)
+
η0(t)P̃−n (t, 0) + η0(t)3P̃+

n (t, 0)

α(t) (η0(t)4 − 1)
dt.

Now, the condition exp(i hn−1 θn) ∈ C∞(TL) imposes θn(L) = θn(0), solving for λ̆n and
using the relation τ0(t)2 (1− η−2

0 ) = ς yields

λ̆n = − 2 ς

〈τ0〉2

〈
η0P̃

−
n (·, 0) + η3

0P̃
+
n (·, 0)

α (η4
0 − 1)

〉
.

Setting P±n (s, ρ) = α(s)ρ
(
η0(s) λ̆n
2τ̂0(s)

∓ η0(s)±1θ′n(s) + P̃±n (s,ρ)
α(s)

)
finishes the proof. �
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B.3. Additional results for Schwartz functions.

Lemma B.1. Consider F : (h; s, ρ) 7→ F (h; s, ρ) in C∞([0, L
2π

]×TL,S (R±)), ρ > 0, and
the intervals I−(h) = (−∞,− ρ

h
) and I+(h) = ( ρ

h
,+∞). Then∫

TL

∫
I±(h)

|F (h; s, ρ)|2 dρ ds = O(h∞) as h→ 0.

Proof. Notice that, for any integer N ≥ 1, there exists a constant CN > 0 such that
|ρNF (h; s, ρ)| ≤ CN for all (h; s, ρ) ∈ [0, L

2π
]× TL × R±. Hence,∫

TL

∫
I±(h)

|F (h; s, ρ)|2 dρ ds ≤ CN L

(2N − 1) ρ2N−1
h2N−1,

which finishes the proof. �

B.4. Additional results used in Section 4.

Lemma B.2. For s ∈ TL,

θ1(s) =

∫ s

0

λ̆1

λ̆0

τ̂0(t) +
(η0(t)2 − 1)κ(t)

2 η0(t)
+

η1(t)

2 η0(s)2 (η0(t)2 − 1)

+ i
(η0(t)4 + 3) η′0(t)

2 η0(t) (η0(t)4 − 1)
+ i

α′(t)

α(t)
dt.

Proof. This follows from the computation performed in Appendix B.2 where we solve
Eq. (4.14) for n = 1 with

η2
0S
−
0 = 2ρ

η1

η0

∂2
ρϕ
−
0 −

(
κ− 2η1

η0

)
∂ρϕ

−
0 − 2iθ′0∂sϕ

−
0

−
(

2ρθ′0
2

(
κ+

η1

η0

)
+ iθ′′0 − 2iθ′0

η′0
η0

)
ϕ−0 ,

−S+
0 = −κ∂ρϕ+

0 − 2iθ′0∂sϕ
+
0 −

(
2ρθ′0

2
κ+ iθ′′0

)
ϕ+

0 .

�

Department of Applied Mathematics, University of California, Merced, 5200 North
Lake Road, Merced, CA 95343, USA, Univ Lyon, INSA Lyon, UJM, UCBL, ECL, CNRS
UMR 5208, ICJ, F-69621, France.

Email address: camille.carvalho@insa-lyon.fr

Karlsruhe Institute of Technology, Institute for Analysis, Englerstraße 2, D-76131
Karlsruhe, Germany.

Email address: zois.moitier@kit.edu


	1. Introduction
	2. Problem setting and main result
	2.1. Mathematical settings
	2.2. Main result

	3. A pedagogical example
	3.1. Scattering resonances for the disk
	3.2. Interpretation with Schrödinger operator for the disk

	4. Quasi-pair for unbounded transmission problems with sign-changing coefficient
	4.1. Formal expansion setup
	4.2. Computation of the expansion terms
	4.3. Proof of the  2.3
	4.4. First expansion terms of lu

	5. Black Box Scattering Theory for unbounded transmission problems with sign-changing coefficient
	5.1. Proof of 2.4
	5.2. Proof of 2.5
	5.3. Proof of 2.6

	6. Numerical illustration of metamaterial scattering resonances
	7. Conclusion
	Acknowledgments
	Funding
	References
	Appendix A. Properties of the operator P
	Appendix B. Proofs and additional results for the asymptotic expansions
	B.1. Proof of lem:sol0
	B.2. Proof of lem:soln
	B.3. Additional results for Schwartz functions
	B.4. Additional results used in  4


