
HAL Id: hal-02965954
https://hal.science/hal-02965954v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A neural network closure for the Euler-Poisson system
based on kinetic simulations

Leo Bois, Emmanuel Franck, Laurent Navoret, Vincent Vigon

To cite this version:
Leo Bois, Emmanuel Franck, Laurent Navoret, Vincent Vigon. A neural network closure for the Euler-
Poisson system based on kinetic simulations. Kinetic and Related Models , 2021, 15 (1), pp.49-89.
�10.3934/krm.2021044�. �hal-02965954�

https://hal.science/hal-02965954v1
https://hal.archives-ouvertes.fr

A neural network closure for the Euler-Poisson
system based on kinetic simulations

L. Bois1,2, E. Franck1,2, L. Navoret1,2, V. Vigon1

August 2020

1. Institut de Recherche Mathématique Avancée, UMR 7501,
Université de Strasbourg et CNRS, 7 rue René Descartes,

67000 Strasbourg, France

2. INRIA Nancy-Grand Est, TONUS Project, Strasbourg, France

Abstract
This work deals with the modeling of plasmas, which are charged-

particle fluids. Thanks to machine leaning, we construct a closure for the
one-dimensional Euler-Poisson system valid for a wide range of collision
regimes. This closure, based on a fully convolutional neural network called
V-net, takes as input the whole spatial density, mean velocity and temper-
ature and predicts as output the whole heat flux. It is learned from data
coming from kinetic simulations of the Vlasov-Poisson equations. Data
generation and preprocessings are designed to ensure an almost uniform
accuracy over the chosen range of Knudsen numbers (which parametrize
collision regimes). Finally, several numerical tests are carried out to assess
validity and flexibility of the whole pipeline.

Contents
1 Introduction 2

2 Fluid closure for Vlasov-Poisson 5
2.1 Kinetic model . 5
2.2 Fluid model . 6

3 Closure with a neural network 8
3.1 Interpolation of the heat flux with a neural network 8
3.2 Detailed composition of the closure 9
3.3 Architecture of the neural network 10
3.4 Training of the neural network 13

1

4 Data generation 14
4.1 Global description . 15
4.2 Random initial conditions . 16
4.3 Random Knudsen numbers and recording times 16
4.4 Computing of the fluid quantities 17

5 Data processing 18
5.1 Input standardization . 19
5.2 Output normalization . 19
5.3 Slicing and reconstructing . 20
5.4 Smoothing of the output . 22

6 Results 22
6.1 Accuracy of the network . 23
6.2 Fluid model with the neural network 28
6.3 Using the network with different configurations 33

7 Conclusion 36

A Numerical scheme for the kinetic model 39
A.1 Time discretization . 40
A.2 Spatial discretization . 40

B Numerical scheme for the fluid models 41
B.1 Explicit scheme for the neural network or the kinetic closure . . . 41
B.2 Semi-implicit scheme for the Navier-Stokes closure 43

1 Introduction
Plasmas are gases composed of charged particles, i.e. ions and electrons, which
are the subject of many studies because they are a very common state of matter
in the universe (e.g. in stars, ionosphere). They are also present in industrial
devices, like in fusion reactors. Plasma dynamics is complex since particles
have both long range interactions, through the self-consistent electromagnetic
fields, and short-range collisions. The most complete model to describe plasmas
is given by the Vlasov equation, which is a kinetic equation satisfied by the
distribution function of particles in the position-velocity (x, v)-phase space and
which is coupled with the electromagnetic equations. To reduce the dimention,
it is possible to use fluid models which are derived from the kinetic Vlasov
equation with a collision operator by taking the velocity moments corresponding
to the monomials 1, v, v2. This raises up three equations linking the four
following quantities: the density (the zeroth order moment), the mean velocity
(involving the two first moments), the temperature (involving the three first
order moments) and the heat flow (involving the four first moments). Fluid
models are very attractive as they are much computationally cheaper as they

2

involve only spatial quantities. However, they require an additional equation
called a closure to link the heat flow to the other three moments.

The first two fluid models obtained in the collisional regime are the Euler
and the Navier-Stokes system. The closure is obtained from an asymptotic
Chapman-Enskog procedure, assuming that the distribution function is close to
be at thermodynamical equilibrium due to collisions. These equations are thus
valid for small Knudsen number ε > 0, which is the mean free path between
two collisions divided by the characteristic length studied. The Navier-Stokes
system provides O(ε) corrections of the pressure tensor and heat flux. Higher
order corrections have been considered but lead to ill-posed systems (Burnett
equations). We refer to [4] for a specific derivation in the case of plasmas and
to [10] for a review.

To extend the validity of fluid models for larger Knudsen numbers, larger
moment systems have been proposed for the Boltzmann kinetic equation, with
neutral particles: the Grad 13 order moment model using perturbative theory
[18], the Levermore 14 order moment model using entropy maximisation closure
[26, 27]. They both suffer from intrinsic mathematical imperfections: a lack of
hyperbolicity for the former [6], so-called realizibility issues for the latter [24, 35].
However, recent developments propose corrections for the Grad model [6] and
the entropy methodology and has been very successful in the context of radiative
transfer with compact velocity domain [14, 17].

Specific closures have been developed for plasma fluid models. In electro-
static regime, the Hammett-Perkins closure [20, 19] is designed to recover the
Landau damping effect, which results from the transfer from spatial modes to
velocity modes and which leads to the damping of the electrostatic energy. To
this end, the heat flux depends on the temperature through a non-local integral
dissipative operator. Dissipation is also introduced in the momentum equation.
Let us mention the recent work [28] for a discussion on such closure. When con-
sidering magnetized plasma, several closures have also been proposed for fluid
models, like for Magnetohydrodynamics (MHD) or gyrofluid equations. See for
instance [7, 37, 5, 31]. Recently, fluid closures that preserve the Hamiltonian
structure of the Vlasov equation have also been developed [32, 39].

Other strategies consist in adding kinetic effects. Let us mention model
reduction technic to obtain fluid models like the water-bag method [2, 3, 12],
where the kinetic distribution function is approximated with piece-wise constant
functions in velocity. Kinetic effects can also be numerically introduced through
micro-macro decomposition methods [9, 11, 8].

A more recent approach consists in using supervised machine learning to
find a data-driven closure. Artificial neural networks (ANN) have proven very
efficient to interpolate data and detect underlying structures. In particular,
convolutional neural networks are very efficient to analyse images and thus
the outputs of numerical simulations. There are numerous works for design-
ing physics-based models using neural networks (see for instance [1, 40, 16]).
Such tools have already been used in two works concerning moment closure. In
[21], in the context of neutral gases, the authors propose to learn the appropriate
higher moments required in the model. In [29], which concerns plasmas models,

3

the closure is directly learned from the analytic closure like the Hamett-Perkins
one.

Description of our work. Here, we introduce a data-driven closure, based
on a fully-convolutionnal neural network, which is valid for a large spectrum of
collisional regimes (i.e. a large range of ε). Data are obtained from numerical
simulations of the Vlasov-Poisson system satisfied by the distribution function
and the electric potential. This method has already been mentioned in [21] for
neutral gases, but the authors preferred to develop another approach. Here we
further investigate the design of the closure to obtain accurate predictions.

Collisions between charged particles would normally be modeled with the
Fokker-Planck-Landau operator. However, as it is usually done, we replace it by
a BGK (Bhatnagar-Gross-Krook) operator, that models the relaxation of the
distribution function towards the equilibrium distributions, the Maxwellians.
The inverse of the Knudsen number ε is in prefactor of this operator.

Knudsen numbers ε range is chosen equal to [0.01, 1]. Indeed, for ε < 0.01,
the Navier-Stokes closure already gives good results. An upper bound of the
Knudsen interval has to be prescribed. Here we choose ε = 1 for embrassing
mildly collisional regimes, but larger values could be considered.

The closure takes as input three one-dimensional vectors corresponding to
the spatial discretized density, mean velocity and temperature, and one vector
corresponding to the parameter ε. The closure returns an estimation of the
spatial discretized heat flux.

The core of the closure is a fully convolutional neural network which has a
V-Net architecture. It was first described and developed by Milletari et al. [30]
to treat medical images (3D signals). It is an evolution of the U-Net, developed
for biomedical 2D images [34]. It consists in a succession of several convolution
kernels, down-samplings and up-samplings that perform multi-scale analysis of
the signal. No fully connected layer is used, so the whole network has relatively
few parameters. The architecture of the network can mostly be described by
three hyperparameters: the number of levels of the "V", the depth (which rules
the number of channels at each level), and the size of the kernels of convolution.
The influence of these parameters on the performance is investigated.

As usual in neural networks construction, some processing of the data is
required to predict the heat flux in the widest possible range. Therefore multiple
steps of processing are included in the closure, on top of the central neural
network. One of these is the normalization of the heat flux with the Navier-
Stokes approximation, that helps lowering the otherwise large relative error on
predictions of low heat fluxes. Another weakens the dependency of the closure
on the underlying mesh size, by performing a data slicing before applying the
neural network part. We also use a resampling strategy for discretizations with
a resolution different from the one used to train the neural network.

The insertion of this closure in a fluid solver raises mathematical issues.
Indeed, it is not guaranteed that the neural network closure is dissipative and
thus it could lead to instabilities. To prevent such scenario, a smoothing of the

4

prediction is added into the closure.
The paper is organised as follows. In Section 2, we introduce the Vlasov-

Poisson system and the moment closure issue. In particular, we give the Euler
and Navier-Stokes closures. Then the neural network closure strategy is ex-
plained in Section 3: prediction strategy, architecture of the network and train-
ing methodology are presented. Then Section 4 details the data generation and
Section 5 their processing. Finally, in Section 6, we carry out several numerical
tests to quantify and analyze the accuracy of the closure.

2 Fluid closure for Vlasov-Poisson
In this section we present the kinetic description of the plasma dynamics in one
space dimension and its fluid approximations.

2.1 Kinetic model
A kinetic model is a model interested in the function f : (x, v, t) 7→ f(x, v, t)
that describes the evolution of the distribution of the particles in the (x, v)-
phase space, where x ∈ [0, L] denotes the space variable, v ∈ R the velocity
variable and t ∈ R the time. We will consider periodic boundary conditions
in space. From this distribution function can be computed some macroscopic
physical quantities. The first three moments give the particle density ρ(x, t),
the mean velocity u(x, t) and the total energy w(x, t) defined as:

ρ(x, t) =
∫
R
f(x, v, t)dv, ρ(x, t)u(x, t) =

∫
R
f(x, v, t)vdv, (1)

w(x, t) = 1
2

∫
R
f(x, v, t)v2dv. (2)

We can also define the pressure p(x, t), the temperature T (x, t) and the heat
flux q(x, t):

p(x, t) =
∫
R
f(x, v, t)(v − u(x, t))2dv, ρ(x, t)T (x, t) = p(x, t), (3)

q(x, t) =
∫
R

1
2f(x, v, t)(v − u(x, t))3dv. (4)

Note that we have the following relation: w = ρu2/2 + ρT/2 = ρu2/2 + p/2.
The evolution of the distribution is described by the Vlasov equation:

∂tf + v∂xf − E∂vf = Q(f), (5)

where E(x, t) is the self-induced electric field, which satisfies the Poisson equa-
tion:

E = −∂xφ , ∂xxφ = ρ−
∫

[0,L]
ρ dx. (6)

5

Here φ(x, t) denotes the electric potential.
The source term Q is called a collision operator and allows the model to take

into account the collisions between particles. Different collision operators can
be considered to deal with different situations. In this work we use the BGK
operator (Bhatnagar, Gross and Krook), built to conserve the mass, momentum
and kinetic energy of the system, and model the relaxation induced by the
collisions toward a local equilibrium distribution M(f). This operator simply
reads

Q(f) = 1
ε

(M(f)− f),

where M(f) is called the Maxwellian of f and is given by

M(f)(x, v, t) = ρ(x, t)√
2πT (x, t)

e−
(v−u(x,t))2

2T (x,t) , (7)

with ρ, u and T the density, mean velocity and temperature associated to f
and defined in (1)-(3). The parameter ε > 0 is called the Knudsen number and
represents the mean free path between two collisions divided by the character-
istic length studied. In the limit ε→ 0, the distribution function is expected to
be closed to local equilibria. In this regime, the phase-space dynamics could be
infered from the spatial dynamics of its macroscopic moments ρ, u, T .

The kinetic equation (5) can be easily solved numerically in this one dimen-
sional case. Several numerical methods have been proposed in the literature
[38, 13]. In this work, we use a Finite Difference/Finite Volume method similar
to the one introduced in [33, 23] and described in appendix A. Although it is
possible to extend such computations in dimension 2 or 3, the computational
cost becomes very prohibitive. We are therefore led to consider fluid models.

2.2 Fluid model
A fluid model of a plasma describes the evolution of its density ρ(x, t), mean
velocity u(x, t) and kinetic energy w(x, t), instead of the distribution of its
particles f(x, v, t) in a kinetic model. Such models are far less expensive to
simulate numerically than the original kinetic model. Indeed, this requires the
computation of only three spatial quantities (3×Nx unknowns), instead of the
full kinetic distribution (Nx ×Nv unknowns), where Nx and Nv stands for the
number of discretization points in space and velocity.

Fluid models can be obtained by using the moment method [10]. Formally, it
consists in computing the first three moments in velocity of the Vlasov equation,
i.e. multiplying Equation (5) by 1, v and v2/2 and then integrating in velocity:

for p = 0, 1, 2,
∫
R
vp (∂tf + v∂xf − E∂vf) dv =

∫
R
vpQ(f) dv.

Since the collision operator conserves mass, momentum and energy, the right-

6

hand sides vanish. Therefore, it results in the following system:
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = −Eρ,
∂tw + ∂x(wu+ pu+ q) = −Eρu,

(8)

where p is the pressure and q the heat flux defined in (3)-(4). Note that the
pressure p is actually a function of ρ, u, w since we have the following relation:

p = 2w − ρu2.

The electric field E is still given by the Poisson equation (6).
We thus get a system of three equations on the four variables ρ, u, w and q.

For it to be closed, we need a fourth equation connecting these four unknowns,
called a closure. Usually this closure consists in replacing the true heat flux q
with a simplified one q̂ given as a function of the other quantities , and that can
be written

q̂ = C(ε, ρ, u, T).
Note that this closure depend on the physical regime we consider through the
parameter ε. Let us also mention here that in higher dimension, the pressure
stress tensor is not completely determined by ρ, u and w and an additionnal
closure relation is necessary.

In fluid regimes, where most of the kinetic effects can be neglected, two
closures are classically considered: the Euler or the Navier-Stokes closures. The
Euler closure is valid in regimes where the distribution function is closed to be
Maxwellian: f = M(f) +O(ε). Using this ansatz, we obtain the Euler closure:

q̂ = 0.

When we are interested in regime with O(ε) deviation from the Maxwellians,
f = M(f) + εg +O(ε2), we get the Navier-Stokes closure:

q̂ = −3
2ε p ∂xT. (9)

Note that it is a O(ε) correction of the Euler closure. We refer to [10] for more
details.

More complex closures have been developped to capture more kinetic effects,
in regimes where the disbribution function is more distant from the Maxwellians.
Such closures are chosen non local, meaning that the heat flux q(x) at location
x does not rely on the values of ρ, u, T and their derivatives at location x
only, but on their values on all the domain. Indeed, the true heat flux, given
by a third order moment of the kinetic distribution (Eq. (4)), depends on the
full distribution in velocity at location x and thus retains non-local information
about the dynamics.

The goal of our work is to provide a method to provide a new closure,
where the function C is implemented using a neural network. The next section
describes this approach in more details.

7

3 Closure with a neural network
In this section we introduce the overall principle of our method to build the fluid
closure presented in Section 2.2 with a neural network. First we describe the
basic functioning of the neural network, before introducing the other operations
included in the closure, and that surround the neural network. We end this
section with the detailed description of our neural network and of its training.

3.1 Interpolation of the heat flux with a neural network
In this work we are interested in the ability of machine learning to find a function
C that maps the Knudsen number, the density, the mean velocity and the
temperature of the plasma to its heat flux. Such a mapping cannot be exact
as the heat flux is not a function of these four quantities but a function of the
particles’ distribution in the phase space. Nonetheless, the ability of neural
networks to find non obvious patterns and correlations can be used to provide
a good approximation of the heat flux, that can then be used as closure for the
fluid model described in Section 2.2.

Neural networks enable to build functions relying on many parameters. The
obtained closure can be formally written as:

q̂ = Cθ̂(ε, ρ, u, T),

where θ̂ denotes the set of parameters of the obtained network. Here the clo-
sure is chosen to be non-local: ρ, u, T as well as q are all spatial discretized
quantities. The closure takes as input four vectors or, in the neural network
terminology, a 1D signal with four channels corresponding respectively to the
Knudsen number (turned into a constant vector), the density, the mean velocity
and the temperature at spatial discretization points:

X = (ε, ρ, u, T) ∈ (RNx)4,

where Nx is the number of spatial discretization points. The output of the
closure is one vector of size Nx

Y = Cθ(ε, ρ, u, T) ∈ RNx ,

that will correspond to the estimated heat flux q̂ ∈ RNx .
To find such a function, there are two main steps:

1. First, by setting the architecture of the neural network, we define a family
of functions Cθ parametrized by θ ∈ Θ, where Θ represents the set of all
the possible parameters of the neural network.

2. Then, by training the neural network, we find a set of parameters θ̂ so as
to minimize the error of the neural network predictions on a dataset, for
which the true heat flux is known.

8

The neural network is the core component of the closure Cθ, but it is not its
only one. Indeed, for the data to be usable by the neural network and to provide
satisfying results, it needs to go through a certain amount of processing. Section
3.2 introduces these other components and their articulation in the closure.
Sections 3.3 and 3.4 then describe respectively the architecture and the training
of the neural network.

3.2 Detailed composition of the closure
In practice, the closure is used at each iteration in time to compute the heat
flux q on all the mesh from the input (ε, ρ, u, T) on all the mesh. Such a use
of a neural network based closure into a numerical scheme requires some work
to transform the data handled by the solver into data usable by the network,
and vice-versa. This section briefly introduces the different steps involved in the
closure and their role in relation to the network.

There are three main processing operations designed to integrate the closure
into the numerical scheme. The first one deals with the difference in resolution
between the numerical scheme and the data used to train the network, by re-
sampling the input of the network to its training resolution, and its output back
to the original resolution. The second one deals with the difference in length
between the resampled data of the scheme and the inputs handled by the net-
work, by slicing the data into several pieces to give to the network, and then
aggregating the outputs to reconstruct the full heat flux. The third one deals
with the stability of the resulting numerical scheme, by smoothing the data from
the network to prevent any oscillation to propagate into the numerical scheme.
These three steps are part of a whole process, that can be broken downs as
follows:

Cθ : X
(Re)+(P)7−→ X̃

(Sl)7−→ (X̃j)j
(NNθ)7−→ (Ỹj)j

(R)7−→ Ỹ
(P’)+(Sm)+(Re)7−→ Y.

This process is illustrated by figure 1, and the different steps are described
below.

1. Resampling (Re) and pre-processing (P) The input X of size Nx is
resampled with a Fourier method (that relies on the periodicity of the
signal) and pre-processed into a signal X̃ of size N ′x. As explained in
section 6.3.1, the resampling changes the resolution of the input to match
the one used for training and get better results. The pre-processing step
that follows is a common step in the use of neural networks that allows to
improve the accuracy. It is detailed in section 5.1.

2. Slicing (Sl) The inputs are sliced into several pieces (X̃j)j of size N before
being handed over to the network, where N is the size of the input the
neural network works with.

3. Neural network (NNθ) For each piece of input X̃j , the network predicts
a piece of heat flux Ỹj , of size N .

9

NNθ

NNθ

NNθ
ε, ρ, u, T q̂

(Re)+(P) (Sl) (R) (P’)+(Sm)+(Re’)

Figure 1: Graphic of the composition of the closure. The different operations are
(Re)-(Re’) resampling, (P) pre-processing, (Sl) slicing, (NNθ) neural network,
(R) reconstruction, (P’) post-processing and (Sm) smoothing.

4. Reconstructing (R) The signals Ỹj are aggregated in order to reconstruct
the whole heat flux. An added benefit of this slicing and reconstructing
process is that it allows to prevent some edge effect introduced by the
network: by using overlapping pieces, the ends of each piece can be ignored
when reconstructing the whole signal. As described in section 5.3, the
amount of overlapping is a parameter that can be tweaked.

5. Post-processing (P’), smoothing (Sm) and resampling (Re’)
The post-processing is an operation of normalization designed to improve
the accuracy of the network and detailed in section 5.2. The smoothing
of the signal is here to avoid oscillations coming from the predictions to
propagate and amplify, thus making the numerical scheme unstable. The
intensity of this smoothing can be tweaked, and is discussed in section
6.2.4. Finally it is followed by a resampling to recover the original resolu-
tion, for the output to be used in the rest of the computations.

These different operations will be fully exposed in Section 5. We now turn to
the heart of the closure: the neural network.

3.3 Architecture of the neural network
The closure Cθ depends on the architecture of the network. In our work we use
a 1D version of the V-Net [30, 34] implemented with the Tensorflow 2 library
through its python interface.

The V-net is a fully convolutional neural network meaning that it is based
only on a successive sequence of convolutions (no fully connected layers). It
consists of two parts. First a descending part that acts as an "encoder", and
decomposes the inputX into multiple features, performing a multiscale analysis.
Then an ascending part that acts as a "decoder", and synthesizes the created
features to predict the output Y . As we will see below, it can be characterized
by three hyperparameters: the number of levels `, the depth d of the first
convolution and the kernel size p of all convolutions. The composition of the
V-net illustrated Figure 2 is the following:

10

input X

51
2

(w
in

do
w

siz
e)

4

51
2

2 (depth)

25
6

4

12
8

8

25
6

4
51

2

2

output Y

51
2

1

Descending part =
analysis Asce

nd
ing

pa
rt

=
syn

the
sis3

le
ve

ls

Convolution
Softplus

Down-sampling
Up-sampling

Summation
Weighted mean

Small shortcut
Big shortcut

Figure 2: Graphic of a 1D V-Net with a window of size N = 512, a depth k = 2
and ` = 3 levels.

11

Input As described previously, it is a 1D signalX made of 4 channels (ε, ρ, u, T),
and with a given length called the window size that we set to N .

Initialization We first perform successively two 1D convolutions1 with a kernel
size of p (we tried p = 5, 7, 9, 11), both followed by the softplus activation
function s(x) = ln(1 + ex), and change the number of channels from 4
to a depth d (we tried d = 4, 5, 6, 8). All convolutions preserve the size
of the signal with the help of a constant padding that extends the signal
by continuity. The original V-Net uses the ReLu activation function, but
the regularity of the softplus activation function seems to give us better
results.

Descending part The V-net is made of ` levels (we tried ` = 3, 4, 5), so `− 1
descents and as many ascents. Let us describe one descent.

• The input is down-sampled by a convolution of kernel size 2, stride
2, and that doubles the depth of its input. The stride allows to halve
the length of the input, incidentally blurring the precise locations of
the highlighted features.

• Then are applied two successive convolutions of kernel size p and
that conserve the depth of their input, both followed by the softplus
function.

• The output of this double convolution is added to its input. This
"shortcut" is represented by the dotted arrows in Figure 2. This way
the convolutions produce additive (or residual) modifications. This
is the principle of the famous Resnet. It has been shown that it
accelerates the training process and limits the problems of vanishing
or exploding gradient [22].

The output of this descent is a signal with half the length and double the
depth of the input signal.

Ascending part It works as a mirror of the descending part. Each ascent
simultaneously increases the length of the signal and decreases its depth
by a factor of 2. Technically, we up-sample the data using a transposed-
convolution [15] of size 2 followed by two convolutions of kernel size p with
softplus activations.

Long shortcuts At each level, the features obtained in the ascents are com-
bined with the features created by the descents, using a summation. This

1For the sake of completeness, we recall the formula for a one dimensional convolution:
applied on an input X of shape (N, d) to get an output Y of shape (N, d′), a 1D convolution
with an odd kernel size p uses a kernel K of shape (p, d, d′) and we have

Yi,k =
d∑

j=1

p∑
di=1

X̃i+di,jKdi,j,k,

where X̃ is the input X padded on both ends so that Y i, k is well defined for i up to N .

12

allows to retrieve some fine resolution details, which are lost by the blur-
ring produced by down and up samplings.

Weighted mean The resulting signal of depth d is turned into a one dimen-
sional output Y by simply taking a weighted mean of all d channels. This
operation is implemented with a convolution of kernel size 1. No activation
function is added, as we deal with a regression problem.

All the coefficients of the convolutions constitute the set of parameters θ of the
neural network.

Table 1 summarizes the hyper-parameters we choose in practice as a refer-
ence. This choice was mostly motivated by the results given in Section 6.1.2.
In order to avoid the oscillations that can be produced by the upsampling oper-

Hyper-parameter Value

size of the input window (N) 512
number of levels (`) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

Table 1: Hyper-parameters of the reference neural network

ation of the V-Net architecture, we initialize the transposed convolutions with
constant kernels.

3.4 Training of the neural network
The training consists in finding an optimal set of parameters θ̂ for the neural
network. It is defined as the minimizer of a loss function that measures the
error of the network:

θ̂ = argmin
θ∈Θ

Loss(θ).

For this loss function we choose the mean absolute error (MAE) between the
output of the network and the expected heat flux over a training dataset:

Loss(θ) =
∑

j∈training dataset
|NNθ(X̃j)− Ỹj |,

where (X̃j) (resp. Ỹj) are data of size N × 4 (resp. N), obtained from ki-
netic simulations after pre-processing (P) and slicing (Sl) of vectors (ε, ρ, u, T)
(resp. q). In practice, the minimization is carried out with a gradient descent
algorithm.

This whole process falls under the category of supervised learning, as it
requires a labelled dataset, including both the inputs and the corresponding

13

expected outputs. The first step to train the neural network is thus to generate
such a labelled dataset. To do so, we consider the kinetic model (5)-(6), that
describes the particles’ distribution from which can be derived their density,
mean velocity, temperature, and heat flux. We run many simulations with
a given time step and given number of discretization points in space Nx and
velocity Nv, with the numerical method described in appendix A. We save the
results in our dataset at selected times.

The making of this dataset is described in more details in Section 4. In
particular, it requires crucial choices in the initial distributions, the recording
times and the range of the parameter ε. It has a direct impact on the range of
validity of the closure obtained and it will be numerically discussed in Section
6.

In the end, the network is trained on a dataset of 10 000 entries (Xk;Yk) =
(εk, ρk, uk, Tk; qk), that are processed as described in Section 5. In particular,
each vector (of size Nx = 1 024) is sliced into overlapping windows of size N =
512, resulting in 80 000 inputs and labels. 4% of these are isolated as a small
test dataset and 10% of what remains are used for validation. The rest is used
for the actual training.

This training consists in 5 series of 120 epochs with a decaying learning rate,
reset to its initial value of 0.005 between each series. We use the mini-batch
gradient descent method, with the Adam optimizer and mini-batches of size
1 024, to minimize the mean absolute error (MAE).

4 Data generation
In order to train a neural network to predict the heat flux q knowing the Knudsen
number ε, the density ρ, the mean velocity u and the temperature T , we need
to generate a training dataset. This dataset must meet two criteria. First, it
must be a labelled dataset, i.e. a dataset with both the input X = (ε, ρ, u, T)
and the expected output Y = q. The expected output is the "correct" output of
the given input, from which we want the network to interpolate, or generalize,
for new inputs. Then, this dataset must contain as much diversity as possible,
for the interpolation to be usable in many different situations.

Consequently, the generation of the training dataset relies on two key in-
gredients. First, a solver for the kinetic model that can reliably estimate the
distribution of particles in the phase space, from which can be derived all the
fluid quantities ρ, u, T and q. Second, a mechanism to produce a variety of
distributions that can be given to the solver as initial solutions. This whole pro-
cess of data generation is illustrated in Figure 3 and described in more details
in this section ; except for the solver for the kinetic model that is not specific
to our work and is described in appendix A.

14

randomized
generation

u0

ρ0

T0

f0

ε

. . .

t1 t20

kinetic
model

...

f1

f20

u

ρ
ε

T
q

u

ρ
ε

T
q

dataset

Figure 3: Scheme of the data generation process for one simulation with the
kinetic model. With one Knudsen number and one initial solution, we produce
20 entries in the dataset.

4.1 Global description
Let us first get a glance at the global process illustrated by Figure 3. To begin
with, a randomized process allows us to produce a Knudsen number ε, an initial
solution f0, and a recording time t. These three elements are given to the kinetic
model that computes the evolution of the distribution up to t. The resulting
distribution f is then used to compute the density ρ, the mean velocity u, the
temperature T and the heat flux q of the system. On top of these four quantities,
we add the Knudsen number ε as a constant vector of the same size as the other
four, so that it can be used as input by the network. This could also allow us
to generalize our method to a problem with a Knudsen number that varies in
space. In the end, these five vectors (ε, ρ, u, T ; q) form an entry in the dataset.

Actually, in order to capitalize on the simulations that can be computation-
ally expensive —especially in higher dimensions—, we decide to produce several
entries with each simulation. For a given Knudsen number and a given initial
solution, we generate not one but 20 different recording times t1 < · · · < t20,
and compute the distribution at each one of these times, respectively f1, ...,
f20. From each one of these distributions can be derived ρ, u, T , q, to which we
prepend ε to form 20 different entries to be stored in the dataset. Thus, for the
cost of one simulation up to t20, we produce 20 different entries corresponding
to different intermediate steps in the simulation.

To build a whole dataset, we repeat this process with 100 different values
of ε, and with 5 different randomly selected initial solutions for each one of
these ε. Thus, we get a dataset with 10 000 entries, based on 500 different
initial solutions. We produce two such datasets: a training dataset used to
train the neural networks, and a test dataset used to measure and compare the
performance of the trained networks on new data.

15

4.2 Random initial conditions
The initial solution f0 is a Maxwellian as in (7), with density ρ, mean velocity u
and temperature T randomly generated as partial Fourier series under the form

α×
(
a0
2 + 0.5

N∑
n=1

(an cos(nx) + bn sin(nx))
)
, x ∈ [0, 2π].

We set N to 20 and we randomly generate the an and bn coefficients for n > 1
according to a uniform distribution on

[
− 1
n ,

1
n

]
. This choice for the an and

bn coefficients set the high frequencies to low amplitudes, resulting in more
regular functions. Then, the choice for α and a0 depends on the function to be
generated. For the density, a0

2 = 1 and α = 1. For the temperature, a0
2 = 1 and

α is chosen uniformly in [0.1, 1]. For the mean velocity, a0
2 is chosen uniformly

in [−1, 1], and α is chosen so that the maximum Mach number

max
x∈[0,2π]

|u(x)|√
2T (x)

,

falls uniformly in [10−4, 5 · 10−1] in logarithmic scale. We also make sure that
the density and temperature generated are positive functions. Possible functions
generated with this process are given Figure 4. For their discrete form, these
functions are sampled with Nx = 1 024 points to get vectors, that are turned
into a discrete Maxwellian our solver can work with, with Nv = 141 points is
velocity.

4.3 Random Knudsen numbers and recording times
In this work we focus on Knudsen numbers in the range [εmin, εmax] = [0.01, 1].
First because below 0.01 the fluid model with the Navier-Stokes estimation is
already very accurate, and also because we do not want a range too wide. Re-
garding the distribution of the values in this interval, we want a decent amount
of entries with ε really close to 0.01, but we do not want too few entries for ε
close to 1. As a result, a uniform or logarithmic distribution over the interval
[0.01, 1] is not satisfying. Instead we opt for a uniform distribution for

√
ε in

the interval [√εmin,
√
εmax]. This allows us to have about one fourth of the

Knudsen numbers between 0.01 and 0.1, and three fourths between 0.1 and 1.
Also we use a deterministic distribution for the train dataset in order to have
a nice coverage of the interval, while we use a random distribution for the test
dataset in order to test the ability of the trained networks to generalize to new
Knudsen numbers.

For the recording times t1 < · · · < t20, we do not want t1 to be too close
to zero as the initial maxwellian state always has a heat flux of zero and does
not carry much physical information, and we do not want t20 to be too big so
that the simulations do not last too long. For these reasons we choose 20 times
uniformly in the interval [0.1, 2], that are then sorted and given successively to
the solver for the kinetic model.

16

0.5
1

1.5

ρ

Density

−0.0005
0

0.0005
0.001

u

Mean velocity

0 π
2

π 3π
2

2π
0.2
0.4
0.6
0.8

x

T

Temperature

Figure 4: Possible functions ρ, u and T generated with the process described in
Section 4.2.

4.4 Computing of the fluid quantities
Once the Knudsen number, the initial solution and the times are generated, a
simulation is computed with the numerical method described in appendix A. It
relies on a discretization of the phase space

(xi, vj) , i ∈ {1, ..., Nx}, j ∈ {1, ..., Nv},

and results in an approximation (fi,j) of the real distribution f :

fi,j ' f(xi, vj).

From this distribution can be derived the density ρ, mean velocity u, tempera-
ture T and heat flux q needed for the dataset, as mentioned in Section 2.1. In
their discrete form, these quantities are vectors computed as follows: for any
1 6 i 6 Nx,

ρi =
Nv∑
j=1

fi,j , ρiui =
Nv∑
j=1

vjfi,j , ρiTi =
Nv∑
j=1

(vj − ui)2fi,j

and

qi =
Nv∑
j=1

(vj − ui)3fi,j .

For our datasets, we use a discretization with Nx = 1 024 points in space, and
Nv = 141 points in velocity.

17

Training

Network

Network

Network

Loss

ε, ρ, u, T q

(S) (Sl) (Sl) (N)

Prediction

Network

Network

Network
ε, ρ, u, T q̂

(S) (Sl) (R) (I) (Sm)

Figure 5: Scheme of the whole data processing for the training and the prediction
processes respectivily. The different operations are (S) standardization, (Sl)
slicing, (N) normalization, (I) inverse normalization, (R) reconstruction and
(Sm) smoothing.

5 Data processing
In this section we describe how the data is processed on both sides of the neural
network, both for the training process and the prediction process. At this point
we have generated some data with the kinetic model, and want to process it
for a neural network that takes as input a 1D signal with four channels —the
Knudsen number, the density, the mean velocity and the temperature—, and
outputs a 1D signal with one channel —the heat flux. This data processing
consists in the transformations described below and summarized in Figure 5.
In the remainder of this section, we use the word standardized to describe a
quantity with mean zero and unit variance, and normalized a quantity with
norm one or that has been applied the transformation described in Section 5.2.

18

5.1 Input standardization
Neural networks are known to be easier to train with standardized inputs, where
all channels have the same order of magnitude. Consequently, we standardize
the inputs channel by channel, by removing the mean and scaling to unit vari-
ance the whole training dataset. For example for the density ρ, if (ρk) is the
family of densities of the whole training dataset, this standardization applied
on a given entry ρk0 can be written

ρk0
standard =

ρk0 −mean
k,i

ρki

std
k,i

ρki
,

where mean is the empirical mean and std the empirical standard deviation.
Since the neural network is trained with this standardized data, it is designed

to work only with inputs that received that specific standardization: after the
training, any new input given to the neural network must be applied that very
same standardization. In particular, the means and standard deviation com-
puted in the training dataset have to be stored with the neural network, in
order to be available later to make predictions for the fluid model.

5.2 Output normalization
To prevent the outputs in our datasets from being smaller than the typical error
of our neural network, we choose to train the network to predict normalized out-
put. Otherwise, the network would produce pure noise when trying to predict
them, which turns to be problematic when used by the fluid model, especially
regarding its stability. Another solution would be to use a cost fonction mea-
suring a relative error instead of an absolute one but it turns out to be less
efficient. Let us describe how we proceed.

The main issue when training the network with normalized output is the
reversibility of the normalization. Since in the end we want to predict a heat
flux, and not a normalized heat flux, we need to be able to apply an inverse
normalization at the output of the neural network. As a consequence, this
transformation cannot use any knowledge on the heat flux to be predicted, that
would be available in the labelled training dataset, but would not in a real case
scenario. For this reason, we choose to normalize the heat flux with its estima-
tion given by the Navier-Stokes approximation (9), and that can be computed
from the Knudsen number, the density and the temperature, all available in a
real case scenario.

But using an estimation of the heat flux brings another concern: when this
estimation is way off, the normalization (or inverse normalization) would dis-
tort the information a lot. And this is expected to happen, as the Navier-Stokes
approximation tends to greatly overestimate big heat fluxes with Knudsen num-
bers in the range we consider. To prevent this from happening, we choose to
normalize heat fluxes only when the corresponding Navier-Stokes estimation is

19

below a given threshold θ, that we set to 0.1. This threshold is also a way of
only addressing the heat fluxes that were problematic in the first place.

Thus, for a given input (εk0 , ρk0 , uk0 , T k0) in the training dataset with ex-
pected output qk0 , the normalization we use can be written

qk0
norm =

qk0 × θ

qk0
NS

, if 0 < qk0
NS 6 θ,

qk0 , otherwise,

with
qk0
NS = max

i=1,...,N

∣∣∣∣32εk0ρk0
i (∂xT)k0

i

∣∣∣∣ ,
where i refers to the index of the vectors and the spatial derivative is approx-
imated with a centered finite difference formula. Note that we choose not to
normalize at all heat fluxes such that qNS = 0. Once trained to predict these
normalized heat fluxes, the neural network must be followed by an inverse nor-
malization when used to make predictions of non normalized heat fluxes. This
inverse normalization simply reads

qk0 =

qk0

norm ×
qk0
NS

θ
, if 0 < qk0

NS 6 θ,

qk0
norm, otherwise.

.

5.3 Slicing and reconstructing
In order to be usable with meshes of different sizes, the neural network is de-
signed to work with only one portion of the signal at a time as input, and to
return the corresponding portion as output. As a consequence, each signal given
to the network has first to be sliced into several windows of the right size. For
the training process, both the input and the expected output have to be applied
the same slicing. For the prediction process, the input has to be sliced into win-
dows, and the resulting predictions have then to be aggregated to reconstruct a
complete signal.

In one case or the other, we slice the signal into overlapping windows. The
overlapping serves two purposes. For the training process, it allows us to artifi-
cially increase the amount of data we can give to the network from the training
dataset. Though it introduces redundancy, such data augmentation is known
to help prevent overfitting and improve the accuracy of the network [36]. For
the prediction process, we use this redundancy introduced by the overlapping
when reconstructing the output signal, to provide a first smoothing process and
to dismiss the defects on the borders of the predictions.

These defects come from the necessary padding in our V-Net architecture,
that can cause oscillations of big amplitudes at the ends of the predictions. As
a consequence, each window must have a margin that will be ignored when

20

r = 1 r = 2 r = 3

Figure 6: Slicing of a 1D signal into overlapping windows with different redun-
dancy parameters r. The original signal is represented vertically on the left,
and the windows are on the right. The hatched parts of each window are the
margins that are ignored when reconstructing the signal. The windows that
exceed the span of the original signal are completed by periodicity.

reconstructing the signal. We set this margin to 10% of the output on each
side, leaving 80% actually useful for the reconstruction, later referred to as the
useful part. This observation on its own is enough to require some overlapping
between the windows to reconstruct the whole signal, but we introduce even
more overlapping. We slice the original signal such that each one of its points
is found in a fixed number r of windows, margins aside. We call this number
the redundancy parameter. The bigger it is, the bigger the overlapping, and the
more windows are produced. This slicing is illustrated Figure 6.

For the reconstruction of an entire signal from the predictions of the network,
we get rid of the margins and multiply the useful parts by the kernel

1
n

(
cos
(

2π
Lu

x− π
)

+ 1
)
, x ∈ [0, Lu]

where r is the redundancy parameter and Lu the length of the useful part in
the physical space. We then sum up the resulting windows. This kernel has
the property to sum up to one when duplicated every Lu

r (see Figure 7). As a
consequence, each value in the reconstructed signal is a weighted mean of the
r values predicted by the neural network, which results in a somewhat smooth
estimation of the heat flux.

21

0 Lu
0

1

0 Lu

3
2Lu

3
Lu

0

1
sum

Figure 7: Kernel used for the reconstruction of an entire signal from the windows
predicted by the neural network, with the redundancy parameter r = 3.

5.4 Smoothing of the output
At this point we have a process that allows us to estimate the heat flux q with
the neural network, and that can be used in a fluid model. But as it is, even with
the smoothing provided by the aggregation of different predictions as described
in the previous section, this estimation can show some small irregularities. In
the fluid model, these irregularities on q are amplified by the computation of
∂xq, and can cause the instability of the hyperbolic system. This instability
cannot be prevented by refining the time discretization, we have to control the
irregularities in the estimated heat flux. To do so, we smooth the reconstruted
heat flux thanks to a convolution with a gaussian kernel. This kernel with
standard deviation σ reads

w : t ∈ [−3σ, 3σ] 7→ e−
1
2
t2
σ2∫ 3σ

−3σ e
− 1

2
t′2
σ2 dt′

,

and the smoothed heat flux is

q̃(x) =
∫ 3σ

−3σ
q(x+ t)w(t) dt.

We show in Section 6.2.4 that σ can be chosen relatively large (σ ' 0.05) without
impacting the accuracy of the estimation, and has to be for the method to be
stable.

6 Results
This section is divided in three parts: first we introduce the results regarding
the neural network only, then when it is used in the fluid model, and finally how
the whole model performs in configurations that differ from the one used for the
training. Unless otherwise stated, the hyperparameters of the neural network
and the training are those presented in section 3.3.

22

6.1 Accuracy of the network
In this section we show numerical results of the neural network, independently
of its use with the fluid model. To this end we use the test dataset with entries
(ε, ρ, u, T ; q) computed with the kinetic model, or directly compare the predic-
tions with a simulation of the kinetic model. To measure the accuracy of the
network on a given entry, we use the relative error in norm L2

||q − q̂||2
||q||2

,

where q̂ is the prediction of the neural network with inputs (ε, ρ, u, T). We also
observed the relative error in norm L∞, but it was essentially the same, that is
why we focus on the L2 norm in what follows.

Unless stated otherwise, the results given use a redundancy parameter of 2
and a smoothing of σ ' 0.06. This last choice is motivated by the results of
Section 6.2.4.

6.1.1 Comparison with the Navier-Stokes estimation

Figure 8 shows some examples of predictions, compared to the real heat flux
and the estimation of Navier-Stokes (9). The first example illustrates how the
Navier-Stokes estimation tends to perform better on data with small Knudsen
numbers. The second and third example show how on the contrary it very often
overestimate the heat flux when the Knudsen number increases.

The relative errors of both the network and the Navier-Stokes estimation
over the whole test dataset are summarized in the histogram Figure 9. On this
dataset, the overall error of the neural network is about an order of magnitude
below that of the Navier-Stokes estimation.

Figure 10 gives a closer look at these errors and highlights two important
factors in the performance of the network over the Navier-Stokes estimation:
the Knudsen number and the norm of the real flux. The first scatter plot (Fig.
10, left) shows that the error of the Navier-Stokes estimation heavily depends on
the Knudsen number ε, which is not the case for the neural network predictions,
except for small values. This is even better illustrated by Figure 11, that uses
the same data but where the error is not set in logarithmic scale. The second
scatter plot (Fig. 10, right) shows that there is a strong correlation between
the norm of the real heat flux and the relative error of the network: the smaller
the heat flux, the bigger the error of the network. This could be explained by
a lack of small heat fluxes in the training dataset or by the normalization we
chose for small heat fluxes. In any case, it should not be that big of a problem
when used with the fluid model, as smaller heat fluxes have a smaller impact
on the result, at least as long as they are quite smooth.

It can also be interesting to look at the evolution of the error during a simu-
lation, to get a better idea of what will happen when used with the fluid model.
To do so, we choose 50 random initial solutions and 50 random Knudsen num-
bers in the same way we did to build the test dataset, and run the kinetic model

23

0 π
2

π 3π
2

2π
−0.02

0

0.02 ε = 0.019

q(
x

)
Real
Network
Navier-Stokes

0 π
2

π 3π
2

2π

−0.2

0

0.2 ε = 0.098

q(
x

)

0 π
2

π 3π
2

2π

0

0.5 ε = 0.555

x

q(
x

)

Figure 8: Three examples of predictions.

10−2 10−1 100 1010
200
400
600
800

L2 relative error

Fr
eq

ue
nc

y

Network
Navier-Stokes

Figure 9: Distribution of the relative errors of the neural network and the
Navier-Stokes estimation over the test dataset (10, 000 predictions).

24

0 0.5 1
10−2

10−1

100

101

Knudsen number ε

L
2

re
l.

er
r.

Navier-Stokes
Network

10−2 10−1 100 101
10−2

10−1

100

101

Norm of q

Figure 10: Error of the Navier-Stokes estimations and of the network on the
test dataset, depending on the Knudsen number and the L2 norm of the real
heat flux. Each dot corresponds to one entry in the test dataset. For better
clarity, only one 31th of the data is shown here.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

Knudsen number ε

L
2

re
la

tiv
e

er
ro

r

Network
Navier-Stokes

Figure 11: Relative error of the Navier-Stokes estimations and of the network
on the test dataset, depending on the Knudsen number. The line represents the
median of the error over the 100 entries of the test dataset for each epsilon, and
the coloured area the interquartile interval.

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10−1

100

101

Time

L
2

re
la

tiv
e

er
ro

r
Norm of q
Network
Navier-Stokes

Figure 12: Norm of the real heat flux and relative errors of the predicted heat
flux and the Navier-Stokes estimation throughout simulations. Median and
interquartile interval over 50 simulations.

with these data. At regular times, the heat flux of the kinetic model is compared
to the heat flux the network would have predicted and to the Navier-Stokes es-
timation. Figure 12 shows the statistical results of this experiment. We observe
that the network has a significant advantage over the Navier-Stokes estimation
during the first 2.5 time units, before decreasing to a smaller advantage. This
result can be explained by the fact that the heat flux is bigger during the first
three time units (the dissipation seems decrease the size of q in time), and by
the strong correlation between the norm of the heat flux and the error of the
network, also visible in this figure.

6.1.2 Hyper-parameters of the neural network

In this section we show the results that motivated the choice for some hyper-
parameters of the V-Net. We focus on the number ` of levels, the depth d, and
the size p of the kernels of the convolutions. Figure 13 compares the median
relative error of V-Nets with different sets of hyper-parameters. For these results
the window size was set to 256, but we later decided to set it to 512 as it gave
slightly better results.

We observe that all hyper-parameters do not affect the performance of the V-
Net in the same way. For instance, decreasing the size of the kernels significantly
decreases the accuracy of the trained network, while not decreasing the number
of parameters as much. On the other hand, decreasing the depth allows to
decrease the number of parameters with a very small effect on the accuracy.
In the remainder of this paper we work with the "l5,d4,p11" architecture, as
it seems to be a good compromise between the number of parameters and the
accuracy of the network.

26

0.115 0.120 0.125 0.130 0.135 0.140 0.1450
1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105 `5,d8,p11

`4,d8,p11
`3,d8,p11

`5,d6,p11

`5,d5,p11
`5,d4,p11

`5,d8,p9

`5,d8,p7

`5,d8,p5

L2 relative error

N
um

be
r

of
pa

ra
m

et
er

s

0.135 0.140 0.145 0.150 0.155 0.1600
1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105 `5,d8,p11

`4,d8,p11

`3,d8,p11

`5,d6,p11

`5,d5,p11
`5,d4,p11

`5,d8,p9

`5,d8,p7

`5,d8,p5

L∞ relative error

N
um

be
r

of
pa

ra
m

et
er

s

Figure 13: Median relative error and number of learnable parameters for V-Nets
with different hyper-parameters : (`) number of levels, (d) depth, and (p) size
of the kernels. Points sharing the same color represent networks that differ by
only one hyper-parameter.

27

6.2 Fluid model with the neural network
In this section we look at how the neural network performs when used in the
fluid model. We denote by "Fluid+Network" this method. The fluid model is
solved using an explicit finite volume method as presented in appendix B.1. We
compare it to three others:

Kinetic : the kinetic model. It is the most accurate model and serves as
a reference for the real target. The numerical method is described in
appendix A.

Fluid+Kinetic : the fluid model with the heat flux from the kinetic model.
It is the result we would get with a perfect neural network that makes no
error, and helps to distinguish the error of the fluid model from the error of
the neural network on the heat flux. The numerical method is identical to
the one of the Fluid+Network method (see appendix B.1). Theoretically
this model should give the same result as the kinetic model, but since
the numerical schemes and viscosities are different it is not always true in
practice.

Navier-Stokes : the fluid model with the Navier-Stokes estimation. It does
not use the same numerical method as our model, since the formula for
the heat flux requires an implicit scheme to avoid too stringent stability
condition (see appendix B.2).

Our criteria to compare the fluid models is the L2 relative error on the logarithm
of the electric energy E

E(t) =
∫

[0,2π]
E(x, t)2 dx,

compared to the kinetic model. For all the following tests we use a discretization
of Nx = 512 points on [0, 2π] in physical space, and Nv = 101 points on [−7, 7]
in velocity space (for the kinetic model). In particular, the data is resampled
on 1 024 points at each iteration for the neural network as explained in Section
3.2. The simulations are computed up to t = 8.

6.2.1 Examples

Figure 14 shows examples of electric energies obtained with the four models
described above. The first one uses a very small Knudsen number, and with
no surprise the Navier-Stokes model performs better than the fluid model with
the network. On the second example on the other hand, the Knudsen number
is bigger and we observe that the oscillations are slightly shifted: Navier-Stokes
shows some dispersion that the fluid model with the network does not. This
dispersion often increases as the Knudsen number gets bigger as it shows on the
third example. Finally the fourth one illustrates a case where the Navier-Stokes
model really struggle while the fluid model with the network does pretty good.

28

0 1 2 3 4 5 6 7 8

−4

−2

0

ε = 0.024

lo
gE

(t
)

Kinetic
Fluid+Kinetic
Navier-Stokes
Fluid+Network

0 1 2 3 4 5 6 7 8
−8
−6
−4
−2

0

ε = 0.349

lo
gE

(t
)

0 1 2 3 4 5 6 7 8
−10

−5

0

ε = 0.904

lo
gE

(t
)

0 1 2 3 4 5 6 7 8

−10

−5

ε = 0.795

Time t

lo
gE

(t
)

Figure 14: Examples of the evolution of the electric energy with different initial
solutions and different Knudsen numbers.

29

10−2 10−10

10

20

30
Fr

eq
ue

nc
y Fluid+Kinetic

10−2 10−10

10

20

Fr
eq

ue
nc

y Navier-Stokes

10−2 10−10

10

20

30

L2 relative error

Fr
eq

ue
nc

y Fluid+Network

Figure 15: Distribution of the relative errors of the three fluid models on the
kinetic model over 200 simulations up to t = 8.

6.2.2 Global performances

The L2 relative errors of the three fluid models over 200 simulations with differ-
ent initial solutions and different Knudsen numbers are summarized in Figure
15. We observe that our closure with the neural network does not reach relative
errors of 0.01 or below, contrary to the closure with the real heat flux or even
with the Navier-Stokes estimation. But it successfully maintains the relative er-
ror below 0.2, which is close to what the closure with the real heat flux achieves,
and much better than the Navier-Stokes estimation that often exceeds 0.2. As
already noted, the Fluid+Kinetic relative error should be zero but is not, due
to numerical diffusion errors.

6.2.3 Influence of the Knudsen number

In Figure 16 we look at the influence of the Knudsen number on the result of the
fluid models. All three seem to decrease in accuracy as the Knudsen number
increases, but it is much more significant for the Navier-Stokes model. For
Knudsen numbers above 0.1, not only the fluid model with the network seems
to work systematically better than the Navier-Stokes model, but it is also quite

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

L
2

re
l.

er
r.

Fluid+Kinetic
Navier-Stokes
Fluid+Network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

Knudsen number ε

L
2

re
l.

er
r.

Figure 16: L2 relative errors of the fluid models over the kinetic model depending
on the Knudsen number. The first plot shows the raw data and the second shows
the median and interquartile interval for 20 uniform classes of Knudsen numbers
between 0.01 and 1.

close to the fluid model with the kinetic heat flux. This would seem to indicate
that the network appropriately plays its role and that its error on the heat flux
does not impact the whole model too much.

6.2.4 Smoothing of the prediction and stability

In this section we show the impact of the smoothing on the accuracy of the
predictions, as well as its impact on the stability of the fluid model using these
predictions. Figure 17 gives a visual example of how the smoothing modifies a
prediction of the neural network.

To plot Figure 18, the network was used to predict the heat flux of each entry
in the test dataset, and different quantities of smoothing were applied before
computing the relative error. We observe that the accuracy of the resulting heat
flux does not deteriorate for standard deviations lower than σ ' 0.04, and then
slightly decreases as σ increases.

This smoothing was introduced to cope with the instability of the fluid model
relying on the predictions of the network. To measure how this stability is
improved by smoothing the output of the network, we choose 30 random initial
solutions as we did to build the test dataset and 30 Knudsen numbers uniformly
distributed between 0.01 and 1. Then we choose a set of smoothing parameters

31

0 π
2

π 3π
2

−0.02

0

0.02

0.04

x

q

w/o smoothing
w/smoothing

Figure 17: Example of a heat flux predicted by the neural network, with and
without smoothing. The smoothing here uses σ ' 0.05.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.1

0.2

σ

L
2

re
la

tiv
e

er
ro

r

Figure 18: Relative errors of the predictions over the test dataset depending on
the quantity σ of smoothing.

32

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.5

1

σ

St
ab

ili
ty

Figure 19: Proportion of simulations of the fluid model reaching t = 3 out of 30
simulations, depending on the quantity σ of smoothing.

σ, and for each one of these we run the 30 simulations with the fluid model,
using the network with this quantity of smoothing. Finally, for each σ we look
at the proportion of simulations that reached t = 3, from which we assume the
model will remain stable. The results are shown Figure 19. It appears that all
30 simulations reach t = 3 for σ above approximately 0.05. We use σ ' 0.06 for
our tests with the fluid model shown in the next section, and it appears to be
enough since no simulation failed so far with this quantity of smoothing.

6.3 Using the network with different configurations
In this section we are interested in the flexibility of our approach to different
configurations. First we take a look at different discretizations of space to
measure the ability of the network to generalize to other resolutions than the
one it has been trained with. Then we introduce discontinuities in the initial
solutions to see how the fluid model with the network reacts in terms of stability
and accuracy.

6.3.1 Different resolutions

The network was trained with data using 1 024 points on [0, 2π] in space. The
fact that it uses windows of size 512 would allow it to be used with any dis-
cretizations with at least 512 points, or even less if we use the periodicity to
make windows of size 512. However, with initial solutions of the same form
than those used to build the datasets, the change in resolution modifies the way
the data is interpreted by the neural network. For instance if we sample an
initial condition on 512 points instead of 1 024, the signal frequencies would be
multiplied by two in the eyes of the neural network. This can result in inputs
differing from the training inputs, and a decrease in accuracy is to be expected.

One way to measure this effect is to evaluate the network on the test dataset
but resampled at different resolutions, to mimic the data that could be generated
by the fluid model with these resolutions. We can then compute the relative
errors as in Section 6.1. The results Figure 20 show that the accuracy of the
network does indeed decrease as the resolution of the data moves away from its

33

10−2 10−1 100 1010
500

1 000
1 500
2 000

L2 relative error

Fr
eq

ue
nc

y
Navier-Stokes
Nx = 1024
Nx = 768
Nx = 512

Figure 20: Distribution of the relative errors of the network on the test dataset
with its original resolution, downsampled to 768 points and downsampled to
512 points.

original resolution.
To avoid this issue, if the fluid model uses a different resolution it is best to

resample the data for the network to match the resolution of the training data,
as this resampling operation only introduces a negligible error. However, this
phenomenon shows some of the limits of the network in terms of generalization.
With initial solutions that differ from the ones used to train the network —in
frequency for instance—, we could expect to see a significant loss of accuracy.

6.3.2 Discontinuities

The datasets were built from simulations starting with a continuous initial solu-
tion, but using the network in the fluid model with discontinuous initial solutions
could be an option. In practice, the initial discontinuities quickly fade away in
this physical system, but it might be enough for the predictions of the network
to cause some oscillations and the instability that goes with it.

To see if that is the case, we run multiple simulations with different Knudsen
numbers and different initial solutions, similar to those used to build the dataset,
except that each function (density, velocity and temperature) can be multiplied
by a function

x ∈ [0, 2π] 7→
{

c
π (x− xd) + (1 + c), if x < xd,
c
π (x− xd) + (1− c), if x > xd,

adding a discontinuity at a random location xd ∈ [0, 2π] with a random ampli-
tude c ∈ [−1, 1]. With these initial solutions, no simulation failed to reach t = 8,
and as can be seen Figure 21, the results are comparable to those presented in
Section 6.2.

34

10−3 10−2 10−10

5

10

15

Fr
eq

ue
nc

y Fluid+Kinetic

10−3 10−2 10−10

10

20

Fr
eq

ue
nc

y Navier-Stokes

10−3 10−2 10−10
5

10
15

L2 relative error

Fr
eq

ue
nc

y Fluid+Network

Figure 21: Distribution of the relative errors of the three fluid models on the
kinetic model over 100 simulations with discontinuous initial solutions.

35

7 Conclusion
We construct a fluid closure for the Vlasov-Poisson dynamics based on V-net
neural network and supervised learning from kinetic simulations. Slicing process
of the data is introduced in order to manage meshes of different sizes. Several
data processing have been also designed to improve the quality and regularity of
the heat flux estimation. The numerical results show that the closure predicts
the heat flux with a uniform relative error on the Knudsen interval [0.01, 1],
while the Navier-Stokes closure does not as expected. We also observe that the
prediction is better at the beginning of the numerical simulations where the
distribution function farthest from the equilibria set and so the real heat flux
is larger. Surprisingly, we numerically observe that the neural network closure
does not introduce instabilities when inserted in the fluid simulations, provided,
however, that the outputs are regularized. Finally, the closure is quasi-optimal
as the relative error between a full kinetic and a Fluid+Network closure behaves
like the one between a full kinetic and a Fluid+Kinetic closure.

This work raises several issues from the numerical point of view. The first
question is its efficiency in terms of computing time or its energy cost. Presently,
the Fluid+Network model requires about the same computing time as the ki-
netic model. However, we can hope that it will be more efficient in higher di-
mension, as the number of computations for a V-Net with ` levels, depth d and
kernel size p in dimension 1 is about O(2`d2pN), while it is about O(`d2p2N2)
in dimension 2 and O(d2p3N3) in dimension 3. Compared with the O(NmNm

v)
computations required for the kinetic model where m denotes the space dimen-
sion, it increases much more slowly since p << Nv.Moreover, the neural network
approach can greatly benefit from GPU parallelism.

The stability of the Fluid+Network closure is also an important issue. De-
spite the good numerical results obtained, a mathematical guaranty is lacking.
Constructing neural networks closure ensuring such stability remains to be done.

Finally, we plan to apply this method to both the Vlasov-Poisson system
in higher dimension and also to other closure problems arising in the MHD or
gyrofluid design.

References
[1] A. Beck, D. Flad, and C. D. Munz. Deep neural networks for data-driven

les closure models. J. Comput. Phys., 398:108910, 2019.

[2] N. Besse, F. Berthelin, Y. Brenier, and P. Bertrand. The multi-water-bag
equations for collisionless kinetic modeling. Kinet. Relat. Models, 2(1):39,
2009.

[3] N. Besse and P. Bertrand. Gyro-water-bag approach in nonlinear gyroki-
netic turbulence. J. Comput. Phys., 228(11):3973–3995, 2009.

[4] S.I. Braginskii. Transport phenomena in plasma. Rev. plasma phys., 1:205,
1963.

36

[5] A. Brizard. Nonlinear gyrofluid description of turbulent magnetized plas-
mas. Phys. Fluids B, 4(5):1213–1228, 1992.

[6] Z. Cai, Y. Fan, and R. Li. Globally hyperbolic regularization of grad’s
moment system. Communications on pure and applied mathematics,
67(3):464–518, 2014.

[7] G.F. Chew, M.L. Goldberger, F.E. Low, and Y. Nambu. Application of
dispersion relations to low-energy meson-nucleon scattering. Phys. Rev.,
106(6), 1957.

[8] A. Crestetto, N. Crouseilles, and M. Lemou. Kinetic/fluid micro-macro
numerical schemes for vlasov-poisson-bgk equation using particles. Kinet.
Relat. Models, 5(4):787, 2012.

[9] N. Crouseilles, P. Degond, and M. Lemou. A hybrid kinetic/fluid model
for solving the gas dynamics boltzmann–bgk equation. J. Comput. Phys.,
199(2):776–808, 2004.

[10] P. Degond. Macroscopic limits of the boltzmann equation: a review. In
Modeling and Computational Methods for Kinetic Equations. Birkhäuser,
Boston, MA, 2004.

[11] P. Degond, G. Dimarco, and L. Mieussens. A multiscale kinetic–fluid
solver with dynamic localization of kinetic effects. J. Comput. Phys.,
229(13):4907–4933, 2010.

[12] O. Desjardins, R. O. Fox, and P. Villedieu. A quadrature-based moment
method for dilute fluid-particle flows. J. Comput. Phys., 227(4):2514–2539,
2008.

[13] G Dimarco and L Pareschi. Numerical methods for kinetic equations. Acta
Numer., 23:369, 2014.

[14] B. Dubroca and J. L. Feugeas. Etude théorique et numérique d’une hiérar-
chie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci.
Paris Sér. I Math., 329(10):915–920, 1999.

[15] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning, 2016.

[16] K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age
of data. Annu. Rev. Fluid Mech., 51:357–377, 2019.

[17] C. K. Garrett and C. D. Hauck. A comparison of moment closures for
linear kinetic transport equations: the line source benchmark. Transport
Theor. Stat., 42(6-7):203–235, 2013.

[18] H. Grad. On the kinetic theory of rarefied gases. Commun. Pure Appl.
Math., 2:331–407, 1949.

37

[19] G. W. Hammett, W. Dorland, and F. W. Perkins. Fluid models of phase
mixing, landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids
B, 4(7):2052–2061, 1992.

[20] G. W. Hammett and F. W. Perkins. Fluid moment models for landau
damping with application to the ion-temperature-gradient instability. Phys.
Rev. Lett., 64:3019–3022, Jun 1990.

[21] J. Han, C. Ma, Z. Ma, and W. E. Uniformly accurate machine learning-
based hydrodynamic models for kinetic equations. PNAS, 116(44):21983–
21991, Oct 2019.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[23] P. Helluy, L. Navoret, N. Pham, and A. Crestetto. Reduced vlasov-maxwell
simulations. C. R. Mécanique, 342(10-11):619–635, 2014.

[24] M. Junk. Domain of definition of levermore’s five-moment system. J. Stat.
Phys., 93(5-6):1143–1167, 1998.

[25] R.J. LeVeque. Finite volume methods for hyperbolic problems, volume 31.
Cambridge University Press, 2002.

[26] C. D. Levermore. Moment closure hierarchies for kinetic theories. J. Stat.
Phys., 83(5-6):1021–1065, 1996.

[27] C. D. Levermore and W. J. Morokoff. The gaussian moment closure for
gas dynamics. SIAM J. Appl. Math., 59(1):72–96, 1998.

[28] G. Manfredi. Density functional theory for collisionless plasmas–
equivalence of fluid and kinetic approaches. J. Plasma Phys., 86(2), 2020.

[29] R. Maulik, N. A. Garland, J. W. Burby, X.-Z. Tang, and P. Balaprakash.
Neural network representability of fully ionized plasma fluid model closures.
Phys. Plasmas, 27(072106), 2020.

[30] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully convolutional neu-
ral networks for volumetric medical image segmentation. In 2016 Fourth
International Conference on 3D Vision (3DV), pages 565–571, 2016.

[31] C. Negulescu and S. Possanner. Closure of the strongly magnetized electron
fluid equations in the adiabatic regime. Multiscale Model. Sim., 14(2):839–
873, 2016.

[32] M. Perin, C. Chandre, P. J. Morrison, and E. Tassi. Hamiltonian closures
for fluid models with four moments by dimensional analysis. J. Phys. A
Math. Theor., 48(27):275501, 2015.

38

[33] N. Pham, P. Helluy, and A. Crestetto. Space-only hyperbolic approximation
of the vlasov equation. ESAIM: Proc., 43:17–36, 2013.

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Med-
ical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[35] J. Schneider. Entropic approximation in kinetic theory. Esaim Math Model
Numer Anal., 38(3):541–561, 2004.

[36] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[37] P.B. Snyder, G.W. Hammett, and W. Dorland. Landau fluid models of col-
lisionless magnetohydrodynamics. Phys. Plasmas, 4(11):3974–3985, 1997.

[38] E. Sonnendrücker. Numerical Methods for the Vlasov-Maxwell equations.
2015.

[39] E. Tassi. Hamiltonian closures in fluid models for plasmas. Eur. Phys. J.
D, 71(11):269, 2017.

[40] J.-X. Wang, J.-L. Wu, and H. Xiao. Physics-informed machine learning
approach for reconstructing reynolds stress modeling discrepancies based
on dns data. Physic. Rev. Fluids, 2(3):034603, 2017.

A Numerical scheme for the kinetic model
In this appendix we describe the numerical method used to solve the Vlasov-
Poisson equations (5)-(6) resulting from the kinetic model. This numerical
method is used to produce data that can in turn be used by the neural network
to interpolate the heat flux. It also serves as a reference to compute the error
of the other methods, allowing us to compare them. For better readability, let
us remind the one dimensional Vlasov-Poisson equations:

∂tf + v ∂xf − E ∂vf = 1
ε

(M(f)− f),

E = −∂xφ, ∂xxφ = ρ−
∫ L

0
ρ dx.

The spatial domain is given by [0, L], where L > 0 is the spatial length. For
numerical purpose, the velocity domain is restricted to the bounded interval
[−vmax, vmax]. Thus we complement the equation with the following boundary
conditions:

(±E)− f = 0, at v = ±vmax.

We consider a time discretization (tn)n with variable time step ∆t and a dis-
cretized phase space (xi, vj)i,j with constant steps ∆x and ∆v respectively. The

39

number of discretization points in space (resp. in velocity) is denoted Nx (resp.
Nv). We denote by fni,j the approximation

fni,j ' f(xi, vj , tn).

We also use the notations fn for the matrix (fni,j)i,j , fni for the vector (fni,j)j
and fnj for the vector (fni,j)i.

A.1 Time discretization
To solve the Vlasov-Poisson equations over the time interval [tn, tn + 1] we use
a splitting between three stages:

1. Compute the electric field at time tn by solving the Poisson system:

E = −∂xφ ,−∂xxφ = 1
L

∫ L

0
ρdx,

2. Transport the distribution function by solving the Vlasov equation over
the time inverval [tn, tn + 1]:

∂tf + v∂xf − E∂vf = 0,

3. Update the distribution function by taking into account the collision op-
erator:

∂tf = 1
ε

(M(f)− f).

The first two stages rely on the space discretization and are discussed in the
next section. For the third operator with a stiff source term, we use an implicit
scheme:

fn+1 − fn
∆t = 1

ε
(M(fn+1)− fn+1).

Knowing that the fluid quantities ρ, u, T are preserved by this operator, we
have M(fn+1) = M(fn), so the scheme can be rewritten as:

fn+1 = fn + ω (M(fn)− fn), with ω = ∆t
∆t+ ε

. (10)

A.2 Spatial discretization
For the spatial discretization, we propose a method introduced in [33, 23]. First
we discretize in velocity with a centered finite difference scheme. After dis-
cretization, we get the following hyperbolic system:

fn+1 − fn

∆t + Λ∂xfn + EB(fn) = 0 (11)

40

with Λ the diagonal matrix of velocities and B(fn) a vector given by

B(fn)j = −
fnj+1 − fnj−1

2∆v , j ∈ {2, . . . , Nv − 1},

B1 = −1
2 max(E, 0)Efn1 , BNv = 1

2 min(E, 0)EfnNv

The choice of the boundary terms allows to obtain a dissipative hyperbolic
system and to ensure L2 stability. Then we discretize in space the hyperbolic
system (11). We use a finite volume scheme with an upwind flux:

fn+1
i − fni

∆t +
fn
i+ 1

2
− fn

i− 1
2

∆x − EB(fn) = 0, (12)

with fn
i+ 1

2
= 1

2Λ(fni+1 + fni)− 1
2 |Λ | (fni+1 − fni).

The Poisson equation is solved using a classical finite difference scheme:

Eni = −φ
n
i+1 − φni−1

2∆x , −φ
n
i+1 − 2φni − φni−1

∆x2 = ρj −
1
Nx

N∑
i

ρi. (13)

where the density ρj is computed as follows: ρi =
∑Nv
j=1 fi,j .

The total scheme is given by (13)-(12)-(10). The time step is chosen such as
to satisfy the following stability condition:

∆t 6 min
{

∆x
vmax

,
∆v

maxi |Ei|

}
.

Note that it is only first order accurate in order to avoid dispersive oscillations
in the numerical solutions.

B Numerical scheme for the fluid models
In this section we introduce the numerical methods for solving fluid models
(8). The time discretization depends on the considered closure. For the neural
network based (Fluid+Network) or the kinetic one (Fluid+Network), we use
an explicit scheme. For the Navier-Stokes closure (Navier-Stokes), an implicit
scheme is required to avoid a too stringent stability condition. In one case or
the other, the Poisson equation is solved at the beginning of each iteration in
time to compute the electric field, exactly as in Eq. (13). This section therefore
focuses on the fluid equations. The following schemes are classical. We briefly
present them for the sake of completeness.

B.1 Explicit scheme for the neural network or the kinetic
closure

Fluid equations (8) can be written

∂tU + ∂xF(U) = −EH(U), (14)

41

with U = (ρ, ρu,w), F(U) = (ρu, ρu2 + p, wu+ pu+ q), H(U) = (0, ρ, ρu) and
where the heat flux q is given by the neural network based closure (Fluid+Network)
or the one obtained from full kinetic simulations (Fluid+Kinetic). We solve it
on the spatial domain [0, L].

When q = 0 (Euler closure), equation 14 is an hyperbolic system that can
be solved using a finite volume method with a local Lax-Friedrichs numerical
flux and an explicit scheme in time. The hyperbolic system has characteristic
speeds equal to u, u + c, u − c where c =

√
3p/ρ is the sound speed. When

considering an additional heat flux, we propose to use the same scheme and
just add a centered approximation of the heat flux in the numerical flux, as
explained below.

Like for the kinetic model, we consider a time discretization (tn)n with vari-
able time step ∆t and a discretized phase space (xi)i with constant step ∆x.
We denote by Uni the approximation

Un
i ' U(xi, tn).

The finite volume scheme results in the following formula:

Un+1
i −Un

i

∆t +
F(U)n

i+ 1
2
− F(U)n

i− 1
2

∆x = −H(U)ni Eni ,

with
F(U)ni+ 1

2
= 1

2(F(U)ni+1 + F(U)ni)−
Sni+1/2

2 (Un
i+1 −Un

i),

where

Sni+ 1
2

= max(|uni |+ cni , |uni+1|+ cni+1) and cni =
√

3pni
ρni

.

Quantities Sn
i+ 1

2
are chosen to be larger than the maximum characteristic speed

of the hyperbolic system, as uni is the local speed of particles and cni the local
sound speed. Comparing with the classical scheme for Euler system (q = 0), the
numerical flux for the momentum have an additional term equal to 1

2 (qni+1 +qni).
The time step is chosen such as to satisfy the CFL stability condition:(

max
i

Sni+ 1
2

)
∆t = 1

2∆x. (15)

We refer to [25] for more details on finite volume methods.
For the Fluid+Network method, the heat flux q involved in the flux term is

computed from ε, ρ, u and T at each iteration. For the Fluid+Kinetic method,
it is obtained from an underlying kinetic simulation, using the same initial
condition at t = 0. Note that the stability condition (15) does not take into
account the non-zero heat flux. However, as observed in Section 6.2, this term
does not result in an additional stability condition for the Fluid+Kinetic and the
Fluid+Network method, provided for the latter that the heat flux is sufficiently
smoothed out.

42

B.2 Semi-implicit scheme for the Navier-Stokes closure
With the Navier-Stokes closure q = − 3

2εp∂xT , the first two equations remain
the same as above and are solved using the same explicit finite volume method,
while the third one reads

∂tw + ∂x(wu+ pu)− 3
2ε∂x(p∂xT) = −Eρu.

To solve this equation we use the relation w = 1
2ρu

2 + 1
2ρT to turn it into an

equation on T , as ρ and u are known after solving the first two equations. We
use a finite difference approximation for the term ∂x(p∂xT), and Tn+1 can then
be computed by solving the following linear system:

1
2ρ
n+1
i (un+1

i)2 + 1
2ρ
n+1
i Tn+1

i − 1
2ρ
n
i (uni)2 − 1

2ρ
n
i T

n
i

∆t

+
F(U)[2]n

i+ 1
2
− F(U)[2]n

i− 1
2

∆x

− 3
2ε
pni+1/2T

n+1
i+1 − (pni+1/2 + pni−1/2)Tn+1

i + pni−1/2T
n+1
i−1

∆x2

= −Eni ρni uni .

Here the only unknown is Tn+1, and F(U)[2] is the third coordinate of F(U).
Finally, (w)n+1 can be computed using again the relation w = 1

2ρu
2 + 1

2ρT .
Here the time step is chosen such as to satisfy the same CFL condition (15) as
the implicit Navier-Stokes term to not introduce additional stability constraint.

43

