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Doubly-resonant SFG and DFG spectroscopies: an analytic model for data analysis

including distorted and rotated vibronic levels. II. Applications

Bertrand Busson1

Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 ORSAY, Francea)

(Dated: 28 September 2020)

The influence of vibration mode distortion and mode mixing in the vibronic structure

of molecules on the doubly resonant sum and difference frequency generation spec-

troscopies is systematically studied on several examples. These phenomena modify

the spectral overlap function at the heart of the modeling of the doubly resonant

processes. When the visible beam is tuned, under the Franck-Condon approxima-

tion, each vibration mode generates two main peaks corresponding to the resonance

of the molecular electronic transition with the visible and SFG energies, together

with higher order ones driven by the amplitudes of the vibronic displacements. For a

single mode system, mode distortion modifies the positions of the main peaks and the

excitations of the higher order ones. For a two-mode system, mode mixing induces

in addition a deep change in the balance between the intensities of the mixed modes.

It also changes the phases of the vibrations, which makes curve fitting difficult. For

multimode systems, mode mixing may greatly enhance intensity of a poorly active

mode. For all these reasons, it seems mandatory to take mode distortion and mode

mixing into account for an accurate analysis of second-order nonlinear spectroscopic

experimental data.

a)Electronic mail: bertrand.busson@universite-paris-saclay.fr
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I. INTRODUCTION

In a previous paper,1 we have established the formulas for the account of mode distortions

and mode mixing in the excitation spectra in doubly resonant infrared-visible Sum and

Difference Frequency Generation spectroscopies. Here we apply these results on several

test cases with growing complexity in order to evaluate their implication on the analysis of

experimental data.

In a doubly resonant infrared-visible SFG process, the infrared (IR) beam (frequency ωIR)

resonantly induces a vibrational transition from the ground state and excites a vibration

mode (l). The visible and SFG beams may become resonant with vibronic transitions and,

in the Condon approximation, all totally symmetric vibrations are Franck-Condon allowed.

In the usual linear electron-vibration coupling (LC superscripts in the following) scheme,2 for

which all vibration modes {m} in the excited state exactly match those in the ground state

({j}, energy ~ωj, width Γj) except for a displacement ∆j along the vibration coordinate,

the doubly resonant SFG molecular hyperpolarizability may be written as:

βSFGijk = 1/~2

IR−active∑
l

Aijkl DLC
l (ωSFG)

ωIR − ωl + iΓl
(1)

where Aijkl =µ0,i
g←eµ

0,j
e←g

(
∂µk

∂Ql

)
Ql=0

is the static SFG amplitude and involves the dipole mo-

ment of the electronic and vibrational transitions; DLC
l (ω) is the excitation spectrum of

mode l. We have

DLC
l (ω) =

∆l

2

[
ΦLC (ω)− ΦLC (ω − ωel )

]
(2)

where we introduce the overlap spectral function in the linear coupling scheme ΦLC(ω). This

function may be evaluated either experimentally, for example from an absorption spectrum

A(ω) as A(ω) ∝ ω
∣∣µ0
e←g
∣∣2 Im [Φ(ω)], or by a direct calculation.1

When quadratic electron-vibration couplings are taken into account, the vibronic struc-

ture does not match the ground state vibration modes as vibronic modes may be distorted

(hence frequency-shifted) and mixed (through Duschinsky rotation). In this case, it is nec-

essary to differentiate vibration frequencies ωgj and ωej (with λj =ωej/ω
g
j ) in the ground and

excited states, respectively. When only mode distortions (DIS superscripts) occur, the SFG

molecular hyperpolarizability becomes:

βSFGijk = 1/~2

IR−active∑
l

Aijkl DDIS
l (ωSFG)

ωIR − ωgl + iΓgl
(3)

2



with, for low distortions (i.e. λj close to 1):

DDIS
l (ω) =

∆l

4

(
(1 + λl) ΦFS (ω)− 2ΦFS (ω − ωel ) + (1− λl) ΦFS (ω − 2ωel )

+
N∑
j=1

Sj (1− λj)
[
ΦFS (ω)− ΦFS (ω − ωel )− ΦFS

(
ω − 2ωej

)
+ ΦFS

(
ω − ωel − 2ωej

)]) (4)

where function ΦFS(ω) is formally identical to ΦLC(ω) but now takes vibronic frequency

shifts into account (hence the FS superscripts):

ΦFS(ω) = e−S
∞∑
k1=0
(...)
kN=0

(
N∏
j=1

(Sj)
kj

kj!

)
(−1)

ω − ω0
eg −

N∑
j=1

kjωej + iΓeg

(5)

where S=
N∑
j=1

Sj with Sj =
ωg
j (∆j)2

2~ =
(∆̄j)

2

2
; ω0

eg and Γeg define the vibrationless energy and

width (supposed constant in the whole vibronic structure) of the electronic transition, re-

spectively. Summation over j runs over the N modes of the vibronic structure, and index kj

indicates the order of excitation of mode j.

When two modes (numbered 1 and 2) are involved in mode mixing (MIX superscripts)

with rotation angle θ, supposed small, the SFG molecular hyperpolarizability is further

modified by addition of θ-dependent terms:

βSFGijk =
1

~2

(
IR−active∑

l

Aijkl DMIX
l (ωSFG)

ωIR − ωgl + iΓgl
+
Aijk1 DCT

1 (ωSFG)

ωIR − ωg1 + iΓg1
+
Aijk2 DCT

2 (ωSFG)

ωIR − ωg2 + iΓg2

)
(6)

where functions DMIX
l (ω) = DDIS

l (ω) +Dθ
l (ω) and complementary terms (CT superscripts)

DCT
1,2 (ω) are recalled in the Appendix. As mode mixing is a perturbation of the distorted

case, Eq. 6 may be generalized to an arbitrary number of modes mixed by pairs through the

addition of several new terms per pair.1 The total hyperpolarizability becomes in this case:

βSFGijk =
1

~2

IR−active∑
l

Aijkl
ωIR − ωgl + iΓgl

[
DDIS
l (ωSFG) +Dθ

l (ωSFG) +DCT
l (ωSFG)

]
(7)

where DDIS
l (ω) is still given by Eq. 4, Dθ

l (ω) now sums up the contributions from all pairs of

mixed modes (Eq. A5) while DCT
l (ω) is shown in the Appendix when mode l is involved in

mode mixing, and vanishes otherwise. As a consequence of Eq. 7, all the hyperpolarizability

components βijk share a common dispersion in the visible for a fixed ωIR, determined by Dl.

It is therefore also the case for the nonlinear susceptibility χ(2) components and, provided
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that the Fresnel factors don’t vary in the visible range, for the effective surface susceptibility.3

Consequently, the SFG dispersion in the visible range, as calculated here at the molecular

level for βijk, should be the same for experimental spectra recorded while tuning the input

visible frequency.

II. APPLICATIONS

We now illustrate the theoretical results above in three steps, following the structure of

Paper I.1 Firstly, we propose an efficient way for the evaluation of function ΦFS(ω) as a

preliminary to the calculation of excitation spectra (part II A). We then rely on the simple

cases of one-mode and two-mode systems to understand the effects of distortion (part II B)

and mode mixing (part II C), respectively, on the excitation and SFG spectra. Finally, we

consider more realistic molecular models and illustrate the interference effects (part II D)

and energy transfers (part II E) between vibration modes.

A. Calculation of the overlap spectral function

The ΦFS(ω) formalism allows to simplify the actual evaluation of the vibronic contri-

bution. As the heart of the transform method, it may be deduced from the absorption

spectrum and computed without a deep analysis. As mentioned above, in the case of FG,

the adsorption of one monolayer or less on a substrate may dramatically change the absorp-

tion properties and make its accurate experimental measurement difficult. As for a direct

calculation of ΦFS, it has to be performed only once and applies to all vibration modes.

After this step, simulating DR-SFG/DFG spectra while playing with distortion and mode

mixing parameters is rather straightforward, provided that the correct values of parameters

λj are used.

Care must be taken when calculating a numerical approximation for ΦFS(ω) based on

Eq. 5. For example, a straight summation using nested loops over kj up to order R for N

vibration modes implies to evaluate (R+1)N terms with very different weights. It is there-

fore necessary to optimize the calculation method by evaluating the terms with decreasing

amplitude and choosing a cutoff for stopping the summation (i.e. for convergence). For

an efficient method, we consider a truncated summation up to a total order R =
∑N

j=1 kj,
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which comes to rewriting Eq. 5 under the form:

ΦFS(ω) = e−S
∞∑
R=0

∑
{kj}1≤j≤N

N∑
j=1

kj=R

(
N∏
j=1

(Sj)
kj

kj!

)
(−1)

ω − ω0
eg −

N∑
j=1

kjωej + iΓeg

(8)

The number of terms at a given total order R is equal to the number of R-permutations of N

with repetition, that is
(
N+R−1

R

)
. The number of terms in the sum with total orders ranging

from 1 to R is
(
N+R
R

)
. Considering that the fractions of each term in the sum all weigh at

most 1/Γeg, we focus on the coefficients in order to define a cutoff for convergence. Defining

the weight w(R) of a given total order R by the sum of the weights of all its terms, we have

w(R) =
∑

{kj}1≤j≤N
N∑

j=1
kj=R

(
N∏
j=1

(Sj)
kj

kj!

)
(9)

This quantity is equal to the R-term in the Taylor expansion of eS with S =
N∑
j=1

Sj, that is:

w(R) =

[
N∑
j=1

Sj

]R
R!

=
SR

R!
(10)

To choose a convergence cutoff, one may therefore define a threshold for w(R), below

which the higher orders are neglected and the summation truncated with essentially no

consequence on the result. This is an alternate way to define classes of excitation accessible

at a given level of coupling.4 For practical applications, we suggest to take as a reference

the weight of order 1 for the definition of the threshold Tw. The condition for stopping the

calculation before order R is known in advance and becomes:

w (R)

w(1)
=
SR−1

R!
< Tw (11)

For small values of coefficients Sj, this happens very fast. With Tw = 1%, the calculation

stops after order 3 for S= 0.5 (leading to only 23426 terms for 50 vibration modes) but goes

up to order 7 for S= 2.0 (2.3×108 terms for 50 modes). As an example, the ΦFS(ω) function

built from the calculated vibronic structure of rhodamine 6G5 (R6G, 31 vibration modes,

ω0
eg = 18800 cm−1; Γeg = 400 cm−1, S= 0.38, predicted order to stop calculation = 4) has been
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calculated (Figure S1). The vibronic structure of this dye has been studied a lot, either by

resonant Raman spectroscopy or first principle calculations.6–12 The maximum differences

between the functions truncated at total orders 3 and 4 were below 0.5% in modulus and

0.1◦ in phase. As can be seen in the Supplementary Material, the difference between orders

2 and 3 is already hardly detectable by eye. If we double the displacements ∆j, then S goes

up to 1.53 and the estimated maximal order becomes 7 at 1% convergence threshold. After

calculation (Fig. 1), maximal difference in magnitude is 0.2% between orders 6 and 7 and

0.8% between orders 5 and 6. The differences preferentially lie in the imaginary part, for

which it becomes at most 1% between orders 6 and 7 as expected, and 3% between orders

5 and 6.

We note here the differences between real part, imaginary part and modulus. For absorp-

tion spectroscopy, only the imaginary part plays a role, leading to well-defined and narrow

FIG. 1. Complex Φ function calculated for rhodamine 6G with 31 vibration modes using the

parameters of Ref. 5 with all displacement parameters doubled. (A): real part; (B) imaginary part;

(C) modulus; (D) complex phase.

6



peaks pointing up above a zero background. On the contrary, in RRS and DR-SFG spec-

troscopies, as the modulus appears in the equations, the influence of the derivative shape of

the real part modifies the properties of the resonances. The main consequences are a broad-

ening of the resonance peak leading to nonvanishing contributions extending far from the

resonance, with consequences on the intensity ratio measured in and out of resonance. This

is a general phenomenon already noted when comparing absorption and SFG spectroscopies

enhanced by coupling to either excitons13 or surface plasmons.14,15

B. One-mode system: effects of mode distortions

We analyze the effects of mode distortion alone in the model case of one vibration mode.

In the following, we label first, second, etc... all the peaks appearing on the curves or 3D plots

in the increasing energy order, including the 0-0 transition. For this example, we choose the

parameters from one of the most intense bands in the calculated RRS spectra of rhodamine

FIG. 2. Amplitude of function Dl in a distorted one-mode system as a function of wavenumber

ω and Huang-Rhys factor S for three values of distortion parameter λ: 0.8 (A,B); 1.0 (C,D) and

1.2 (E,F). See text for parameter values. Top row: absolute amplitudes. Bottom row: amplitudes

normalized to the highest value of main peak at λ=1.2.
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6G5: ω0
eg = 18800 cm−1; Γeg = 400 cm−1; ωg = 1652 cm−1. The two variable parameters are

the Huang-Rhys factor S, tuned from 0 to 1.0, and the distortion factor λ, between 0.7 and

1.3. Such intervals allow to illustrate the behaviour of the excitation function. For realistic

systems, λ usually lies between 0.9 and 1.1, ∆̄ below 0.4, hence S below 0.1. The variation

in magnitude of the excitation profile D(ω) as a function of S and the wavenumber has

already been studied,2 and we extend it in Fig. 2 to several mode distortion parameters λ

(additional curves may be found in the Supplementary Material). In the 3D plots, absolute

values are displayed and we extract some 2D profiles for several values of S (0.1, 0.2, 0.4,

0.6, 0.8 and 1.0). For the latter, we normalize all curves to the highest peak value in order

to focus on the evolution of the lineshapes as a function of the visible wavenumber and

distortion parameter λ. Parameter S drives the influence of higher order vibronic states in

the excitation profile, whereas λ shifts the positions and modulates the amplitudes of the

higher order peaks, leading to a blueshift of the extremal peak in the excitation profile. The

amplitude of the first and main peak (its position corresponds to ω0
eg and does not depend on

the parameters of vibronic structure) only weakly depends on S (except for S≤ 0.1) because

it varies approximately as
√
Se−S, a rather smooth function between 0.1 and 1.4, with a

maximum at S= 0.5. As already noticed,2 the amplitude of the second peak decreases for

increasing S as a consequence of interferences between resonances at the visible and SFG

wavenumbers. For values close to (S= 1.0;λ= 1.0), the peak disappears from the excitation

profiles (Fig. 2D and 3F). On the contrary, for low S, the first two peaks have equivalent

heights, with an overall small amplitude.

The influence of λ values is more easily understood in Fig. 3, which displays the excitation

profiles as a function of the wavenumber and the distortion parameter. As above, the 3D

plots show absolute values, and the 2D extracts are normalized to the highest values. We

see that λ influences indeed the positions of the higher order peaks and has little influence

on the amplitudes of the first ones. In particular, the height of the first peak remains almost

constant with λ. On the contrary, the λ-dependent terms in Eq. 4 allow reaching higher

order terms with lower powers of S, their amplitudes are therefore greatly influenced by λ.

As expected from the development of Eq. 4, the third peak disappears for the particular

coupled values 2S= 1−λ (e.g. S= 0.1 and λ= 0.8, Fig. 3B), in the same way as the second

peak for (S= 1.0;λ= 1.0).

In a first approximation, S drives the overall amplitudes and the number of modes in the
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FIG. 3. Amplitude of function Dl in a distorted one-mode system as a function of wavenumber

ω and distortion parameter λ for three values of Huang-Rhys factor S: 0.1 (A,B); 0.5 (C,D) and

1.0 (E,F). See text for parameter values. Top row: absolute amplitudes. Bottom row: amplitudes

normalized to the highest value of main peak at S=0.5.

excitation profiles towards high energies, whereas the distortion parameter λ determines the

positions of the higher order peaks, hence the extent of the excitation profile towards higher

energies for a given value of S. In order to check this, we have selected in Fig. S5 the λ values

relevant for most realistic systems, and shown the influence of parameter λ by comparing

the excitation profiles calculated using the exact formula (Eq. 4) and approximated under

the frequency-shifted linear coupling scheme (Eq. 4 with λ= 1). We see that there is little

difference in this λ range and that it is possible, to a fair approximation, to limit the

calculation of the influence of mode distortions to the induced frequency shifts in the vibronic

structure. In other words, mode distortion has little impact on the excitation profiles except

for the positions in energy of the vibronic resonances.

The actual excitation profile for a given mode corresponds to Dl(ω) evaluated at the SFG

frequency (Eq. 3), thus the positions of the peaks will also depend on the frequency of the

selected normal mode. In order to illustrate this, we plot on Fig. 4 the amplitudes of the

excitation spectra (A-C: absolute values; D-F: normalized to 1) for several vibration mode
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FIG. 4. Amplitude of function Dl(ωSFG) in a distorted one-mode system as a function of incoming

visible wavenumber and eigenfrequency of vibration mode ωgl (from 200 to 2000cm−1), for three

values of distortion parameter λ (0.8; 1.0; 1.2) and Huang-Rhys factor S = 0.02. A-C: 1D profiles

normalized to 1. D-F: 2D maps with absolute values.

frequencies (considered alone in a one-mode system) for three values of distortion λ at low

S values. For high energy vibrations, the two excitation peaks are clearly seen, only the left

one being independent of distortion (resonance at ωSFG = ω0
eg) and the right one shifting

as expected to the blue with increasing λ. On the contrary, for low energy vibrations, the

two peaks merge into one central peak, leading to a global broadening and redshift from

the theoretical ω0
eg position. Both peaks become distinguishable for ωel bigger than 2Γeg.

For broader electronic resonances, or for samples where inhomogeneous broadening becomes

important, we may expect this single peak behaviour even for high energy modes.6. Even

in the undistorted case (Fig. 4B), the right peak is always redshifted with respect to the

theoretical ωvis = ω0
eg condition because of interference with the left peak.
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C. Two-mode system: effects of mode mixing

In order to illustrate the effects of mode mixing, we focus on a model two-mode

system. The only published results on DR-SFG with mode mixing16 use the follow-

ing fixed parameters: ωeg = 20000 cm−1; Γeg = 90 cm−1; ωg1 = 500 cm−1; ωe1 = 520 cm−1;

ωg2 = 800 cm−1; ωe2 = 790 cm−1; Γg1 = Γg2 = 20 cm−1 and equal IR mode activities, which

means Aijk2 /Aijk1 =
√
ωg2/ω

g
1 . The tunable parameters are therefore the mixing angle θ

(standard value -15◦), the visible frequency ωvis (standard value 20000 cm−1) and the vi-

brational displacements. The authors have chosen to control the vibrational displacements

through parameters ξ1 and ξ2 rather than ∆1 and ∆2. Grouping all ∆j and ξj into col-

umn vectors ∆ and ξ, respectively, the general relationship between these quantities is

FIG. 5. Amplitudes of SFG hyperpolarizability |βijk| as a function of the IR wavenumber for two

modes experiencing mode mixing in the vibronic structure. Parameters are fixed as explained in

the text and A1 = 106 (a.u.). One parameter is varied in each panel: (A) mixing angle, (B) visible

wavenumber (cm−1), dimensionless displacements (C) ξ2 and (D) ξ1.
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∆ =
√

2~(ωe)
−2R(ωg)

3/2ξ, where R is the Duschinsky matrix, and ωg and ωe are the diag-

onal matrices of the vibration wavenumbers in the ground and excited states, respectively.

Parameters ξj are dimensionless, like ∆̄j, but in the rotated basis for vibronic states (stan-

dard value ξ1 = ξ2 = 0.5). In Fig. 5, we show the dispersion curves (using Eq. 6) for the

amplitude of the molecular SFG hyperpolarizability, obtained by varying one parameter at

a time while the others keep their standard value. Function ΦFS(ω) was calculated up to

fourth order. We follow in this part the convention of Ref. 16 and plot SFG amplitudes

rather than usual intensities for a direct comparison with their results.

We see that we perfectly reproduce the curves of Ref. 16, at a lower computational cost,

validating our theoretical analysis of mode mixing. In particular, the complex structures

in the lineshapes as a function of the mixing angle (Fig. 5A) are correctly accounted for.

The main advantage of our procedure lies in the fact that we have to calculate the overlap

spectral function only once, while we may vary at will the parameters not related to the dis-

torted vibronic structure (mixing angles, visible and IR excitation wavelengths, amplitudes

of each mode). In this sense, once the 0-0 energy (ω0
eg), displacements (∆j) and distor-

tion parameters (λj) are known, this procedure allows curve fitting for the other unknown

parameters.

We may comment on the choices for the simulations of Fig. 5. The authors in Ref. 16 have

originally chosen to fix parameters ξ1 and ξ2 and transition energy ωeg. In our model, we

have shown that the analysis must rather rely on the ground state displacements ∆j and 0-0

transition energy ω0
eg. In fact, parameters ξj relate to the rotated vibronic structure, whereas

the IR beam excites vibration modes in the ground state. There is no direct relationship

between the IR wavenumber and the tuned displacements ξ1,2. In addition, contrary to ∆1

and ∆2, the variations of ξ1,2 are not disconnected from those of θ, so when the mixing angle

is tuned, the amplitudes of the peaks and their relative phases also change. This explains

why we dont see on panel (A) a clear evolution in amplitude from one peak to the other as a

function of θ, as expected. In addition, the transition energy ωeg also depends on parameters

∆j (or ξj), so tuning them has consequences on the actual position of the 0-0 line ω0
eg, which

drives the resonance conditions. In concrete terms, for fixed ξ1,2 values, the variations of

ω0
eg and ∆1,2 as a function of θ displace the relative positions of visible and SFG frequencies

with respect to the electronic transition, the balance in amplitude between both peaks, and

the depth of the electronic structure of each mode. For example, when θ is tuned from -15◦

12



to +15◦, ω0
eg varies between 19604 and 19737 cm−1 (a reference value of 20000 cm−1 for the

visible excitation therefore seems too high); S1 between 0.47 and 0.04; S2 between 0.18 and

0.31, respectively. All these dependencies account for the complicated lineshapes observed

in Fig. 5, which may not easily be qualitatively analyzed. The evolutions of the lineshapes

in panels (A) and (C) would be much smoother by use of ∆j and ω0
eg parameters, to which

the curves are very sensitive.

FIG. 6. Amplitudes of SFG hyperpolarizability |βijk| for a two-mode system as a function of the IR

and SFG wavenumbers, varying in the ranges 300–1000 cm−1, and 18700–21700 cm−1, respectively.

Mode mixing angle is tuned between -15◦ and +22.5◦ as indicated in each panel. The parameters

are described in the text, the main ones being ωeg = 20000 cm−1, ωg1 = 500 cm−1, ωg2 = 800 cm−1

and ∆1/
√
~= ∆2/

√
~= 0.02 (

√
cm−1)−1.

In order to go further, we plot on Fig. 6 the evolutions of the same hyperpolarizabil-

ity amplitudes as a function of the infrared and SFG wavenumbers for several values of

the mixing angle θ. Parameters have been chosen as above, except that we have fixed

∆1/
√
~= ∆2/

√
~= 0.02 (

√
cm−1)−1. The two vibration modes are clearly seen on the spec-
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tra, and their amplitudes show two maxima in the visible range corresponding to the leading

orders of the decomposition of Eq. 6. Here the excitation of higher vibronic states is small

as a consequence of the rather small values chosen for ∆1,2. The first peak corresponds to

the excitation of the electronic transition at the SFG frequency (this time, ω0
eg is constant

at 19826 cm−1), and the second one at the visible beam frequency, hence the alignment of

the maxima on a horizontal and a tilted line, respectively. These two peaks also dominate

the Dl(ω) curves in Part II B, and may be related to the two terms composing the SFG

response in linear coupling case (Eq. 2). However, we clearly see that mode mixing has a

strong impact on the excitation spectra. When θ is tuned from negative to positive values,

the SFG intensity of the first peak is transferred from the high energy mode to the low

energy one whereas the second peak remains stable. Higher order vibronic resonances also

follow the amplitude trend of the first peak. Experimentally, the balance between peak

intensities is predicted to be very sensitive to the mixing angle. We see that the evolution

of the amplitudes of peaks 1 and 2 is not symmetric around θ= 0◦, the equilibrium point

being located between 0◦ and +7.5◦. This comes from the unequal amplitudes A1 and A2,

which favor the second vibration mode. When comparing the situations for −15◦ and +15◦,

we understand that we may not neglect mode mixing effects when analyzing experimental

SFG spectra influenced by this phenomenon. Interpretation in the linear coupling frame will

result in an incorrect balance between amplitudes A1 and A2, and consequently to erroneous

conclusions on their infrared activities or vibronic displacement parameters.

In order to help understanding the difference between ∆ and ξ parameters, we compare

in the Supplementary Material (Figures S6 to S8) analogous data for either constant ∆1,2

or constant ξ1,2, plotted as a function of either the SFG or the visible wavenumber. In

particular, in Figure S8, we illustrate the origins of the 1D curves on Fig. 5A and Fig. 5B.

We also show that there is no clear trend for the evolution of the amplitudes as a function

of θ when parameters ξ1,2 are fixed instead of ∆1,2.

Another interest of our model for mode mixing lies in the fact that we may now separate

the effects of the various terms in the excitation function (Eq. 6). Fig. 7 shows the decom-

position of the total excitation spectrum Dtotal
1,2 (ω) =DMIX

1,2 (ω) +DCT
1,2 (ω) for modes 1 and 2

into DMIX
1,2 (ω) and DCT

1,2 (ω) using the same parameters as in Fig. 6, for constant ∆1,2/
√
~ as

above, plotted as a function of mixing angle θ and wavenumber ω. As shown in the Supple-

mentary Material (Figure S9), terms Dθ
1,2 appear negligible in front of the others (at least

14



FIG. 7. Amplitudes and phases of the various terms of the excitation functions D1 (left) and D2

(right) when mode mixing is present, as a function of mixing angle (degrees) and wavenumber

(cm−1). Parameters are identical to Fig. 6. Total excitation functions; (A,B) amplitudes and

(C,D) phases; (E,F) MIX terms only (amplitudes); (G,H) CT terms only (amplitudes). The six

amplitude plots share a common scale.

30 times smaller than DDIS
l ), which may be anticipated as they involve a product of three

∆ factors and therefore belong to the higher order terms. Consequently, DMIX
l (ω) may be

identified to DDIS
l (ω) and remains essentially constant as a function of θ (Fig. 7E and 7F).

The overall θ-dependence therefore lies in DCT
1,2 (ω) only, proportionally to the mixing angle

(Fig. 7G and 7H), responsible for the θ-dependent profiles shown in Fig. 6. Of course the
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phases of these terms (Fig. 7C and D) also contribute to the interference patterns between

neighboring peaks on Fig. 6. For mode 2, and mode 1 in the positive range of mixing angles,

the phase varies as a function of the wavelength but remains almost constant when the mix-

ing angle is tuned. On the contrary, for mode 1 at negative θ, above 20500 cm−1, the phase

experiences rapid variations as a function of the wavenumber, and the D1 sign for θ < 0 at

high energies becomes opposite to the θ > 0 case. This comes from the fact that, in this

region, DCT
1 becomes slightly bigger in amplitude than DMIX

1 and efficiently competes with

it for the overall phase. In the particular case studied here, both modes share a common

value for their coupling constants ∆1,2, and still the influence of mode mixing is obvious.

However, when mixing involves two modes with very different values of ∆, considering that

DMIX
1 is weighted by ∆1 and DCT

1 by ∆2, we may expect the corrective term to become

routinely bigger than the main DMIX (see below for an example). This illustrates that, even

for moderate mode mixing, DCT terms may not be neglected, as they have a great influence

both on amplitude and phase of the excitation functions. These results show that inclusion

of mode mixing effects in the theoretical models, when they are present in the molecular

vibronic structure, appears mandatory for an accurate experimental data analysis.

D. Two modes in a multimode system: interference effects

In order to assess the effects of distortions and mixing on a more realistic, but still model,

example, we have chosen to investigate two nearby vibration modes of Rhodamine 6G. We

start again with the data from Ref. 5 and the same parameters as above for the electronic

transition. This time, we use the whole calculated vibronic structure (theoretical frequencies

and signed displacements of 31 vibronic modes) in order to calculate the Φ(ω) function. As

most publications dealing with the vibronic structure of R6G do not take into account mode

distortion and mode mixing,6–11 we may play with these unknown parameters. Here we

focus on mode mixing only and fix all λj = 1, thus the overlap spectral function is simply

ΦLC(ω). We first consider two modes, namely ωg1 = 1513 cm−1, ωg2 = 1652 cm−1, ∆̄1 =−0.17,

∆̄2 = 0.19, Γg1 = Γg2 = 8 cm−1. We arbitrarily set their infrared activities ∂µk/∂Ql equal to

simulate the DR-SFG intensities (calculated as |βijk|2) for three mixing angles: −15◦, 0◦ and

+15◦. In the Supplementary Material (Fig. S11), we see that the intensity spectra evolve

as a function of the mixing angle in a way comparable to Fig. 6, except that, for a given
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FIG. 8. DR-SFG (A,C,E,G) and DR-DFG (B,D,F,H) intensities from two vibration modes of R6G

at 1513 and 1652 cm−1 as a function of the IR and visible wavenumbers, with NR = 2 × 10−7.

Mode mixing angle is −15◦ (A,B), 0◦ (C,D) and +15◦ (E,F). 1D IR spectra extracted at peak

maxima (black for ωvis ≈ ω0
eg, red for SFG low energy peak, blue for DFG high energy peak) are

shown in (G,H). Solid line: +15◦, dashed line: 0◦, circles: +15◦.
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vibration mode, both peaks in the excitation spectrum share a common amplitude. This

comes from the fact that the displacements shifts here take values lower than in Fig. 6,

in fact more consistent with realistic systems. However, while both vibrations share an

almost common absolute value for (∂µk/∂Ql)∆̄l, mode mixing still leads to a change in the

intensity balance from one vibration to the other. In order to complete this picture with

the phase effects, we suppose that the molecule is adsorbed onto a substrate giving birth

to a nonvanishing SFG signal (e.g. gold, silicon) and draw the same intensity spectra while

summing a constant small nonresonant (NR) term, with phase set to 0, to the molecular

βijk (i.e. |βijk + NR|2). The comparison of the resulting spectra (Fig. 8) with the NR-

free case (Fig. S11, same intensity scale) shows that the phases of both excitation peaks

differ as their interference with the NR results in an asymetric change in intensity. Even

if the NR intensity represents only 4% of the maximum intensity of the main peak, the

effect on the spectra is dramatic: interference is either constructive (intensity increase) or

destructive (intensity decrease) depending on the vibration mode and the resonance in the

visible. When vibrational 1D spectra are extracted for the visible wavelengths corresponding

to the resonant maxima (Fig. 8G), the intensity balance is tuned from one peak to the other

in an asymmetric way.

It has been shown in the past that recording DFG spectra together with SFG may help

analyzing the interference patterns.17,18 The equivalent DFG data are shown in Fig. 8 and

Fig. S11. The resonances in the visible range show up in the DFG case for higher incoming

visible energies than for SFG, so that both techniques share a common maximum close to

ωvis =ω0
eg, with a second resonant peak at lower energy and higher energy for SFG and

DFG, respectively. For their common resonance at ωvis ≈ ω0
eg, a direct comparison between

Fig. 8G and H shows that they behave almost exactly in the same way as a function of θ,

even if the exact visible wavenumbers for the maxima vary from 18700 cm−1 for SFG to

18900 cm−1 for DFG. For a fixed mixing angle, intensity balance is reversed between SFG

and DFG as far as the extremal peaks in the visible range (i.e. high energy for SFG, low

energy for DFG) are concerned. These results show that an overall SFG/DFG symmetry

may be recovered for the central peak and even for the extremal ones, but in the latter case

we must keep in mind that experimental spectra must be recorded at two distinct visible

wavenumbers, around 574 and 491 nm for SFG and DFG, respectively.

For a direct comparison with experiments, a series of vibrational spectra (i.e. as a func-
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tion of the IR wavenumber) will usually be sequentially recorded while tuning the visible

wavenumber. For data analysis, the easiest procedure is to perform a Lorentzian fit of the

spectra as a function of the IR wavenumber, the numerator being a complex function of the

visible and SFG wavenumbers.12 In a practical way, many authors simplify the analysis by

fitting each IR SFG spectrum using Lorentzian functions with a constant complex numera-

tor, then study the variation of this constant with the visible or SFG wavenumber.6,19–21. As

this approximation is strictly speaking not enforced (i.e. the numerator of the Lorentzian

also varies with the IR wavenumber), we have checked whether this procedure is acceptable

in the present case. We have considered the twelve spectra in Fig. 8G and H, and compared

the parameters obtained by curve fitting to the exact values of the excitation functions at

peak maximum. The values of the Lorentzian numerators obtained by both methods slightly

differ but the phase accuracy remains within 2◦ and the absolute amplitudes deviate by 4%

at maximum. Data fitting also leads to errors in the NR amplitude, up to 4%. The er-

rors grow up to 6◦ in phase and 4% in amplitude, with a NR deviating by more than 10%

when the same analysis is performed with two other vibration modes, closer to each other

(14 cm−1). More important, the phase difference between the two vibration modes differs

from zero, and reaches values up to 23◦. As a consequence, the complex Lorentzians require

numerators with distinct phases (this issue is sometimes not addressed in the literature6),

which raises additional difficulties: as expected, we have found four distinct sets of param-

eters for every single spectrum while performing curve fitting.22 Considering the variability

of the experimental peak intensities (Fig. 7A and B) and phases (Fig. 7C and D) with the

mixing angle, it is impossible to know which set corresponds to the correct parameters. This

constitutes a major issue as for data interpretation of DR-SFG and DR-DFG spectra.

E. Realistic vibronic structure model

In order to illustrate the importance of mode distortion and mode mixing in practical

DR-SFG experiments, we extend the previous analysis to the full vibronic structure of

rhodamine 6G. We have calculated by DFT (see Supplementary Material for details) the

vibrational structures of the ground and first excited electronic states of the molecule after

geometry optimisation. Comparison between both vibrational structures allows to extract

the displacement vector and mode mixing matrix. In a second step, we have reduced the
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FIG. 9. Simulated DR-SFG intensities |βijk|2 of model rhodamine 6G as a function of visible

and IR wavenumbers (cm−1), with mode distortion and mode mixing excluded (top) and included

(bottom).

Duschinsky matrix to a block diagonal 2x2 matrix. Using Eq. 6, it becomes possible to

calculate the DR-SFG spectrum of rhodamine 6G as a function of incoming visible and IR

frequencies, at the Condon level of approximation, in terms of molecular hyperpolarizability

components. A comparison to experimental spectra is then possible on condition that the

orientation of the molecule on the surface is known, allowing projection of SFG, visible and

IR dipole moments from the molecular to the laboratory frame.23 Even for a fixed set of

beam polarizations (e.g. ssp), the visible and SFG electronic transition dipole moments,

and the wavelength dispersion in the visible, factorize when comparing vibration modes

with one another (see part I), but the excitation of the IR dipole moments ∂µk/∂Ql by light

still depends on the molecular orientation. As our goal is not to compare our simulations

with experimental spectra, we do not consider a particular molecular orientation11 and plot

an averaged |βijk|2 intensity, weighting each vibration mode l by 〈∂µ/∂Ql〉 corresponding to
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its IR activity averaged over all orientations. All vibrations share a common Γgl = 8 cm−1.

In Fig. 9 we compare the SFG spectra as a function of the visible and IR incoming

wavenumbers calculated with and without account of mode mixing and mode distortions.

Parameters of the electronic resonance are taken as before as ω0
eg = 18800 cm−1 and Γeg =

400 cm−1. In the 1200–1800 cm−1 IR range, six peaks mainly appear on the spectrum, some

of them broadened by overlapping neighbouring modes. The two main prominent features

lie at 1660 and 1569 cm−1, in line with other publications on the same molecule.7,8,10,11

We note that the Herzberg-Teller (HT) active modes do not appear on our calculation,

restricted to Franck-Condon active modes.11 However, the mode at 1504 cm−1, which is

known to be only HT-active11, is absent indeed on the top spectrum as expected, but

becomes visible when quadratic electron-vibration coupling is allowed. It appears that, even

if this mode is IR-active but only weakly Franck-Condon active, it borrows its intensity by

mode mixing (with positive angle) from the neighbouring 1569 cm−1 mode. Conversely, the

latter shows a decreasing intensity for the same reason. As a consequence, the balance in

intensity between the 1569 and 1660 cm−1 peaks is reversed when mode mixing is taken into

account, all the more that the latter also borrows some intensity from a very weakly IR-

active mode at 1608 cm−1, with a negative coupling angle. For these particular peaks, and to

a lower extent for all vibration modes visible on Fig. 9, we see that quadratic coupling effect

changes the simulated vibrational and electronic lineshapes, which has a strong impact on

the parameters extracted from the analysis of experimental data (e.g. coupling parameters

∆l and IR activities ∂µk/∂Ql).

This is illustrated in Fig. 10A, where the spectra with and without quadratic coupling

effects are superimposed for ωvis = 18600 cm−1. In addition to the features described above,

the intensities of peaks at 1196, 1276, 1361 and the high energy shoulder at 1439 cm−1

are also modified by mode distortion and mode mixing. The choice of this specific visible

frequency is explained in Fig. 10B, where the amplitudes of several vibration modes spanning

the IR range (prominent or not in the SFG spectrum) are displayed as a function of the

visible wavenumber and normalized to 1. We see that, as a consequence of interference

between the two peaks, the effective maximum for the high energy resonance is redshifted

from the theoretical ωvis = ω0
eg towards an average value of 18600 cm−1. In addition, the

peak intensities show the expected behaviour as a function of the IR wavenumber (Fig. 4),

i.e. the two distinct maxima overlap at high IR energy (with a valley of moderate depth in
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FIG. 10. A: comparison of the SFG intensities |βijk|2 of model rhodamine 6G extracted from

Fig. 9 at a visible wavenumber of 18600 cm−1 calculated with and without including mode mixing

and mode distortions. B: peak intensities of several vibration modes as a function of the visible

wavenumber, normalized to unity to ease comparison. Vertical line is at 18600 cm−1.

between) and merge into a broader peak at low IR energy.

III. CONCLUSION

Doubly resonant SFG and DFG spectroscopies require a specific formalism for their anal-

ysis, which essentially differs from the singly vibrational resonant case. For every vibration

mode, the classical IR complex Lorentzian formulation for vibrational resonances holds but

its numerator (the excitation spectrum of the mode) involves several wavenumber-dependent

factors related to the molecular vibronic structure. For low amplitude mode mixing limited

to couples of vibration modes, these factors are elegantly recast into the spectral overlap func-

tion Φ(ω), which only depends on mode distortion through frequency shifts. The Φ function

may be extracted from experimental absorption data, or calculated through a sum-over-

states algorithm. The depth of this calculation depends on the amplitude of displacements

along normal mode coordinates of all the vibration modes in the vibronic structure.

As compared to the linear coupling case, i.e. without account of mode mixing and mode

distortions, inclusion of mode distortions mainly modifies the resonance conditions through

vibrational frequency shifts in the excited state. This phenomenon is completely taken care

of in the Φ(ω) by changing ΦLC into ΦFS. In addition, for high values of the displacements
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along normal modes, the influence of higher order terms (i.e. involving harmonics and

overtones of the vibrations) increases with the distortion. Including mode mixing leads to

additional angle-dependent terms in the excitation spectra. The effects are more spectacular

than with mode distortions: SFG intensity is deeply balanced from one mode to the other

when the mixing angle varies on either side of zero, preventing from a direct interpretation of

the absolute peak intensity in terms of infrared transition dipole moment and normal mode

displacement alone. When the mixed modes have very unbalanced amplitudes (e.g. one is

very IR active and the other one completely or almost IR-inactive), intensity transfer form

the IR-active mode may make the IR-inactive mode look IR-active. Finally, the phases of the

vibration modes vary under the influence of mode mixing, creating new interference patterns

with the neighbouring modes and with a non-resonant contribution from the substrate, when

present. This impacts again on the apparent intensity of each peak, but also makes fitting

procedure with Lorentzians more difficult due to the existence of several equivalent sets of

parameters.

The results presented here show that quadratic electron-vibration couplings, responsible

for mode distortions and mode mixing, must be taken into account in order to correctly

estimate the vibrational amplitudes from DR-SFG and DR-DFG experiments, then recover

the molecular parameters like vibrational transition dipole moments and vibronic coupling

constants. We expect in the future some improvements on the present theory and its practical

implementation, for example by building on the full vibronic theory16 in order to avoid

excessively simplifying the Duschinsky matrix, or by inserting quadratic effects into the

Herzberg-Teller formalism,11 which generates a second family of active modes. We may also

expect that a generalized use of computational chemistry allows a better access to realistic

molecular vibronic structures, in order to implement normal mode displacements, distortion

parameters and Duschinsky matrices compatible with real molecules into data analysis of

doubly resonant second order nonlinear optical spectroscopies.

SUPPLEMENTARY MATERIAL

See Supplementary Material for additional figures on the calculation of the overlap spec-

tral function and on the effects of mode distortions and mode mixing on excitation profiles

and SFG/DFG spectra, and for details on the calculation of the vibronic structure of rho-
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damine 6G.
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Appendix A

The excitation functions introduced in Eq. 6 have the following expressions:

DMIX
l (ω) = DDIS

l (ω) +Dθ
l (ω) (A1)

where DDIS
l refers to Eq. 4 and

Dθ
l (ω) = −∆l∆1∆2θ (ωg1 − ω

g
2)

4~
[
ΦFS(ω)− ΦFS(ω − ωel )

−ΦFS(ω − ωe1) + ΦFS(ω − ωel − ωe1)

−ΦFS(ω − ωe2) + ΦFS(ω − ωel − ωe2)

+ΦFS(ω − ωe1 − ωe2)− ΦFS(ω − ωel − ωe1 − ωe2)
]

(A2)

DCT
1 (ω) = +

∆2θ

4ωg1

{
(ωg1 + ωg2)

[
ΦFS (ω)− ΦFS (ω − ωe2)

]
− (ωg1 − ω

g
2)
[
ΦFS (ω − ωe1)− ΦFS (ω − ωe1 − ωe2)

]}
(A3)

DCT
2 (ω) = −∆1θ

4ωg2

{
(ωg1 + ωg2)

[
ΦFS (ω)− ΦFS (ω − ωe1)

]
− (ωg2 − ω

g
1)
[
ΦFS (ω − ωe2)− ΦFS (ω − ωe1 − ωe2)

]}
(A4)
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For the general case of P modes involved in mode mixing by pairs, for each (i,j) pair

corresponds an angle θij, and the excitation functions involved in the SFG hyperpolarizability

(Eq. 7) become

Dθ
l (ω) = −∆l

(P−1,P )∑
(i,j)=(1,2)

∆i∆jθij
(
ωgi − ω

g
j

)
4~

[
ΦFS(ω)− ΦFS(ω − ωel )

−ΦFS(ω − ωei ) + ΦFS(ω − ωel − ωei )

−ΦFS(ω − ωej ) + ΦFS(ω − ωel − ωej )

+ΦFS(ω − ωei − ωej )− ΦFS(ω − ωel − ωei − ωej )
]
, (A5)

DCT
i (ω) = +

∆jθij
4ωgi

{(
ωgi + ωgj

) [
ΦFS (ω)− ΦFS

(
ω − ωej

)]
−
(
ωgi − ω

g
j

) [
ΦFS (ω − ωei )− ΦFS

(
ω − ωei − ωej

)]}
, (A6)

and

DCT
j (ω) = −∆iθij

4ωgj

{(
ωgi + ωgj

) [
ΦFS (ω)− ΦFS (ω − ωei )

]
−
(
ωgj − ω

g
i

) [
ΦFS

(
ω − ωej

)
− ΦFS

(
ω − ωei − ωej

)]}
(A7)

for the first and second mode of the (i,j) pair, respectively.
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