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SCATTERING RESONANCES IN UNBOUNDED TRANSMISSION
PROBLEMS WITH SIGN-CHANGING COEFFICIENT

CAMILLE CARVALHO AND ZOIS MOITIER

ABSTRACT. It is well-known that classical optical cavities can exhibit localized phenom-
ena associated to scattering resonances (using the Black Box Scattering Theory), leading
to numerical instabilities in approximating the solution. Those localized phenomena con-
centrate at the inner boundary of the cavity and are called whispering gallery modes.
In this paper we investigate scattering resonances for unbounded transmission problems
with sign-changing coefficient (corresponding to optical cavities with negative optical
propertie(s), for example made of metamaterials). Due to the change of sign of optical
properties, previous results cannot be applied directly, and interface phenomena at the
metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We
establish the existence of scattering resonances for arbitrary two-dimensional smooth
metamaterial cavities. The proof relies on an asymptotic characterization of the reso-
nances, and extending the Black Box Scattering Theory to problems with sign-changing
coefficient. Our asymptotic analysis reveals that, depending on the metamaterial’s prop-
erties, scattering resonances situated closed to the real axis are associated to surface
plasmons. Examples for several metamaterial cavities are provided.

1. INTRODUCTION

Unbounded transmission problems with sign-changing coefficients arise in electromag-
netics, in particular when one considers Maxwell’s equations in the time harmonic regime
(with Transverse Electric or Transverse Magnetic polarization) in dielectric-metamaterial
structures (typically a bounded metamaterial cavity surrounded by a dielectric). Contrary
to common materials, metamaterials such as the Negative-Index Metamaterials (NIM)
exhibit unusual optical properties: for instance a real-valued negative effective dielectric
permittivity and/or a negative effective permeability at some frequency range. There is a
great interest in modeling metamaterial cavities to confine and control light. In particular,
at optical frequencies, localized interface surface waves called surface plasmons can arise
at dielectric-metamaterial interfaces [29]. The field of plasmonics is very active as surface
plasmons offer strong light enhancement, with applications to next-generation sensors,
antennas, high-resolution imaging, cloaking and other [40|. However, surface plasmons
are very sensitive to the geometry and therefore challenging to capture, experimentally
and numerically [8, 25|. Mathematically, surface plasmons are solutions of the homoge-
neous Maxwell’s equations, they are oscillatory waves along the dielectric-metamaterial
interface while exponentially decreasing in both transverse directions.

In classical transmission problems (meaning dielectric-dielectric structures), it has been
shown that light can be confined by exciting the so-called Whispering Gallery Modes
(WGM) [38]. WGM are essentially supported in the neighborhood of the interior cav-
ity boundary and are associated to scattering resonances [6]. Tt is well-known that the
approximation of light scattering in dielectric optical micro-cavities can be drastically
affected by WGM, in particular if the excitation wavenumber of the source is close to
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2 C. CARVALHO AND Z. MOITIER

a WGM resonance [32, 6]. In those cases the norm of the truncated resolvent operator
explodes, which is observed numerically by the solution blowing-up (peaks): we call this
scattering instabilities. Knowing the exact value of the scattering resonances is in general
challenging (or impossible). However, one can obtain an asymptotic characterization of
the scattering resonances, as done in [6].

The above results do not directly apply to metamaterial cavities due to the change of
sign of the optical parameter(s) and the additional interface plasmonic behaviors. More
precisely, well-posedness of the problem needs more attention, and spectral properties to
define a black box Hamiltonian (including self-adjointness, lower semi-bound, etc.) may
not be true. Also, surface plasmons have been mainly characterized and investigated in
the context of the quasi-static approximation (e.g. [12, 23, 8, 4, 17, 14, 13]) — where an
analytic expression can be found — therefore there is a need to obtain a characterization
for the full problem (no quasi-static) to identify the associated metamaterial scattering
resonances.

The goal of this paper is to establish those results for various two-dimensional meta-
material cavities (arbitrary smooth shape, with one arbitrary varying negative optical
parameter). Using the T-coercivity theory [10, 8, 9], and in the spirit of [6], we establish
that the associated spectral operator of scalar transmissions problem with sign-changing
coefficient is a black box Hamiltonian, and we carry out an asymptotic approximation of
the metamaterial scattering resonances. In this case we find that there is an additional
interface resonance family (compared to classical cavities) related to surface plasmons,
and a specific scaling is required to asymptotically characterize them. This family can be
located close to the real axis, and is responsible for scattering instabilities.

The paper is organized as follows. We present the problem and main results in Sec-
tion 2. To illustrate the metamaterial scattering resonances and their effect, we provide
a pedagogical example (case of a circular metamaterial cavity with constant negative
coefficient) in Section 3. Section 4 presents the general approach for arbitrary meta-
material cavities, including the constructions of the asymptotic approximation at any
order. Section 5 proves their connection to the truncated resolvent operator (extension
of the Black Box Scattering Theory) and their consequence on scattering instabilities.
Section 6 presents numerical illustrations of the metamaterial scattering resonances, and
Section 7 presents our concluding remarks. Appendix A provides theoretical results about
the problem operator, and Appendix B provides additional results and proofs needed in
Section 4.

2. PROBLEM SETTING AND MAIN RESULT

2.1. Mathematical settings. Let us start by introducing the unbounded transmission
problem with sign-changing coefficient, and its spectral analogous. We consider an open
bounded connected set 2 C R? with smooth boundary I' = 952, that represents a trans-
parent (penetrable) optical cavity characterized by a. € € (ﬁ; (—o0, O)) The cavity is
surrounded by a homogeneous background. We denote a € L°°(R?) the piece-wise smooth

function such that B
a = acon ) and a=1onR*\Q. (2.1)

We consider the problem: For f € L2, .(R?), g € Hz(T'), and k € C\ {0}, find u €
H] (R?) such that

—div (a_l Vu) —kK*u=f inR?

[ulp =0, [a0ulp=yg across I’ (2.2)

u  k-outgoing
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and the associated spectral problem: Find (¢,u) € C\R_ x H. _(R?) such that u # 0 and
—div (a_l Vu) =(*u  in R?
[ulp =0, [a0nul, =0 acrossI . (2.3)
u (-outgoing

Above, Hi (R?) == {uec L (R?) | Vx € €22, (R?), xu € H'(R*)} and n : ' — S! is
the unit normal vector outward to . Given X, we denote [X]. (v) = lim,_+ X(z) —
lim,_,,- X (z), for any v € I, the jump condition across I'. The jump conditions [u]. =0
and [aO,ulp = 0 will be referred to as the transmission conditions. We say that v is

k-outgoing if it satisfies the outgoing wave condition:

v(r,0) = Z Wy (1) €™ = Z cm HO (k) ™? (2.4)

MEZ meZ

with polar coordinates (r, #) such that r > sup,.q |z|, 0 € R/27Z, H' the Hankel function
of the first kind of order m, and (¢),,c; € C%. For a pair (¢,u) solution of Eq. (2.3), ¢
is called a scattering resonance and the function u is a resonant mode associated to ¢.

We define P : u — —div(a™! Vu) the L?(R?) operator from Eq. (2.3) with the domain
D(P) = {u € L}(R?) | —div(a=! Vu) € L%(R?)}'. We also define the local version of the
domain Dioe(P) = {u € LL (R?) | Vx € €55, (R?), xu € D(P)}.

loc comp

For classical cavities (a. > 0), one can show that Eq. (2.2) is well-posed in H{, (R?),
the operator (P, D(P)) is self-adjoint, its spectrum is real and admits a lower bound.
This allows us in particular to work in the framework of the black box scattering |20,
Definition. 4.6], where one can check that there is an underlying black box Hamiltonian
(see Lemma 5.2 for more details). We can define Res : k — (P — k2)”" the resolvent?
associated to P. An asymptotic characterization of the scattering resonances close to
the real axis (called quasi-resonances k,,) is provided in [6], and with the black box
scattering theory it is proved that true resonances (¢,,),, are super-algebraically close to
quasi-resonances k,,. As a consequence the solution of Eq. (2.2) blows-up for k = k,,
(and the norm of the truncated resolvent fRes(k,,) explodes).

Due to the change of sign of a, the black box scattering theory doesn’t directly ap-
ply in our case. First, well-posedness is not guaranteed as P : H. (R?) — H, }(R?),
Pu = —div(a™! Vu) is not necessarily a Fredholm operator (or in other words the coer-
civity of the associated weak form of Fq. (2.2) is not guaranteed). Additionally, spectral
requirements on P to be a black box Hamiltonian are not obvious. Finally, it is not
clear whether there exist resonances close to the real axis that are associated to localized
interface modes (potentially related to surface plasmons).

The goal of this paper is to extend the black box scattering framework and to provide an
asymptotic characterization of scattering resonances to unbounded transmission problems
with sign-changing coefficient.

Remark 2.1.

e The k-outgoing condition defined in Eq. (2.4) is equivalent to v satisfying the so-called
Sommerfeld radiation condition if, and only if, £ > 0. This outgoing condition is more

general, and will be also used for the associated spectral problem, where one can have
ke C.

!One can show that D(P) = {u € H'(R?) ’ ulg € H3(Q), ulga\g € HA(R*\ Q), [a™'0pu],, = 0}.
This second definition will be heavily used in Section 4, Section 5.

2%es is defined on the first quadrant of the complex plane (R(k) > 0 and I(k) > 0). Using the black
box scattering framework (see [20]), we can extend the resolvent to C\ R_.
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e Depending on the polarization (TE / TM), the optical cavity is characterized by a
permittivity a = € and a permeability © = 1 or a permeability a = p and a permittivity
e = 1. Metamaterials are commonly characterized by ¢ < 0 and/or p < 0. The cavity
is embedded in a homogeneous background characterized by =1, and ¢ = 1.

e Equation (2.2) includes the scattering by a plane wave.

2.2. Main result. Our main goal is to establish the existence of a discrete sequence of
scattering resonances close to the positive real axis, which is done in two steps. First,
we derive approximate solutions of the resonance problem Eq. (2.3) called quasi-pairs |6,
Definition. 2.1| (Theorem 2.3); then we show that there exist true resonances close to the
approximate ones (Theorem 2.4), which rely on extending the black box scattering theory
for Eq. (2.3). For ease of reading, we (re)define quasi-pairs as follows:

Definition 2.2. A quasi-pair for the resonance problem Eq. (2.3) is formed by a sequence
(An) 1 of real numbers, and a sequence (u,,),,~, of complex valued functions that satisfy
the following conditions:

(1) For any m > 1, the functions u,, are uniformly compactly supported and
Uy, €D(P), with ity ey = 1
(2) We have the following quasi-pair estimate
[Pty — Ay Uy |2 g2y = O (m=), as m — +00, (2.5)

with the notation a,, = O(m~°) to indicate that for all N € N, there exists Cy > 0
such that |a,,| < Cym™, for all m > 1.

(3) Additionally, we say that u,, is localized around T' C R? if, for all § > 0, its support
is mainly in I's :== {x € R? | dist(z,I") < §} neighborhood of I in the sense that

2@y =1—0 (m=), as m — +oo. (2.6)

—m

We call (u,,),,>; quasi-modes, and (Em =/A )m>1 quasi-resonances.
Theorem 2.3. If ac(y) # —1, for all v € T, then we can construct (), Uy,),,> quasi-

pairs of the resonance problem Eq. (2.3) Moreover, we have )\, = (%Tm)2 A (ﬁ) where
L is the length of the curve I' and A € € ([0, £]) (see Eq. (4.16a)). The quasi-mode is
of the form u,, = exp (|2”Tm @) ® with ©,P smooth functions with respect to ﬁ and P
is exponentially decreasing on both sides of the interface I' (see Eq. (4.16b)). Addition-
ally, the sign of A, is given to leading order by the sign of 1 + ac|1:1, and (A,,),,> are

independent of the construction. B

Theorem 2.4. Ifac(y) # —1, for ally € T, let (A, w,,),,,>, be the quasi-pairs of Theo-

2moy =Em

rem 2.3. Then there exists a sequence of true scattering resonances ({y,),,>, of Fq. (2.3)

close to the quasi-resonances (‘/Am)m>1 in the sense that

Efn:Aqu(’)(m_oo), as m — —+0o0.
In addition:
o [fa(y) < —1, forally €T, then ({,,), -, are scattering resonances with R (2,) > 0
and —1 < (%) < 0. -
o If -1 < a(y) <0, for all v € T, then ({,), -, are scattering resonances with
R(2)<0and -1 <3 (2)<0. -

Contrary to the classical cavities (a. > 0), the value of a. can lead to two different be-
haviors: from Theorem 2.3 we only have one sequence of resonances close to the positive
real axis in the case a(y) < —1 (where (k,,),, € R), and none in the case —1 < a(y) <0
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(where (k,,),, € iR), see [33, 6]. From Theorem 2.4 one can show that the truncated resol-
vent explodes at the quasi-resonances, and thus scattering instabilities occur for Eq. (2.2).

Corollary 2.5. Ifa(y) < —1, for ally € T, then there exists a real sequence (k,,),,~, with
lim,,, 5400 k,,, = +00 such that for all x € €. (R?) with x =1 on an open neighborhood

— comp
of Q0 and for all N € N, there exists a constant Cy > 0,
[xRes(k,,)xll > Cym®,  Vm>1.

The above results also rely on well-posedness of Eq. (2.2), and on establishing that P
is a black box Hamiltonian. This can be done using the T-coercivity framework [10, 8, 9],
allowing to compensate for the change of sign of a and establishing Fredholm properties
(and others) under some conditions. Section 5 and Appendix A detail those results.
Well-posedness of Eq. (2.2) in Hadamard’s sense leads to the existence of a stability

constant C'(k) > 0 such that [jul,. < C(k) <||f||L2 + ||g||L2(F)> (see Lemma A.2). From
Corollary 2.5 we deduce the following;:

Corollary 2.6. If a(y) < —1, for all v € T, then there exists a real sequence (k,,),, -
with lim,, 1 k,, = +00 such that for all N € N, there exists a constant Cy > 0, -

C(k,,) > Cym", Vm > 1.
Equation (2.2) suffers from scattering instabilities for k = k,,.

The construction of the real sequence (2,,),, (consequently (k,,),,) is the fundamental
element in the above results. To illustrate how to proceed, we present a simple case in
Section 3 where all calculations can be done explicitly, and we generalize the approach to
arbitrary smooth cavities in Section 4.

3. A PEDAGOGICAL EXAMPLE

In this section we consider Fq. (2.2) set on a circular cavity with constant negative a:
Q) is a disk of radius R > 0, and a. = —n? with > 0. Taking advantage of the geometry,

we look for solution of the form:
u(z) = u(r,0) Zum r,0) Z Wy (1) €™, (3.1)

meZ meZ

with (r,0) € Ry xR/27Z the polar coordinates corresponding to the Cartesian coordinates
z, and wp, (1) = 5= [ T u(r,0) e~ ™ A6, m € Z, the angular Fourier coefficients. Similarly,
we assume we can erte f(@) =3,.cz fm(r) €™, for z € R? with f,, € L2 (R), and we

comp
can write g(z) = >, gm €™, for x € T with g € H%(F)-

Remark 3.1. An example where Eq. (2.2) naturally arises is the scattering by a transparent
obstacle of a plane wave. If one considers u™(x1,z,) = €2 with wavenumber k and
direction (0,1)7, then Eq. (2.2) is satisfied by the scattered field u*® := v — u™ with data
S = div (a7 Vu") + k*u" and g" = — [a7! 9,u™] .. Additionally, one can check that
fm is supported only in the cavity: f.(r) = k*(ac — 1)J(k7), r € (0, R), where J,,
denotes the Bessel function of the first kind of order m. This expansion is obtained using
the Jacobi-Anger expansion of u™ [37, Eq. 10.12.1] that converges absolutely on every
compact set of R2.
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Plugging Eq. (3.1) in Eq. (2.2), we obtain a family of 1D problems indexed by m € Z:
Find w,, € Hi. .(R,,rdr) such that

loc

( 2

—%& (r Opwy,) + m—wm —ack* Wy, = fr in (0, R)

2
1 m? 9 .
_;QT (r Opwy,) + T Wm k* wy, = [ in (R, 400)
" (3.2)
[a™ " wy,] (r) = 9m across { R}
wo'(0) =0 or w,(0)=0 for m#0 on {0}
[ W (1) X H (kr) r>R

with o¢ meaning “up to a constant”. For m # 0, the term T—;wm imposes a homogeneous
Dirichlet boundary condition at zero [7]. The solution is continuous at r = 0, using the
outgoing wave condition we write

L (n k1)
O
l,(nk R)
HY) (k
m#‘f‘f}g(?“) ifr>R
HY (k R)
with |,,, denoting the modified Bessel function of the first kind of order m, and f, , fr
denoting particular solutions. Our goal in this section is to investigate the associated
operator (in particular the resolvent operator), therefore we do not need to write the
particular solutions explicitly. Above, the coefficients (a,,, 3,,) are solution of

n Om \ _ fac<R> - fR(R) n _ 1 _11/
AL (KR) (@n) = <gm+ac‘1 ' (R) — fﬁ(R)) ; An(2) = (_;I’m(m L (z)) - (34)

Ge nlmmz) Hg,ll)(z)

+ fa(r) ifr <R
(3.3)

Wy (1) =

The above system comes from the transmission conditions at r = R.

Remark 3.2. Since k > 0 and the problem is well-posed for n # 1 (see Lemma A.2),
coefficients (auy,, 5,) are uniquely defined and det(A? (kR)) # 0, with

I HY'(2)

L b(2)

det(A” (2)) == —n~! m - , VzeCn 3.5
) ba(n2)  HL)(2) 39
Now that we have an explicit expression of (A} (kR)),,.,, we can analyze its be-

havior for various wavenumbers k and values of a. (namely n). For numerical pur-
poses, we truncate Eq. (3.1) to order M, leading to consider the sequence of operators
(A", (kR),..., AY(kR), ..., A%, (kR)). We choose here M = 32 and R = 1. The resolvent

of this spectral numerical scheme is A,:l where
Ay = diag (AﬁM(k;R), L ALER), ... ,AL(I{;R)) ) (3.6)

To look at the stability of this scheme, we look at the spectral norm of A,;l noted H‘A,;l H|2
Figure 1 represents the log plot of ‘HA,;IH’Q with respect to k, for various values of ac.
One observes that |HA,§1H}2 remains bounded when a. € (—1,0), while there exists a
sequence (k,),, such that |HA1;,11}”2 peaks when a. € (—oo,—1). In the latter, the se-
quence (H|A,;}L

} 2)m> | grows exponentially [32, 26]. We refer to those peaks as scattering
instabilities. B

The above results provide the following:

e While Eq. (2.2) is well-posed for all k& > 0, the associated resolvent operator explodes
for a sequence of wavenumbers (k) -
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1014 1014

1012 ac=—09 1012 -
ac = —0.8

w4 ae = —0.7 1010 -

108 108

106 10°

10% 10* -

102 102

10° T T T T 100 T T AI T T

0 1 2 3 4 5 0 1 2 '8 3 4 5

ac € {—0.97 —0.8, —0.7} ac € {—1.3, —1.2, —1.1}

Figure 1. Semi-log plot of the function k — H‘A;l‘”Q with respect to k for ac €
{=0.9,-0.8,—-0.7} (left), for ac € {—1.3,—1.2,—1.1} (right). The value kg marked on
the graph corresponds to the reference value used in Figs. 4 and 5.

e This phenomenon occurs only for a. < —1.

In what follows we investigate the associated spectral problem to identify the resonances
causing the scattering instabilities. We then use semi-classical analysis to characterize
the sequence (ky,),, -, and study their relationship to surface plasmons.

3.1. Scattering resonances for the disk. As done in the previous section, Eq. (2.3)
set on a disk can be rewritten as a family of one-dimensional problems indexed by m € Z:
Find (¢,w,,) € C\R_ x HL (R, rdr)\ {0}, such that

(1 2

—;@ (r Opwp,) + — Wy — acl*w,, =0 in (0, R)

=
1 m? 5 .
—;& (7 Opwyy,) + r_me — 0w, =0 in (R, +00)
iy (3.7)
[a™ w),] my =0 across { R}
wo'(0) =0 or w,(0)=0form#0 on {0}
(Wi (1) o HW (¢r) r>R
Similarly, we write
O b 1) ifr<R
L (n ¢ R)
I6) Hin (€7) ifr>R
"HY(R

however this time, the pair (¢, w,,) is solution of Eq. (3.7) if, and only if, there exists
(Qm, Bm)" € ker (A7 (¢R)) \ (0,0)7, with A7 (¢R) defined in Eq. (3.4). Given m € Z, and

using Eq. (3.5), we define the set of resonances

Rlac, R)(m) = {e e C\R_ ] det (A" ((R)) = 0 and — g < arg(() <

ro |

} . (3.9)

Finally, we define the set of resonances of Problem Eq. (2.3)
Rlac, R] = | ] Rlac, R](m). (3.10)
meZ

Remark 3.3. Given ¢ € Rlac, R](m), one finds a,,, = ¢ and §,, = ¢ with ¢ € C* since the
resonant modes are defined up to some normalization.
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Remark 3.4. Since I_,, = I, and HY), = (=1)" H{Y, for all m € Z, see [37, Eq. 10.27.1
and 10.4.2|, by symmetry all the resonances ¢, corresponding to m # 0, are of multiplicity
2, and the two associated modes are conjugate, given by u,,(r,0) = w,,(r) e5™. It turns

out Rlac, R = U, ,en Rlac, R](m).

The resonances set (R[ac, R](m)),, defined in Eq. (3.9) cannot be computed analytically,
however one can use contour integration techniques on Eq. (3.5) to compute a subset
Rylac, R] = UZ:O Rlac, R](m) C Rlac, R] (see |28, 39]). Figure 2 represents the set
Reslac, 1] for the unit disk and for various permittivities a.. The color bar indicates the
value of m.

* Rinn + Rpla ¥ Rout * Rinn + Rpla

—200

—200

60

40

—400 — —400 -
20 20

—600 : —600
T ™ T 0 T —T m— 0

—1500 —1000 —500 0 500 —1500 —1000 —500 0 500
ac = —0.9 a.=—1.1
+ Rpla + Rp|a
0.00 — 60 I e 60
+

—0.01 + 40 —0.01 40

—0.02

—0.03 -

—200 0

a. = —0.9

20

—0.02

—0.03 —

T T T T
0 100 200 300

a. = —1.1

400

20

Figure 2. Graph of the sets Rea[—0.9,1] (left column) and Rea|—1.1,1] (right column)
in the complex plane (R(£?),3(¢2)), the bottom row is a zoom on the interface reso-
nances. Those sets are computed using complex contour integration [39] on the analytic
function Eq. (3.5).

In classical cavities (a. > 0), resonances of Eq. (2.3) are split into two categories (at
least for ac > 1 [6]): inner resonances Rinn|ac, R] associated to resonant modes essentially
supported inside the cavity 2, and outer resonances Rou[ac, R] associated to resonant
modes essentially supported in the exterior of the cavity R?\ Q. The inner resonance cat-
egory includes the so-called Whispering Gallery Modes (WGM), associated to resonances
lwowm such that —1 < S(fwam) < 0 18, 6]. In particular the approximation of Eq. (2.2)
can be deteriorated if one chooses k = R({wanm), where those modes can be excited [32,
Sec. 6.2]. When a. < 0 we split the resonances into three categories. From Figs. 2 to 4,
we conclude:

e The outer resonances Roy|ac, 1] (represented as triangles in Fig. 2) are resonances with
a negative imaginary part. The outer resonant modes are essentially supported outside
the cavity.

e The inner resonances Rinn[ac, 1] (represented as dots in Fig. 2) are pure imaginary
eigenvalues of the operator P on L*(R?) (consequently R(¢2,) < 0). They contain

whispering gallery modes. Inner resonances can be seen as outer resonances from the
inverted cavity problem (a. = 1 and a = —n~2 outside).
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e The resonances represented by ‘+’ in Fig. 2 (a zoom is provided Fig. 2¢, Fig. 2d) are
associated to resonant modes essentially supported on the interface I' (see Fig. 5 for an
example). We refer to those modes as surface plasmons waves (SPW), and we call this
family the interface resonances Rppalac, 1]. We denote the interface resonances (¢,,)
so that Rpialac, 1] = {¢,, | m € N*}.

m>1

1.0
L al . 2
10! .- -%s
’, '. — : O ) » » 0.5
10° ,,.'.,su,"..\ v »
0 e - 0 ’ L 0.0
WE L | e ’
—10 ‘=2’ . . —0.5
! ~102 —2 Saw
_ 10
Cout & 5.229 — i2.664 linn = 125.013 (s ~ i2.664
Figure 3. Real part of some resonant modes ug(r,0) for ac = —0.9 with their corre-

sponding resonances below.

1.0

102 2 ®
- -
10; 2 o.;'o R ) » . 05
10 AN A ’ .
0 ‘e - 0 ] L 0.0
% e

*10? .“.“. 1 ] ’
—10 - L S a b L —0.5
—10? -2 .

—1.0

Coue ~ 3.174 — i4.129 i ~ 115.965 g~ 2.377 — 14.194 - 106
Figure 4. Real part of some resonant modes ug(r,0) for ac = —1.1 with their corre-

sponding resonances below.

108 106
v/
1
v/
P ¢ /
1072 o 7 1072 o !
1 1
1 1
1 1
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Figure 5. Log-Log plots of the radial component r +— ws(r) of the three types of
resonances shown in Figs. 3 and j for ac = —0.9 (left) and ac = —1.1 (right).

In the end, we write R[ac, R] = Rout[tdc; R] U Rinnlac, R] U Rpialac, R]. The interface
resonances are quite peculiar as their nature changes depending on a.. As illustrated
in Fig. 2, they are (for most cases imaginary) resonances such that R(¢?) < 0 when
—1 < a. < 0, while they correspond to complex resonances such that %(¢2,) > 0 when
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ac < —1. For the latter, one observes that their real part diverges towards +o0o as m — o0,
and their negative imaginary part tends to 0 exponentially fast as m — oo. Additionally,
a closer observation gives us that %(¢2,) oc m?. Figure 5 represents the behavior of wg for
the three types of resonances far from the boundary for a. € {—1.1,—0.9}. As discussed
above, the support of the inner and outer resonant modes is mainly inside and outside the
cavity, respectively. The modes associated to interface resonances are locally exponentially
decreasing moving away from the interface, which is the mathematical characterization
of surface plasmons [29, 8|. In the next section, we characterize to leading order these
interface resonances family (¢,,),,~, by performing asymptotic expansion as m — oco. In
particular, we will confirm that ¢, oc m.

Remark 3.5. As seen above, it is convenient to identify the change of behavior of the
interface resonances using R(¢2). In what follows we provide asymptotic expansions of

(£2,) >y instead of the resonances (£m),,>1-

Remark 3.6. Going back to the Eq. (2.2), it turns out that the dashed blue line in Fig. 1
corresponds to the real part an interface resonance: ks = R(fg) ~ 2.377, and l3 €
Rpia]—1.1,1]. Additionally, given data associated to k > 0, the interface modes associated
to £ € Rpia[—0.9,1] (in other words R(¢£*) < 0) cannot be excited as illustrated in Fig. 1.
One can also perform the same computations for a lossy circular cavity. In that case
the interface resonances plunge further into the complex plane (their imaginary part gets
further away from the real axis). Excitation of those resonances is then more difficult to
observe.

3.2. Interpretation with Schrodinger operator for the disk. From Section 3.1 we
found that plasmonic resonances (£,,), are such that R(¢2,) changes sign depending on ac
(i.e. ;). In this section we use asymptotic expansions to explain this change of behavior
at leading order. To do so we provide an analogy with the Schrodinger operator. We
define A = m™2 (2, and we rewrite Problem Eq. (3.7) as
1 1 ~
—m~?=9, (r dwy,) + —Qwi = a(r) \wE in (0, R) U (R, +00)
r r
w(R) = w)(R) and — 5 20,w, (R) = 0w’ (R) across {R} (3.11)
wy ' (0) = 0 and w, € Z([R, +00))

with A the new spectral parameter, wx restrictions of w,, in each material, and .7 (R )

denoting the Schwartz space. We replace the outgoing wave condition by the requirement
that w; belongs to the Schwartz space in order to characterize exponentially decreasing
behaviors from both sides of the interface (i.e. surface plasmons). To identify this behav-
ior, first we rescale the problem Eq. (3.11) by £ = r/R — 1 such that r = R corresponds
to &€ = 0. We then define v (€) = wE (R (1 + £)), satisfying in particular

—m 2 LvE + Vot = a(€) R*Avt in (—1,0) and (1, +00),

where Z(§,0¢) = ﬁ@g((l + &) 0¢) is a positive elliptic operator (Laplacian like) and
1

V() = o is a potential. In that sense, the operator v — (—m™2.% + V)v can be

interpreted as a Schrodinger operator. To construct localized modes at the interface,
we consider the principal part of —m 2% + V with its coefficients frozen at ¢ = 0,
corresponding to —m_28§ + 1. It is then natural to rescale by p = m&, and the leading
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order behavior becomes

—a§¢— + = —n? R2\ e in (—o0,0)

—2pt + " =R A" in (0, +00) (3.12)
»~(0) = ¢*(0) and 5> 9,0 (0) = 9,*(0)  across {0},

p* € S (Ry)

with p*(p) = vE(£). Note that the condition v, (—=1) = ¢~ (—m) = 0 becomes p~ €
Z(R_) to keep a localized behavior as m — +o00. Solutions of FEq. (3.12) are given
by (A, %) = (R2(1 —n2),e " " lel), where the modes are exponentially decreasing on
both sides of the interface p = 0. Back to Eq. (3.11), we have found a pair (},,, wE)
characterizing (¢, wE), with the leading behavior given by

A, = %z (1-n)+0(m™"), and wi(r)=exp (—njFlm )% — 1‘>+O(m_1). (3.13)

We conclude:

e when a. < —1 (n > 1), surface plasmons waves are associated to scattering resonances
with R(¢%) > 0 (at first order);

e when —1 < a. < 0 (0 < n < 1), surface plasmons waves are associated to scattering
resonances with R(¢?) < 0 (at first order).

We have then asymptotically characterized SPW by building pairs (A,,,w,,),,>;- Upon

proper justification that w,,(r)e™’ € D(P) and that k = k,, = +/(},,) affects the

resolvent, the obtained results match the observed behaviors in previous sections, and

provide accurate predictions.

The case of the circular cavity with constant a. is quite intuitive, and the leading order
computations can be done explicitly. In the next sections we generalize the approach, to
any order, for the general case (arbitrary shaped smooth boundary, and varying coefhi-
cients a. € €>°(Q; (—oo, —1) U (—1,0))), and justify the connection between the formal
expansions (Section 4) and the resolvent operator (as well as the scattering instabili-
ties, consequently) (Section 5). To that aim, we will use semi-classical WKB (Wentzel-
Kramers-Brillouin) expansions along the interface and matched asymptotic expansions in
the transverse direction to the interface in a tubular neighborhood of the interface. The
higher order terms allow to show a super-algebraic behavior of the peaks seen in Fig. 1,
explaining the exponential increase asymptotically.

4. QUASI—PAIR FOR UNBOUNDED TRANSMISSION PROBLEMS WITH SIGN-CHANGING
COEFFICIENT

In this section we prove Theorem 2.3 which consists of constructing approximate solu-
tions of the resonance problem Eq. (2.3). Those solutions are called quasi-pairs, in the
sense of Definition 2.2. The proof is organized as follows:

e We define a tubular neighborhood where we set up the problem, and we define formal
expansions (Section 4.1).

e We compute the expansion terms by solving a family of problems indexed by the order
of the expansions (Section 4.2).

e We show that the obtained expansions are quasi-pairs in the sense of Definition 2.2
(Lemma 4.9), and that the quasi-resonances are independent of the construction (Corol-
lary 4.13). Details are given in Section 4.3.

We end Section 4 with comments on the first expansion terms of (A,,),,>1-
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4.1. Formal expansion setup. Recall that Q C R? is a cavity with smooth boundary
', see Section 2.1. Let L be the length of T', and 7 = \/—a. a positive smooth function
up to the interface so that we have a. = —n?. We define a tubular neighborhood Vs of
the interface I'. Let v: Ty, — I' be a counterclockwise curvilinear parametrization of the
curve I' with the notation Ty := R/LZ. Let n = (v}, —v;)" be the unit exterior normal
to Q and k = det (7/,7") : Ty — R be the signed curvature. We define the open tubular
neighborhood, see [35], by

Vs = {7(s) +&nls) | (s,§) € T x (=0,9)} (4.1)

which is schematically represented in Fig. 6.

Figure 6. Tubular neighborhood and notations: s denotes an arc-length parametriza-
tion of the curve 7y, and £ is the normal variable.

We now consider the problem:

Pu=\u in QN Vs and (R2\Q)HV(5
[ulp =0 and [a”! 8nu}r =0 across [, (4.2)
u=>0 on 8V5

where P = —div(a™' V) with a defined in Eq. (2.1). By Definition 2.2, the quasi-pairs
are compactly supported therefore the outgoing condition does not play a role in their
construction. We replace in particular the outgoing wave condition by a homogeneous
Dirichlet boundary condition in order to construct localized quasi-pairs.

The change of variables from the tubular coordinates (s,&) € T, x (—4,d) to the
Cartesian coordinates z € Vs is a smooth diffeomorphism for 0 < § < (maxr, |£|)”". In
this tubular coordinate system the operator P becomes

P=—g"divye (a7 G V) (4.3)

0 9(s,¢)

For the general case we use a WKB (Wentzel-Kramers-Brillouin) framework [5] in order
to provide an asymptotic expansion of the spectral parameter as the number of oscillations
along the interface I', denoted m in Section 3.2, goes to infinity. We introduce a small
parameter h > 0 (later to be linked to m) and the ansatz for the quasi-pair (A, u):

u(s, &) =w(s,§) exp (£ 6(s)) and A=h"> A (4.4)
where +6: [0, L] — C is the fast phase along the interface, w: Ty, X (—6,d) — C is the

slow amplitude, and A € C is the spectral parameter. In order for the function w in
Eq. (4.4) to be a smooth function in Vs \ I, we need to add the constraint that the

function s — ei?®) € ¢>°(Ty). The phase function is chosen to be complex to simplify

where g(s,§) =14 &k(s) > 0 and G(s,§) = (g(s,{)_l 0 >
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the computations, however we can always put the imaginary part into the amplitude w.
Following [5] we formally expand the unknowns w, #, and A with respect to h as

= wu(s,&) " = 0Ou(s)h", and A= X\, h". (4.5)
n>0 n>0 n>0

The system Eq. (4.2) with the new unknowns Eq. (4.4) becomes

Lpla](w,0) = Aw in T, x [(=6,0) U (0,48)]
[wr, x(0y = 0 and [a™" Ocw] Tyxfoy = 0 across Ty, x {0} . (4.6)
w =0 on Ty x {—0,0}

Above, Ly]a](w,0) = h2e i’ P <w eih9>, and it can be decomposed as

Lyla](w,0) = Lja](w,0,0) + Lyla](w, 0) + Ly[a](w) (4.7)
where £} [a] are j-linear for j € {1,2,3} and
L3 lal(w,0,9) = g 2 a" w ds0 0,9, (4.8a)
Lila)(w,0) = —hi(g2a ' Owdb+ g 05 (97 a  wdsh)), (4.8b)
Lpla)(w) =—=h*g7" (0 (9a " Oew) + 05 (¢ a ' Ow)) . (4.8¢)

In the above decomposition, only £} [a] involves derivatives with respect to €. Since g
(resp. n = y/—ac > 0) is a smooth function on Ty x (—6,6) (resp. Ty x (—0,0]), then G
is smooth, and we write the formal Taylor expansions at & = 0:

9(5,€) =1+&n(s), G5, =) afGT(,O)f n(s,€) = UT(,)é (4.9)

n>0 ' n>0
where 7,(s) = 9¢n(s,0). Since g and 1 do not vanish on Ty, x {0}, the formal expansions

of g7', g72, and =2 about £ = 0 can be computed with Eq. (4.9).

Like in Section 3.2, we introduce the scaled variable p = h~'¢ for the normal variable
¢ € (—0,0), and we define
©*(s,p) = w(s, hp), for (s,p) € Ty x Ry.
Then, with g = g(s, hp) we rewrite
E,ll[a](goi) =—g! d, (a‘l g(‘?pcpi) —h2glo, (a_1 g ! 6S<pi) ) (4.10)
Problem Eq. (4.6) becomes the formal problem: Find (¢7),.y € €>(Ty, S (R )Y,
(exp($6n)),,cn € ©>(Ty)", and (\,), oy € CY such that

Lola) (X, er b, 3, 0, 07) = (X, A B (2, of b)) in Ty x Ry
> on (8,00 R =" @t (s,0) h" on Ty, x {0} . (4.11)
—no(s) 2 2, Oppn (5,0) " =3, 9,0t (5, 0) " on Ty, x {0}

Note that for simplicity we extend the scaled domain Ty, x (— h, E) to the domain Ty x R
in order to be independent of h i 111 Eq. (4.11), and we replace the homogeneous Dirichlet
boundary condition on Tz x {—2,2} by the conditions p — ¢*(s,p) € F(Ry) for all
s € Ty. One can always multiply the quasi-mode by a cutoff functlon ¢ — x(§) to be
in the domain Ty, x (—2,2), as done later in Eq. (4.16). With Eq. (4.7) and Eq. (4.9),
we can formally expand the operators £5[—n?] = > _ LZ7h" and £)[1] = 3, ., LET A"

n>0 —n
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where L?* are independent of h, for j € {1,2,3}. From Problem Eq. (4.11) we obtain
the family of problems (P,), oy by identifying powers of h: Find ¢ € (T, (Ry)),
exp(+0,) € ¢>(Ty), and An € C such that
D Lt (s O 00) + D L5 (91 00) + 20 L (4) = D_ v
peENE peEN? peNZ peNZ (4.12)
0 (5.0) = ¢ (5,0) and  — ()" Dy, (5,0) = Do (5,0)
with the notation N¢ = {p € N | p; +--- + p; = n}.

4.2. Computation of the expansion terms. First, we set some notation that will be
useful through out the rest of the section.

Notation 4.1. We recall that 19 = 7|, = \/— a|p. Since we assume that 1 + ac|.' =
1 —1ny? # 0, we can define the scalar ¢ = £1 to be the sign of 1 — 1,2, the functions

70:‘1_770_

1
*, and 7o = 7 where (-} is the mean along the interface I' define by

1

(=7 | fe)ds  ¥FeL(TL)

One can obtain the expressions for the Lj™.

Lemma 4.2. The first terms of the expansions of L3[a], L2[a], and L} [a], are given by

Lo~ (6,0,9) = —15° 6 9.0 0., L5~ (4,0) =0, Ly~ (6) = ny> 030,

L3 (¢, 0,9) = ¢ 0,0 0,9, Lo (¢,6) =0, Ly " (¢) = —02¢.
Proof. From the expressions (4.8a), (4.8b), and (4.10) and using the expansions (4.9) with
the change of variable & = hp gives the expressions in the lemma. O

Using Lemma 4.2, we rewrite Problem (P) as: Find ¢f € €°(T.,.7(Ry)), 6y €
¢>([0, L]), and Ag € C such that (¢g,¢7) # (0,0), exp(+60) € €>°(T.), and

(%05 — (962 4o X0> s =0  inTyxR_
g — <t962 - 5\0> og =0 in Ty xRy (4.13)
%0 (5,0) = ¢ (s,0) on Ty, x {0}
[—10(5) ™" O (5,0) = 0§ (5,0)  on Ty, x {0}
Lemma 4.3. One can choose h = ﬁ for m € N* so that (o3, 6, 5\0) is given by
Ao = ﬁ Oo(s) = /OS To(t)dt, and @5 (s, p) = als)exp (=Ip|To(s) mo(s) ™) ,

with o € €(Tr,C*), is solution of Problem (Py) defined in Eq. (4.13).
The proof is detailed in Appendix B.1.

Remark 4.4. e If we unravel the scaling and return to tubular coordinates, for m > 1 and
(s,€) € T, x R, we formally have a pair (),,,u,,)

2moy =Em

2
b= (7 Poroy]
u (5,6) = & L [Bo@+0(m )] {905 (s, 272) #HE<0
o of (5, 5m¢) i E>0

+0 (m_l) ,
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which characterizes surface plasmons at leading order.

e We remark that the leading order term, solution of Eq. (4.13), can be seen as the
leading order solution of a planar problem of the form —div(a~'Vv) = vv on Ty x R
with a(s,y) = —ng on the lower half-plane, a = 1 on the upper half-plane, and v € R.

Remark 4.5. The construction relies on several choices that are not unique.

e One can choose the main phase to satisfy 6 = 7 or 6, = —7;. Then one can construct
two modes corresponding to w,, and @, (see Remark 4.14), where ~ is the complex
conjugate.

e The function 6, is defined up to a constant c. Then u,, in Remark 4.4 is defined up to
e “i"¢. For simplicity, we consider ¢ = 0 as we normalize in the end.

e The functions ¢ are defined up to a function o : T, — C*, which contributes to the
phase of u,, and therefore affects the number of oscillations along the interface. One
can always shift indices so that (A, ,,) for some ¢, € Z, corresponds to a wave
with m oscillations along the interface.

e We choose h = ﬁ to simplify the computations however other choices can be made,
as long as we have h oc m™!.

m>1—ga’

Now, to compute the higher order term of the expansion, from Eq. (4.12), Lemma 4.2,
and Lemma 4.3, for n > 1, we can rewrite Problem (P,) as: Find ¢F € €°°(T, . (Rv.)),
exp(ih"10,) € €>(TL), and A, € C such that

(0207 — 7200 o = (2?0 0., + g Xn) @o + 1M Sy inTp xR_

8290;1'_ - 7/:02 770_2 90: = <2?0 0;1 - xn) 903_ - S:—l n PIFL X ]R-i- (4'14)
0, (5,0) = @, (s,0) on Ty, x {0},

[ —70(5) " Dy, (5,0) = D55 (5, 0) on Ty, x {0}

where
n—1
Sp = Z)‘”—P p — Z L% (e) Z Lo (2 Os)
p=1 pel3,

- L%i (900 >90) - Z L?ﬁi (901:027 Ops 9p4) - Li’i (903’ 0o, 90) (4.15)

pel},

withI¢ = {p € [0,n = 1]* | p1 + -+ pa = n}.
Lemma 4.6. Define (goo , 0o, )\0) according to Lemma 4.5. Forn > 1, there exists a solu-
tion (o, 0,, \,) € €°(Tr, (Ry)) x €°°(TL) x C of Problem (P,) defined in Eq. (4.14).
In particular, o is given by

P (s,p) = P (s, p) exp (=lpl To(s) mo(s) ™),
with polynomials P € €°°(Ty,P)".
The proof is detailed in Appendix B.2.
Remark 4.7. In addition to Remark 4.5, (6,),5¢ and (¢,),, are not uniquely defined

at each step of the construction. However, the sequence (:\”>n>0 will be unique (see
Corollary 4.13).

3We denote P the space of polynomial of a single variable with complex coefficients.
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4.3. Proof of the Theorem 2.3. Based on formal series Y. ¢ h", > 6,h", and

d>on Ao A" with h = ﬁ, we now construct quasi-pairs in the sense of Definition 2.2.
This step is necessary to justify that our formal expansions capture scattering resonances.

First we use Borel’s Lemma [27, Thm. 1.2.6] for A and 6, and a direct generalization on
the Fréchet space €(Tr,. (Ry)) |6, Lem. A.5] for »* to establish:

Lemma 4.8. There ezist ®* € €>([0, £] x Ty, #(Ry)), © € €°°([0, ] x Ty), and
A € €>([0, £]) such that, for N >1, h € [0,£], s € Ty, and p € Ry, we have

N-1

O*(his,p) = Y wils,p) "+ hY Ry (h; s, p)
O(h;s) = 0,(s) h" 4+ Y RS (h; )

AR) = A h" + hY RN (h)
n=0
where R € €([0, £] x Ty, #(Ry), RS € €([0, £] x T1), RY € €=((0, £)).
From those functions, we now define the scalars ), and the functions w,, in the tubular
neighborhood as

A= () A (Gh) = (352)7 D0 A ()" (4.16a)
neN
s 2m™m (I)_ (27fm78 272” ) lfggo
Hm(37£) = X(g) exp (|2T © (ﬁ7 5)) {(I)+ (%’ s, 27rm ) lfé‘ 50 , (4.].6b)

where y is a cutoff function, x € ‘éﬁfmp((—é, §)) and xy = 1 on [—2,4]. In what follows,

we establish that Eq. (4.16) is a quasi-pair. First we have:
Lemma 4.9. The pair (), ,,),,>, defined in Eq. (4.16) satisfies the following:

(i) w,, is uniformly compactly supported and smooth in Q and R? \ Q.
(ii) w,, satisfies [u,,]r = O (m~>) and [ Dpu,,|r = O (m™>).

—m]F
(i) w,, admits the norm expansion

[ty llporey = bm™2 +O(m™2)  with b > 0.
(iv) Let R, = Pu,, — A, u,, be the reminder defined in Q and R?\ Q, then we have
1B lli2) + 1Bl 2geg) = O (m™).
(v) If two quasi-pairs (X, Uy,), 515 (ﬁm Upn) >1 satisfy (i)-(iv), and the quasi-modes

have the same leadmz plZzse Oo(s fo To(t) dt then:
/2 U, Uy dr = zom ™" + O(m_2) and /2 Uy, V,, dx = O(m~>)
with fo e Cr. -
Remark 4.10. Items (iii) and (v) of Lemma 4.9 give us
Em Un___ gy — 2o+ O(m™),  with 2, € C*.

R2 ||U’m||L2(]R2 ||Qm||L2(R2)
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Remark 4.11. At this point u,, ¢ D(P) because the transmission conditions are not
exactly satisfied, therefore it is not yet a quasi-pair in the sense of Definition 2.2.

Proof of Lemma 4.9. Recall that we set h = %, and to simplify notations we denote

Xn : p e X(ph), ©F : (s,p) = ®F(h; s, p), O : s+ O(h;s), and Ay, = A(h).
(i) By definition of (u,,),,~, in Eq. (4.16b), (i) is satisfied.

(ii) Using Lemma 4.8 and that each functions ¢ satisfies the transmission conditions
via Lemma 4.6, one can show that [u,,|p = O(m™) and (a7 9,u,,];, = O(m™") for all
N >0, which is the definition of O(m~>).

(iii) We introduce the weighted L? semi-norm on Ty x Ry

e = [ [ W0 L+ ()b dpds (1.17)
RiN(— o ﬁ)
Form Eq. (4.16), we obtain
i 2 i 2
HHmHi?(R?) - HX"@;@ o L2 [n] * HXh(I)Zeh > 12 [

From Lemma 4.3 and Lemma 4.8 for N = 1, we have
On(s) = / 7o(t) dt + 01(s)h + h? RS (h; )
0
®i (s, p) = als) exp (=1l 7o(s) mo(s)™") + h R (h; s, p)
where RS € ([0, £] x T1,) and Ry € ([0, £] x Ty, .#(R.)). We deduce that

+ 1o —lp|FonFt i 6 +12
[puaero]l, - aemen ]’ J<czn

L2 [h] L2 [n]

i 2
i 601
L3 []

2,.—2301 (s
= h/ / ()PP RIMET 20 4 ds = h/ |a£8)| ; ;(1) ds,
To R T, 270(8)no(s)

Izizh/ / (Ix(ph)* = 1)]a(s) PeFrPEm™ e=23(0) 4 ds,
Tr, JR4

=+ I+ I3

e . _lp|lmnFL
for C:F some positive constant. We write HXh e lplTong o

=[] el o™ e 00 k(s)pdpds,
TL Ri

One can show that I = O(h™) using Lemma B.1. Since y is bounded and the function
(h; s, p) = |af?eT2eond e=2301 15 is in € ([0, L% Ty, #(Ry)) there exists a constant C§
such that |I| < C§h?. Combining the results we get

I g2y = 02" + O(m ™)
with

I ds > 0.

L I++I_ | ( )’2 —2$(01(s)) 770( ) 1+770(3>
2t h o 270(s)

(iv) Revisiting the change of variables in tubular coordinates and the scaling, we get

[Bllizy = h72 || (Lalal(~ 04) — An) (xn 27) (4.18a)

L2 [n)’

e O (Lyla) (-, On) — Ar) (xn ) (4.18b)

R o =h"
Byl "
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with £p,[a] defined in Eq. (4.6). Lemma 4.8 with N = 1 and Lemma 4.3 give the estimation
30, = O(h), so there exists co > 0 such that e/ ©r| < ¢o. Introducing the commutator
[Lrlal( -, ©n), xn] of the differential operator ® +— L;[a](P,O,) with the scaled cutoff
function y,, we deduce from Eq. (4.18)

IRy lli2) S coh™ N-+N) and R, [li2peq) < coh™ (Mo + ML) (4.19)

where Ni = Hxh(ﬁh[a]( ‘Y @h) - Ah) (I)fHLQi[h] and ./V‘i = H[ﬁh[a]( '7@h>7Xh] (DfHLi[h}
Let’s start with M. We write for N > 1,
N-1
Li[a)(®y,0n) = D> 0" (L@, O, O4) + L2 (@5, 04) + L' (9))
n=0

+ Y (R (h: @y, On, On) + Ry (1 @57, ©1) + Ry (h; 93)))

where R I(h) are j-linear second order differential operators such that all the coefficients

in xp R 7(h) are smooth bounded functions for j € {1,2,3}. We use Lemma 4.8 with
dlfferent N for each occurrence of @f and Oy, and we obtain

Lyla }(@,f,@h) — Ap®

Z > LRy (h), Ry, (h), Ry () + Ry® (s Ry (h), RS (h), RS (b)) (4.20)

n= 0p€N3 n

+Z S LEA(RE (h), RS, (h)) + Ry (hs RE (h), RS ()

n= OPENN n

3 (L = %) R0+ R (s R () — RA(HRS (1)

where we used the relations in FEq. (4.12), giving us that for all @ € N

> L (¢ O O) + D0 L2 (e 0) + > (L= = N) 9 = 0.

pGN‘é2 pGNLz2 pEN2Q
The coefficients in the operator x,Ly[a]( -, ©) are smooth bounded functions in Ty x Ry
(see Eqgs. (4.10), (4.8a) and (4.8b)). From Eq. (4.20), we get Noe < AN |[F=(R)]| ;) where

F* e ¢>(0, £] x T1,.7(Ry)), so we have Ny < Cy hY for Ciy a constant independent
of h as h — 0. Now, we consider the two commutator norms N.. We observe that the
coefficients of the operators [L4[a]( -, ©}), xa] are zero in Ty, X (—2-,0) and T, x (0, 2.).
From this observation, we deduce that

N’2=/ / G (h; 5, p)|* dpds
Tr JI+(h)

where G* € €°°([0, £] x Ty,,.#(Ry)) and I(h) are as in Lemma B.1 for p = 2. We
deduce that NL = O(h>), and we get [|R,, |12 + |Bplli2@ng = O (BY7?) for all
N> 1

(v) Let (0n),50 (resp. (¥,),50) be a sequence of phases constructed for w,, (resp. v,,)
and « (resp. () the function in Lemma 4.3. A similar computation as in (iii) gives that
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fR2 u,, 0, dr = zgh + O (h?) where
eif1(s)— i1 (s) F2p7o(s)m0(s
20 = E / / e dp ds
TL R4+

_ o(s)B(5) eif1(5)=191(s) Mo(s) "'+ 1o(s) 5
JACCEOE s

From the expression of 1 and 91 in Using Lemma B.2, we get i6;(s) — it (s) = —2f(s) —
s a/(t)
0 «at) B(t
tation shows that the functions

S / t

s — a(s)exp (—/ o/(t) dt) =y € C" and s — [(s) exp (—
o ot)

are constant so 2y = gy fTL % e 2/(®)ds # 0. Denoting R (resp. S) the remain-

der in the construction of u,, (resp. v,,), we have

/ u,, v, dr = / F(h;s) e T () 45
R? T,

F(h;s) = o R (h3s)+iSP (his)

Y dt where f is a real function independent of @ and 3. A derivative compu-

s 5/(;) dt) _ g eC

where

S [ o)) R 1. ) (s 5. (L + pi(s)1) .
+ YRz

Note that F' € €°°([0, ] x Ty). Since 8 = 7 > 0, b is a smooth diffeomorphism form
T, to Ty, we perform the change of variable x = 6(s)

/ F(h;s) e 200 ds = / (051 (x) F(h: 05 (x)) €™ da.
TL 1I‘L

From the fact that the function (h;z) — (6;") (z) F(h; 05" (z)) € €>([0, %] x T}) and
the Riemann-Lebesgue lemma, we get

/T (61 () F(h: 65 (x)) € 7 do = O(m™).
]

We now add a correction to w,, in order to satisfy the transmission conditions. Consider
(As W) >y 0 B (4.16), satisfying Lemma 4.9. We define
0 if € <0
( ) ( ) [Qm]'H‘Lx{O} (8) +§ [ 8§um]ﬂ‘ x{0} ( ) lff >0
Using Lemma 4.9, we have |[&,, || 2g2) = O(m™>°) therefore u,, — &, € D(P) and (P —
An) (W, — @,y,) = O(m~>°). We then replace w,,, by
u, = ——om — Um (4.21)

" ||Qm _QmHLQ(RQ)

which now makes (},,, %,,),,~; @ quasi-pair in the sense of Definition 2.2. To prove Theo-

m?I =m

rem 2.3, we simply need to show that (A )1 are real and independent of the construc-

tion. To that aim we will check that (5\“)@1 are real and unique (see Remark 4.7).
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Lemma 4.12. Let (A, Uy,),,>; and (1 v two quasi-pairs in the sense of Defini-

) ) ) >

mi) —m —m mil

tion 2.2 correspondmg to the same integer m and having the same leadmg order phase
0o : s — [, To(t)dt. Then we have the following estimate A,, =0 (m™ ™).

Proof. Let R,,, S,, be the residuals R,, = Pu,, — \,, v, and §m = Pv, —p_ v, By
definition, the residuals satisty [|&,,[| 22y = O(m™>) and ||9,, |12 (gz) = O(m™>). Using
the symmetry of the operator P, we get

(Am—,u_>/ Qmﬂdx—/ u,S,dzr— [ R,7, dz=0(m">).
=m/) |pa R2 R2

From Remark 4.10 one can show that there exists zy € C* such that [p,u,, T, dz =
20+ O(m™"). Then A, — i~ = O(m~>) as m — +o0. O

Corollary 4.13. The quasi-resonances (A,,),,~, are real and are independent of the con-
struction. -

Proof. By applying Lemma 4.12 to (},,, u,,)
which implies that S\, = 0 for all n € N. Then taking (A
quasi-pairs in the sense of Definition 2.2, from Remark 4.5, we can always assume that they

have the same leading phase 6y : s — fo To(t) dt (by takmg U, instead of v,,). Therefore,
Lemma 4.12 and the fact that the quasi-resonances are real give us A,, —p = O(m=),

which implies that :\n = [ly. O

Results from Corollary 4.13, Lemma 4.9 and Eq. (4.21) imply Theorem 2.3. In the next
section we use Theorem 2.3 and the black box scattering theory to prove Theorem 2.4,
Corollary 2.5, Corollary 2.6, to establish the connection between the quasi-pairs and the
scattering resonances, plus their effect on the scattering instabilities. We end this section
with a few remarks.

me1 and (A, w,)sq we get S, = O(m™)

mI =m

m>1 and (g v two

m? m) —m)le

Remark 4.14. With Corollary 4.13, given a quasi-pair (},,,4,,),,>;, we have a second

quasi-orthogonal quasi-pair ()\m, um) > with the same quasi-resonance in the sense that,
from (v) in Lemma 4.9, [o, u,, @, dz = O (m~>). The quasi-resonances have an asymp-
totic multiplicity of 2, related to the chosen sign of the leading phase 6y (see Remark 4.5).

Remark 4.15. We can generalize the hypothesis of Theorem 2.3 to complex-valued function
ac € €=(Q,C*) as long as ac|p # —1 and p — ¢ (s, p) in Lemma 4.3 are exponentially
decreasing for p — Fo00. In other words we need

and 7o = ——

R (7o(s) no(s)il) >0 where 1p(s) = (1 — 770(3)_2) )

and considering the principal branch of the square root. However, if a. is complex non-
real, the operator P is non-self-adjoint and Lemma 4.12, Corollary 4.13, Remark 4.14 are
not true anymore.

To

4.4. First expansion terms of )\,. We provide here a few terms of the asymptotic
expansions of ), to identify their key features. The coefficients \, are computed using
formulas in the proof of Lemma 4.6 via SymPy [31], and symbolic codes are available in
the Github repository [34].

General cavity with varying coefficient. We set the coefficients ny(s) = n(s,0) and n;(s) =
0¢n(s,0), we obtain

A = <%Tm>2 <TZ)2 ll - <n8n; e no2(77:; - 1)> <27fm> O (mQ)} - Uz
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Looking at the first terms one can see that:

e The sign comes from the leading term and depends on a. < —1 or —1 < a. < 0.

e The curvature x appears only starting at the second term, it has a weak effect on the
expansion.

e The terms blow up in the limit 7y — 1 (which correspond to a. — —1). This is expected
as for a. = —1 since surface plasmon waves correspond to zero eigenvalues.

One can compute higher order terms such as 5\2, however it becomes rather cumbersome
and lengthy to present here (expressions can be found in [34]). We provide below a specific
case where the expression Ay is not too large.

Circular cavity of radius R with radially varying coefficient n(r). Following previous re-
sults, we then set 79 = n(R), n1 = 9,n(R), n2 = 9?n(R), and we obtain

m? 2 —1 m R . (R\®
— 1—p2) 1= (20 = = —2 4.2
Ao = (1 )[ (noR +77§(778—1)) <m> & (m) R
where

i, — D)0 —m +1) N m (o +2m5 — 3n5 +2)  ni(3ng +4ng — 1) o

2n5 R? 5mp(ng — DR 2n8(ng — 1) 2m5(ng — 1)

5. BLACK BOX SCATTERING THEORY FOR UNBOUNDED TRANSMISSION PROBLEMS
WITH SIGN-CHANGING COEFFICIENT

5.1. Proof of Theorem 2.4. In this section we prove Theorem 2.4, which is a conse-
quence of the theorem of TANG and ZWORSKI (see [42]) from the black box scattering
framework. The proof is a direct consequence of the following elements:

e the operator (P,D(P)) is a black box Hamiltonian in the sense of [20, Definition. 4.1]
(see Lemma 5.2);

e one can estimate the number of eigenvalues of the reference operator P* (a truncated
version of the operator P) defined in Definition 5.3 (see Lemma 5.4). This allows to
establish that the set of resonances, which is discrete, is not too large (one can count
them).

Remark 5.1. From Remark 4.14, we have two quasi-orthogonal quasi-pairs and, as in [0,
Theorem 7.D], we have two resonances close to the quasi-resonance. This will be illus-
trated in Section 6.

In what follows we prove Lemma 5.2 and Lemma 5.4. Let us denote D := B(0, Ry) the
open disk of radius Ry so that the cavity ) is compactly embedded in D. We denote 1p,
1g2\p the restriction on D, R?\ D, respectively.

Lemma 5.2. The operator (P, D(P)) on L2(R?) is a black box Hamiltonian in the sense
of |20, Definition. 4.1], meaning that the following is satisfied:

(4.1.1): we have the orthogonal decomposition L?(R?) = L2(D) @ L*(R? \ D).
(4.1.4): the operator (P, D(P)) is self-adjoint and 1gs\5D(P) C H*(R? \ D).
(4.15

):

): outside of D the operator is equal to the Laplacian.

(4.1.6): for all v € H*(R?) such that Ul p0.rose) = 0 for e >0 then v € D(P).
):

(4.1.12): the operator 1p (P + 1)~ : L2(R?) — L2(D) is compact.
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Proof. The condition (4.1.1) is satisfied by definition. The condition (4.1.4) is a conse-
quence of Lemma A.3 and Footnote 1. The condition (4.1.5) is satisfied by definition

of (P, D(P)): lgap(Pu) = —A (1R2\ﬁ(u)) for u € D(P). The condition (4.1.6) is a
consequence of Footnote 1. For the condition (4.1.12), we define A : L*(R?) — L*(D),
w11y (P +i)"", with the embedding ¢« : H'(D) — L*(D). The operator A is compact

because —i is in the resolvent set (Lemma A.3), the projection 1p goes from D(P) to
HY(D) (Footnote 1), and ¢ is compact |15, Thm. 9.16]. O

Now that the operator (P, D(P)) is a black box Hamiltonian, the solutions of Eq. (2.3)
are well-defined. Then we define the reference operator and estimate its eigenvalues.
From Lemma 5.2 we deduce that Conditions (1), (2), (3) in [42] are satisfied. Lemma 5.4
establishes that the last condition, Condition (4) in [42], is satisfied.

Definition 5.3. From the operator (P, D(P)) on L%(R?), we define the reference operator
(P, D(P*)) on L? ((R/Rﬁzf) with Ry > Ry by P*: u— —div (a; ' Vu) and

D(P*) = {u e L? (R/RyZ)?) | P'u e L? (R/R:Z)*)}
where a4 = ac 15 + 1(R/Rﬁz)2\§ is the “restriction” of a to (R/RyZ)>.

Lemma 5.4. The reference operator (P*, D(P*%)) is self-adjoint, has discrete spectrum,
and we have the following weak Weyl estimate

Card (Spec(P*) N [—u, u]) = O (u) for p>1.

Proof. The proof that the reference operator is self-adjoint is the similar as in the proof
of Lemma A.3 (see also [16, Theorem 4.2]). The spectrum is discrete because (R/RyZ)”
is a compact set. The weak Weyl estimation comes from [30, Section. 3|, particularly
from Corollary 8. The proofs are the same, one simply replaces H}(2) by the zero mean
function in H* ((R/RuZ)z). O

Lemma 5.4 shows that Condition (4) in [42] is satisfied with nf = 2. Now that the
resonance set is well-defined and characterized by quasi-pairs, we can prove Corollary 2.5.
We will use the following result:

Lemma 5.5. For k € C\R_, we denote Res(k) : L2 (RQ) — Dioe(P) the meromorphic

comp

continuation of the resolvent. Fork > 0 and x € €2, (R?), we define Res, (k) : L*(R?) —

comp

D(P) the cut-off resolvent by Res, (k) = xRes(k)y, as in [32, Section. 3.2|.

Proof. The meromorphic continuation of the resolvent is given by Theorem 4.4 in [20] and
Lemma 5.2. 0

5.2. Proof of Corollary 2.5. Let x € °° (R?) with y = 1 on an open neighborhood of

comp

Q). From the definition of the quasi-pair (),,, u Jms1s 16t Ky = /A, and v,,, = xu,,,. The

mI =m

family (k2 v,,) m>1 18 still a quasi-pair, therefore, we have Puv,, k:m = R,, with the
estimation ||,/ &2y = O (m™). This gives u,, = Res, (k. )( ) so, for all N € N,

there exists C'y > 0 such that
1= [l 2@y = Resy (k) (xR, < [|Resy (k) [|Cxtm ™

which gives the result.
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5.3. Proof of Corollary 2.6. Now let k,, == /A, € Cz for m > 1. Results from

Section 4 give us — div(a™! Vu,,) — k> u,, = R,, with the remainder estimate Rl 2 2y =
O(m~°). Lemma A.2 with g =0 and f = R,,, gives us
[ ll2@e) < Clkm) 1B llLo2) -

Since ||y, [l;2ge) = 1 by definition and for all N > 1, there exists cy > 0 such that
| Bl 2y < cym™ then ¢! mY < C(k,,), for all m > 1.

6. NUMERICAL ILLUSTRATION OF METAMATERIAL SCATTERING RESONANCES

Using Theorem 2.4 and Corollary 2.5 (proved in Section 5), we now have a way to iden-
tify and characterize scattering resonances ¢, induced by surface plasmon waves. Those
scattering resonances exist when ac(y) < —1 for all v € T', and are located close to the
real axis. Choosing k£ = R(¢) will lead to scattering instabilities for Eq. (2.2). In what
follows we provide several numerical examples showing the norm of the resolvant oper-
ator exploding close to scattering resonances. First we use the Finite Element Method
(FEM) to compute the scattering resonances ¢ of the cavity close to the real axis, then we
compute the norm of the discretized cut-off resolvent operator for various k. We provide
details below about the two steps. We consider three cases:

(A) Circular cavity of radius 1 with constant a. = —1.1 as represented in Fig. 7a.

(B) Circular cavity of radius 1 with linearly varying permittivity a%™™: (z,y)
dmbam 4 o g with (am, am) = (—1 1.1), as represented in Fig. 7h.

(C) Peanut cav1ty with constant a. = 1 1 as represented in Fig. 7c. The peanut
boundary is parameterized by r(0) = 1 — < cos(26) with 0 € R/27Z.

-1.1
‘1 ‘>1 i:lw .
—-1.2

(A) Disk (B) Disk, varying ac (C) Peanut

Figure 7. Sketch representing the three considered configurations (A), (B), and (C),
for the numerical illustration.

Step 1: computing resonances. In order to solve Eq. (2.3), we truncate the computa-
tional domain with a circular perfectly matched layer (PML) as done in [33] (represented
in green in Fig. 8), and we consider T-conforming meshes (ad hoc locally symmetric
meshes along the interface I') to guarantee FEM optimal convergence and avoid spurious
eigenvalues [17, 9]. In practice, we build such meshes using GMSH [22] and consider
quadrangular elements of degree 3 embedded in a tubular neighborhood as defined in
Eq. (4.1). We build a circular PML with radii rqg = 1.25, 7 = ro + 0.25 for the disk, and
ro = 1.25 x 1.3, r1 = rg + 0.25 x 1.3 for the peanut.

The FEM computations are done using finite elements of degree 8 using XLife++ [43],
leading to 33 713 degrees of freedom for all three cases. Table 1 contains computed scat-
tering resonances values lfer, for various numbers of curvilinear oscillations m € {3, 6, 12},
for the three cases. As mentioned in Remarks 4.5, 4.14 and 5.1, for a given m, there are
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Mesh for the disk Mesh for the peanut

Figure 8. Structured mesh for the circular cavity (left) and the peanut shape cavity
(right). The cavity is represented in blue, the exterior domain in orange, and the PML
i green. The mesh is locally symmetric along the interface I.

two resonances. We plot in Fig. 9 the two associated resonant modes for cases (B) and
(C) associated to m = 12. One can observe that the size of angular oscillations changes
when a. varies (case (B)).

Leern m=3 m==06 m =12

(A)  1.1472-i10"2  2.072—i1073 3.89308 — i10*
1.1472 —i1072  2.072 —i107® 3.89308 — i10*

(B)  0.966 —i1076  2.0681 —i10~2 4.21203 —i107°
0.966 —i10~%6  2.0681 —i10~2 421231 —i107°

(C) 0.46 — 107086 1.5455 — 10191 3.2954955 — 1107332
0.93 —i10~149 1.6912 — 107295 3.2990404 — i10~*+4

Table 1. Approximate value of the scattering resonances leem in the three cases and
for m € {3,6,12}. The number of digits displayed is evaluated using an estimated

numerical error, and we have put a “«x” when the value is below the estimated error.

» - - -
» - » -

» " ’ . ’ . o .o
' A . ' ' - -
' » - - ’ . » ™
s 9 - -+ -+ : :
. ’ \ . - - ' '
. . . ’ . 8 » ’
o X . . ™ A >

~ - . @ TN » »

. Wt T - - - -

Figure 9. Real part of the 2 resonant modes associated to m = 12 curvilinear oscilla-
tions, associated to the resonances in Table 1: for case (B) (left, middle left), for case
(C) (middle right, right). The gray dashed lines represent the symmetry azes of the
problem and hence the symmetries of the modes.

Step 2: norm of the discretized cut-off resolvent operator. In Section 3 we com-
puted the discrete norm of the reduced cut-off resolvent operator }HAI;l |H2, obtained using
separation of variables. Here, we compute the discrete norm of a finite element version
of the resolvent operator. We equivalently rewrite Eq. (2.2) on a bounded domain using
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a Dirichlet-to-Neumann map (DtN), leading to Eq. (A.3) presented in Appendix A. We
use FEM with T-conforming meshes such as the ones in Fig. 8 but without the PML to
approximate Eq. (A.3), and we denote M, the finite element matrix of the associated
operator. Then we compute the associated discrete norm |HI\\/JI;1H| , of the finite element

cut-off resolvent operator using the spectral norm by a power method on (I\\/JIZ)_1 M,;l
on a uniform k-grid with geometric refinement around the real part of the scattering
resonances.

The FEM computations are done using finite elements of degree 8 (leading to 28 337
degrees of freedom for all three cases), 65 Fourier modes for the DtN [36], and k-grids of
160 elements for case (A), 150 elements for cases (B), (C) respectively.

Figure 10 presents results for case (A), where we can compare H‘M;l |H2 (dashed orange

line) with |HA;1H}2 (blue line) from the analytic computations in Section 3. Note that
the numerical schemes used in both cases are not the same, hence we do not expect
the results to identically match. However, the sharp peaks coincide exactly, they occur
at k = R(lem) (lfem being the FEM scattering resonances computed in Step 1), and
they exponentially grow as k increases (the y-axis is on a logarithmic scale). The gray
vertical lines correspond to the real part of the scattering resonances flf,. For larger
wavenumbers k, the FEM captures the scattering instabilities, but it fails to capture the

peaks’ intensity. This is due to the fact that the mesh is in this case not refined enough
(despite high FEM order).

1010

—— analytic | !
108 FEM

106 P i

revolvent norm

Case (A)

Figure 10. Semi-log plot of the function k — HMI;1H2 for the disk cavity with ac =
—1.1. The blue line correspond to the same analytic computation as in Section 5. The
dotted orange lines correspond to FEM computations. The vertical grid lines are aligned
on the real part of the scattering resonances.

Figure 11 presents results for cases (B), (C), where we do not have an analytic computa-
tion to compare to. As before, we observe that the norm of the cut-off resolvent operator
peaks for k = R(lem) (indicated by the gray vertical lines in the figures), and the peaks
grow exponentially with respect to k. As mentioned before, we have two resonant modes
corresponding to the same number of curvilinear oscillations m, but they might have
slightly different true resonances. For case (C), we clearly observe this phenomenon (dou-
ble peaks). Note that for small m (i.e. small real part of the scattering resonances), the
norm of the resolvent does not explode. This is due to scattering resonances having a
more significant imaginary part.

Numerical results above illustrate the effect of scattering resonances induced by surface
plasmon waves, for various metamaterial cavities (in shape and in coefficient).
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1010 1010

108 108

1096 106

revolvent norm
revolvent norm

Case (B) Case (C)

Figure 11. Semi-log plot of the function k — HI\\/JI,;1H2 i logarithmic scale for the two
cases (B) and (C). The vertical grid lines are aligned on the real part of the scattering
resonances.

7. CONCLUSION

Similar to classical optical cavities, the scattering by negative metamaterial cavities can
be significantly affected by localized waves at the boundary of the cavity. In this paper
we have shown with the black box scattering framework that there exist metamaterial
scattering resonances close to the real axis, causing the norm of resolvent operator to
explode. Using asymptotic expansions, we have characterized those resonances and as-
sociated resonant modes, to arbitrary order, and for various cavity properties (arbitrary
smooth shape, varying negative permittivity, etc.). It turns out, scattering resonances
are associated to localized waves corresponding to surface plasmons waves. This study
has been carried out without reducing to the quasi-static case, and the considered spec-
tral parameter is the wavenumber in contrast to |23, 41, 1, 2|. Our asymptotic analysis
revealed that, given some incident source associated to k > 0, surface plasmon waves
can only be excited when a. < —1 (in the case —1 < a. < 0 the scattering resonances
are purely imaginary). We have established that the existence of quasi-pairs implies the
existence of scattering resonances close to the positive real axis which also implies the
explosion of the stability constant when a. < —1. FEM computations confirm that the
norm of the numerical resolvent operator exhibits high intensity narrow peaks associated
to the scattering resonances close to the positive real axis.

Our approach provides an asymptotic characterization of emerging surface plasmon
waves for general metamaterial cavities, to arbitrary order. One could consider extract-
ing those asymptotic plasmonic behaviors from the problem to relax FEM (no peaks),
as done in the singular complement method [19]. One could also, using the same ex-
pansion methods, find asymptotic characterization in the context of dispersive material
cavities (in particular the case where a. = . is the permittivity and depends on the
wavenumber k, such as Drude’s or Lorentz’ model). In that case, our analysis confirms
that surface plasmons waves can only be excited for frequencies lower than the surface
plasmon frequency [29], however, since the domain of the operator depends on the spectral
parameter, the link between quasi-pairs and scattering resonances is not clear. Extensions
to polygonal metamaterial cavities and dispersive metamaterials will be considered. In
the quasi-static case, the spectral analysis for that case reveals hypersingular plasmonic
behaviors and has been well investigated [24, 13]. The proposed asymptotic expansions
approach is valid for arbitrary optical parameter a. (and complex-valued ones to some
extent), one could also consider arbitrary double negative optical parameters b. and work
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with the double-negative PDE —div(a™! Vu) —bk?*u =0 (e.g. [11, 21, 3]). Then, to de-
duce from the quasi-pairs existence the presence of scattering resonances becomes difficult
because the operator is no longer self-adjoint. All the derivation has been provided for
two-dimensional problems, one could consider three-dimensional cavities.
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APPENDIX A. PROPERTIES OF THE OPERATOR P

We recall the operator P: u — —div(a~!Vu). Given w C R? we define the bilinear
form

by(u,v) = / a'Vu- Vo dr, u,veH (w). (A1)

Then b = by is the associated bilinear form of (P, D(P)), one can write b(u, v) = (Pu,v);»
for u € D(P), v € H'(R?), and is the associated bilinear form of Eq. (2.2) for P: H!(R?) —
H™'(R?) (b(u,v) = (Pu,v) for u,v € H'(R?), where (-, -) is the duality bracket H(R?) x
HY(R?) ).

Lemma A.1. If ac(y) # —1, for all v € T, the bilinear form b, defined in Fq. (A.1) is
weakly T-coercive. More precisely, there exists an isomorphism T € L(H'(w)), a compact
operator C € L(L*(w)), a > 0, and B € R such that b, satisfies a Girding’s inequality of
the form:
2 2
bw(u7TU) > o HUHHl(w) - 6 HCUHLQ(W) ) Vu € Hl(w)

Proof. When a. < 0 is constant, one can use T provided in [9] and the proof follows the
one of [9, Lemma 2|. When a. € €°°(Q2) non-constant, since 02 is a smooth interface,
it can always be seen as locally straight, then Theorems 3.10 and 4.3 in [10] apply and
provide the needed results. 0

Lemma A.2. If a.(vy) # —1, for all v € T', the operator P is Fredholm of index 0 and
Eq. (2.2) is well-posed. Moreover, there ezists a stability constant C(k) > 0 such that

lellzqeey < CC) (1 ey + lglliagey) (A2)

Proof. Let D(0, p) be a disk a radius p such that  is compactly embedded in D(0, p),
and f € L2(D(0,p)). Following [8], we use a Dirichlet-to-Neumann map, denoted S, to
rewrite Eq. (2.2) in D(0, p): Find u € HY(D(0, p)) such that

—div (a7 Vu) = Ku=f in D(0, p)
[ulp=0 and [a' Onu|. =g across I (A.3)
Oru = Su on 0D(0, p)

Lemma 1 in [8] shows that problems Eq. (A.3)-Eq. (2.2) admits at most one solution.
Following [8, Section 2|, using the properties of & and the fact that K: u — —k*u is com-
pact, one simply needs to establish that the operator P: u + — div (a™! Vu) is Fredholm
to conclude. From [16, Proposition 2.6], it is equivalent to show that b|p, ) in Eq. (A.1)
is weakly T-coercive, which is established by Lemma A.1. Well-posedness of Fq. (A.3) in

Hadamard’s sense gives u that there exists C (k) > 0 such that

ol 0, < CF) (190 2ey + 1 ez )
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For Eq. (2.2), using Poincaré’s inequality this leads to

lllyzqeey < CC) (lgllaqey + 1 lragesy ) (A1)
0

Lemma A.3. Ifa.(y) # —1, for ally € T, then (P, D(P)) is self-adjoint, and its spectrum
is such that Specess(P) = Ry and Specgis(P) C R*.

Proof. The proof is given by applying Theorem 4.2, Propositions 4.5 and 4.6 in |16,
Chapter 4]. Consider A € C \ R and the problem: Find u € H*(R?) such that b(u,v) —
Mu,v)p2 = (f,v)2, Yo € HY(R?), with f € L*(R?). Using Lemma A.1, b is weakly
T-coercive and the above problem is well-posed (Lemma A.2). This shows that P is self-
adjoint. Given A € Specess(P), consider (u,),, € D(P) such [[un|| 22y = 1, up — 0 weakly
in L? and such that || Pu, — Auy,|; 2 — 0. Using Lemma A.1, we have

2 2 2
(Ptn, Tun) 2 g2y = & ||tnllig ey — BlICunlligi ey = —B|Ctinl| 12 (ge)
and we note that

(Ptn, Tun) 2 g2y = A(Uns Ttn )2 = A+ AMtn, (T — Dun)12(r2).-

Since u,, — 0 weakly in L? one can show that ||Cun||ig(R2) — 0, (Un, (T = Dup)r2@ey —
0 strongly, which leads to A > 0 . On the other hand, for A > 0, one can build a
Weyl sequence (uy), € D(P) such [uy|[j2g2y = 1, up — 0 weakly in L? and such that
| Py — Ayl 2 — 0. Rellich lemma allows us to show that there are no eigenvalues in
Specess(P). Finally, P doesn’t admit a lower bound (details can be found in [16, Section
4.2.2]): one can consider a sequence (u,), € D(P) with support strictly included in
such that the numercial range (Pu,,, u,);» — —o0 (recall that a. < 0), which shows that
Specqis(P) C R*. O

APPENDIX B. PROOFS AND ADDITIONAL RESULTS FOR THE ASYMPTOTIC
EXPANSIONS

B.1. Proof of Lemma 4.3.

Proof. We solve Eq (4.13) as ordinary differential equations with s € T, as a parameter.
The conditions ¢ (s, ) € . (R.) give the following restrictions 6} (s)” +10(s)*Ag € C\R_

and 0)(s)> — Ao € C\ R_. If one of the above restrictions is false, then there are no
solutions ¢*(s,-) in ¥ (Ri) Under those restrictions, there exists a(s), 3(s) € R such

that a(s)5(s) # 0,
25 (5, p) = a(s)e? VI @™o and ot (s, p) = B(s)e oV HE o,

where the square roots are chosen to be in C2. The first transmission condition @y (8,0) =
¢4 (s,0) implies that a(s) = B(s). Then the second transmission condition

_7]0(5>_2 3;)905(37 O) - apQOS-(S, 0)

give us

0(5) A/ 80()? + ()Xo = =/ 85 (5) = Yo,
leading to the eikonal equatlon
A
()’ = —

1—770() |

5 = Ao |1 = mo(s)



UNBOUNDED SIGN-CHANGING TRANSMISSION PROBLEMS 31

While this equation does not have a unique solution, one simply selects one (see Re-

mark 4.5). Here we choose
— \/do/ 11— no(t)ﬂ‘5 dt
0

and from the condition exp (;6y) € €>(Ty,), we deduce that exp (16o(L)) = exp (;60(0))
which implies that there exists m € N such that

Oo(L) — 00(0) \/@T/

h
1 -
By choosing h = ;= for m € N*, we get 1 = v/ Ao <’1 — 1 |7§> = VAo (10) which
gives Ag = ¢ (79) 2. Then with the relation 72 = ¢(1 — 770_2)71 we obtain that
V(5 + 0(5) 0 = () mo(s) > 0 and  (/85(5)? — R = Fo(s) m(s) ™ > 0,
which concludes the proof. O
B.2. Proof of Lemma 4.6.

2mm =

‘]. - 7]0 _2 dt

Proof. For (s,p) € Ty, x Ry, we define e*(s, p) = exp (—|p| ?O(S)no(s)ﬂ). We proceed

by induction on n. For n = 0, Lemma 4.3 gives (¢F, 0o, Ag) the solution of (Py) defined
in Eq. (4.13). Let n > 1, from the definition of S* | in Eq. (4.15), there exists Q¥ | €
¢>°(Tp,P) such that S,“f_l = QF ,e*. Using Lemma A.1 in [6], we can solve the two ODEs

in Eq. (4.14) with the source terms SE . We find that there exists P¥ € €>(Ty,P)
such that ¢ = Pﬁni - 829% — oM P = M Sp-1, and 529% — T Py = =S
Then, solving the two ODEs in Eq. (4.14) with the source terms (27,0} + 12\, )y and
(2700 — M)y, for (s,p) € T, x Ry, we obtain

o i (WA ) Prs)) )
o (5 p) = <>p< o T T ) (5.). (B.1a)
)

so,t(s,p):a(s)p(;j(j)" mls) 04(s) + %) (5.0 (B1D)

The first transmission condition ¢ (-,0) = ¢} (-,0) is satisfied because ¢=(-,0) = 0.
Using the second transmission condition —n,2 9,5 (+,0) = 9, (+,0) and the expressions
in Eq. (B.1), we get

(M)A O(s) P00 _ mols) M /(o) 4 i (5:0)
- = + = — —o(s) 0,(s) + ———=.
o ( 270(s) | m(s) | a(s) Zr(s) ) fals)
Solving for ¢/, and integrating yields
: A m(t) Py (1,0) +mo(t)* By (1,0)
On(s) = =~ = T 4
o 270(4)(1 —mo(t) ) a(t) (no(t)” —1)
Now, the condition exp(i h"~16,) € €>(T}) imposes 0, (L) = 6,(0), solving for A, and
using the relation 74(t)* (1 — ng2) = ¢ yields
L __ 2 <noﬁn< 0) + B o>>

T ) (15 — 1)

Setting P~ (s, p) = a(s)p <”§§§)(j)" F no(s) 10, (s) + %) finishes the proof. O

dt.

n —
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B.3. Additional results for Schwartz functions.

Lemma B.1. C’onsider F: (h;s,p)— F(h;s,p) in €([0, £] x Ty, (Ry)), p> 0, and
the intervals 1_(h) oo, —%) and I, (h) = (£,+00). Then

/ / F(h;s,p)?dpds = O(R™®) as h — 0.
TL ]i

Proof. Notice that, for any mteger N > 1, there exists a constant C'y > 0 such that
PN F(h;s,p)| < Cy for all (h;s,p) € [0, 2] x T, x Ry. Hence,

CyL _
F(h;s,p)*dpds < pN L
L[, s BN — 1) A1

which finishes the proof. O
B.4. Additional results used in Section 4.

Lemma B.2. Fors € Ty,

&@%:Af&A®+jm@f—mH@%_ m(t)

X 2m0(1) 2110(s)” (o(t)* — 1)

O 3 o)
2n0(t) (mo(t)* = 1)~ lt)
Proof. This follows from the computation performed in Appendix B.2 where we solve

Eq. (4.14) for n = 1 with

2m - . _
Sy = QP 0 (”f - _) Ippo — 21050500
Tlo Mo

200, MY g —2ign ™) o
P FH_??U + 10y '0770 0

—Si = —k0,pd — 2100508 — (20962“ + i@g) 5 -

0
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