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ASYMPTOTICS FOR METAMATERIAL CAVITIES AND THEIR
EFFECT ON SCATTERING

CAMILLE CARVALHO AND ZOS MOITIER

Abstract. It is well-known that optical cavities can exhibit localized phenomena
responsible for numerical instabilities in approximating scattering problems. In clas-
sic optical cavities, those localized phenomena concentrate at the inner boundary of
the cavity and are called whispering gallery modes. In this paper we consider cavi-
ties made of Negative-Index Metamaterials (NIM). Those manufactured materials can
exhibit unusual optical properties, leading to the appearance of exotic waves at the in-
terface of metamaterial-dielectric interface, such as surface plasmons. There is a great
interest in controlling and guiding surface plasmons to design the next-generation of
nano-antennas, sensors, and others. Surface plasmons have been usually characterized
in the context of the specific quasi-static case. Using asymptotic analysis, we provide
a systematic mathematical characterization of emerging surface plasmons for general
metamaterial cavities for the full wave problem, and answer the following questions:
can surface plasmons be always excited in scattering problems? Can they create
numerical instabilities? Our asymptotic analysis reveals that the nature of surface
plasmons changes depending on the metamaterial’s properties, leading to different
effects on scattering problems. Numerical results for several metamaterial cavities
are provided.
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1. Introduction

Optical micro-resonators, commonly involving dielectric cavities, play an important
role in many applications in photonics and others [27]. Optical cavities have been
extensively studied over the past decades as they offer the opportunity to confine
light in small volumes. This is possible in particular when the resonator supports the
so-called Whispering Gallery Modes (WGM) [37]. With the development of metama-
terials, such as the Negative-Index Metamaterials (NIM) which exhibit unusual optical

Date: October 13, 2020.
2010 Mathematics Subject Classification. 78M35; 35P25; 35C20; 78M10.
Key words and phrases. Helmholtz Equation; Resonances; Scattering; Surface Plasmon.

1



2 CAMILLE CARVALHO AND ZOS MOITIER

properties (for instance a negative effective permittivity ε and/or a negative effective
permeability µ), there is a great interest in modeling metamaterial cavities to con-
fine and control light. In particular, at optical frequencies, localized surface waves
called surface plasmons can arise at dielectric-metamaterial interfaces (as well for some
dielectric-metal interfaces) [31]. The field of plasmonics is very active as surface plas-
mons offer strong light enhancement, with applications to next-generation sensors,
antennas, high-resolution imaging, cloaking and other [38]. However surface plasmons
are very sensitive to the geometry and therefore challenging to capture, experimentally
and numerically [8, 28].

Mathematically, surface plasmons are solutions of the homogeneous Maxwell’s equa-
tions, they are oscillatory waves along the dielectric-metamaterial interface while expo-
nentially decreasing in the transverse direction. For simple interface geometries their
expression is known explicitly, however in general surface plasmons have been mainly
characterized and investigated in the context of the quasi-static approximation (e.g.
[12, 25, 8, 4, 16, 14, 13]). While the quasi-static case offers valuable insights into
their behavior, the connection with exciting the characterized surface plasmons in the
context of light scattering by metamaterials is less clear.

It is well-known that the approximation of light scattering in dielectric optical micro-
cavities can be drastically affected by WGM, in particular if the excitation wavenumber
of the source is close to a WGM resonance [32, 6].

In the spirit of [6], we carry out in this paper an asymptotic analysis to systematically
characterize surface plasmons arising in general two-dimensional metamaterial cavities
(arbitrary smooth shape, arbitrary permittivity function) for the full wave problem
(time-harmonic Maxwell’s equations in Transverse Magnetic polarization), and we an-
swer the following questions: Can surface plasmons be always excited in scattering
problems? Can we numerically observe surface plasmons in practice? Can they cre-
ate numerical instabilities? Our asymptotic analysis reveals that the spectral nature
of surface plasmons changes depending on the metamaterial’s properties, leading to
different effects on scattering problems. Additionally, this analysis provides guidance
about when surface plasmons can be excited in practice.

The paper is organized as follows. We present the considered scattering problem and
known results in Section 2. Section 3 presents how to characterize surface plasmons
and their effect on scattering problems for the model case of a circular metamaterial
cavity. Section 4 provides the general asymptotic analysis of emerging surface plasmons.
Section 5 presents numerical results based on the asymptotic analysis, and Section 6
presents our concluding remarks. Appendix A provides theoretical results regarding
well-posedness of the scattering problem and Appendix B provides additional results
and proofs needed in Section 4.

2. Mathematical problem and preliminaries

2.1. Scattering by a metamaterial cavity. We consider a cavity Ω ⊂ R2, an open
bounded connected set with smooth boundary Γ. The optical cavity Ω is characterized
by a permeability µ = 1, and a permittivity ε := εc < 0 with εc ∈ C∞(Ω). The cavity
is embedded in an homogeneous background characterized by µ = 1, and ε = 1. We
consider the scattering problem of a plane wave by the cavity Ω. Let uin : x 7→ eik d·x,
the plane wave with wavenumber k > 0 and direction d ∈ S1, be the incident wave.
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The scattering problem writes: Find u ∈ H1
loc(R2) such that u = uin + usc and

− div
(
ε−1∇u

)
− k2u = 0 in R2

[u]Γ = 0 and
[
ε−1 ∂nu

]
Γ

= 0 across Γ

usc k-outgoing

(2.1)

with H1
loc(R2) := {u ∈ L2

loc(R2) | ∀χ ∈ C∞comp(R2), χu ∈ H1(R2)}, n : Γ→ S1 is the unit

normal vector outward to Ω, and the function ε ∈ L∞(R2) is given by

ε(x) =

{
εc(x) < 0 if x ∈ Ω

1 if x ∈ R2 \ Ω
. (2.2)

Given X, we denote [X]Γ (γ) = limx→γ+ X(x)− limx→γ− X(x), for any γ ∈ Γ, the jump
condition across Γ. The jump conditions [u]Γ = 0 and [ε−1 ∂nu]Γ = 0 will be referred to
as the transmission conditions. We say that v is k-outgoing if it satisfies the outgoing
wave condition:

v(r, θ) =
∑
m∈Z

wm(r) eimθ =
∑
m∈Z

cm H(1)
m (kr) eimθ (2.3)

with polar coordinates (r, θ) such that r > supx∈Ω |x|, θ ∈ R/2πZ, H
(1)
m the Hankel

function of the first kind of order m, and (cm)m∈Z ∈ CZ.

Remark 2.1. The condition v is k-outgoing defined in Eq. (2.3) is equivalent to v
satisfying the so-called Sommerfeld raditiation condition, if and only if k > 0. This
outgoing condition is more general, and will be also used for the associated spectral
problem, where one can have k ∈ C.

In classic scattering problem (i.e. when ε(x) > 0, ∀x ∈ R2), it is well known that
Problem Eq. (2.1) is well-posed [15, 21]. In our case ε defined as Eq. (2.2) is sign-
changing, and the problem may be ill-posed. Using the T-coercivity theory [10, 8, 9],
one can establish the following Lemma (see Appendix A for details):

Lemma 2.2. Problem (2.1) is well-posed if and only if εc|Γ 6= −1. Moreover there
exists a constant C(k) > 0 such that

‖usc‖L2(D(0,ρ)) ≤ C(k)
∥∥uin∥∥

L2(D(0,ρ))
(2.4)

where D(0, ρ) c Ω is the disk of center 0 and radius ρ.

2.2. Resonances of a dielectric-metamaterial open cavity. As done for classical
cavities, it is essential to study the spectral problem associated to Problem (2.1) to
identify if resonances appear and study their affect if one chooses k “close” to a reso-
nance [41, 22, 32]. We define the operator P := − div(ε−1∇) on L2(R2) with domain
D(P ) := {u ∈ L2(R2) | div(ε−1∇u) ∈ L2(R2)}. The spectral problem associated to

(2.1) writes: Find ` ∈ C 1
2 and u ∈ Dloc(P ), u 6≡ 0 such that

Pu = `2u in R2

[u]Γ = 0 and
[
ε−1 ∂νu

]
Γ

= 0 across Γ

u `-outgoing

, (2.5)

where C 1
2 :=

{
z ∈ C | arg(z) ∈

(
−π

2
, π

2

]}
. We set the branch cut to be R−, from now

on complex roots are uniquely defined. In order to capture eigenvalues and resonances,
we study Problem (2.5) in an extended framework Dloc(P ) ) D(P ), with

Dloc(P ) :=
{
u ∈ L2

loc(R2)
∣∣∣ ∀χ ∈ C∞comp(R2), χu ∈ D(P )

}
.
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Remark 2.3. With the chosen branch cut, the outgoing condition gives that u is a
solution of Eq. (2.5) in L2(R2) if, and only if, ` ∈ Ci+

∗ := {z ∈ C 1
2 | =(z) > 0}. This is

coming from the fact that, for m ∈ Z, the asymptotic behavior of H
(1)
m as r → +∞ is

given by
∣∣∣H(1)

m (` r)
∣∣∣ ∼ √ 2

π |`| r e−=(`) r. We also define Ci− := {z ∈ C 1
2 | =(z) ≤ 0}. As

a consequence we have u ∈ D(P ) when associated to ` ∈ Ci+
∗ , and u ∈ Dloc(P ) when

associated to ` ∈ Ci−.

Using T-coercivity arguments [18, 16], one can show that, if εc|Γ 6= −1, then the
operator (P,D(P )) is self-adjoint on L2(R2) and its essential spectrum is R+ (we refer
to [17] for details). However, contrary to the case with classical cavities [6], P doesn’t
admit a lower bound, it can exhibit negative eigenvalues, as well as interface modes
related to surface plasmons [16]. The rest of the paper is dedicated to: (i) investigate
what types of resonances holds Problem Eq. (2.5) (explicitly or asymptotically), and (ii)
identify if the computations can be deteriorated close to resonances (related to surface
plasmons, or others). We start with a simple case where calculations are explicit.

Remark 2.4. In this paper, we consider the Helmholtz equation case, we do not assume
the quasi-static approximation. The considered spectral problem, where the spectral
parameter is the wavenumber `, differs from the quasi-static spectral problem, where
the spectral parameter is the permittivity εc [25, 13].

3. Case of a circular cavity

We consider Ω = D(0, R) the disk of center 0 and radius R > 0. We set ε ≡ 1 outside
the cavity, and for simplicity we fix ε = εc ≡ −η2 inside, with constant η > 0 (in other
words η :=

√
−εc).

3.1. Scattering by a disk. We take d = (0, 1)ᵀ. Note that we can get the solution
for a direction d′ by doing a rotation that transforms d into d′. In the following, Jm
denotes the Bessel function of the first kind of order m, and Im denotes the modified
Bessel function of the first kind of order m. Taking advantage of the geometry, we look
for solution of Problem Eq. (2.1) of the form:

u(x) = u(r, θ) =
∑
m∈Z

um(r, θ) =
∑
m∈Z

wm(r) eimθ, (3.1)

with (r, θ) ∈ R+ × R/2πZ the polar coordinates corresponding to the Cartesian co-

ordinates x, and wm(r) = 1
2π

∫ 2π

0
u(r, θ) e−imθ dθ, m ∈ Z. Similarly we write uin(x) =∑

m∈Zw
in
m eimθ and usc(x) =

∑
m∈Zw

sc
m(r) eimθ.

Remark 3.1. The Jacobi-Anger expansion [35, Eq. 10.12.1] states that

uin(x) = eik d·x =
∑
m∈Z

Jm(kr) eim(θ−φ+π
2 ), with d = (cos(φ), sin(φ))ᵀ. (3.2)

The series in (3.2) converges absolutely on every compact set of R2. With d = (0, 1)ᵀ,
we obtain win

m(r) = Jm(kr), ∀m ∈ Z.
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Plugging in Problem Eq. (2.1), we obtain a family of 1D problems indexed by m ∈ Z:
Find wm ∈ H1

loc(R+, r dr) such that
−1

r
∂r (r ∂rwm) +

m2

r2
wm − ε k2wm = 0 in (0, R) ∪ (R,+∞)

[wm]{R} = 0 and
[
ε−1w′m

]
{R} = 0 across {R}

w′0(0) = 0 and wsc
m(r) ∝ H(1)

m (kr) r > R

(3.3)

with∝meaning “up to a constant”. For m 6= 0, the term m2

r2 wm imposes a homogeneous
Dirichlet boundary condition at zero [7]. Since the solution is continuous at r = 0, using
the outgoing wave condition and the transmission conditions at r = R, we write

wsc
m(r) =

{
αm Im(η k r)− Jm(k r) if r ≤ R

βm H(1)
m (k r) if r > R

(3.4)

with (αm, βm) solution of the system Mm(η, k R)(αm, βm)ᵀ = (Jm(k R), J′m(k R))ᵀ where

Mm(η, k R) =

(
Im(η k R) −H

(1)
m (k R)

−η−1 I′m(η k R) −H(1)
m

′
(k R)

)
. (3.5)

Remark 3.2. Since k > 0 and the problem is well-posed for η 6= 1, coefficients (αm, βm)
are uniquely defined and det(Mm(η, k R)) 6= 0, with

det(Mm(η, z)) := −η−1 I′m(η z)H(1)
m (z)− Im(η z)H(1)

m

′
(z), ∀z ∈ C∗. (3.6)

Now that we have an explicit expression of usc, we can analyze its behavior for
various wavenumbers k and permittivities εc. For numerical purposes, we define uk the
approximate solution of Problem Eq. (2.1) associated to the wavenumber k, of order M :

uk =
∑M

m=−M wm(r) eimθ, and we define the sequence (uk)k := (uink )k+(usck )k. We choose
here M = 32, so that (uk)k converges to order 10−16. We define L2

ρ := L2(D(0, ρ)) for
ρ > R and the function Nε,ρ defined by

Nε,ρ(k) =
‖usck ‖L2

ρ

‖uink ‖L2
ρ

.

The function k 7→ Nε,ρ(k) characterizes the well-posedness constant as explained in
Remark A.2. We consider the scattering of a plane wave by the unit disk (R = 1) and
choose ρ = 2. Figure 1 represents the log plot of Nε,2 with respect to k, for various
values of εc. One observes that

• For −1 < εc < 0, Nε,2 remains bounded.
• For εc < −1, there exists a sequence km such that Nε,2(km) peaks and the sequence

(Nε,2(km))m≥1 grows exponentially.

To understand the observed instabilities when εc < −1, let us take a closer look
at usck for k = km and k 6= km, for a given m. Figure 2 represents the modulus of
usck for k = {k12 − 0.01, k12, k12 + 0.01} and εc ≡ −1.1. One observes for k = km an
intensely localized interface behavior for the scattered field with roughly four orders
of magnitude compared to the amplitude’s field when k 6= km. Moreover the localized
behavior is oscillatory along the interface contrary to when k 6= km. This localized
behavior indicates the appearance of a surface plasmon.
The above results provide the following:

• Even if the scattering problem is well-posed for all k > 0, we can have strong insta-
bilities for a sequence of wavenumbers (km)m.
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(a) εc ∈ {−0.9,−0.8,−0.7}
0 1 2 3 4 5
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k12

εc = −1.1

εc = −1.2

εc = −1.3

(b) εc ∈ {−1.3,−1.2,−1.1}

Figure 1. Log plot of k 7→ Nε,2(k) with respect to k for εc ∈ {−0.9,−0.8,−0.7} (left), for
εc ∈ {−1.3,−1.2,−1.1} (right). The value k12 marked on the graphs corresponds to the
reference value used in Figure 2.

k = k12 − 0.01 k12 = 3.5905173384492284 k = k12 + 0.01

Figure 2. Modulus of the scattered field usc for a disk of radius 1 with εc = −1.1 (η =
√

1.1),
and k = k12 − 0.01 (left column), k12 (middle), and k12 + 0.01 (right column).

• Those instabilities arise only for εc < −1, and are due to surface plasmons.

Can we characterize the sequence (km)m≥1? Can we justify that the instabilities are
caused by surface plasmons? In what follows we investigate the associated spectral
problem and use semi-classical analysis to answer those questions.

3.2. Eigenvalues and resonances for the disk. Proceeding similarly as in Sec-
tion 3.1, the spectral problem Eq. (2.5) set on a disk can be rewritten as a family of

1D problems indexed by m ∈ Z: Find (`, wm) ∈ C 1
2 × H1

loc(R+, r dr) \ {0}, such that
−1

r
∂r (r ∂rwm) +

m2

r2
wm = ε`2wm in (0, R) ∪ (R,+∞)

[wm]{R} = 0 and
[
ε−1w′m

]
{R} = 0 across {R}

w′0(0) = 0 and wm(r) ∝ H(1)
m (`r) r > R

. (3.7)

Similarly, we write

wm(r) =

{
αm Im(η ` r) if r ≤ R

βm H(1)
m (` r) if r > R

(3.8)

however this time, the pair (`, wm) is solution of Eq. (3.7) if, and only if, there exists
(αm, βm)ᵀ ∈ ker(M(η, `R)) \ (0, 0)ᵀ, with M(η, `R) defined in Eq. (3.5). The values
`2 ∈ C such that (`, wm) is a solution of Eq. (3.7) are called resonances, and wm is
called the associated resonant mode. To distinguish eigenvalues from resonances, we
will use the fact that a resonant mode associated to an eigenvalue is in H1(R+, r dr).
Given m ∈ Z, and using Eq. (3.6), we define the set of resonances

R[εc, R](m) =
{
`2 ∈ C

∣∣∣ det(Mm(η, `R) = 0 and ` ∈ C
1
2

}
. (3.9)
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Finally we define the set of resonances of Problem Eq. (2.5)

R[εc, R] :=
⋃
m∈Z
R[εc, R](m). (3.10)

Remark 3.3. Given `2 ∈ R[εc, R](m), one finds αm = c and βm = c Im(η `R)

H
(1)
m (`R)

with c ∈ C∗

since the resonant modes are defined up to some normalization.

Remark 3.4. Since I−m = Im and H
(1)
−m = (−1)m H

(1)
m , ∀m ∈ Z, [35, Eq. 10.27.1 and

10.4.2], by symmetry all the resonances `2, corresponding to m 6= 0, are of multiplicity
2, and the two associated modes are conjugate, given by um(r, θ) := wm(r) e±imθ. It
turns out R[εc, R] :=

⋃
m∈NR[εc, R](m).

The resonances sets (R[εc, R](m))m defined in Eq. (3.9) cannot be computed analyt-
ically, however one can use contour integration techniques on Eq. (3.6) to compute a

subset RN [εc, R] :=
⋃N
m=0R[εc, R](m) ⊂ R[εc, R] (see [30, 36]). Figure 3 represents the

set R64[εc, 1] for the unit disk and for various permittivities εc. The color bar indicates
the value of m.
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m

(a) εc = −0.9
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−200

0

Rout Rinn Rpla

0

20

40

60

m

(b) εc = −1.1

Figure 3. Graph of the setsR64[−0.9, 1] (left) andR64[−1.1, 1] (right) in the complex plane
(<(`2),=(`2)), computed using complex contour integration [36] on the analytic function
Eq. (3.6).

In classical cavities, resonances of Problem Eq. (2.5) (at least for εc > 1) [6] are
split into two categories: inner resonances Rinn[εc, R] associated to resonant modes
essentially supported inside the cavity Ω, and outer resonances Rout[εc, R] associated
to resonant modes essentially supported in the exterior of the cavity R2 \ Ω. The
inner resonance category includes the so-called Whispering Gallery Modes (WGM),
associated to resonances `WGM such that −1 � =(`WGM) < 0 [19]. In particular the
approximation of Eq. (2.1) can be deteriorated if one chooses k = <(`WGM), where
those modes can be excited [32, Sec. 6.2]. When εc < 0 we split the resonances into
three categories. From Fig. 3, and using Remark 2.3 we conclude:

• The outer resonances Rout[εc, 1] (represented as triangles in Fig. 3) are resonances
with a negative imaginary part.
• The inner resonances Rinn[εc, 1] (represented as dots in Fig. 3) are negative real

eigenvalues of the operator P on L2(R2). They contain whispering gallery modes.
• The resonances represented at ‘+’ inside the red rectangles in Fig. 3 are associated to

resonant modes essentially supported on the interface Γ (see Fig. 4 for an example).
We refer to those modes as surface plasmons, and we call this family the interface
resonances Rpla[εc, 1]. We denote the interface resonances (`2

m)m so that Rpla[εc, 1] =
{`2
m | m ∈ N∗}.
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(a) Plot of r 7→ |w6(r)|
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εc = −0.9

(b) Plot of r 7→ |w12(r)|

Figure 4. Log-Log plots of the radial component r 7→ wm(r) of the interface resonant
mode (r, θ) 7→ um(r, θ) = wm(r)eimθ for εc ∈ {−1.1,−0.9} and for m = 6 (c), for m = 12 (f).
When εc < −1, wm(r) tends to ∞ as r →∞, therefore u6 ∈ L2

loc(R2) (`6 ∈ Ci− corresponds
to a resonance). When −1 < εc < 0, w6(r) tends to 0 as r → ∞, therefore u6 ∈ L2(R2)
(`6 ∈ Ci+ corresponds to an eigenvalue).

In the end we write R[εc, R] = Rout[εc, R] ∪ Rinn[εc, R] ∪ Rpla[εc, R]. The interface
resonances are quite peculiar as their nature changes depending on εc. As illustrated
in Fig. 3, they correspond to negative real eigenvalues when −1 < εc < 0, while
they correspond to complex resonances in Ci− when εc < −1. One observes that the
negative eigenvalues diverge to −∞ as m → ∞, while the real part of the complex
resonances diverge toward +∞ as m→∞, and their negative imaginary part tends to 0
exponentially fast as m→∞. Additionally, a closer observation gives us that <(`2

m) ∝
m2. Figure 4 represents the behavior of wm(r) far from the boundary for m = {6, 12},
εc = {−1.1,−0.9}. One can see that the modes are locally exponentially decreasing
moving away from the interface (and oscillatory along the interface in eimθ), which is the
mathematical characterization of surface plasmons [31, 8]. Going back to the scattering
problem, it turns out that the dashed blue lines in Fig. 1 correspond to the real part
of the interface resonances: (<(`m))m≥1 with `2

m ∈ Rpla[−1.1, 1]. In other words, the
instabilities observed in the scattering problems are caused by plasmonic resonances
close to the real axis. In the next section, we characterize this interface resonances
family (`m)m≥1 by performing asymptotic expansion as m→∞. In particular we will
confirm that `2

m ∝ m2.

3.3. Interpretation with Schrdinger operator for the disk. From Section 3.2 we
found that the nature of plasmonic resonances changes depending on εc (i.e. η). In this
section we use asymptotic expansions to explain this change of behavior. To do so we
provide an analogy with the Schrdinger operator. One can rewrite Problem Eq. (3.7)
as
−m−2 1

r
∂r
(
r ∂rw

±
m

)
+

1

r2
w±m = ε λ̆w±m in (0, R) and (R,+∞)

w−m(R) = w+
m(R) and − η−2 ∂rw

−
m(R) = ∂rw

+
m(R) across {R}

w−0
′
(0) = 0 and w+

m ∈ S ([R,+∞))

. (3.11)

with λ̆ = m−2 `2 the new spectral parameter, w±m restrictions of wm in each material,
and S (R+) denoting the Schwartz space. We replace the outgoing wave condition
by the Schwartz in order to characterize exponentially decreasing behaviors from both
sides of the interface (a.k.a surface plasmons). To identify this behavior, first we rescale
the problem Eq. (3.11) by ξ = r/R− 1 such that r = R corresponds to ξ = 0. We then
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define v±m(ξ) = w±m(R (1 + ξ)), and rewrite Problem Eq. (3.11) as
−m−2 L v±m + V v±m = εR2λ̆ v±m in (−1, 0) and (1,+∞)

v−m(0) = v+
m(0) and − η−2 ∂ξv

−
m(0) = ∂ξv

+
m(0) across {0}

v−0
′
(−1) = 0 and v+

m ∈ S (R+)

. (3.12)

where L (ξ, ∂ξ) = 1
1+ξ

∂ξ((1 + ξ) ∂ξ) is a positive elliptic operator (Laplacian like) and

V (ξ) = 1
(1+ξ)2 is a potential. In that sense, the operator v 7→ (−m−2 L +V )v in (3.12)

can be interpreted as a Schrdinger operator. Consequently, depending on the sign of
λ̆ one can find an eigenvalue or a resonance: λ̆ < 0 will correspond to an eigenvalue,
and λ̆ > 0 will correspond to a resonance. Note that the choice to set λ̆ = m−2`2

implies that we look for the leading order only. In other words we look for `2 ∈ R at
leading order. Figure 5 illustrates both situations. To construct localized modes at the

ξ

V

−1 0

−η2R2λ̆

R2λ̆

(a) λ̆ < 0

ξ

V

−1 0

−η2R2λ̆

R2λ̆

(b) λ̆ > 0

Figure 5. Graphs of the potential V and the spectral parameter λ̆: for λ̆ < 0 (a), for λ̆ > 0

(b). In case (a) V − R2λ̆ > 0 leads to an eigenvalue, in case (b) V (ξ)− R2λ̆ < 0 for ξ > ξ0
leads to a resonance.

interface, we consider the principal part of −m2L + V with its coefficients frozen at
ξ = 0, corresponding to −m−2∂2

ξ + 1. It is then natural to rescale by σ = mξ, and the
leading order behavior of Problem Eq. (3.12) becomes

−∂2
σϕ
− + ϕ− = −η2R2λ̆ ϕ− in (−∞, 0)

−∂2
σϕ

+ + ϕ+ = R2λ̆ ϕ+ in (0,+∞)

ϕ−(0) = ϕ+(0) and η−2 ∂σϕ
−(0) = ∂σϕ

+(0) across {0}
ϕ± ∈ S (R±)

. (3.13)

with ϕ±(σ) = v±m(ξ). Note that the condition v−m(−1) = ϕ−(−m) = 0 becomes ϕ− ∈
S (R−) to keep a localized behavior as m → +∞. Solutions of (3.13) are given by

(λ̆, ϕ±) = (R−2(1 − η−2), e−η
∓1 |σ|), where the modes are exponentially decreasing on

both sides of the interface σ = 0. Back to the initial problem, the leading behavior
corresponds to

`2
m =

m2

R2

(
1− η−2

)
, and w±m(r) = exp

(
−η∓1m

∣∣∣ r
R
− 1
∣∣∣) . (3.14)

We conclude:

• when εc < −1 (η > 1), surface plasmons are associated to `2 > 0 (at first order),
which corresponds to a resonance;
• when −1 < εc < 0 (0 < η < 1), surface plasmons are associated to `2 < 0 (at first

order), which corresponds to an eigenvalue.
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We have then characterized the asymptotic behavior of surface plasmons by building
pairs (`2

m, wm)m≥1. The obtained results match the observed behaviors in previous
sections, and provide accurate predictions of the instabilities in the scattering problem
for εc < −1.

The case of the circular cavity with constant εc is quite intuitive, and the leading
order computations are explicit. In the next section we generalize the approach, to
any order, for the general case: arbitrary shaped smooth boundary, and varying coef-
ficients εc ∈ C∞(Ω). To that aim, we will use semi-classical WKB (Wentzel–Kramers–
Brillouin) expansions in a tubular neighborhood of the interface, and matched asymp-
totic expansions along the interface. The higher order terms allow to show a super-
algebraic behavior of the peaks seen in Fig. 1, explaining the exponential increase
asymptotically.

Remark 3.5. In this paper we focus on the construction of the pairs (`2
m, wm)m≥1 to

characterize the asymptotic behavior of surface plasmons. The proper justification of
the observed instabilities in the scattering problem (corresponding to the real part of
the resonances `m) is not addressed in this paper. This involves technical details of
spectral theory for problems with sign-changing coefficients, and we refer the reader to
[17] for details. However we discuss the connection between the constructed pairs and
the well-posedness constant Nε,ρ in Section 5.

4. Asymptotic for metamaterial cavities

To asymptotically characterize the interface resonances and their different behaviors
in the general case, we construct a sequence of approximate solutions (λm, um)m≥1 of
Problem Eq. (2.5), called quasi-pair.

Definition 4.1. A quasi-pair for Problem Eq. (2.5) is formed by a sequence (λm)m≥1

of real numbers called quasi-resonances, and a sequence (um)m≥1 of complex valued
functions called quasi-modes that satisfy the following conditions:

(1) For any m ≥ 1, the functions um are uniformly compactly supported and

um ∈ D(P ), with ‖um‖L2(R2) = 1;

(2) We have the following quasi-pair estimate as m→ +∞,

‖Pum − λm um‖L2(R2) = O
(
m−∞

)
, (4.1)

with the notation am = O(m−∞) to indicate that for all N ∈ N, there exists
CN > 0 such that |am| ≤ CN m

−N , for all m ≥ 1.

4.1. Statement. Recall Ω ⊂ R2 be a cavity of smooth boundary Γ (see Section 2.1).
Let L be the length of Γ, and we denote εc = −η2 with η :=

√
−εc ∈ C∞(Ω, (0,+∞))

a positive smooth function.

Theorem 4.2. If η|Γ 6= 1 (εc|Γ 6= −1), there exists a quasi-pair (λm, um)m≥1 of Prob-
lem Eq. (2.5). Moreover, we have λm ∝ m2, and

• λm > 0, lim
m→∞

λm = +∞, if η|Γ > 1;

• λm < 0, lim
m→∞

λm = −∞, if η|Γ < 1.

Remark 4.3. The proof of Theorem 4.2 relies on λm being constructed via a function Λ ∈
C∞([0, L

2π
]) so that λm =

(
2πm
L

)2
Λ
(

L
2πm

)
, with Λ (see Lemma 4.6 and Lemma 4.11)
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admitting the Taylor expansion

Λ(h) = ς

〈∣∣∣∣∣1− 1

η|2Γ

∣∣∣∣∣
− 1

2
〉−2

+O (h) as h→ 0, with 〈f〉 :=
1

L

∫
Γ

f dΓ, ∀f ∈ L1(Γ).

Above, ς = ±1 is the sign of 1− η|−2
Γ and 〈 · 〉 is the mean along the interface. From the

above construction, one can easily check the properties from λm stated in Theorem 4.2.

4.2. Proof. The proof of Theorem 4.2 follows the same structure as the proof of The-
orem 4.A in [6], which asymptotically characterizes quasi-pairs for WGM in classic
cavities. We make use of a different scaling to capture surface plasmons.

4.2.1. Formal expansions. First, we define a tubular neighborhood Vδ of the interface
Γ. Let γ : TL → Γ be a counterclockwise curvilinear parameterization of Γ with
the notation TL := R/LZ. Let n = (γ′2,−γ′1)ᵀ be the unit exterior normal to Ω and
κ : TL → R be the signed curvature. We define the tubular neighborhood Vδ :=
{γ(s) + ξn(s) | (s, ξ) ∈ TL × (−δ, δ)} [33], see Fig. 6.

•γ′(s)

n(s)

δ

δ

•

x = γ(s) + ξn(s)

Vδ

Figure 6. Tubular neighborhood and notations: s denotes an arclength parametrization of
the curve γ, and ξ is the normal variable.

We now consider the problem:
Pu = λu in Ω ∩ Vδ and (R2 \ Ω) ∩ Vδ
[u]Γ = 0 and

[
ε−1 ∂nu

]
Γ

= 0 across Γ

u = 0 on ∂Vδ
(4.2)

where P = − div(ε−1∇) with ε defined in Eq. (2.2). By Definition 4.1, the quasi-
pairs are compactly supported therefore the outgoing condition does not play a role
in their construction. We replace in particular the outgoing wave condition by an
homogeneous Dirichlet boundary condition in order to construct localized quasi-pairs.
The formal construction relies on: (i) an initialization where we setup the equation and
the expansions in the tubular neighborhood, (ii) the leading order term computation,
and (iii) a recurrence to compute higher order terms.

Initialization. The change of variables from the tubular coordinates (s, ξ) ∈ TL ×
(−δ, δ) to the Cartesian coordinates x ∈ Vδ is a smooth diffeomorphism for 0 < δ <
(maxTL |κ|)−1. In this tubular coordinate system the operator P becomes

P = −g−1 divs,ξ
(
ε−1G∇s,ξ

)
(4.3)

where g(s, ξ) = 1 + ξκ(s) > 0 and G(s, ξ) =

(
g(s, ξ)−1 0

0 g(s, ξ)

)
.

For the general case we use a WKB framework [5] in order to provide an asymptotic
expansion of the spectral parameter as the number of oscillations around the interface,
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denoted m in Section 3.3, goes to infinity. We introduce a small parameter h > 0 that
will later be linked to m and the ansatz for the quasi-pair (λ, u):

u(s, ξ) = w(s, ξ) exp

(
i

h
θ(s)

)
and λ = h−2 λ̆ (4.4)

where w : TL × (−δ, δ) → C, θ : [0, L) → C, and λ̆ ∈ C. We add the constrain

s 7→ e
i
h
θ(s) ∈ C∞(TL) so that the function u in Eq. (4.4) is a smooth function in Vδ \Γ.

Following [5] we formally expand the unknowns w, θ, and λ̆ as

w(s, ξ) =
∑
n≥0

wn(s, ξ) hn, θ(s) =
∑
n≥0

θn(s) hn, and λ̆ =
∑
n≥0

λ̆n h
n. (4.5)

System Eq. (4.2) with the new unknowns Eq. (4.4) becomes
Lh[ε](w, θ) = λ̆ w in TL × ((−δ, δ) \ {0})
[w]TL×{0} = 0 and

[
ε−1 ∂ξw

]
TL×{0} = 0 across TL × {0}

w = 0 on TL × {−δ, δ}
(4.6)

Above, Lh[ε](w, θ) = h2 e−
i
h
θ P (w e

i
h
θ), and it can be decomposed as

Lh[ε](w, θ) = L3
h[ε](w, θ, θ) + L2

h[ε](w, θ) + L1
h[ε](w) (4.7)

where Ljh[ε] are j-linear for j ∈ {1, 2, 3} and

L3
h[ε](w, θ, ϑ) = g−2 ε−1w ∂sθ ∂sϑ, (4.8a)

L2
h[ε](w, θ) = −h i

(
g−2 ε−1 ∂sw ∂sθ + g−1 ∂s

(
g−1 ε−1w ∂sθ

))
, (4.8b)

L1
h[ε](w) = −h2 g−1

(
∂ξ
(
g ε−1 ∂ξw

)
+ ∂s

(
g−1 ε−1 ∂sw

))
. (4.8c)

In the above decomposition, only L1
h[ε] involves derivatives with respect to ξ. Since g

(resp. η =
√
−εc > 0) is a smooth function on TL × (−δ, δ) (resp. TL × (−δ, 0]), then

G is smooth and we write the formal Taylor expansions about ξ = 0:

g(s, ξ) = 1 + ξκ(s), G(s, ξ) =
∑
n≥0

∂nξG(s, 0)

n!
ξn, η(s, ξ) =

∑
n≥0

ηn(s)

n!
ξn, (4.9)

where ηn(s) = ∂nξ η(s, 0). Since g and η do not vanish on TL×{0}, the formal expansions

of g−1, g−2, and η−2 about ξ = 0 can be computed with Eq. (4.9).

Like in Section 3.3, we introduce the scaled variable σ = h−1ξ for the normal variable
ξ ∈ (−δ, δ), and we define

ϕ±(s, σ) = w(s, hσ) for (s, σ) ∈ TL × R±. (4.10)

Then with g = g(s, hσ) we rewrite

L1
h[ε](ϕ

±) = −g−1 ∂σ
(
ε−1 g ∂σϕ

±)− h2 g−1 ∂s
(
ε−1 g−1 ∂sϕ

±) . (4.11)

Problem Eq. (4.6) becomes the formal problem: Find (ϕ±n )n∈N ∈ C∞(TL,S (R±))N,

(exp(ih−1 θn))n∈N ∈ C∞(TL)N, and (λ̆n)n∈N ∈ CN such that
Lh[ε]

(∑
n ϕ
±
n h

n,
∑

n θn h
n
)

=
(∑

n λ̆n h
n
)(∑

n ϕ
±
n h

n
)

in TL × R∗±∑
n ϕ
−
n (s, 0)hn =

∑
n ϕ

+
n (s, 0)hn on TL × {0}

−η0(s)−2
∑

n ∂σϕ
−
n (s, 0)hn =

∑
n ∂σϕ

+
n (s, 0)hn on TL × {0}

. (4.12)
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Note that for simplicity we extend the scaled domain TL×(− δ
h
, δ
h
) to the domain TL×R

in order to be independent of h in Eq. (4.12), and we replace the homogeneous Dirichlet
boundary condition on TL × {− δ

h
, δ
h
} by the conditions σ 7→ ϕ±(s, σ) ∈ S (R±) for all

s ∈ TL. One can always multiply the quasi-mode by a cutoff function ξ 7→ χ(ξ) to be in
the domain TL× (− δ

h
, δ
h
), as done later in Eq. (4.18). With Eq. (4.7) and Eq. (4.9), we

can formally expand the operators Ljh[−η2] =
∑

n≥0 L
j,−
n hn and Ljh[1] =

∑
n≥0 L

j,+
n hn

where Lj,±n are independent of h, for j ∈ {1, 2, 3}. From Problem Eq. (4.12) we obtain
the family of problems (Pn)n∈N by identifying powers of h:

∑
p∈N4

n

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
+
∑
p∈N3

n

L2,±
p1

(
ϕ±p2

, θp3

)
+
∑
p∈N2

n

L1,±
p1

(
ϕ±p2

)
=
∑
p∈N2

n

λ̆p1 ϕ
±
p2

ϕ−n (s, 0) = ϕ+
n (s, 0) and − η0(s)−2 ∂σϕ

−
n (s, 0) = ∂σϕ

+
n (s, 0)

(4.13)

with the notation Nd
n = {p ∈ Nd | p1 + · · ·+ pd = n}.

Leading order terms. From Eq. (4.7) and Eq. (4.9) one obtains

Lemma 4.4. The first terms of the expansions of L3
h[ε], L2

h[ε], and L1
h[ε], are given by

L3,−
0 (φ, θ, ϑ) = −η−2

0 φ ∂sθ ∂sϑ, L2,−
0 (φ, θ) = 0, L1,−

0 (φ) = η−2
0 ∂2

σφ, (4.14a)

L3,+
0 (φ, θ, ϑ) = φ ∂sθ ∂sϑ, L2,+

0 (φ, θ) = 0, L1,+
0 (φ) = −∂2

σφ. (4.14b)

Using Lemma 4.4, we rewrite Problem (P0) as: Find ϕ±0 ∈ C∞(TL,S (R±)), exp(ih−1 θ0) ∈
C∞(TL), and λ̆0 ∈ C such that (ϕ−0 , ϕ

+
0 ) 6≡ (0, 0) and

∂2
σϕ
−
0 −

(
θ′0

2
+ η2

0 λ̆0

)
ϕ−0 = 0 in TL × R−

∂2
σϕ

+
0 −

(
θ′0

2 − λ̆0

)
ϕ+

0 = 0 in TL × R+

ϕ−0 (s, 0) = ϕ+
0 (s, 0) on TL × {0}

−η0(s)−2 ∂σϕ
−
0 (s, 0) = ∂σϕ

+
0 (s, 0) on TL × {0}

. (4.15)

Notation 4.5. We recall that η0 = η|Γ and, we define the scalar ς = ±1 to be the sign

of 1− η−2
0 , the functions τ0 =

∣∣1− η−2
0

∣∣− 1
2 and τ̂0 = τ0

〈τ0〉 .

Lemma 4.6. One can choose h = L
2πm

for m ∈ N∗ so that (ϕ±0 , θ0, λ̆0) given by

λ̆0 =
ς

〈τ0〉2
, θ0(s) =

∫ s

0

τ̂0(t) dt, and ϕ±0 (s, σ) = α(s) exp
(
−|σ| τ̂0(s) η0(s)∓1

)
,

with α ∈ C∞(TL,C∗), is solution of Problem (P0) defined in Eq. (4.15).

The proof is detailed in Appendix B.1.

Remark 4.7. If we unravel the scaling and return to tubular coordinates, for m ≥ 1
and (s, ξ) ∈ TL × R, we formally have a pair (λm, um)

λm =

(
2πm

L

)2 [
λ̆0 +O

(
m−1

)]
,

um(s, ξ) = ei
2πm
L [θ0(s)+O(m−1)]

[{
ϕ−0
(
s, 2πm

L
ξ
)

if ξ ≤ 0

ϕ+
0

(
s, 2πm

L
ξ
)

if ξ > 0
+O

(
m−1

)]
,

which characterize surface plasmons at leading order.
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Remark 4.8. The construction relies on several choices that are not unique.

• One can choose the main phase to satisfy θ′0 = τ̂0 or θ′0 = −τ̂0. Then one can
construct two modes corresponding to um and um (see Remark 4.16).
• The function θ0 is defined up to a constant c. Then um in Remark 4.7 is defined up

to ei
2πm
L

c. For simplicity we consider c = 0 as we normalize in the end.
• The functions ϕ±0 are defined up to a function α : TL → C∗, which contributes to

the phase of um and therefore affects the number of oscillations along the interface.
One can always shift indices so that (λm, um)m≥1−qα , for some qα ∈ Z, corresponds
to a wave with m oscillations along the interface.

Recurrence. From Eq. (4.13), Lemma 4.4, and Lemma 4.6, for n ≥ 1, we can rewrite

Problem (Pn) as: Find ϕ±n ∈ C∞(TL,S (R±)), exp(ihn−1 θn) ∈ C∞(TL), and λ̆n ∈ C
such that

∂2
σϕ
−
n − τ̂ 2

0 η
2
0 ϕ
−
n =

(
2τ̂0 θ

′
n + η2

0 λ̆n

)
ϕ−0 + η2

0 S
−
n−1 in TL × R−

∂2
σϕ

+
n − τ̂ 2

0 η
−2
0 ϕ+

n =
(

2τ̂0 θ
′
n − λ̆n

)
ϕ+

0 − S+
n−1 in TL × R+

ϕ−n (s, 0) = ϕ+
n (s, 0) on TL × {0}

−η0(s)−2 ∂σϕ
−
n (s, 0) = ∂σϕ

+
n (s, 0) on TL × {0}

. (4.16)

where

S±n−1 =
n−1∑
p=1

λ̆n−p ϕ
±
p −

n−1∑
p=0

L1,±
n−p
(
ϕ±p
)
−
∑

p∈N3
n−1

L2,±
p1

(
ϕ±p2

, θp3

)
− L2,±

n

(
ϕ±0 , θ0

)
−
∑

p∈N4
n−1

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
− L3,±

n

(
ϕ±0 , θ0, θ0

)
. (4.17)

Lemma 4.9. Define (ϕ±0 , θ0, λ̆0) according to Lemma 4.6. For n ≥ 1, there exists

(ϕ±n , θn, λ̆n) ∈ C∞(TL,S (R±)) × C∞(TL) × C solution of Problem (Pn) defined in
Eq. (4.16). In particular, ϕ±n is given by

ϕ±n (s, σ) = P±n (s, σ) exp
(
−|σ| τ̂0(s) η0(s)∓1

)
,

with polynomials P±n ∈ C∞(TL,P)1.

The proof is detailed in Appendix B.2.

Remark 4.10. In addition to Remark 4.8, (θn)n≥0 and (ϕn)n≥0 are not uniquely defined

at each step of the construction. However, the sequence (λ̆n)n≥0 will unique in the
sense of Corollary 4.15.

4.2.2. Quasi-pairs. Based on the formal series
∑

n∈N ϕ
±
n h

n,
∑

n∈N θn h
n, and

∑
n∈N λ̆n h

n

with h = L
2πm

, we now construct quasi-pairs in the sense of Definition 4.1. First we use

Borel’s Lemma [29, Thm. 1.2.6] for λ̆ and θ, and a direct generalization on the Fréchet
space C∞(TL,S (R±)) [6, Lem. A.5] for ϕ± to establish the

1We denote P the space of polynomial of a single variable with complex coefficients.
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Lemma 4.11. There exists Φ± ∈ C∞([0, L
2π

] × TL,S (R±)), Θ ∈ C∞([0, L
2π

] × TL),

and Λ ∈ C∞([0, L
2π

]) such that, for N ≥ 1, h ∈ [0, L
2π

], s ∈ TL, and σ ∈ R±, we have

Φ±(h; s, σ) =
N−1∑
n=0

ϕ±n (s, σ)hn + hN R±N(h; s, σ),

Θ(h; s) =
N−1∑
n=0

θn(s)hn + hN RΘ
N(h; s), and Λ(h) =

N−1∑
n=0

λ̆n h
n + hN RΛ

N(h)

where R±N ∈ C∞([0, L
2π

]× TL,S (R±)), RΘ
N ∈ C∞([0, L

2π
]× TL), RΛ

N ∈ C∞([0, L
2π

]).

From those functions, we now define the quasi-resonances λm and the quasi-modes
um in the tubular neighborhood as

λm =
(

2πm
L

)2
Λ
(

L
2πm

)
um(s, ξ) = χ(ξ) exp

(
i2πm
L

Θ
(

L
2πm

; s
)){Φ−

(
L

2πm
; s, 2πm

L
ξ
)

if ξ ≤ 0

Φ+
(

L
2πm

; s, 2πm
L
ξ
)

if ξ > 0
,

(4.18)

where χ is a cutoff function, χ ∈ C∞comp((−δ, δ)) and χ ≡ 1 on
[
− δ

2
, δ

2

]
. In what follows,

we establish that Eq. (4.18) is a quasi-pair. First we have

Lemma 4.12. The pair (λm, um)m≥1 defined in Eq. (4.18) satisfies the following:

(i) um is uniformly compactly supported and smooth in Ω and R2 \ Ω.
(ii) um satisfies [um]Γ = O (m−∞) and [ε−1 ∂num]Γ = O (m−∞).

(iii) um admits the norm expansion ‖um‖L2(R2) = am−
1
2 +O(m−

3
2 ), a > 0.

(iv) Let Rm := Pum − λm um, then ‖Rm‖L2(Ω) + ‖Rm‖L2(R2\Ω) = O (m−∞).

(v) If two quasi-pairs (λm, um)m≥1, (µ
m
, vm)m≥1 satisfy (i)–(iv), and the quasi-

modes have the same leading phase θ0(s) =
∫ s

0
τ̂0(t) dt then:∫

R2 um vm dx = z0m
−1 +O(m−2), z0 ∈ C∗, and

∫
R2 um vm dx = O(m−∞).

Remark 4.13. Items (iii) and (v) of Lemma 4.12 give us∫
R2

um
‖um‖L2(R2)

vm
‖vm‖L2(R2)

dx = z′0 +O(m−1), with z′0 ∈ C∗.

Proof. Recall that we set h = L
2πm

, and to simplify notations we denote χh : σ 7→ χ(σh),
Φ±h : (s, σ) 7→ Φ±(h; s, σ), Θh : s 7→ Θ(h; s), and Λh = Λ(h).

(i) By definition of (um)m≥1, (i) is satisfied.

(ii) Using Lemma 4.11, one can show that [um]Γ = O(m−N) and [ε−1 ∂num]Γ =
O(m−N) for all N ≥ 0, which is the definition of O(m−∞).

(iii) We introduce the weighted L2 semi-norm on TL × R±

‖f‖2
L2
±[h] =

∫
TL

∫
R±∩(− δ

h
, δ
h

)

|f(s, σ)|2 h(1 + κ(s)σh) dσ ds. (4.19)

Form Eq. (4.18), we obtain

‖um‖
2
L2(R2) =

∥∥∥χhΦ−h e i
h

Θh

∥∥∥2

L2
−[h]

+
∥∥∥χhΦ+

h e
i
h

Θh

∥∥∥2

L2
+[h]

.
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From Lemma 4.6 and Lemma 4.11 for N = 1, we have

Θh(s) =

∫ s

0

τ0(t) dt+ θ1(s)h+ h2RΘ
2 (h; s)

Φ±h (s, σ) = α(s) exp
(
−|σ| τ̂0(s) η0(s)∓1

)
+ hR±1 (h; s, σ)

where RΘ
2 ∈ C∞([0, L

2π
]× TL) and R±1 ∈ C∞([0, L

2π
]× TL,S (R±)). We deduce that∣∣∣∣∥∥∥χhΦ±h e i

h
Θh

∥∥∥2

L2
±[h]
−
∥∥∥χh α e−|σ| τ̂0η

∓1
0 ei θ1

∥∥∥2

L2
±[h]

∣∣∣∣ ≤ C±1 h
2

for C±1 some positive constant. We write
∥∥∥χh α e−|σ| τ̂0η

∓1
0 ei θ1

∥∥∥2

L2
±[h]

= I±1 + I±2 + I±3 ,

I±1 = h

∫
TL

∫
R±
|α(s)|2e∓2σ τ̂0(s)η0(s)∓1

e−2=θ1(s) dσ ds = h

∫
TL

|α(s)|2e−2=θ1(s)

2τ̂0(s)η0(s)∓1
ds,

I±2 = h

∫
TL

∫
R±

(|χ(σh)|2 − 1)|α(s)|2e∓2σ τ̂0(s)η0(s)∓1

e−2=θ1(s) dσ ds,

I±3 = h2

∫
TL

∫
R±
|χ(σh)α(s)|2e∓2σ τ̂0(s)η0(s)∓1

e−2=θ1(s) κ(s)σ dσ ds.

One can show that I±2 = O(h∞) using Lemma B.1. Since χ is bounded and the function

(h; s, σ) 7→ |α|2e∓2σ τ̂0η
∓1
0 e−2=θ1κσ is in C∞([0, L

2π
]×TL,S (R±)) there exists a constant

C±3 such that |I±3 | ≤ C±3 h
2. Combining the results we get

‖um‖
2
L2(R2) = a2m−1 +O(m−2)

with

a2 =
2π

hL
(I+

1 + I−1 ) =
2π

L

∫
TL
|α(s)|2 e−2=(θ1(s)) η0(s)−1 + η0(s)

2τ̂0(s)
ds > 0.

(iv) Revisiting the change of variables in tubular coordinates and the scaling, we get

‖Rm‖L2(Ω) = h−2
∥∥∥eih−1 Θh

(
Lh[ε]( ·,Θh)− Λh

) (
χh Φ−h

)∥∥∥
L2
−[h]

, (4.20a)

‖Rm‖L2(R2\Ω) = h−2
∥∥∥eih−1 Θh

(
Lh[ε]( ·,Θh)− Λh

) (
χh Φ+

h

)∥∥∥
L2

+[h]
(4.20b)

with Lh[ε] defined in Eq. (4.6). Lemma 4.11 with N = 1 and Lemma 4.6 give the

estimation =Θh = O(h) so there exists cΘ > 0 such that |eih−1 Θh| ≤ cΘ. Introducing
the commutator [Lh[ε]( ·,Θh), χh] of the differential operator Φ 7→ Lh[ε](Φ,Θh) with
the scaled cutoff function χh, we deduce from Eq. (4.20)

‖Rm‖L2(Ω) ≤ cΘ h
−2
(
N− +N ′−

)
and ‖Rm‖L2(R2\Ω) ≤ cΘ h

−2
(
N+ +N ′+

)
(4.21)

whereN± =
∥∥χh(Lh[ε]( ·,Θh)− Λh

)
Φ±h
∥∥

L2
±[h]

,N ′± =
∥∥[Lh[ε]( ·,Θh), χh] Φ±h

∥∥
L2
±[h]

. Let’s

start with N±. We write for N ≥ 1,

Lh[ε](Φ±h ,Θh) =
N−1∑
n=0

hn
(
L±,3n (Φ±h ,Θh,Θh) + L±,2n (Φ±h ,Θh) + L±,1n (Φ±h )

)
+ hN

(
R±,3N (h; Φ±h ,Θh,Θh) + R±,2N (h; Φ±h ,Θh) + R±,1N (h; Φ±h )

)
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where R±,jN (h) are j-linear second order differential operators such that all the coeffi-

cients in χhR
±,j
N (h) are smooth bounded functions for j ∈ {1, 2, 3}. We use Lemma 4.11

with different N for each occurrence of Φ±h and Θh, and we obtain

Lh[ε](Φ±h ,Θh)− ΛhΦ
±
h

= hN

[
N−1∑
n=0

∑
p∈N3

N−n

L±,3n (R±p1
(h), RΘ

p2
(h), RΘ

p3
(h)) + R±,3N (h;R±0 (h), RΘ

0 (h), RΘ
0 (h))

+
N−1∑
n=0

∑
p∈N2

N−n

L±,2n (R±p1
(h), RΘ

p2
(h)) + R±,2N (h;R±0 (h), RΘ

0 (h))

+
N−1∑
n=0

(
L±,1n − λ̆n

)
R±N−n(h) + R±,1N (h;R±0 (h))−RΛ

N(h)R±0 (h)

]

(4.22)

where we used the relations in Eq. (4.13), giving us that for all Q ∈ N∑
p∈N4

Q

L3,±
p1

(
ϕ±p2

, θp3 , θp4

)
+
∑
p∈N3

Q

L2,±
p1

(
ϕ±p2

, θp3

)
+
∑
p∈N2

Q

(
L1,±
p1
− λ̆p1

) (
ϕ±p2

)
= 0.

The coefficients in the operator χhLh[ε]( ·,Θh) are smooth bounded functions in TL×R±
(see Eq. (4.8a), Eq. (4.8b), Eq. (4.11)). From Eq. (4.22), we get N± ≤ hN ‖F±(h)‖L±[h]

where F± ∈ C∞([0, L
2π

] × TL,S (R±)) so we have N± ≤ CN h
N for CN a constant

independent of h as h → 0. Now, we consider the two commutator norms N ′±. We

observe that the coefficients of the operators [Lh[ε]( ·,Θh), χh] are zero in TL× (− δ
2h
, 0)

and TL × (0, δ
2h

). From this observation, we deduce that

N ′±
2

=

∫
TL

∫
I±(h)

|G±(h; s, σ)|2 dσ ds

where G± ∈ C∞([0, L
2π

] × TL,S (R±)) and I±(h) are as in Lemma B.1 for ρ = δ
2
. We

deduce that N ′± = O(h∞), and we get ‖Rm‖L2(Ω) + ‖Rm‖L2(R2\Ω) = O
(
hN−2

)
for all

N > 1.

(v) Let (θn)n≥0 (resp. (ϑn)n≥0) be a sequence of phases constructed for um (resp. vm)
and α (resp. β) the function in Lemma 4.6. A similar computation as in (iii) gives
that

∫
R2 um vm dx = z0 h+O (h2) where

z0 =
∑
±

∫
TL
α(s)β(s)eiθ1(s)−iϑ1(s)

∫
R±

e∓2σ τ̂0(s)η0(s)∓1

dσ ds

=

∫
TL
α(s)β(s) eiθ1(s)−iϑ1(s) η0(s)−1 + η0(s)

2τ̂0(s)
ds.

Using Lemma B.2, we get iθ1(s)− iϑ1(s) = −2f(s)−
∫ s

0
α′(t)
α(t)

+ β′(t)
β(t)

dt where f is a real

function independent of α and β. A derivative computation shows that the functions

αe−
∫
α′
α ≡ α0 ∈ C∗, βe−

∫ β′
β ≡ β0 ∈ C∗ are constant so z0 = α0β0

∫
TL

η0(s)−1+η0(s)
2τ̂0(s)

e−2f(s) ds 6=
0. Denoting R (resp. S) the remainder in the construction of um (resp. vm), we have∫

R2

um vm dx =

∫
TL
F (h; s) ei

4πm
L

θ0(s) ds
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where

F (h; s) = eiR
Θ
1 (h;s)+iSΘ

1 (h;s)∑
±

∫
R±
χu(hσ)χv(hσ)R±0 (h; s, σ)S±0 (h; s, σ)h(1 + σκ(s)h) dσ.

Note that F ∈ C∞([0, L
2π

] × TL). Since θ′0 = τ̂0 > 0, θ0 is a smooth diffeomorphism
form TL to TL, we perform the change of variable x = θ0(s)∫

TL
F (h; s) ei

4πm
L

θ0(s) ds =

∫
TL

(θ−1
0 )′(x)F (h; θ−1

0 (x)) ei
4π
L
mx dx.

From the fact that the function (h;x) 7→ (θ−1
0 )′(x)F (h; θ−1

0 (x)) ∈ C∞([0, 2π
L

]×TL) and
the Riemann–Lebesgue lemma, we get∫

TL
(θ−1

0 )′(x)F (h; θ−1
0 (x)) ei

4π
L
mx dx = O(m−∞).

�

To prove Theorem 4.2, one just needs to establish that um satisfies the first condition
in Definition 4.1.

Proof of Theorem 4.2. Consider (λm, um)m≥1 in Eq. (4.18), satisfying Lemma 4.12. We
now define

ǔm(s, ξ) = χ(ξ)

{
0 if ξ ≤ 0

[um]TL×{0} (s) + ξ
[
ε−1 ∂ξum

]
TL×{0} (s) if ξ > 0

.

Using Lemma 4.12, we have ‖ǔm‖L2(R2) = O(m−∞) therefore um − ǔm ∈ D(P ) and

(P − λm)(um− ǔm) = O(m−∞). We then replace um by um =
um−ǔm

‖um−ǔm‖L2(R2)
which now

makes (λm, um)m≥1 a quasi-pair in the sense of Definition 4.1. �

We finally show uniqueness of the quasi-resonances in the following sense:

Lemma 4.14. Let (λm, um)m≥1 and (µ
m
, vm)m≥1 two quasi-pairs in the sense of Def-

inition 4.1 corresponding to the same integer m and having the same leading order
phase θ0 : s 7→

∫ s
0
τ̂0(t) dt. Then we have the following estimate

λm − µm = O
(
m−∞

)
.

Proof. Let Rm, Sm be the residuals Rm = Pum − λm um, Sm = Pvm − µ
m
vm. By

definition, the residuals satisfy ‖Rm‖L2(R2) = O(m−∞) and ‖Sm‖L2(R2) = O(m−∞).
Using the symmetry of the operator P , we get(

λm − µm
)∫

R2

um vm dx =

∫
R2

um Sm dx−
∫
R2

Rm vm dx = O
(
m−∞

)
.

From Remark 4.13 one can show that there exists z0 ∈ C∗ such that
∫
R2 um vm dx =

z0 +O(m−1). Then λm − µm = O(m−∞) as m→ +∞. �

Corollary 4.15. The quasi-resonances (λm)m≥1 are real, and unique in the sense that
if (λm)m≥1 and (µ

m
)m≥1 are two quasi-resonances, λm − µm = O(m−∞).
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Proof. By applying Lemma 4.14 to (λm, um)m≥1 and (λm, um)m≥1, we get =λm =

O(m−∞) which implies that =λ̆n = 0 for all n ∈ N. Then taking (λm, um)m≥1 and
(µ

m
, vm)m≥1 two quasi-pairs in the sense of Definition 4.1 having the same leading

phase θ0 : s 7→
∫ s

0
τ̂0(t) dt, Lemma 4.14 and the fact that the quasi-resonances are real

gives us λm − µm = O(m−∞). �

Remark 4.16. With Corollary 4.15, given a quasi-pair (λm, um)m≥1, we have a second
quasi-orthogonal quasi-pair (λm, um)m≥1 with the same quasi-resonance in the sense
that, from (v) in Lemma 4.12,∫

R2

um um dx = O
(
m−∞

)
.

The quasi-resonances have an asymptotic multiplicity of 2, related to the chosen sign
of the leading phase θ0 (see Remark 4.8).

5. Back to the scattering problem

Now that we have constructed quasi-pairs characterizing surface plasmons, let’s in-
vestigate their effect on scattering.

5.1. Instabilities and well-posedness. Let `m :=
√
λm ∈ C 1

2 for m ≥ 1. The
following theorem explains the instabilities observed in Section 3.1.

Theorem 5.1. If εc|Γ < −1, there exists m0 such that for all m ≥ m0, we have
`m > 0. Then along the quasi-resonances (`2

m)m≥m0, constructed in Section 4, the
stability constant C(`m) of Problem (2.1) (see Eq. (A.2)) explodes super-algebraically,
in the sense that for all N ≥ 0, there exists cN > 0 such that

C(`m) ≥ cN m
N , ∀m ≥ 1.

Remark 5.2. From the definition of the function Nε,ρ and stability constant C(k),
we have the estimate Nε,ρ(k) ≤ C(k) ≤ supuin∈F in

ρ \{0}Nε,ρ(k), where F in
ρ = {v ∈

H1(D(0, ρ)) | −(∆ + k2)v = 0}.
Proof. From Theorem 4.2, we have − div(ε−1∇um) − `2

mum = rm with the remainder
estimate ‖rm‖L2(R2) = O(m−∞). Lemma A.1, with uin = 0 and f = rm, gives us

‖um‖L2(R2) ≤ C(`m) ‖rm‖L2(R2) .

Since ‖um‖L2(R2) = 1 by definition and for all N ≥ 1, there exists c̃N > 0 such that

‖rm‖L2(R2) ≤ c̃Nm
−N then c̃−1

N mN ≤ C(`m), for all m ≥ 1. �

We have now a systematic way to characterize asymptotically where are instabilities
created by surface plasmons. In practice we compute the first order terms of the quasi-
resonances and provide intervals where those instabilities arise. In what follows we
provide several numerical examples using Finite Element Method (FEM) to illustrate
this result.

5.2. Numerical results. Using results from previous sections, we compute the first
three terms of the quasi-resonances expansions, and compute related plasmonic in-

tervals. From the expansion λm =
(

2πm
L

)2∑2
n=0 λ̆n

(
L

2πm

)n
, we deduce an expansion

`m :=
√
λm = 2πm

L

∑2
n=0

˘̀
n

(
L

2πm

)n
. In the case εc < −1, all the coefficients ˘̀

n are real
and from the expansion of `m, we denote the interval Im = [am, bm] centered at `m with

am =
2πm

L
˘̀
0 + ˘̀

1 + min
(

0, 2 ˘̀
2

) L

2πm
and bm =

2πm

L
˘̀
0 + ˘̀

1 + max
(

0, 2 ˘̀
2

) L

2πm
.
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We consider D(0, 1.5) as computational domain and various cavities Ω ⊂ D(0, 1.5). We
compute the function k 7→ Nε,1.5 from Problem (2.1), for various εc, with uin(x, y) = eiky

using FEM, and we check if instabilities can be captured in the intervals (Im)m≥1.
The outgoing condition is imposed using a Dirichlet-to-Neumann map (DtN) [34] that
considers 65 Fourier modes. All FEM computations are done with XLiFE++ [40], we
use finite elements of order 7 on quadrangular structured meshes of order 3 constructed
with GMSH [24], with embedded tubular neighborhood as defined in Section 4.2.1 (see
Fig. 7 for some examples). Note that optimal FEM convergence is guaranteed as long
as the mesh is locally symmetric along the interface Γ [9]. We consider three different
cases summarized in Fig. 7:

εc 1

DtN

(a) Disk

εc 1

DtN

(b) Disk

εc 1

DtN

(c)
Peanut

(d)
Mesh
Disk

(e)
Mesh
Peanut

Figure 7. Sketch representing the three considered configurations (a), (b), (c), for the
numerical examples, and associated structured meshes: circular cavity (d), peanut shape
cavity (e).

Case (a). Circular cavity of radius 1 with constant εc as represented in Fig. 7a with
associated mesh in Fig. 7d. For the numerical examples we consider εc = −1.1, a grid
of 239 points for k, and 21736 degree of freedoms (dofs) for the FEM computations.

Case (b). Circular cavity of radius 1 with linearly varying permittivity εεm,εMc : (x, y) 7→
εm+εM

2
+ εM−εm

2
x as represented in Fig. 7b with associated mesh in Fig. 7d. We con-

sider (εm, εM) = (−1.2,−1.1), a grid of 216 points for k, and 21736 dofs for the FEM
computations.

Case (c). Peanut cavity with constant εc as represented in Fig. 7c with associated
mesh in Fig. 7e. The peanut boundary is parameterized by r(θ) = (1− 3

10
cos(2θ))/L,

θ ∈ [0, 2π], with L such that Γ as length 2π. For the numerical examples we consider
εc = −1.1, a grid of 237 points for k, and 27028 dofs for the FEM computations.

Figure 8 represents the function k 7→ Nε,1.5(k) for the cases (a), (b), and (c) from
left to right. The dotted orange lines correspond to FEM computations, the solid blue
lines correspond to the analytic computation done in Section 3.1 (valid for case (a)).
The purple zones correspond to the intervals (Im)m≥1 and the orange ‘×’ correspond
to local maxima. We observe:

• Figures 8a, 8b, and 8c present, as predicted by Theorem 5.1, instabilities manifested
by sharp peaks where the scattering field is big.
• The observed peaks lie within the intervals Im, for m sufficiently large (due to the

asymptotic nature of the estimates). In other words, the intervals Im are good
estimates for spotting instabilities due to surface plasmons, for m large enough.
• While FEM captures instabilities, it fails to capture the peak’s intensities: in par-

ticular in Fig. 8a FEM doesn’t match analytic results, and in Fig. 8c FEM captures
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sometimes local maxima so small it is not noticeable. In other words, while one
can identify where surface plasmons arise using the intervals Im, in practice FEM is
unable to accurately capture them.

The provided asymptotic method allows us to identify regions where surface plasmons
arise (responsible for large stability constants C(k)) for various metameterial cavi-
ties, and FEM computations confirm expected instabilities. The constructed quasi-
resonances provide guidance in order to avoid those instabilities. In practice, FEM is
enable to accurately compute the emerging surface plasmons, extracting the asymptotic
characterization (quasi-modes) could help the numerical method in that case.

0 1 2 3 4 5

10−1

100

101

102

I12

(a)

0 1 2 3 4 5

10−1

100

101

102

I12

(b)

0 1 2 3 4 5

10−1

100

101

102

I12

(c)

Figure 8. Plot of the function k 7→ Nε,1.5 for the three cases (a), (b), and (c). The dotted
orange lines correspond to FEM computations, the solid blue lines correspond to the analytic
computation done in Section 3.1 (valid for case (a)). The purple zones correspond to the
intervals Im for 1 ≤ m ≤ 12 and we have highlighted I12. The ’×’ correspond to local
maxima. We consider a uniform grid in k with geometric refinements in the intervals Im
centered at `m.

6. Conclusions

Similar to classical optical cavities, the scattering by metamaterial cavities can be
significantly affected by localized waves. Those localized waves correspond here to
emerging surface plasmons, which we have asymptotically characterized for various
cavity properties (shape, permittivity, etc.). This study has been carried out with-
out reducing to the quasi-static case, and the considered spectral parameter is the
wavenumber by opposition to [25, 39, 1, 2]. Our asymptotic analysis revealed that the
spectral nature of surface plasmons depends on whether εc < −1, or not: they are
associated to negative eigenvalues when −1 < εc < 0 which can’t be excited in prac-
tice, while they are associated to complex resonances when εc > −1. Those resonances
affect the stability constant and are responsible for numerical instabilities (large scat-
tered field). FEM computations confirm that the asymptotic analysis provides good
estimates where surface plasmons emerge, however FEM fails to accurately capture
them. Similar to the singular complement method [20], one could consider extracting
the asymptotic plasmonic behavior from the problem. Our asymptotic characteriza-
tion of emerging surface plasmons can be applied to dispersive materials, namely while
considering permittivity models depending on the wave number k, such as Drude’s or
Lorentz’ model. In that context, our analysis confirms that surface plasmons can be
excited only for frequencies lower than the surface plasmon frequency [31]. Extensions
of the approach to polygonal metamaterial cavities and dispersive materials will be con-
sidered. In the quasi-static case, the spectral analysis for this case reveals hypersingular
plasmonic behaviors and has been well investigated [26, 13]. The proposed approach is
valid for arbitrary negative permittitivity εc, one could also consider arbitrary negative
permeability µc and work with the double-negative PDE − div(ε−1∇u) − µ k2 u = 0
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(e.g. [11, 23, 3]). In that case the associated spectral problem becomes difficult be-
cause the operator is no longer self-adjoint. All the derivation has been provided for
two-dimensional problems, one could consider three dimensional cavities. We have
established that the existence of quasi-pairs implies the explosion of the stability con-
stant when εc < −1. Ongoing work focuses on proving that those quasi-pairs imply
the existence of resonances close to the real axis via the Black Box Scattering [22].

Appendix A. Well-posedness of the scattering problem

Let D(0, ρ) be a disk a radius ρ such that Ω b D(0, ρ) and f ∈ L2(D(0, ρ)). Following
[8], we use a Dirichlet-to-Neumann map, denoted S, to rewrite a generalized version
of Problem Eq. (2.1) in D(0, ρ) (with source f): Find usc ∈ H1(D(0, ρ)) such that
u = uin + usc and

− div
(
ε−1∇u

)
− k2u = f in D(0, ρ)

[u]Γ = 0 and
[
ε−1 ∂nu

]
Γ

= 0 across Γ

∂ru− Su = ∂ru
in − Suin =: gin across ∂D(0, ρ)

(A.1)

Problem Eq. (A.1) with f ≡ 0 is equivalent to Problem Eq. (2.1). The above general
version will be useful in Section 4.

Lemma A.1. Problem (A.1) is well-posed if and only if εc|Γ 6= −1. Moreover there
exists a stability constant C(k) > 0 such that

‖usc‖L2(D(0,ρ)) ≤ C(k)
(∥∥uin∥∥

L2(D(0,ρ))
+ ‖f‖L2(D(0,ρ))

)
. (A.2)

Proof. Consider εc < 0 constant. It has already been established that Problems
Eq. (2.1)-Eq. (A.1) is well-posed (in Hadamard’s sense) if and only if εc 6= −1 [8,
Section 2]. The proof relies on T-coercivity arguments [10, 8, 9]. Consider now
εc ∈ C∞(Ω) non constant. Lemma 1 in [8] establishes that problem Eq. (A.1) ad-
mits at most one solution in H1

loc(R2). One simply needs to establish that the operator
u 7→ − div (ε−1∇u)− k2u is Fredholm if and only if εc|Γ 6= −1 to conclude. Since ∂Ω
is a smooth interface, it can always be seen as locally straight with εc locally constant,
then Theorems 4.3 and 6.2 in [10] apply and provide the needed results. Moreover,

well-posedness gives us that there exists C̃(k) > 0 such that

‖u‖H1(D(0,ρ)) ≤ C̃(k)
(∥∥gin∥∥

L2(D(0,ρ))
+ ‖f‖L2(D(0,ρ))

)
,

which leads to

‖usc‖L2(D(0,ρ)) ≤ C(k)
(∥∥uin∥∥

L2(D(0,ρ))
+ ‖f‖L2(D(0,ρ))

)
(A.3)

using properties of the Dirichlet-to-Neumann map and Poincar’s inequality. �

Remark A.2. Equation (A.3) can also be rewritten as Nε,ρ =
‖usc‖

L2
ρ

‖uin‖
L2
ρ

≤ C(k). In

Section 3.1 we compute an approximation of Nε,ρ. Computed results are then directly
related to the well-posedness and the stability of the problem.

Appendix B. Proofs and additional results for the asymptotic
expansions

B.1. Proof of Lemma 4.6.
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Proof. We solve Equation (4.15) as ordinary differential equations with s ∈ TL as a
parameter. The conditions ϕ±0 (s, ·) ∈ S (R±) give the following restrictions θ′0(s)2 +

η0(s)2λ̆0 ∈ C \ R− and θ′0(s)2 − λ̆0 ∈ C \ R−. If one of the above restrictions is false,
then there are no solutions ϕ±(s, ·) in S (R±). Under those restrictions, there exists
α(s), β(s) ∈ R such that α(s)β(s) 6= 0 and

ϕ−0 (s, σ) = α(s) exp

(
σ

√
θ′0(s)2 + η0(s)2λ̆0

)
,

ϕ+
0 (s, σ) = β(s) exp

(
−σ
√
θ′0(s)2 − λ̆0

)
,

where the square roots are chosen to be in C 1
2 . The first transmission condition

ϕ−0 (s, 0) = ϕ+
0 (s, 0) implies that α(s) = β(s) 6= 0. Then the second transmission

condition −η0(s)−2 ∂σϕ
−
0 (s, 0) = ∂σϕ

+
0 (s, 0) gives us

−η0(s)−2

√
θ′0(s)2 + η0(s)2λ̆0 = −

√
θ′0(s)2 − λ̆0,

leading to the eikonal equation

θ′0(s)2 =
λ̆0

1− η0(s)−2
. (B.1)

The right-hand side needs to be positive, leading to

θ0(s) =

∫ s

0

√
λ̆0 (1− η0(t)−2)−1 dt

and from the condition exp(ih−1θ0) ∈ C∞(TL), we deduce that exp(ih−1θ0(L)) =
exp(ih−1θ0(0)) which implies that there exists m ∈ N such that

2πm = h−1 (θ0(L)− θ0(0)) = h−1

∫ L

0

√
λ̆0 (1− η0(s)−2)−1 ds.

By choosing h = L
2πm

for m ∈ N∗, we get〈√
λ̆0

(
1− η−2

0

)−1
〉

=

〈√
λ̆0 ς

∣∣1− η−2
0

∣∣−1
〉

= 1

which gives λ̆0 = ς 〈τ0〉−2. Then with the relation τ 2
0 = ς(1− η−2

0 )−1 we obtain that√
θ′0(s)2 + η0(s)2λ̆0 = τ̂0(s) η0(s) > 0 and

√
θ′0(s)2 − λ̆0 = τ̂0(s) η0(s)−1 > 0,

which concludes the proof. �

B.2. Proof of Lemma 4.9.

Proof. For (s, σ) ∈ TL×R±, we define e±(s, σ) = exp (−|σ| τ̂0(s) η0(s)∓1). We proceed

by induction on n. For n = 0, Lemma 4.6 gives (ϕ±0 , θ0, λ̆0) the solution of (P0)
defined in Eq. (4.15). Let n ≥ 1, from the definition of S±n−1 in Eq. (4.17), there
exists Q±n−1 ∈ C∞(TL,P) such that S±n−1 = Q±n−1 e

± and using Lemma A.1 in [6],

there exists P̃±n ∈ C∞(TL,P) such that ϕ̃±n = σP̃±n e±, ∂2
σϕ̃
−
n − τ̂ 2

0 η
2
0 ϕ̃
−
n = η2

0 S
−
n−1, and



24 CAMILLE CARVALHO AND ZOS MOITIER

∂2
σϕ̃

+
n − τ̂ 2

0 η
−2
0 ϕ̃+

0 = −S+
n−1. For (s, σ) ∈ TL × R±, we obtain

ϕ−n (s, σ) = α(s)σ

(
η0(s) λ̆n
2τ̂0(s)

+
θ′n(s)

η0(s)
+
P̃−n (s, σ)

α(s)

)
e−(s, σ),

ϕ+
n (s, σ) = α(s)σ

(
η0(s) λ̆n
2τ̂0(s)

− η0(s) θ′n(s) +
P̃+
n (s, σ)

α(s)

)
e+(s, σ).

The first transmission condition ϕ−n (·, 0) = ϕ+
n (·, 0) is satisfied because ϕ±n (·, 0) = 0.

Using the second transmission condition−η−2
0 ∂σϕ

−
n (·, 0) = ∂σϕ

+
n (·, 0) and the condition

exp(ihn−1 θn) ∈ C∞(TL), we can choose

θn(s) =

∫ s

0

λ̆n
2τ̂0(t)(1− η0(t)−2)

+
η0(t)P̃−n (t, 0) + η0(t)3P̃+

n (t, 0)

α(t) (η0(t)4 − 1)
dt (B.2)

and with the relation τ0(t)2 (1− η−2
0 ) = ς this give us

λ̆n = − 2 ς

〈τ0〉2

〈
η0P̃

−
n (·, 0) + η3

0P̃
+
n (·, 0)

α (η4
0 − 1)

〉
. (B.3)

Setting P±n (s, σ) = α(s)σ
(
η0(s) λ̆n
2τ̂0(s)

∓ η0(s)±1θ′n(s) + P̃±n (s,σ)
α(s)

)
finishes the proof. �

B.3. Additional results for Schwartz functions.

Lemma B.1. Consider F : (h; s, σ) 7→ F (h; s, σ) in C∞([0, L
2π

]× TL,S (R±)), ρ > 0,
and the intervals I−(h) = (−∞,− ρ

h
) and I+(h) = ( ρ

h
,+∞). Then∫

TL

∫
I±(h)

|F (h; s, σ)|2 dσ ds = O(h∞) as h→ 0.

Proof. Notice that, for anyN ≥ 1, there exists a constant CN > 0 such that |σNF (h; s, σ)| ≤
CN for all (h; s, σ) ∈ [0, L

2π
]× TL × R±. Hence,∫

TL

∫
I±(h)

|F (h; s, σ)|2 dσ ds ≤ CN L

2N ρ2N−1
h2N−1,

which finishes the proof. �

B.4. Additional results used in Section 4.

Lemma B.2. For s ∈ TL,

θ1(s) =

∫ s

0

λ̆1

λ̆0

τ̂0(t) +
(η0(t)2 − 1)κ(t)

2 η0(t)
+

η1(t)

2 η0(s)2 (η0(t)2 − 1)

+ i
(η0(t)4 + 3) η′0(t)

2 η0(t) (η0(t)4 − 1)
+ i

α′(t)

α(t)
dt.

Proof. This follows from Eq. (4.16) and Eq. (4.17). �
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