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Abstract—Blockchains and distributed ledgers have
brought renewed interest in Byzantine fault-tolerant
protocols and decentralized systems, two domains stud-
ied for several decades. Recent promising works have
in particular proposed to use epidemic protocols to
overcome the limitations of popular Blockchain mech-
anisms, such as proof-of-stake or proof-of-work. These
works unfortunately assume a perfect peer-sampling
service, immune to malicious attacks, a property that
is difficult and costly to achieve. @We revisit this
fundamental problem in this paper, and propose a
novel Byzantine-tolerant peer-sampling service that is
resilient to Sybil attacks in open systems by exploiting
the underlying structure of wide-area networks.

I. INTRODUCTION

Blockchains [1] have had a profound impact on both
academia and industry over the last decade. They have
introduced seminal mechanisms, such as proof-of-work
(PoW) [1] and proof-of-stake (PoS) [2], which harden open
(a.k.a. permissionless) systems against Sybil attacks [3],
i.e. the possibility for malicious peers to generate many
identities and hijack the system from honest peers.

Proof-of-Work (PoW) is unfortunately extremely costly,
whereas Proof-of-Stake strongly links a peer’s influence to
its wealth (or stake), a problematic dependence in many
applications. These limitations have led to alternative
mechanisms against Sybil attacks, which exploit epidemic
metastable phenomena [4] and unbiased sampling to test
the likelihood of specific global predicates [5]. This
idea has since been extended to the implementation of
efficient Byzantine-resilient primitives in permission-less
systems [6]. These promising techniques assume, however,
a perfect Random Peer Sampling (RPS) service [7], [8],
that is immune to Sybil attacks.

Unfortunately, existing Byzantine-tolerant RPS proto-
cols are typically not applicable to open systems. They
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largely ignore Sybil attacks, and work instead in closed
(a.k.a. permissioned) systems, in which participation in
the system is controlled by a central authority [9], [10].

In this paper, we overcome this fundamental limitation,
and propose HAPS, a novel Sybil-tolerant Random Peer
Sampling service that exploit the hierarchical nature of
the addressing schemes used on networks like the Inter-
net to prevent attackers from flooding honest peers with
references to malicious peers.

Our experimental evaluation shows that while HAPS
has a cost in term of performance, its impact remains
acceptable. In particular we show that the convergence
speed of a privacy-preserving averaging algorithm (a typ-
ical use of an RPS protocol) executing on top of our
solution remains in the same order of magnitude as with
an unprotected peer sampling protocol.

II. SYSTEM MODEL AND BACKGROUND

We consider an asynchronous decentralized system in
which Peers communicate with each-other by means of
point-to-point messages that carry the sender’s address.
We assume recipients can verify whether the alleged sender
is online using ping messages, and that peer addresses
follow a hierarchical structure (as is the case for IP ad-
dresses).

Peer-Sampling Protocols. A peer sampling service [7] pro-
vides each peer with a continuously changing sample of the
network, the view, from which to choose communication
partners. Peers periodically exchange subsets of their
views and mix them. After some iterations, extracting
a peer from a view approximates extracting one randomly
from the entire network [7], [9].

Attacker Model and Assumptions. We consider an attacker
who controls several peers (referred to as malicious peers
in the following). The attacker seeks to perform a Sybil
attack with the purpose of isolating a target peer from
the rest of the network. To do this, the attacker attempts
to remove the target peer from the views of other non-
malicious peers, and to fill the target peer’s view with
references to malicious peers. The attacker can implement
the Sybil attack in (a combination of) two ways. He/she
can advertise either the IP addresses of malicious peers
under his/her control, or fake addresses that belong to no
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one. Advertising addresses of non-malicious peers provides
no benefit to the attack.

In terms of attack power, we assume that the attacker
can easily acquire a large number of addresses within the
same, relatively small subnet. We also assume that ac-
quiring addresses on multiple, very diverse subnets results
in too high a cost for the attacker. This is because an
attacker wishing to have very diverse addresses would need
to buy an address in each or most existing subnets, or rely
on botnets.

III. HIERARCHICALLY ADDRESSED PEER SAMPLING

We introduce HAPS, a novel peer-sampling protocol
designed to resist Sybil attacks in hierarchical networks
under the assumption that network participants are uni-
formly distributed across the network’s address space. As
in other peer-sampling protocols, HAPS peers maintain a
data structure, known as view, that contains references to
other peers. Peers exchange messages containing subsets
of these references. However, HAPS incorporates two
important differences.

First, as in [9], peers only exchange their views in the
pull phase of the protocol, i.e. when requesting informa-
tion from another peer. Specifically, a peer periodically
contacts a random neighbor and sends its own address
and identifier to it. This message serves two purposes. It
makes the peer known to the remote peer, and acts as
a pull-request to which the remote peer responds with a
random subset of its own view. This model decreases the
risk of push-based pollution attacks [9].

Second, HAPS penalizes the choice of peers in overpop-
ulated regions of the address space and associates equally
sized portions of it with the same probability to be chosen,
regardless of the number of peers they actually contain.
This prevents an attacker from flooding a target peer’s
view with a large number of malicious peers from the same
portion of the address space (subnet).

HAPS defines equal-probability groups as groups of ad-
dresses that share the same address prefix of length [,,. We
refer to parameter [, as the equal-probability prefiz length.
HAPS operates by giving each equal-probability group the
same probability to be chosen when selecting a random
peer. Thus peers in more populated groups end up having
lower individual probabilities to be picked. As a result, if a
peer’s view gets polluted by a large number of peers from
a unique attacker, with similar addresses, the probability
for these peers to be selected randomly will remain low.
This makes attacks relying on a large number of nodes
from a small (relative to I,) subnet completely ineffective.

The use of equal-probability groups forces HAPS to main-
tain larger sets of peers in its views to provide the same
level of diversity as a standard peer-sampling protocol.
Thus, while classical peer-sampling protocols maintain
views of constant size, HAPS allows its views to grow
for some time in order to populate each equal-probability

group with a sufficiently large number of peers and uses
two mechanisms for removing entries from views.

First, HAPS constantly checks for non-responding peers
when exchanging information about them or attempting to
contact them. In particular, it pings peers before sending
references about them to other peers. If either of these
operations detects a non-responding peer, HAPS removes
it from its view.

Second, HAPS limits the size of its view by periodically
removing peers from over-represented areas of the address
space. To this end, HAPS defines a second important pa-
rameter, a trimming prefiz length, l,. A periodic trimming
operation ensures that each view contains at most one peer
for each prefix of length I,.

To counter attackers that spoof their IP addresses,
HAPS also pings peers before adding them to its view.
Receiving an answer ensures that an address effectively
belongs to a peer executing the protocol. This effectively
prevents attacks based on the injection of fake addresses to
isolate a peer. Injecting addresses of real peers not under
his/her control provides no benefit to the attacker.

A. Buffered Probabilistic Binary Address Tree

HAPS implements equal-probability groups by storing
references to peers in a novel data structure, the Buffered
Probabilistic Binary Address Tree (BPBA-Tree), replacing
the typical set used by other peer-sampling protocols. A
BPBA-Tree consists of a binary tree with one leaf for each
peer in the view and such that (i) the identifier of each
leaf of the tree corresponds to the address of a peer; and
(ii) the identifier a non-leaf node consists of the common
prefix of the identifiers of all of its children. Figure 1
provides an example of a BPBA-Tree. For conciseness,
we represent the prefixes corresponding to node identifiers
as hhhh/l where hhhh is a hex representation on 16 bits,
and [ is a prefix length. For example, the notation 4000/2
corresponds to the binary prefix 01.

The two parameters of HAPS, [, and [, identify specific
levels in the BPBA-Tree and allow us to characterize some
specific tree nodes. First, we define equal-probability leaves
(EP-leaves) as the nodes whose identifier is at least as long
as [, and whose parent’s identifier is strictly shorter than
l,. Clearly, a tree node with an identifier of length [, is
an equal-probability leaf (node 6380/10 in Figure 1). But
more generally, an equal-probability leaf can have a longer
identifier provided that its parent’s identifier is shorter
than [, (all other equal-probability leaves in Figure 1).
From the point of view of HAPS, each EP-leaf defines an
equal-probability group consisting of the leaf nodes of the
subtree that descends from it. We also define trim leaves
(TR-leaves) as the nodes whose identifier is at least as long
as [, and whose parent’s identifier is strictly shorter than
l,. Clearly EP- or TR-leaves need not be leaves of the
BPBA-Tree. In Figure 1, we refer to the all descendants
of EP-leaves as random nodes, and to all the descendants
of TR-leaves as temporary nodes for reasons we clarify in
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Figure 1: Example of Buffered Probabilistic Binary Addresses Tree

Section III-B. Since [, < [;, a temporary node is also a
random node.

B. BPBA-Tree in HAPS

Peers use the BPBA-Tree as a container for their local
views. The protocol thus uses the tree for four opera-
tions: inserting peer addresses into the tree, removing
peer addresses, selecting a random peer, and periodically
trimming the tree.

HAPS inserts a new peer as a tree leaf whenever it
learns about it in push or pull operations. To do so,
HAPS simply navigates from the root by selecting at each
step the child whose identifier is a prefix of the new peer’s
address. It then adds the peer as a new leaf if it is not
already present. Note that this also involves adding an
intermediary internal node to accommodate the new leaf.

HAPS removes a peer from the tree whenever it detects
it as non-responding, either because a send operation
failed, or because the peer did not respond to a ping
message. In either case, the protocol navigates from
the root to the corresponding leaf node and removes it
together with its parent internal node. The removed leaf’s
sibling connects to the removed internal node’s parent.

HAPS needs to select a random peer both when select-
ing a peer to communicate with when sending a request
message, or whenever selecting a subset of its view to send
when sending a pull message in response to a request. In
both cases, HAPS selects each peer by first selecting an
equal-probability leaf uniformly at random. For example,
in Figure 1, it may select node 6380/10. In accordance
with their name, all equal probability leaves thus have

the same probability to be selected in this step. Then
HAPS traverses the subtree rooted at the selected equal-
probability leaf by randomly choosing one of the two child
nodes (each with probability 0.5) at each step until reach-
ing a leaf node, which represents the selected address. For
example, HAPS may choose 6380/10—63e0/12—63ed /16,
with a 1/22 = 1/4 probability.

As explained above, this selection process gives a lower
weight to peers in highly populated subnets. The BPBA-
Tree provides a level of diversity in peer selection that
depends only on the equal-probability prefix length, being
comparable to that of a view of size 2%.

Finally, HAPS periodically trims its BPBA-Tree by
replacing each trim leaf with one of the leaves that descend
from it. Similar to the above cases, the protocol operates
by selecting a TR-leaf and traversing its subtree by taking
a random (0.5 probability) step at each node until reaching
a leaf. It then prunes the subtree and replaces the TR-leaf
by the selected leaf. For example any of the descendants
of node 626¢/14, which is both a TR~ and an EP-leaf, may
replace 626¢/14 after the trim operation. After processing
a given TR-leaf, HAPS repeats the process on another one
until no TR-leaf has any child nodes left.

IV. EVALUATION

We split our evaluation into three parts. We first assess
HAPS’s ability to protect against Sybil attacks by stating
an important property. Then, we analyze its impact
on the topology of the resulting overlay graph. Finally,
we conclude by evaluating the impact of HAPS on the
privacy-preserving averaging protocol presented in [11].
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A. Resistance to Sybil Attacks

We start by observing that the use of equal-probability
groups makes it impossible for an attacker to completely
fill a target view with malicious peers as shown by the
following Property IV-A.

Property. Let t be a target peer whose view already
contains references to peers in multiple equal-probability
groups. HAPS makes it impossible for an attacker to fill
t’s view with malicious entries unless he/she controls at
least a peer in each equal probability group.

Informal Proof. The proof derives directly from the state-
ment and the properties of EP groups. Since there is at
least one group in ¢’s BPBA tree that is not controlled
by the attacker, t’s view will always contain at least one
non-malicious peer. O

B. Impact on the Overlay Graph

Next, we evaluate the impact of HAPS on the overlay
graph by simulation. To model the fact that each peer has
a specific probability of being sampled, depending on the
size of its equal-probability group, we represent the overlay

graph as a weighted directed graph. An edge from node
A to node B with weight 2% means that peer B is in the
BPBA-Tree of peer A and that peer B is at depth d from
its EP-leaf. For example, in Figure 1 peer 626d/16 is at
depth 1 from EP-leaf 626¢/14, and is thus associated with
a weight of 0.5. Unless otherwise specified, we consider a
network of 1000 peers with 16-bit addresses. In addition,
we configure all peers to use [, = 4 and [, = 6. Results
are averaged over 10 runs.

We compare the properties of our graph with those of
an instance of the oriented variant of Erdés—Rényi random
graphs configured with the same number of nodes, and
consider two sets of metrics. Weight-unaware metrics do
not take edge weights into account and comprise degree
distribution and average shortest path length. Weight-
aware metrics take edge weights into account and comprise
weighted degree distribution and clustering coefficient.

For a fair comparison, we configure the Erdds—Rényi
graph to match the corresponding HAPS topology in
terms of out-degree. When measuring weight-unaware
metrics, we set the edge probability in the Erdés—Rényi
model so as to obtain an out-degree equal to the number
of TR-leaves in the BPBA Tree (2'¢), which represents
the size of HAPS’s view after each trimming operation.
When measuring weight-aware metrics, we instead choose
an edge probability such that the expected out-degree of
nodes matches the number of EP-leaves in HAPS’s BPBA
Tree (2'»), as this better captures the diversity of peer
selection provided by HAPS.

1) Weight-Unaware Degree Distribution: Figure 2a
shows the in-degree and out-degree distributions result-
ing from the execution of HAPS. Unlike classical peer-
sampling protocols, the out-degree vary across nodes, as
different peers may have executed different numbers of pull
operations since their latest trimming. The distribution
remains nonetheless well centered around its mean. In-
degrees exhibit a more spread-out distribution, which
results from the distribution of peers on the address plan.

We compare in- and out-degrees with those of the di-
rected Erd6s—Rényi variant. Figure 2a shows only one line
because for Erd6s—Rényi because the two distributions co-
incide in this case. HAPS exhibits a larger in-/out-degree
than Erdés—Rényi because its view grows and shrinks with
a minimum size of 2 as a result of periodic trimming
operations. For the same reason, HAPS’s distributions
exhibit higher variance.

2) Weighted Degree Distribution: HAPS maintains
larger views to implement equal-probability groups. How-
ever, the diversity it provides in peer selection depends on
the number of its EP-leaves. To better reflect this fact, we
now weigh each incoming or outgoing edge of the HAPS
graph by its associated probability weight. The Erddés—
Rényi graph is configured as explained above.

As expected, Figure 2b shows a very thin distribution
for weighted out-degrees, centered around the number of
EP-leaves; this is a natural consequence of the weighting.



Weighted in-degrees on the other hand vary in a similar
manner to those in the Erdés—Rényi baseline, even if the
use of equal-probability groups makes the distribution a bit
more uneven (spread out). This constitutes a side effect
of HAPS’s Sybil protection.

3) Average Shortest Path Length: Next, we evaluate the
average shortest path length of graphs of different sizes
for different values of [, and [,. Figure 3a shows that
very small networks result in complete graphs with an
average shortest path length 1. But the value increases
with the number of peers. Lower values of [, and [, make
this increase faster by reducing the number of edges.

In general, we get average shortest path lengths lower
than those of Erdds—Rényi random graphs (shown as
dashed lines). This can be explain by the fact that peers
that are isolated in the address plan end up being present
in a large number of local views, becoming effective hubs
for the network. In some cases, though, this effect can be
overwhelm by the effect of the uneven effective distribution
of peers in the address plan, than may cause some local
views to be small than they should be after periodic trim-
ming operations. Most importantly, the average shortest
path length remains low and comparable to that of random
graphs in all configurations.

4) Clustering Coefficient: We evaluate the clustering
level using the Clemente-Grassi Clustering Coefficient
defined in [12]. We choose this generalization of the
clustering coefficient to directed weighted graph rather
than older formulas because of its good properties. Most
notably, unlike the one defined in [13], this coefficient is
not deflated by low-weight edges. We average results over
10 runs.

Figure 3b shows that very small networks result in
complete graphs with a clustering coefficient of 1. But
the clustering coefficient lowers as we increase the number
of peers. Lower values of [, and I, make this decrease
faster as this reduces the number of edges. We see that
the clustering coefficient is greater than for Erdés—Rényi
random graphs. This results from the use of neighbors’
views to update a peer’s own view.

C. Performance for averaging

Finally, we evaluate the convergence speed of the private
gossip-based averaging protocol proposed in [11] when
running on HAPS (Figure 4b) and on a baseline that uses
a request-pull scheme like HAPS but without a Sybil-
resistant BPBA Tree (Figure 4a taken from [l11]). We
first let the respective peer sampling protocols construct
their local views. Then we start the averaging process
and plot the values of 40 peers for each case as the
protocol converges after its privacy-generation phase.’ As
expected, HAPS slightly slows down convergence because

IThe protocol in [11] operates in two phases. First peers introduce
random values in a privacy-generation phase. Then the protocol
starts converging.
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its views are less random than the baseline’s, but the
difference remains limited.

V. RELATED WORK

Most work in the context of peer sampling does not
consider the problem of malicious behavior and Sybil
attacks [14], [7], [8], [15], [16]. Nonetheless, a handful of
papers have proposed possible solutions in recent years.

The work in [17], [18] exploits ideas from social-network
analysis and uses a knowledge base to store information
about peer advertisements and uses it to detect malicious
peers that repeatedly advertise colluding peers. How-
ever, unlike HAPS, the approach requires the use of
cryptographic signatures. Puppetcast [10] handles some
byzantine attacks like advertising the identifiers of dead
nodes, but it relies on a central authority to address any
kind of Sybil attack [3].

Brahms [J] uses the concept of min-wise independent
permutation to randomly peers from a possibly biased
sample. This allows Brahms to converge to a fixed view
despite malicious peers that spam others with the identi-
fiers of other malicious nodes but Brahms also relies on a
central authority to counter the use of multiple identifiers
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for the same node. Moreover Brahms does not provide any
refresh mechanisms rather than rerunning the protocol.
A recent paper [19] shows how count-min sketches [20]
can enable periodic refreshes in a Brahms-like protocol.
But it does not solve the need of a central authority for
handling the use of multiple identifiers for the same node.
HAPS avoids the need of an additional central authority
by leveraging the use of IP addresses as identifiers and its
BPBA Tree structure.

VI. CONCLUSION

We proposed a new Sybil-resilient gossip-based peer
sampling protocol designed to work in hierarchically-
addressed networks. Our approach relies on a novel BPBA
Tree, a tree-based container that replaces the classical set
typically used in peer-sampling protocols. Our evaluation
confirms the effectiveness of our approach in providing
peers with a random sample of the network while pro-
tecting them from Sybil attacks. Our experiments with
a privacy-preserving averaging protocol show that our
protocol has only limited impact on performance.

As a future development, it would be interesting to
evaluate the performance of our protocol in the context
of gossip- and sampling-based Blockchain proposals. In
addition, it would be interesting evaluate whether our

BPBA Tree data structure can improve other approaches
for Byzantine-resilient peer sampling.
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