
HAL Id: hal-02965967
https://hal.science/hal-02965967v2

Preprint submitted on 17 Feb 2021 (v2), last revised 21 Apr 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A robust and efficient solver based on kinetic schemes
for Magnetohydrodynamics (MHD) equations.

Hubert Baty, Florence Drui, Emmanuel Franck, Philippe Helluy, Christian
Klingenberg, Lukas Thanhäuser

To cite this version:
Hubert Baty, Florence Drui, Emmanuel Franck, Philippe Helluy, Christian Klingenberg, et al.. A
robust and efficient solver based on kinetic schemes for Magnetohydrodynamics (MHD) equations..
2021. �hal-02965967v2�

https://hal.science/hal-02965967v2
https://hal.archives-ouvertes.fr

A robust and efficient solver based on
kinetic schemes for
Magnetohydrodynamics (MHD)
equations.

Hubert Baty1, Florence Drui2, Emmanuel Franck3, Philippe Helluy3,
Christian Klingenberg4, and Lukas Thanhäuser4

Abstract This paper is devoted to the simulation of Magnetohydrohynamics
(MHD) flows with complex structures. This kind of flows present instabili-
ties that generate shock waves. We propose a robust and accurate numerical
method based on the Lattice Boltzmann methodology. We explain how to ad-
just the numerical viscosity in order to obtain stable and accurate results in
smooth or discontinuous parts of the flow and reduced divergence errors. This
method can handle shock waves and can be made second order in smooth
regions. It is also very well adapted to computing with Graphics Processing
Unit (GPU). We also give results for a tilt instability test case on very fine
meshes.

1 Introduction

The MagnetoHydroDynamics (MHD) system is a fundamental model used in
many fields of physics: astrophysics, plasma physics, geophysics... Indeed, the
MHD model is commonly adopted as an excellent framework for collisional
plasma environments. The numerical approximation of this system is a dif-
ficult task. Compared to other models in fluid mechanics, it contains more
conservative unknowns and thus more scales and more different wave speeds.
It is also subject to complex phenomena such as occurrence of shock waves,
current sheet formation, magnetic reconnection, instabilities and turbulent
behaviors. An additional specificity is that the magnetic field has to satisfy
a divergence-free condition, which generally difficult to be verified by numer-
ical solutions. In order to deal with the divergence-free condition, we adopt
here a modified version of the MHD equations by a divergence cleaning term
proposed in [15].

1Observatoire de Strasbourg · 2CEA Saclay · 3IRMA, Université de Strasbourg, Inria
Tonus, philippe.helluy@unistra.fr · 4University of Würzburg

1

2 Baty et al.

We propose a simple scheme, based on an abstract kinetic interpretation,
for computing two-dimensional MHD solutions. The kinetic interpretation is
vectorial and has been first proposed by Bouchut in [5] and Aregba-Natalini
in [1]. In this approach, the original system of conservation laws is repre-
sented by a system of transport equations coupled through a so-called col-
lision source term. The idea originates from the Boltzmann kinetic theory
of gases, but it is purely abstract and has no physical meaning. It leads to
natural numerical methods, where the transport step and the collision step
are made separately. Other interesting features arise from this representation
(see [2, 11], for instance).

In this paper, we solve the kinetic representation with a Lattice-Boltzmann
Method (LBM), where the transport step is solved exactly on a regular grid.
An important aspect of the LBM is the choice of the relaxation parameter
in the collision step. The choice of the parameter allows adjusting the nu-
merical viscosity of the LBM scheme. We provide an analysis in a simplified
one-dimensional framework which shows that it is possible to adjust more
precisely the numerical viscosity with a generalized matrix relaxation pa-
rameter. We also show that the divergence cleaning effect is improved if the
relaxation parameter is chosen differently for the physical variables and the
divergence cleaning potential.

In order to capture fine structures, it is necessary to consider very fine
meshes. We have programmed the algorithm in a very efficient way in order
to address recent GPUs (Graphic Processing Units) or multicore CPUs. We
describe the implementation, which relies on OpenCL and PyOpenCL, and
the memory optimizations used for reaching high performance. The program
allows performing full MHD simulations on grids as fine as 7000×7000 within
a few hours.

Finally, we apply the whole approach to several MHD simulations: the clas-
sical Orszag-Tang test and a more physical study of ideal MHD instabilities
(tilt modes) and associated formation of quasi-singular current sheets.

2 Mathematical model

The MagnetoHydroDynamic (MHD) system is a model used in many fields
of physics. It consists of an extension of the compressible Euler equations
for taking into account magnetic effects. A difficulty is that the magnetic
field has to satisfy a divergence-free condition. This condition expresses that
magnetic charges are not observed in Nature. Standard finite volume methods
do not guarantee that the numerical magnetic field is divergence-free. More
annoying: the divergence errors generally grows with the simulation time,
which leads to physically wrong results. For limiting the divergence errors,
we adopt the divergence cleaning method described in [15].

Kinetic scheme for MHD 3

2.1 MHD equations with divergence cleaning

We consider the MHD equations with Divergence Cleaning [15] (called the
MHD-DC equations in the following)

∂t

ρ
ρu
Q
B
ψ

+∇ ·

ρu

ρu⊗ u+ (p+ B·B
2)I−B⊗B

(Q+ p+ B·B
2)u− (B · u)B

u⊗B−B⊗ u+ ψI
c2hB

 =

0
0
0
0
0

 .

The velocity and magnetic field are denoted

u = (u1, u2, u3)
T , B = (B1, B2, B3)

T ,

the pressure is given by a perfect-gas law with a constant polytropic exponent
γ > 1

p = (γ − 1)(Q− ρu · u
2
− B ·B

2
),

The other variables are the density ρ, the total energy Q, the divergence
cleaning potential ψ. The velocity is a positive parameter ch > 0.

When the magnetic field satisfies the divergence-free condition

∇ ·B = 0,

and the potential ψ is a constant, then the MHD-DC equations simply re-
duce to the usual MHD equations. In other words, MHD-DC equations are
a generalization of the MHD equations, where the magnetic field can have a
non-vanishing divergence.

It is possible to show that the MHD-DC system, as the MHD system, is
hyperbolic [15]. However this system is not strictly hyperbolic, which leads
to some difficulties, such as non-uniqueness of the Riemann problems in some
situations [35].

The interest of the MHD-DC formulation is for numerical approximations.
Indeed, standard approximations of the usual MHD equations suffer from
drifting errors along time of the divergence constraint. This has been ob-
served by several authors [31, 15, 3]. A review on this topic is developed for
instance in [36]. Approximations of the MHD-DC generally have a much
better behavior. In this generalized model, the divergence errors propagate
at the wave speed ch. The errors are then damped at the boundaries of the
computational domain or by the numerical diffusion in the domain. In [15]
other divergence corrections are proposed. We choose a correction that leads
to a conservative and hyperbolic model, in order to be able to apply the gen-
eral theory of vectorial kinetic representations given in [5, 1]. Theoretically,
the parameter ch can take any value. But in practice it is generally chosen
larger than all the wave speeds of the MHD system (see [15]).

4 Baty et al.

We introduce the conservative variables

w = w(x, t) =

ρ
ρu
Q
B
ψ

 ∈ Rm, m = 9.

and the flux (n is a vector of R3)

F(w,n) =

ρu · n

ρu · nu+ (p+ B·B
2)n−B · nB

(Q+ p+ B·B
2)u · n− (B · u)B · n

u · nB−B · nu+ ψn
c2hB · n

 ∈ Rm.

In this work, we assume that all the fields do not depend on the x3 space
variable. We are thus computing two-dimensional solutions. If we set

n1 = (1, 0, 0)T , n2 = (0, 1, 0)T , F1 = F(w,n1), F2 = F(w,n2),

the MHD equations can also be written as a two-dimensional system of nine
conservation laws

∂tw + ∂1F1 + ∂2F2 = 0, (1)

where we use the notation ∂i for the partial derivative ∂/∂xi. If the fields
depend only on the x1 space variable, the system reduces to

∂tw + ∂1F1 = 0. (2)

In this case, the mathematical analysis is simplified. We shall perform an
analysis of the numerical viscosity of the kinetic method in this simplified
framework.

2.2 Kinetic representation

The Lattice-Boltzmann Method (LBM) originated from the physical kinetic
interpretation of the Navier-Stokes equations [9]. In the physical world, the
fluid particles can have arbitrary velocities. The main idea of the LBM is
that it is possible to construct abstract kinetic interpretations of the Navier-
Stokes equations in which the particles velocities can take a few number of
given values. This makes it possible to solve the kinetic model directly in an
efficient way. We refer to [34] for a history of the LBM. Initially devised for
solving incompressible Navier-Stokes equations, the LBM is based on a sin-
gle scalar particle distribution function. More recently, it has been extended

Kinetic scheme for MHD 5

to other systems of conservation laws. Extensions to MHD can be found in
[16, 13, 27]. Dellar in [16] showed that it is not possible to rely on a single
scalar kinetic function for approximating the MHD equations. He proposes to
represent the magnetic part of the equations with a vectorial kinetic formu-
lation. The resulting hybrid kinetic model (scalar for the fluid part, vectorial
for the magnetic part) is, however, limited to low-Mach number flows. For
addressing transonic and supersonic flows, the whole kinetic model has to be
fully vectorial. The general theory of lattice vectorial kinetic model is dis-
cussed in [5, 1, 22]. It is valid for any hyperbolic system of conservation laws
and is no more limited to low-Mach number flows. This approach is very
fruitful and can be used on arbitrary unstructured meshes at any order of
approximation [2, 10]. In addition, when the lattice velocities are aligned with
the mesh, it is possible to adopt a very simple exact solver of the transport
step. This is the method that we present here.

We consider a real number λ > 0 and four velocities vk = (v1k, v
2
k)
T ,

k = 1 . . . 4, defined by

v1 =

(
−λ
0

)
, v2 =

(
λ
0

)
, v3 =

(
0
−λ

)
, v4 =

(
0
λ

)
.

We have four vectorial distribution functions fk(x, t) ∈ Rm, k = 1 . . . 4. The
conservative variable w is related to the kinetic data by

w =

4∑
k=1

fk.

Usually, in the Lattice-Boltzmann philosophy, the kinetic system is a set a
transport equations coupled through a relaxation source term and reads (with
τ > 0)

∂tfk + vk · ∇fk = µk =
1

τ
(feqk − fk), k = 1 . . . 4. (3)

The equilibrium function feqk also called the Maxwellian state is chosen as

feq1 (w) =
1

4
w − 1

2λ
F1(w), feq2 (w) =

1

4
w +

1

2λ
F1(w),

feq3 (w) =
1

4
w − 1

2λ
F2(w), feq4 (w) =

1

4
w +

1

2λ
F2(w).

One can check that

w =

4∑
k=1

feqk , Fi =

4∑
k=1

vikf
eq
k . (4)

When the relaxation time τ → 0 then from (3) we see that

fk ' feqk ,

6 Baty et al.

and thus from (4) we recover the MHD equations (1).
But in practice, it is quite difficult to solve equation (3) directly because

the relaxation source term couples all the kinetic transport equation. It is
better to replace the source term in such a way that most of the time it
vanishes and thus the coupling is limited. For this, we introduce the Dirac
comb Ψ defined by

Ψ(t) =
∑
i∈Z

δ(t− i∆t),

where δ is the usual Dirac measure and ∆t a positive time step. Let ω be a
relaxation parameter ∈ [1, 2]. The source term is then written as

µk(x, t) = ωΨ(t)
(
feqk (w(x, t−))− fk(x, t

−)
)
.

In other words, at times t = i∆t, f has jumps in time and the values after
the jump

fk(x, t
+) = fk(x, t

−) + ω
(
feqk (w(x, t−))− fk(x, t

−)
)
.

This comes from the definition of the time derivative in the weak sense. The
computation of the jumps at times t = i∆t are called the collision steps. The
rest of the time, fk is solution of the free transport equation

∂tfk + vk · ∇fk = 0. (5)

The coupling indeed occurs only at times t = i∆t.
Let us remark that when ω = 1 the collision step reads

fk(x, t
+) = feqk (w(x, t−)).

It is a simple projection on the Maxwellian state associated to the conserva-
tive data. This scheme is a first order in time approximation of the original
equations. An interesting case is the case of over-relaxation ω = 2. Then
the scheme is a second order in time approximation of the original equa-
tions. See for instance [17]). See also below for a mathematical analysis in
the one-dimensional case.

3 Numerical method

For solving (3) numerically, we first construct a structured grid of the square
D =]0, L[×]0, L[. The space step is given by ∆x = L

N . and the grid-points are
then as follows

xi,j =

(
(i+ 1

2)∆x
(j + 1

2)∆x

)
, i, j ∈ {0, . . . , N − 1}.

Kinetic scheme for MHD 7

For a simpler presentation we can assume periodic boundary condition, which
amounts to the following equivalences

i+N ≡ i, j +N ≡ j.

We denote by wn
i,j and fnk,i,j the approximation of w and fk at the grid points

xi,j and time tn = n∆t just after the collision step. The values of the kinetic
vectors just before the collision step are denoted fn,−k,i,j . For solving the kinetic
system (3) we treat the transport and the relaxation terms separately.

3.1 Transport solver

The transport equation (5) admits an exact solution

fk(x, t+∆t) = fk(x−∆tvk, t).

If we assume that the time step satisfies ∆t = ∆x
λ , the transport operator

then reduces to a simple shift. Before the collision step, we have thus{
fn+1,−
1,i,j = fn1,i+1,j , f

n+1,−
2,i,j = fn2,i−1,j ,

fn+1,−
3,i,j = fn3,i,j+1, fn+1,−

4,i,j = fn4,i,j−1.
(6)

3.2 Relaxation

At the end of the transport step, we can compute the conservative data

wn+1
i,j =

4∑
k=1

fn+1,−
k,i,j . (7)

The usual projection method would be to write

fn+1
k,i,j = feqk (wn+1

i,j). (8)

As stated above, it is more accurate to consider an over-relaxation

fn+1
k,i,j = 2feqk (wn+1

i,j)− fn+1,−
k,i,j .

It is possible to add a small dissipation τ > 0. See [22] or [10] for the relaxation
scheme in the case τ > 0. This dissipation provides a better stability in
numerical cases, when sharp fronts are generated.

The relaxation step finally reads

8 Baty et al.

fn+1
k,i,j = ωfeqk (wn+1

i,j)− (ω − 1)fn+1,−
k,i,j , (9)

where ω = 2∆t
2τ+∆t . Typically, one will choose ω = 1.9 in our simulations.

We see that the whole algorithm is extremely simple. It is a succession of
"shifts" (6) and "collisions" (9). For ω = 2 the scheme is second order but
unstable in shocks. For ω = 1 the scheme is very robust, entropy dissipative,
but quite diffusive. It would be interesting to construct a rigorous strategy
for choosing locally the optimal value of ω. Let us mention that many finite
volume schemes have been designed for solving MHD equations, with specific
Riemann solvers. We can mention for instance the solver of [6], based on a
relaxation approach, with proven stability and accuracy features. However,
the solver presented in [6] is more complicated to program and less computa-
tionally efficient. We can thus compensate the slightly lower accuracy of the
kinetic scheme by finer meshes, without increasing too much the computa-
tional load.

3.3 Boundary conditions

For the moment, we have assumed periodic boundary conditions. But Dirich-
let or Neumann conditions are also possible. Neumann conditions are a good
candidate for handling variables associated with outgoing waves. Indeed, be-
cause of the hyperbolic nature of the equations, it is not possible to impose
all the physical data at the boundaries. The number of boundary conditions
depends on the wave pattern. We refer to [18], for a specific analysis of the
boundary conditions in the over-relaxation scheme.

3.4 Analysis of the numerical viscosity in the
one-dimensional case

In this section, we state some results about the numerical viscosity of the
kinetic relaxation scheme in the one-dimensional case. This one-dimensional
analysis will give us simple intuitions for adjusting the relaxation parameter
in the 2D case. We consider the one-dimensional MHD-DC system (2). For
more simplicity, we will denote F = F1 and x = x1. The equations then read

∂tw + ∂xF(w) = 0

For the analysis, it is possible to replace the scalar relaxation parameter
ω by a matrix Ω, for more generality. In the following, we establish the
comparison between matrices in the usual way, by the comparison of the
associated quadratic form (the resulting order is thus not total).

Kinetic scheme for MHD 9

It is then possible to prove the following result:

Theorem 1 If the relaxation matrix satisfies I < Ω < 2I and if f = feq at
the initial time, then, up to second-order terms in O(∆t2), w is a solution of
the following system of conservation laws

∂tw+∂xF(w) = λ2∆t∂x

(
(Ω−1 − 1

2
I)(I− 1

λ2
F′(w)2)∂xw

)
+O(∆t2). (10)

Remark 1 The proof is based on standard Taylor expansions. For the scalar
case Ω = ωI, it can be found (for instance) in [12]. The approach is classical
in the analysis of the Lattice Boltzmann Method (LBM). See for instance
[19, 29].

Remark 2 For Ω = I the proof, based on a Chapman-Enskog expansion, is
also given in [8].

The above analysis allows recovering formally the so-called sub-characteristic
condition. Assuming that I < Ω < 2I, the second-order (“viscous”) terms
have the good sign, which ensures stability of the model, if the following
matrix is positive:

V(λ,w) = I− 1

λ2
F′(w)2 > 0. (11)

A fully rigorous mathematical proof of stability of the kinetic model is
given by Bouchut in [5], Section 3.2, pp. 140–142. Bouchut’s proof is not
based on asymptotic expansions but on fully non-linear entropy estimates.
Let us emphasize that the vectorial kinetic construction ensures stability even
when shock waves occur and is not limited by a low-Mach assumption.

From (10) we formally observe that the scheme is second-order in time in
the over-relaxation case, when

Ω = 2I.

Finally, this analysis provides a way to numerically approximate, up to
second order in time the second-order system of conservation laws

∂tw + ∂xF(w)− ∂x (A(w)∂xw) = 0. (12)

If the diffusion matrix A(w) is small, it is natural to take

Ω = 2

(
I+

2

λ2∆t
A(w)V(λ,w)−1

)−1
. (13)

Let us remark that if λ is large enough then the above matrix is well defined.

10 Baty et al.

In order to check practically the accuracy of the approximation, we apply
the above analysis for a simplified system of two conservation laws.

We consider the one-dimensional isothermal Euler equations with a diag-
onal diffusion of ε∂xx (ρ, ρu)

T . Hence the full fluid system we are interested
in is given by

∂t

(
ρ
ρu

)
+ ∂x

(
ρu(

ρu2 + c2ρ
)) = ε∂xx

(
ρ
ρu

)
. (14)

This system is a very simplified version of the MHD equation, where the
magnetic field is assumed to vanish and the gas is supposed to be isothermal.
We have chosen to use this specific non-physical diffusion for our first test
since it is exactly the type of diffusion that is apparent in a standard finite
volume code using a Lax-Friedrichs flux.
The diffusion matrix for (14) is simply given by

A(w) =

(
ε 0
0 ε

)
. (15)

From (13), the inverse of the relaxation matrix is given by

Ω−1 =

(
a1,1 a1,2
a2,1 a2,2

)
(16)

with

a1,1 =
ε
((
λ2 − c2

)
− 3u2

)
∆t
(
u4 + (c2 − λ2)2 − 2u2 (c2 + λ2)

) +
1

2
,

a1,2 =
2uε

∆t
(
u4 + (c2 − λ2)2 − 2u2 (c2 + λ2)

) ,
a2,1 = − 2u(u− c)(c+ u)ε

∆t
(
u4 + (c2 − λ2)2 − 2u2 (c2 + λ2)

) ,
a2,2 =

ε
(
u2 +

(
λ2 − c2

))
∆t
(
u4 + (c2 − λ2)2 − 2u2 (c2 + λ2)

) +
1

2
.

For our first test of the matrix relaxation, we solve (14) comparing the
Lattice Boltzmann scheme using (13) as relaxation matrix and a standard
explicit centered finite volume scheme for approximating (14). In this centered
scheme, the time step is taken very small in such way that the stability
condition is satisfied and that the time integration error can be neglected.
In other words, the equivalent PDE of both schemes is (12). Hence, given
the parameters in both schemes are set to represent the same diffusion ε, one
should get the same type of diffusion for both schemes.

Kinetic scheme for MHD 11

To test this we take the simple case of a stationary viscous shock.
The initial data for this shock tube problem are

wl = (ρl, ρlul)
T wr =

(
ρlu

2
l

c
,
c

ul

)T
(17)

where the sound speed c is set as c = 1 while for the left state we have chosen

wl =
(
2,

3

2

)T
. (18)

For the diffusion we use ε = 0.1. For the Lattice Boltzmann scheme, we
set λ = 40. The results on a grid of 1282 cells at time T = 0.1 are shown in
Figure 1. The test shows that the matrix relaxation lattice Boltzmann scheme
provides the correct diffusion and therefore results in the right viscous profile.
The conclusion of this section is that the relaxation parameter is related to

Fig. 1 Viscous Shock Test with ε = 0.1: Comparison of the viscous profiles of the finite
volume and the lattice Boltzmann scheme.

numerical viscosity. In 1D it can indeed be adjusted to fit the exact viscosity
up to second order. For two-dimensional computations the analysis is more
complicated, but heuristically we expect a similar behavior.

In the following, for simplicity reasons, we only consider scalar relaxation.

4 GPU implementation

We have implemented the above LBM algorithm. The LBM is particularly
well adapted to parallelism. It is possible to provide very efficient implemen-
tations on GPU (Graphic Purpose Units) hardware.

12 Baty et al.

4.1 OpenCL

4.1.1 Terminology

Today Graphic Processing Units (GPU) have more and more computation
power. The Open Computing Language (OpenCL) is a software environment
for simplifying the use of the GPUs for general computing. It is also possible
to use OpenCL for driving a heterogeneous set of general multicore processors.

For giving an idea on how OpenCL is used in practice, we use the following
terminology. An accelerator is a parallel computing device, such as a GPU
or a multicore CPU. The host is the computer into which the accelerator is
plugged. A kernel is a (generally small) program that is executed on several of
the computing cores of the GPU. For instance, the Nvidia GPU GTX 1660 has
448 computing cores. Thanks to the OpenCL command queue management,
it is possible to launch several million kernel instances, which are dispatched
on the hundreds of cores of the GPU.

OpenCL means “Open Computing Language”.
The OpenCL runtime is a library of C functions, called from the host,

in order to drive the GPU. The OpenCL runtime, because it is written in
C is quite heavy to use in practice: the verbosity is high, the API is not
very user-friendly and memory management is cumbersome. For this reason
it is advised to use OpenCL wrappers written in a higher-level language such
as C++ or Python. We have used the Python OpenCL wrapper written by
Andreas Klöckner, PyOpenCL [25], which makes OpenCL initializations and
calls much easier and shorter to program.

The OpenCL language is a C-like language for writing the kernels that will
be executed on the computing cores.

OpenCL is practically available since September 2009. The specification is
managed by the Khronos Group (that also drives the OpenGL specification).
Several books describe today OpenCL in detail. We can refer, for instance,
to [21].

4.1.2 GPU

Very schematically we can consider that a general computing accelerator is
made of global memory (typically 16 GB for the Nvidia Tesla V100) and
compute units (typically 80).

Each compute unit is made of processing elements (typically 64), also
called processors. A compute unit has a reserved local memory (typically 64
kb) shared by the processors of the unit.

A schematic picture of an abstract OpenCL accelerator is given in Figure
2

Kinetic scheme for MHD 13

PE 1

PE 2 Lo
ca

l m
em

.

CU 1

PE 3

PE 4 Lo
ca

l m
em

.

CU 2

G
lo

b
a
l
m

e
m

.
Host

GPU

Fig. 2 A (virtual) GPU with 2 Compute Units and 4 Processing Elements

4.1.3 Programming rules

The same program can be executed on all the processing elements at the
same time with the following rules:

1. All the processing elements have access to the global memory;
2. The processing elements have only access to the local memory of their

compute unit;
3. The access to the global memory is relatively slow while the access to the

local memory is very fast.
4. If possible, it is advised that the processing elements of the same com-

pute unit access neighbour global memory locations, in order to improve
“coalescence” (faster read/write access).

5. The memory transfers between the host memory and the GPU are slow
and should be avoided;

6. If several processing elements try a read access at the same memory loca-
tion (global or local) at the same time, all the reads will be successful;

7. If several processing elements try a write access at the same memory loca-
tion (global or local) at the same time, only one write will be success-
ful. For some hardware, atomic operations maybe available, but should be
avoided for performance reasons.

In order to perform a complex task, a kernel has to be executed many times.
Each execution of a kernel is called a work-item. A work-group is a collection
of work-items running on the processing elements of a given compute unit.

14 Baty et al.

They can access the local memory of their compute unit. Each work-item is
identified by a unique global ID p.

For more details on OpenCL, we refer for instance to [21, 25].

4.2 OpenCL implementation of the LBM algorithm

We have implemented the above algorithm using PyOpenCL.
The different devices used in this paper are listed in Table 1. The AMD pro-

cessor was used inside a virtual environment, which implies a non-negligible
loss of performance. PyOpenCL allows us to select either the CPU or the
GPU for the computations. With the OpenCL AMD drivers, when the CPU
is selected, it is also possible to choose the number of activated CPU cores
through a Linux environment variable. This is useful for estimating (in a
crude way) the efficiency of the OpenCL parallelism.

short name name type frequency memory cache CU PE
V100 Tesla V100-PCIE-16GB GPU 1.4 GHz 16 GB 48 kB 80 5120

Quadro Nvidia Quadro P6000 GPU 1.5 GHz 24 GB 32 kB 30 3840
GTX Nvidia GTX 1660 GPU 1.6 GHz 6 GB 48 kB 22 1408
AMD AMD EPYC 7551 32-core CPU 2 GHz 48 GB 32 kB 1-24 1-24
Intel 2 x Intel Xeon CPU E5-2609 v4 CPU 1.7 GHz 64 GB 32 kB 16 16

Iris 640 Intel Iris Graphics 640 GPU 1.0 GHz 4 GB 64 kB 48 192

Table 1 Characteristics of the OpenCL devices tested in this paper. CU stands for "Com-
pute Units" and "PE" for "Processing Elements".

The LBM is very simple. Our implementation is made of two OpenCL
kernels, a few C functions and a small Python driver for initializing the
memory buffers, launching the OpenCL kernel and plotting the results. The
role of the first OpenCL kernel is to compute the initial condition directly
into the memory buffer created on the OpenCL accelerator. The role of the
second kernel is to perform a time step of the LBM. The time-stepping is
driven from the PyOpenCL program.

The most important point is to take care of the organizations of the kinetic
data into memory. Indeed ensuring coalescent memory access is essential for
performance. In practice all the values fk,i,j for kinetic velocities vk in cells
(i, j) are arranged in a single memory buffer fn[], with the following storage

fk,i,j = fn[imem], imem=i+j*Nx+k*Nx*Ny,

where Nx is the number of grid points in the x1−direction and Ny is the
number of grid points in the x2−direction. Then, in the OpenCL kernel, each
cell (i, j) is associated to the work-item

Kinetic scheme for MHD 15

p = i+j*Nx.

This numbering ensures that neighboring work-items will access neighboring
memory locations during the shift algorithm (6). For instance, if work-item g
access data in global memory, for reading or writing, at location imem, then
work-item p′ = p+ 1 access location imem+1.

This property is still true in the relaxation algorithm. First, the kinetic
data are copied in processor registers in a coalescent way. The computations
of the conservative data (7), equilibrium (8) and collisions (9) are done in
registers, which ensure very fast memory access. Finally, the kinetic data are
copied back to the global buffer fn[] in a fully coalescent way.

We remark that thanks to the chosen organization into memory, we do not
have to use the local memory for accelerating the algorithm.

In order to measure the efficiency of the implementation we perform a
memory bandwidth test for a 512 × 512 grid. One time-step of the method
implies the read access in the global memory of the set of fields of the previous
time-step. The local computations are done in registers. Then there is another
write access to global memory for storing the data of the next time-step. The
memory size in Gigabyte of one set of fields is

nGB =
Nx×Ny×prec× 4×m

10243
,

where prec is the number of bytes for storing one floating point number
(prec = 4 for single precision and prec = 8 for double precision). We then
perform a given number of time iterations niter and measure the elapsed time
telapsed in the OpenCL kernels. We perform two kind of experiments. In the
first experiment, we deactivate the numerical computations and only perform
the shift operations. The memory bandwidth of the shift algorithm is then
given by

b =
2× nGB × niter

telapsed
.

In the second experiment, we reactivate the computations and measure how
the bandwidth is reduced. This allows to evaluating how the elapsed time is
shared between memory transfers and computations. The results are given in
Table 2. We observe a good efficiency of the shift algorithm in the shift-only
case: the transfer rates are not very far from the maximal bandwidth of the
device, at least for the GPU accelerators. From these results we also observe
that the LBM algorithm is clearly memory bound. When the single precision
computations are activated on the GPU devices (GTX, Quadro, V100), the
elapsed time of the shift-and-relaxation test is not very different from the
shift-only test. For the double precision computations, we observe that the
V100 device outperforms all the other GPUs.

16 Baty et al.

prec. b (GB/s, shift-only) b (GB/s, shift-relax) max. theoretical b (GB/s)
Intel float32 17.58 13.38 60
Intel float64 19.12 17.48 60

Iris 640 float32 26.20 24.98 34
Iris 640 float64 20.08 3.78 34
GTX float32 147.54 146.94 192
GTX float64 148.76 49.72 192

Quadro float32 336.45 329.06 432
Quadro float64 344.50 127.21 432
V100 float32 692.31 676.44 900
V100 float64 705.88 610.17 900

Table 2 Bandwidth efficiency of the LBM algorithm. Comparison of the data transfer
rates of the shift-only algorithm and of the shift-and-relaxation algorithm. The resulting
bandwidth is compared with the maximal memory bandwidth advertised by the vendors
of the hardware devices.

5 Numerical applications to MHD

5.1 Smooth vortex (performance test)

The smooth vortex test is a classical test for MHD codes. It is described for
instance in [20]. Because this is an exact solution, it allows us to assess the
accuracy of the solver. Here we also used this test to evaluate the efficiency of
the parallel implementation. The test case is built upon a single vortex, which
is a stationary solution of the MHD system, to which a constant drift velocity
is added. In the moving frame centered on rO(t) = tudrift, with udrift ∈ R2,
the analytical solution reads in polar coordinates

ρ(r, θ) = ρ0,

u(r, θ) = u0[udrift + h(r)eθ],

B(r, θ) = b0h(r)eθ,

p(r, θ) = p0 +
b20
2
(1− h(r)),

with b0 = ρ0u
2
0. The results shown below are obtained with γ = 5/3 and

the parameter set

ρ0 = p0 = 1, u0 = b0 = 0.2, udrift = (1, 1)T , h(r) = exp[(1− r2)/2].

The computational domain is the square Ω =]−L/2, L/2[×]L/2, L2[, with
L = 20. We compute the solution at time t = 10. The grid contains N points
in x1 and x2 directions. For this smooth test case, we can take a relaxation
parameter ω = 2. We compute the error eN in the L1 norm at the final time
between the exact solution and the numerical solution on the first component

Kinetic scheme for MHD 17

of the momentum (the other components of the solution would give similar
results):

eN =

∫
Ω

|(ρu1)num − (ρu1)exact| .

Asymptotically, the order of the scheme is evaluated by

β ' ln(eN/e2N)

ln 2
.

The obtained numerical results are summed up in Table 3, where we give
the convergence study and a performance evaluation of the implementation.
OpenCL permits to run the same code on a multicore CPU or a GPU. We
have tested several CPU or GPU hardware in single or double precision. Table
3 confirms the order of accuracy of the scheme in the case ω = 2. In addition
we observe a good efficiency of the implementation on several types of GPU.
On CPU there is also a speedup achieved by the OpenCL parallelism, but it
is very sensitive to the OpenCL drivers. For instance, with the same hardware
(an Intel Xeon two-CPU system) the program runs almost three times faster
with the OpenCL Intel drivers than with the open source POCL drivers. Let
us finally mention that when it is run on only one core, the code is very slow.
This is due to the fact that our implementation is not really optimized for
harnessing correctly the CPU cache. Here, with a more clever tiling strategy,
the one-core run could probably be accelerated by an order of magnitude (see
for instance [23]).

CU precision N=128 N=256 N=512 N=1024 “efficiency”
AMD 1 float32 11.9 s 159 s 621 s 6396 s 1
AMD 24 float32 1.01 s 9.4 s 153 s 1380 s 5

Intel (pocl) 16 float32 2.30 s 17.3 s 96.6 s 644 s 10
Intel 16 float32 0.75 s 3.93 s 32 s 226 s 30
Intel 16 float64 0.82 s 5.62 s 53 s 315 s 20
GTX 22 float32 0.04 s 0.31s 2.46 s 19.48 s 330

Quadro 30 float32 0.017 s 0.15 s 1.06 s 8.25 s 780
Quadro 30 float64 0.15 s 0.81 s 5.67 s 45.53 s 140
V100 80 float32 0.015 s 0.084 s 0.54 s 3.93 s 1600
V100 80 float64 0.031 s 0.21 s 1.17 s 8.35 s 770
eN float64 0.05067625 0.013039866 0.003265470 0.00081652
β float64 - 1.96 1.99 2.00

Table 3 Convergence and performance study. Some tests are done in single precision
(float32) and others in double precision (float64). The “efficiency” is a comparison for
N=1024 with the slowest device. "CU" means "Compute Units": it is the number of acti-
vated cores in a CPU computation or of OpenCL compute units for a GPU computation.

18 Baty et al.

5.2 Orszag-Tang vortex

The Orszag-Tang test case [28, 14, 30] is often used to test a numerical method
for MHD. It consists in a vortex system where turbulent structures and shocks
develop. The domain is D =]0, 2π[×]0, 2π[and the boundary conditions are
periodic in x1 = x and x2 = y. The initial conditions are given in Table 4.

Variables States
γ 5/3
ρ γ2

p γ
ux − sin(y)
uy sin(x)

uz 0
Bx − sin(y)
By sin(2x)

Bz 0

Table 4 Initial states for the Orszag-Tang test case

In Figures 3 and 4 we present several snapshots of the evolution of the
vortex. In Figure 5 we compare the results obtained with several grid re-
finements. The grid refinement clearly improves the sharpness of the shock
profiles.

0 1
0

1

0

2

4

6

0 1
0

1

0

2

4

6

Fig. 3 Snapshots of ρ for the Orszag-Tang configuration recorded at times t = 0.1 and
t = 0.2. Grid size is Nx×Ny = 1024× 1024.

5.3 Tilt instability

The tilt instability has been studied in [32, 33, 26]. The initial magnetic field
configuration for tilt instability is a dipole current structure. It consists of

Kinetic scheme for MHD 19

0 1
0

1

0

2

4

6

0 1
0

1

0

2

4

6

Fig. 4 Snapshots of ρ for the Orszag-Tang configuration recorded at times t = 0.3 and
t = 0.4. Grid size is Nx×Ny = 1024× 1024.

0 1
0

1

0

2

4

6

0 1
0

1

0

2

4

6

0 1
0

1

0

2

4

6

Fig. 5 Snapshots of ρ for the Orszag-Tang configuration recorded at time t = 0.5 and
t = 0.2. Grid sizes are Nx×Ny = 256× 256, 1024× 1024 and 4096× 4096.

two oppositely directed currents embedded in a uniform magnetic field (at
large distance).

These islands may be kept in an unstable equilibrium through a strong
magnetic field. However, when perturbed, an instability develops that leads
the islands to be aligned horizontally and to be expelled away. The tilt in-
stability is illustrated for a simulation on a 1024× 1024 grid in Figures 6 to
8 for different times and the numerical approach presented above. A detailed
description of the different stages of this instability can be found in [32, 4].
In [32, 24], the study of the tilt instability was also made for a compressible

20 Baty et al.

MHD system, while in [33, 26] the equations are incompressible, leading to
slightly different results.

In the following, we will consider a squared spatial domain of dimensions
D =]−3, 3[×]−3, 3[and r2 = x2+y2. The initial condition for the equilibrium
is given by:

ρ = 1.0, u = 0, p0 = 1.0, ψ = 0, (19)

k = 3.8317059702, K =
−2

kJ0(k)
, ϕ = KJ1(kr)

y

r
, (20)

p =

{
p0 if r ≥ 1,

p0 +
k2

2 ϕ
2 else,

(21)

B1 =

{
x2−y2
r4 − 1 if r ≥ 1,

K
[
ky2

r2 J0(kr) +
x2−y2
r3 J1(kr)

]
else,

(22)

B2 =

{
2xy
r4 if r ≥ 1,

−K
[
kxy
r2 J0(kr)−

2xy
r3 J1(kr)

]
else,

(23)

where J0 and J1 are the Bessel functions of the first kind of orders zero and
one respectively. A perturbation of this equilibrium initially reads:

u = 2ε exp (−r2)

−yx
0

 ,

with ε = 10−3.
The asymptotic magnetic field strength for large r is unity, and thus de-

fines our normalization. We also point out that we consider non-dimensioned
equations in which the magnetic permeability is set to one. Consequently,
our unit time is defined as the Alfven transit time across the unit distance
(i.e. the initial characteristic length scale of the dipole structure).

Moreover, for the analysis of the simulation results, we recall that the
current density is given by:

C = ∇×B,

and that we are interested in the third component of C, i.e. C3. We will also
look at the kinetic energy of the system, which is computed as the integral
over the spatial domain of the kinetic energy density:

Ekin =

∫
D

1

2
ρ|u|2.

We apply Dirichlet boundary conditions in this test case: the initial data in
the boundary cells are simply kept constant. Finally, the numerical scheme
involves the following parameters:

Kinetic scheme for MHD 21

∆x = Lx/Nx, ch = 6 λ = 20, ∆t = ∆x/λ,

and ω = 1.9 for all variables except from the kinetic variables associated with
ψ where ω = 1 (see section 5.3). In our numerical tests, we have noticed that
choosing ω = 2 leads to an unstable numerical solution, due to the lack of
dissipation.

−3 0 3

−3

0

3

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

−3 0 3

−3

0

3

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

Fig. 6 Snapshots of the magnetic current density C3 recorded at (non-dimensioned) times
t = 1 and t = 2. Grid size is Nx×Ny = 1024× 1024.

−3 0 3

−3

0

3

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

−3 0 3

−3

0

3

-7.5

-5

-2.5

0

2.5

5

7.5

Fig. 7 Snapshots of the magnetic current density C3 recorded at times t = 3 and t = 4.
Grid size is Nx×Ny = 1024× 1024.

Current sheets and current peak

Current sheets develop at the edges of the magnetic islands. The width of
these current sheets as well as the maximum intensity of the current density
depends on the numerical implementation, as studied in [26], where specific
adaptive resolution (adaptive grid and order of resolution) was performed
near strong current gradients. In Figure 9, we show an enlargement of the
part of the spatial domain that lies around the current sheet lying right

22 Baty et al.

−3 0 3

−3

0

3

-20

-15

-10

-5

0

5

10

15

20

−3 0 3

−3

0

3

-50

-30

-10

10

30

50

Fig. 8 Snapshots of the magnetic current density C3 recorded at times t = 5 and t = 6.
Grid size is Nx×Ny = 1024× 1024.

side for simulations with different grid sizes and at time t = 6. The finest
current structures are obtained with the finest grid (here the 4096 × 4096
grid). In Figure 10, we present the ratio of the maximum current density
C3,max over the initial current density C3,0. This ratio increases with the
grid refinement and should be infinite in the case of a totally ideal MHD
system ([26]). The maximum ratio we can obtain is 14.2 with the 7000×7000
grid. In comparison, [26] obtained a ratio of 5 for the simulation with 32, 768
triangles and first-order method, and a ratio of 41 for adaptive grids near the
current sheets. In conclusion, our method seems to have a higher numerical
resistivity, which limits the maximum current peak, but the computations are
probably faster. Indeed, adaptive methods are known to suffer from overhead
due to the algorithm complexity.

Kinetic energy growth rate

During the development of the instability, the kinetic energy of the system in-
creases exponentially. The growth rate of the kinetic energy has been studied
in [32] and [26], where different values have been found. In [32], two simu-
lations with two values of β (the ratio between the hydrodynamic and the
magnetic pressures) give growth rate values of 1.44 for low β case and of 1.27
for high β case. In [26], the study is focused on the convergence of the ki-
netic energy growth rate according to the grid and the order of the numerical
method. The converged value for the growth rate is near 1.3 for an initial
perturbation ε = 1.0 · 10−3.

The simulations of the tilt instability that we perform are post-processed
at regular time intervals. In Figures 11 and 12, we show the time evolution
of the total kinetic energy Ekin(t). One can note that the growth of the
kinetic energy happens in two stages: in a first stage, the growth is faster
than exponentially, then slows down and after two seconds the second stage
begins with exponential growth. When the grid resolution is higher, the first
stage tends to vanish and the second stage begins sooner.

Kinetic scheme for MHD 23

0 3
0

1.5

-2

4

10

16

0 3
0

1.5

0

16

32

48

0 3
0

1.5

0

32

64

96

Fig. 9 Snapshots of the magnetic current density recorded at time t = 6 in a spatial zone
around the current sheets. Grid sizes are Nx×Ny = 256× 256, Nx×Ny = 1024× 1024,
Nx×Ny = 4096× 4096.

104 105 106 107
0

5

10

15

20

degrees of freedom

C
3
,m

a
x
/C

3
,0

current peak

Fig. 10 Ratio of the peak current and the initial current density for simulation grids
ranging from 128× 128 to 7000× 7000.

24 Baty et al.

In a logarithmic scale, the linear regression of the kinetic energy growth
is performed with the Scipy function linregress and the regression line
is illustrated in Figures 11 and 12. The results of the linear regression are
reported in Table 5 and Figure 12. The converged growth rate is close to 1.45
for our simulations. It is higher than the results of [32] and [26]. In [24] for a
similar configuration, the growth rate is evaluated to 1.498. This is probably
very close to the exact rate because the simulation is conducted with a very
accurate adaptive scheme. Our results seem thus to be quite correct on the
finest mesh.

0 2 4 6 8
−15

−10

−5

0

5

t

lo
g(

ek
in

(t
))

ekin(t)
y = 2.36x− 13.87

0 2 4 6 8
−15

−10

−5

0

5

t

lo
g(

ek
in

(t
))

ekin(t)
y = 2.81x− 15.62

Fig. 11 Growth of the kinetic energy during the simulation. Measures that have been
accounted for the linear regression are identified with green marks and the regression line
is in red. Results for grid sizes Nx×Ny = 512× 512 and Nx×Ny = 2048× 2048.

0 2 4 6 8
−15

−10

−5

0

5

t

lo
g(

ek
in

(t
))

ekin(t)
y = 2.90x− 15.95

104 105 106 107
0

0.5

1

1.5

2

degrees of freedom

gr
ow

th
ra

te

growth rate

Fig. 12 Growth of the kinetic energy during the simulation. Measures that have been
accounted for the linear regression are identified with green marks and the regression line
is in red. Results for grid size Nx×Ny = 7000×7000. Growth rates from Nx = Ny = 128
(16384 degrees of freedom) to Nx = Ny = 7000 (49× 106 degrees of freedom).

In Table 5, we summarize the characteristics of the linear regression for
each mesh size.

Kinetic scheme for MHD 25

Mesh size 1282 2562 5122 10242 20482 40962 70002

Regression range (s) [5.6, 6.7] [4.9, 5.9] [4.3, 5.3] [3.9, 4.9] [3.7, 4.7] [3.0, 4.5] [3.0, 4.5]

Growth rate 0.390 0.904 1.082 1.330 1.403 1.433 1.450

Table 5 Characteristics of the linear regression for the kinetic energy growth rate for each
mesh size: range of values that have been accounted for and growth rate.

Divergence cleaning effect

In order to ensure a magnetic field which is close to a divergence-free field,
we have presented the divergence cleaning procedure in Section 2.1. Here we
compare two strategies for the numerical implementation of the divergence
cleaning equation:

1. the kinetic variables associated with the conservative variable ψ are solved
numerically like any other kinetic variable. This means that in the relax-
ation step, the relaxation coefficient ω is set to ω = 1.9 and the order of
resolution is close to 2,

2. during the relaxation step, the kinetic variables associated with the macro-
variable ψ are relaxed with a coefficient ω = 1, which comes down to
setting

fn+1
k,i,j = ωfeqk (wn+1

i,j)− (ω − 1)fn+1,−
k,i,j

= feqk (wn+1
i,j).

Now, the order of resolution is 1 and the waves associated with the per-
turbations of the divergence-free constraint are better damped than with
ω = 1.9. In [15], several strategies are proposed for damping the divergence
errors. One of the methods is to introduce a viscous damping term. In its
spirit our proposal is similar, but the viscous term is introduced here in a
numerical way.

These two options are compared in Figures 13 to 15 for different times. For
obtaining those plots, the divergence of the magnetic field is computed with
a simple centered finite difference approximation

∇ ·B ' B1(x+∆x, y)−B1(x−∆x, y)
2∆x

+
B2(x, y +∆y)−B2(x, y −∆y)

2∆y
.

At time t = 0.5, one can notice the effects of the boundary conditions that
have propagated towards the center of the domain. The perturbations of the
divergence-free constraint have been more attenuated with the second strat-
egy than with the first one. At time t = 1, the divergence-free constraint
is mainly violated at the edges of the magnetic vortices and close to the
domain boundaries. Once more, the results are better with the second diver-
gence cleaning strategy. Finally, at time t = 5, when the vortices have begun

26 Baty et al.

to align, the divergence-free constraint is strongly perturbed, but results are
still better with the second strategy.

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

10−2

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

Fig. 13 Snapshots of the divergence of the magnetic field recorded at times t = 0.5 for
both strategies of divergence cleaning. Grid size is Nx×Ny = 1024× 1024.

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

10−2

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

Fig. 14 Snapshots of the divergence of the magnetic field recorded at times t = 1 for both
strategies of divergence cleaning. Grid size is Nx×Ny = 1024× 1024.

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

10−2

−3 0 3

−3

0

3

10−10

10−8

10−6

10−4

10−2

Fig. 15 Snapshots of the divergence of the magnetic field recorded at times t = 5 for both
strategies of divergence cleaning. Grid size is Nx×Ny = 1024× 1024.

Kinetic scheme for MHD 27

6 Conclusion

In this work we have proposed a fast and robust Lattice-Boltzmann solver for
the two-dimensional MHD equations with divergence cleaning. The method
is general and can be extended to other systems of conservation laws.

We have provided a preliminary one-dimensional analysis in order to eval-
uate the numerical viscosity of the numerical scheme. We have shown that
in principle, the numerical viscosity can be adjusted to a specific viscosity.
An interesting challenge would be to extend the analysis to higher dimen-
sions, but this leads to complex calculations because of cross second-order
derivatives. If this analysis is possible, this would lead to a scheme where the
physical resistive terms could be approximated properly.

The kinetic representation of the equations is very well adapted to massive
parallel computing. The simplicity of the algorithm allows achieving almost
optimal efficiency on GPU hardware. This leads to the possibility to conduct
computations on very fine uniformly refined meshes.

When conducting the simulations, we observed that the limiting factor was
memory rather than computation time. In order to extend the method to even
finer meshes or to three-dimensional computations, the memory management
has to be improved. An obvious possibility is to distribute the computations
on several GPUs, using a task-based runtime system (such as in [7]). This
approach could also be mixed with a compression strategy in order to reduce
memory occupation and data transfers.

Thanks: this work has been finalized during a one-week stay at the Ober-
wolfach Research Institute for Mathematics (MFO) in September 2020. The
authors are very grateful to the staff of the MFO for their warm welcome and
perfect organization despite the contraints caused by the pandemic.

The authors also thank Matthieu Boileau for his helpful contribution in
the design of the PyOpenCL GPU code.

References

1. Denise Aregba-Driollet and Roberto Natalini. Discrete kinetic schemes for multi-
dimensional systems of conservation laws. SIAM Journal on Numerical Analysis,
37(6):1973–2004, 2000.

2. Jayesh Badwaik, Matthieu Boileau, David Coulette, Emmanuel Franck, Philippe Hel-
luy, Christian Klingenberg, Laura Mendoza, and Herbert Oberlin. Task-based paral-
lelization of an implicit kinetic scheme. ESAIM: Proceedings and Surveys, 63:60–77,
2018.

3. Timothy Barth. On the role of involutions in the Discontinuous Galerkin discretization
of Maxwell and magnetohydrodynamic systems. In Compatible spatial discretizations,
pages 69–88. Springer, 2006.

28 Baty et al.

4. Hubert Baty. FINMHD: An adaptive finite-element code for magnetic reconnection and
formation of plasmoid chains in magnetohydrodynamics. The Astrophysical Journal
Supplement Series, 243(2):23, 2019.

5. François Bouchut. Construction of BGK models with a family of kinetic entropies for
a given system of conservation laws. Journal of Statistical Physics, 95(1-2):113–170,
1999.

6. François Bouchut, Christian Klingenberg, and Knut Waagan. A multiwave approxi-
mate Riemann solver for ideal MHD based on relaxation ii: numerical implementation
with 3 and 5 waves. Numerische Mathematik, 115(4):647–679, 2010.

7. Bérenger Bramas, Philippe Helluy, Laura Mendoza, and Bruno Weber. Optimization
of a discontinuous Galerkin solver with OpenCL and StarPU. International Journal
on Finite Volumes, 15(1):1–19, 2020.

8. Gui Qiang Chen, C David Levermore, and Tai Ping Liu. Hyperbolic conservation
laws with stiff relaxation terms and entropy. Communications on Pure and Applied
Mathematics, 47(6):787–830, 1994.

9. Shiyi Chen and Gary D Doolen. Lattice Boltzmann method for fluid flows. Annual
review of fluid mechanics, 30(1):329–364, 1998.

10. David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, and Lau-
rent Navoret. Palindromic Discontinuous Galerkin Method, pages 171–178. Springer
International Publishing, Cham, 2017.

11. David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, and Lau-
rent Navoret. High-order implicit palindromic Discontinuous Galerkin method for
kinetic-relaxation approximation. Computers & Fluids, 190:485–502, 2019.

12. Clémentine Courtès, David Coulette, Emmanuel Franck, and Laurent Navoret. Vecto-
rial kinetic relaxation model with central velocity. application to implicit relaxations
schemes. Communications in Computational Physics, 27(4), 2020.

13. Jean-Pierre Croisille, Rabia Khanfir, and Gérard Chanteur. Numerical simulation
of the MHD equations by a kinetic-type method. Journal of scientific computing,
10(1):81–92, 1995.

14. R. B. Dahlburg and J. M. Picone. Evolution of the Orszag-Tang vortex system in a
compressible medium. i. initial average subsonic flow. Physics of Fluids B: Plasma
Physics, 1(11), 1989.

15. Andreas Dedner, Friedemann Kemm, Dietmar Kröner, C-D Munz, Thomas Schnitzer,
and Matthias Wesenberg. Hyperbolic divergence cleaning for the MHD equations.
Journal of Computational Physics, 175(2):645–673, 2002.

16. Paul J Dellar. Lattice kinetic schemes for magnetohydrodynamics. Journal of Com-
putational Physics, 179(1):95–126, 2002.

17. Paul J Dellar. An interpretation and derivation of the lattice Boltzmann method using
Strang splitting. Computers & Mathematics with Applications, 65(2):129–141, 2013.

18. Florence Drui, Emmanuel Franck, Philippe Helluy, and Laurent Navoret. An analysis
of over-relaxation in a kinetic approximation of systems of conservation laws. Comptes
Rendus Mécanique, 347(3):259–269, 2019.

19. François Dubois. Equivalent partial differential equations of a lattice Boltzmann
scheme. Computers & Mathematics with Applications, 55(7):1441–1449, 2008.

20. Michael Dumbser and Raphaël Loubère. A simple robust and accurate a posteriori
sub-cell finite volume limiter for the Discontinuous Galerkin method on unstructured
meshes. Journal of Computational Physics, 319:163 – 199, 2016.

21. Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. Het-
erogeneous computing with OpenCL: revised OpenCL 1. Newnes, 2012.

22. Benjamin Graille. Approximation of mono-dimensional hyperbolic systems: A lattice
Boltzmann scheme as a relaxation method. Journal of Computational Physics, 266:74–
88, 2014.

23. Philippe Helluy, Thomas Strub, Michel Massaro, and Malcolm Roberts. Asynchronous
OpenCL/MPI numerical simulations of conservation laws. In Software for Exascale
Computing-SPPEXA 2013-2015, pages 547–565. Springer, 2016.

Kinetic scheme for MHD 29

24. Rony Keppens, Oliver Porth, and Chun Xia. Interacting tilt and kink instabilities in
repelling current channels. The Astrophysical Journal, 795(1):77, 2014.

25. Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-based approach to gpu run-time
code generation. Parallel Computing, 38(3):157–174, 2012.

26. Shrinivas Lankalapalli, Joseph E Flaherty, Mark S Shephard, and Hank Strauss. An
adaptive finite element method for magnetohydrodynamics. Journal of Computational
Physics, 225(1):363–381, 2007.

27. Daniel O Martínez, Shiyi Chen, and William H Matthaeus. Lattice Boltzmann mag-
netohydrodynamics. Physics of plasmas, 1(6):1850–1867, 1994.

28. Steven A Orszag and Cha-Mei Tang. Small-scale structure of two-dimensional mag-
netohydrodynamic turbulence. Journal of Fluid Mechanics, 90(1):129–143, 1979.

29. Hiroshi Otomo, Bruce M Boghosian, and François Dubois. Two complementary lattice-
Boltzmann-based analyses for nonlinear systems. Physica A: Statistical Mechanics and
its Applications, 486:1000–1011, 2017.

30. J. M. Picone and R. B. Dahlburg. Evolution of the Orszag-Tang vortex system in a
compressible medium. ii. supersonic flow. Physics of Fluids B: Plasma Physics, 3(29),
1991.

31. K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works
in more than one space dimension. Technical Report NASA/CR-194902 ICASE Report
No. 94-24, ICASE-NASA Langley, ICASE, NASA Langley Research Center, April
1994.

32. R. L. Richard, R. D. Sydora, and M. Ashour-Abdalla. Magnetic reconnection driven
by current repulsion. Physics of Fluids B: Plasma Physics, 2(3):488–494, 1990.

33. H.R. Strauss and D.W. Longcope. An adaptive finite element method for magnetohy-
drodynamics. Journal of Computational Physics, 147(2):318 – 336, 1998.

34. Sauro Succi. The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford
university press, 2001.

35. M. Torrilhon. Non-uniform convergence of finite volume schemes for Riemann problems
of ideal magnetohydrodynamics. J. Comput. Phys., 192(1):73–94, 2003.

36. Gábor Tóth. The ∇ · b = 0 constraint in shock-capturing magnetohydrodynamics
codes. Journal of Computational Physics, 161(2):605–652, 2000.

