
FPSelect: Low-Cost Browser Fingerprints for Mitigating
Dictionary Attacks against Web Authentication Mechanisms
Nampoina Andriamilanto∗

tompoariniaina.andriamilanto@irisa.fr
Univ Rennes, CNRS, IRISA

Rennes, France

Tristan Allard
tristan.allard@irisa.fr

Univ Rennes, CNRS, IRISA
Rennes, France

Gaëtan Le Guelvouit
gaetan.leguelvouit@b-com.com

IRT b<>com
Cesson-Sévigné, France

ABSTRACT
Browser fingerprinting consists into collecting attributes from a
web browser. Hundreds of attributes have been discovered through
the years. Each one of them provides away to distinguish browsers,
but also comeswith a usability cost (e.g., additional collection time).
In this work, we propose FPSelect, an attribute selection frame-
work allowing verifiers to tune their browser fingerprinting probes
for web authentication. We formalize the problem as searching for
the attribute set that satisfies a security requirement andminimizes
the usability cost. The security is measured as the proportion of
impersonated users given a fingerprinting probe, a user popula-
tion, and an attacker that knows the exact fingerprint distribution
among the user population. The usability is quantified by the col-
lection time of browser fingerprints, their size, and their instabil-
ity. We compare our framework with common baselines, based on
a real-life fingerprint dataset, and find out that in our experimen-
tal settings, our framework selects attribute sets of lower usability
cost. Compared to the baselines, the attribute sets found by FPSe-
lect generate fingerprints that are up to 97 times smaller, are col-
lected up to 3, 361 times faster, and with up to 7.2 times less chang-
ing attributes between two observations, on average.

CCS CONCEPTS
• Security andprivacy→Multi-factor authentication;Browser
security; Web application security.

KEYWORDS
browser fingerprinting, web authentication, multi-factor authenti-
cation
ACM Reference Format:
Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. 2020.
FPSelect: Low-Cost Browser Fingerprints forMitigatingDictionaryAttacks
against Web Authentication Mechanisms. In Annual Computer Security Ap-
plications Conference (ACSAC 2020), December 7–11, 2020, Austin, USA.ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3427228.3427297

1 INTRODUCTION
Nowadays, the managers of web platforms face a crucial choice
about which authentication mechanism to use. On the one hand,
∗Also with IRT b<>com.

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Annual Com-
puter Security Applications Conference (ACSAC 2020), December 7–11, 2020, Austin,
USA, https://doi.org/10.1145/3427228.3427297.

http://example.com (login, password,           )Access granted Account
Database

(login, password,           )

Access denied

Knowledge

Aacker

User

Web platform

Verifier

Figure 1: Example of a browser fingerprinting web authenti-
cation mechanism and a failed attack.

using solely passwords is common and easy, but fallible due to
the many attacks that exist: brute force, dictionary [61], credential
stuffing [57], or targeted knowledge attacks [60]. Previous studies
report over 3.3 billion credentials leaked [36], a password reuse
rate above 30% [20], and the risk of account hijacking increased
by 400 times if the credentials of an account are stolen through
a phishing attack [57]. On the other hand, using supplementary
authentication factors improves security, but at the cost of usabil-
ity [11]. Indeed, users are required to remember, possess, or un-
dergo additional actions, which is impractical in real-life (e.g, us-
ing a security token requires users to constantly carry it). As a
result, few users authenticate using multiple factors (e.g., it is es-
timated that less than 10% of the active Google accounts use two
factors [36, 42]).

Initially used to track users on the web, browser fingerprinting
has recently been identified as a promising authentication factor [3,
4, 43, 53, 54, 58]. It consists into collecting the values of attributes
from a web browser (e.g., the UserAgent HTTP header [47], the
screen resolution, the way it draws a picture [38]) to build a finger-
print. This technique is already endorsed by open source access
management solutions (e.g., OpenAM1) and by software products
(e.g., SecureAuth2).

The two adversarial participants are the verifier and the attacker,
as depicted in Figure 1. The verifier aims to protect the users of
her web platform, using an authentication mechanism based on
browser fingerprinting. The verifier stores the fingerprint of the
usual browser of each user. On each login, the fingerprint of the
browser in use is matched against the fingerprint that is stored for
the claimed account.The attacker tries to impersonate the users by
submitting specially crafted fingerprints. The aim of the verifier
is to limit the reach of the attacker, also called sensitivity below,

1https://backstage.forgerock.com/docs/am/6.5/authentication-guide/#device-id-
match-hints
2https://docs.secureauth.com/x/agpjAg

https://doi.org/10.1145/3427228.3427297
https://doi.org/10.1145/3427228.3427297
https://backstage.forgerock.com/docs/am/6.5/authentication-guide/#device-id-match-hints
https://backstage.forgerock.com/docs/am/6.5/authentication-guide/#device-id-match-hints
https://docs.secureauth.com/x/agpjAg


ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

which is measured as the proportion of impersonated users. To do
so, she builds a fingerprinting probe that integrates one or more
attributes, that are selected among the hundreds3 that have been
discovered over the years [3, 13, 14, 33, 55]. On the one hand, the
addition of an attribute to the probe can strengthen the distinctive-
ness of browsers, hence reducing the sensitivity. On the other hand,
each addition comeswith a usability cost thatmay render the probe
impractical in an online authentication context. Indeed, each at-
tribute consumes storage space (up to hundreds of kilobytes [12]),
collection time (up to several minutes [37, 39, 40, 45, 48, 49]), and
can increase the instability of the generated fingerprints [59]. For
example, considering all of our attributes leads to a fingerprint
taking 9.98 seconds on average to collect, which is impractical
for the user. Moreover, some attributes are strongly correlated to-
gether [5], and including them only increases the usability cost
without reducing the sensitivity. Due to these correlations, picking
attributes one by one independently may lead to poor sensitivity
and usability scores.

Previous works only consider the well-known attributes [13, 19,
33], remove the attributes of the lowest entropy [59], iteratively
pick the attribute of the highest weight (typically the entropy) until
a threshold is reached [8, 14, 23, 29, 35, 56], or evaluate every possi-
ble set [16].The entropy measures the skewness of the distribution
of fingerprints or attribute values. As pointed out by Acar [1], it
does not take the worst cases into account (i.e., the most common
values that attackers can submit similarly to dictionary attacks on
passwords [10]). Moreover, fingerprints cannot be compared iden-
tically like passwords due to their evolution through time. The at-
tackers do not need to find the exact fingerprint of a victim, but
one that is similar enough to deceive the verification mechanism.

In this paper, we propose FPSelect, a framework that allows
a verifier to select the attributes4 to include into her fingerprint-
ing probe such that (1) the sensitivity against powerful attackers
knowing the fingerprint distribution of the protected users (i.e., the
worst-case distribution for the verifier) is bounded and the bound
is set by the verifier, and (2) the usability cost5 of collecting, stor-
ing, and using these attributes is close to being minimal. FPSelect
is parameterized with the sensitivity requirement, the number of
submissions that the attacker is deemed able to execute, and a rep-
resentative sample of the fingerprints of the users.

The problem could be solved by exploring exhaustively the space
of the possible attribute sets, evaluating the sensitivity and the us-
ability cost of each set.This is, however, infeasible as the number of
attribute sets grows exponentially with the number of attributes6.

3Most attributes are properties accessed through the browser that are limited by
its functionalities. Other attributes are items which presence are checked (e.g., the
fonts [18], the extensions [51]), or the computation of specific instructions (e.g., the
HTML5 canvas [12]). These are limited by the available items or instructions, which
can be large (e.g., more than 2154 for the canvas [31], nearly 30 thousand detectable
extensions [27]).
4We emphasize that the candidate attributes can contain dynamic attributes, which
can be used to implement challenge-response mechanisms that resist fingerprint re-
play attacks [31, 46]. We study nine instances of three dynamic attributes, which
are the HTML5 canvas [12], the WebGL canvas [38], and audio fingerprinting meth-
ods [45].
5Any usability cost can be plugged (e.g, the privacy cost of including an attribute)
provided that it is monotonic.
6Obviously, this discards as well the manual selection of attributes.

Moreover, we show below that the problem of finding the opti-
mal attribute set is NP-hard. To the best of our knowledge, this is
the first work that allows verifiers to dimension their fingerprint-
ing probe in a sound manner, by quantifying the security level to
reach, and selecting an attribute set that satisfies this level at a low
usability cost.

Our key contributions are the following:
• We formalize the attribute selection problem that a verifier

has to solve to dimension her probe.We show that this prob-
lem is NP-hard because it is a generalization of the Knapsack
Problem. We define the model of the dictionary attacker,
whose adversarial power depends on the knowledge of a fin-
gerprint distribution. We propose a measure to quantify the
sensitivity of a probe given a browser population and the
number of fingerprints that the attacker is able to submit.
We propose a measure of the usability cost that combines
the size of the generated fingerprints, their collection time,
and their instability.
• We propose a heuristic algorithm for selecting an attribute

set that satisfies a higher bound on the sensitivity and re-
duces the usability cost. We express this as a search prob-
lem in the lattice of the power set of the candidate attributes.
This algorithm is inspired by the BeamSearch algorithm [25]
and is part of the Forward Selection algorithms [50].
• We evaluate the FPSelect framework on a real-life finger-

print dataset, and compare it with common attribute selec-
tion methods based on the entropy and the conditional en-
tropy. We show experimentally that FPSelect finds attribute
sets that have a lower usability cost.The attribute sets found
by FPSelect generate fingerprints that are 12 to 1, 663 times
smaller, 9 to 32, 330 times faster to collect, and with 4 to
30 times less changing attributes between two observations,
compared to the candidate attributes and on average. Com-
pared to the baselines, the attribute sets found by FPSelect
generate fingerprints that are up to 97 times smaller, are col-
lected up to 3, 361 times faster, and with up to 7.2 times less
changing attributes between two observations, on average.

The rest of the paper is organized as follows. Section 2 defines
the attack model and the attribute selection problem. Section 3 de-
scribes the resolution algorithm and the proposed illustrative mea-
sures of sensitivity and usability cost. Section 4 provides the results
obtained by processing our framework and the baselines on a real-
life fingerprint dataset. Section 5 discusses concrete usage of the
framework. Section 6 describes the works related to the attribute
selection problem. Finally, Section 7 concludes.

2 PROBLEM STATEMENT
In this section, we first present the considered authenticationmech-
anism that relies on browser fingerprinting.Then, we describe how
wemodel the attacker given his knowledge and possible actions. Fi-
nally, we pose the attribute selection problem that we seek to solve,
and provide an example to illustrate the problem.

2.1 Authentication Mechanism
We consider the architecture and the three participants depicted
in Figure 1. The authentication mechanism is executed on a trusted



FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

Aacker Web platform

Figure 2: Example of an attacker instantiated with his
knowledge of a probability mass function (PMF) over the
fingerprints 𝐹 , and a web platform protecting a user popula-
tion𝑈 with their fingerprint. We consider a limit of two sub-
missions and a strict comparison between the fingerprints.
The attack dictionary is composed of 𝑓1 and 𝑓2, resulting in
the shown impersonated users.

web platform and aims at authenticating legitimate users based on
various authentication factors, including their browser fingerprint
(in addition to, e.g., a password). For the sake of precision, we focus
on the browser fingerprint and ignore the other factors.

A user is enrolled by providing his browser fingerprint to the
verifier who stores it. During the authentication of a user, the fin-
gerprint of the browser in use is collected by the fingerprinting
probe of the verifier, and is compared with the fingerprint stored
for the claimed account. If the collected fingerprint matches with
the one stored, the user is given access to the account, and the
stored fingerprint is updated to the newly collected one. The com-
parison is done using a matching function (i.e., a similarity func-
tion between two fingerprints that authorizes differences), as fin-
gerprints are known to evolve [4, 13, 59]. Any matching function
can be used provided that it is monotonic (i.e., if two fingerprints
match7 for an attribute set𝐶 , they also match for any subset of𝐶).
We explain in Section 2.3 the need for the monotonicity require-
ment, and refer to Section 4.2.4 for an example of a matching func-
tion. We consider one browser per user and discuss the extension
to multiple browsers in Section 5.1.

2.2 Attack Model
The high-level goal of the attacker is to impersonate legitimate
users in a limited number of submissionswith the help of his knowl-
edge, by forging a fingerprint attack dictionary similarly to dictio-
nary attacks on passwords [10]. Figure 2 illustrates the attack that
we consider. It shows an attacker with his knowledge of a finger-
print distribution, a population of protected users with their fin-
gerprint, and the impersonated users.We define the attackermodel
in terms of background knowledge and possible actions, which are
provided below and described further in the following subsections.

(1) The attacker cannot tamper with the web platform.
(2) The attacker cannot tamper with, nor eavesdrop, the com-

munication between the users and the web platform.
(3) The attacker knows the attributes of the probe.
(4) The attacker knows a fingerprint distribution.

7We stress that the monotonic property does not depend on the attributes.

(5) The attacker can submit a limited number of arbitrary fin-
gerprints.

2.2.1 Background Knowledge. The attacker can retrieve the attri-
butes of the fingerprinting probe (assumption 3) by reverse-engi-
neering the probe (e.g., static or dynamic analysis of the probe [6],
analysis of the network packets).

The attacker knows the domain of the fingerprints, and can infer
a fingerprint distribution (assumption 4) from documentation [47],
datasets8, or statistics9 available online. He can also leverage phish-
ing attacks [57], a pool of controlled browsers [41], or stolen finger-
prints [34]. The weakest attacker is the one that lacks knowledge,
and considers that the values of the attributes and fingerprints are
uniformly distributed. His strategy is then to cover a space as large
as possible of the fingerprint possibilities in the number of submis-
sions authorized by the verifier. The strongest attacker is the one
that manages to infer the exact fingerprint distribution among the
users protected by the verifier. Additionally, our work can be eas-
ily extended to the attackers that partially know the fingerprints
of targeted users10 (see Section 5.3).

2.2.2 Actions. Tools exist for controlling the attributes11 that com-
pose the fingerprint (assumption 5), like Blink [32] or Disguised
Chromium Browser [7]. Commercial solutions also exist, like An-
tiDetect12 or Multilogin13. An attacker can also automatically alter
the network packet that contains the fingerprint using tools like
BurpSuite14. As these attacks are online guessing attacks [10, 60],
we assume that the attacker is limited to a number of submissions
per user.

2.2.3 Attacker Instance. The verifier instantiates an attacker by
his knowledge of a fingerprint distribution, and by the number of
submissions to which he is limited, to measure his reach.

2.3 Attribute Selection Problem
The defense problem consists into selecting the attribute set that
composes the fingerprinting probe, to resist against an instantiated
attacker and minimize the usability cost. On the one hand, includ-
ing an attribute can reduce the reach of an attacker – called the
sensitivity and measured as the proportion of impersonated users
– because it adds one more information to distinguish different
browsers. On the other hand, it increases the usability cost of the
mechanism. For example, the fingerprints take more space to store,
can takemore time to collect, and can bemore difficult to recognize
due to the potentially induced instability.

The Attribute Selection Problem consists in finding the attribute
set that provides the lowest usability cost and keeps the sensitiv-
ity below a threshold 𝛼 set by the verifier15. Let 𝐴 denote the set

8https://www.henning-tillmann.de/en/2014/05/browser-fingerprinting-93-of-all-
user-configurations-are-unique
9http://carat.cs.helsinki.fi/statistics
10We do not consider the attackers that exactly know the fingerprint of the users
they target (or their local configuration) because they are able to bypass trivially any
fingerprinting authentication mechanism.
11These tools are able to control both the fixed and the dynamic attributes.
12https://antidetect.org
13https://multilogin.com
14https://portswigger.net/burp
15The sensitivity threshold 𝛼 is defined by the verifier according to her security re-
quirements. These requirements depend on the type of website that is to protect (e.g.,

https://www.henning-tillmann.de/en/2014/05/browser-fingerprinting-93-of-all-user-configurations-are-unique
https://www.henning-tillmann.de/en/2014/05/browser-fingerprinting-93-of-all-user-configurations-are-unique
http://carat.cs.helsinki.fi/statistics
https://antidetect.org
https://multilogin.com
https://portswigger.net/burp


ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

User CookieEnabled Language Timezone Screen
𝑢1 True fr -1 1080
𝑢2 True en -1 1920
𝑢3 True it 1 1080
𝑢4 True sp 0 1920
𝑢5 True en -1 1080
𝑢6 True fr -1 1920
Table 1: Example of fingerprints shared by users.

of the candidate attributes. We consider an attribute set 𝐶 ⊆ 𝐴, its
usability cost c(𝐶), and its sensitivity s(𝐶). Any measure of usabil-
ity cost and sensitivity can be plugged in FPSelect provided that
it is monotonic. Indeed, the usability cost is required to be strictly
increasing as we add attributes to an attribute set (e.g., the addi-
tional attributes are stored, which increases the storage cost). The
sensitivity is required to be monotonically decreasing as we add
attributes to an attribute set16. Indeed, adding an attribute to an
attribute set should not higher the sensitivity because the added
attribute either adds distinguishing information to the fingerprints
or adds no information if it is strongly correlated with another at-
tribute. For illustrative purposes, we propose measures of sensitiv-
ity and usability cost in Section 3. The ASP is thus formalized as
searching for argmin𝐶⊆𝐴{c(𝐶) : s(𝐶) ≤ 𝛼}.

2.4 Illustration of the Attribute Selection
Problem

To illustrate the problem, we propose an example of a fingerprint
distribution in Table 1. We consider an attacker who managed to
infer the exact same distribution, and who is able to submit one
fingerprint per user. If we solely include the CookieEnabled at-
tribute which provides no distinctiveness, this attacker can imper-
sonate every user by submitting the True value.Whereas including
the Language and Screen attributes leads to unique fingerprints,
which reduces the sensitivity to a sixth. Ignoring the CookieEn-
abled attribute reduces the usability cost without increasing the
sensitivity. There is also an example of correlation. The Timezone
and the Language attributes are the twomost distinctive attributes,
but including both does not improve the distinctiveness compared
to considering Language alone.

3 ATTRIBUTE SELECTION FRAMEWORK
This section is dedicated to the description of our attribute selec-
tion framework. First, we show that the Attribute Selection Prob-
lem (ASP) is NP-hard because it is a generalization of the Knapsack
Problem (KP), and remark that the ASP can be seen as a lattice of
partial KP. Second, and consequently, we propose a greedy heuris-
tic algorithm for finding solutions to the problem. Finally, we pro-
pose illustrative measures for the sensitivity and the usability cost.

a bank, a forum) and the contribution of browser fingerprints (e.g., the only secondary
authentication factor, an additional verification among others [52]).
16Themonotonicity requirement of thematching function comes from themonotonic-
ity requirement of the sensitivity. Indeed, if thematching functionwas not monotonic,
adding an attribute could result in a loss of distinctiveness (i.e., it is harder for the
matching function to distinguish two browsers) and consequently in an increase of
the sensitivity.

3.1 Similarity to the Knapsack Problem
The Knapsack Problem (KP) [28] is a NP-hard problem that consists
into fitting valued-items into a limited-size bag to maximize the
total value. More precisely, given a bag of capacity𝑊 and 𝑛 items
with their value 𝑣𝑖 and their weight 𝑤𝑖 , we search for the item
set that maximizes the total value and which total weight does not
exceed𝑊 . In this section, we show that the ASP is a generalization
of the KP, therefore the ASP is NP-hard. We also provide a way to
model the ASP as a lattice of partial KP.

First, we remark that the ASP can be solved by picking attributes
until we reach the sensitivity threshold, or by starting from the
candidate attributes and removing attributes successively without
exceeding the threshold. We consider the latter and start from the
set 𝐴 of the candidate attributes. The value of an attribute set 𝐶
is the cost reduction compared to the candidate attributes, formal-
ized as 𝑣 (𝐶) = c(𝐴) − c(𝐶). The value of an attribute 𝑎 is the cost
reduction obtained when removing 𝑎 from 𝐶 , which is formalized
as 𝑣 (𝑎 |𝐶) = c(𝐶) − c(𝐶 \ {𝑎}).Theweight of an attribute set𝐶 is its
sensitivity with𝑤 (𝐶) = s(𝐶). Theweight of an attribute 𝑎 is the ad-
ditional sensitivity induced by the attribute removal, formalized as
𝑤 (𝑎 |𝐶) = s(𝐶 \ {𝑎}) − s(𝐶). The capacity𝑊 is the maximum sen-
sitivity allowed, hence𝑊 = 𝛼 . As we remove attributes, the value
increases (i.e., the usability cost decreases), and the weight (i.e., the
sensitivity) may increase.

TheoRem 3.1. The Attribute Selection Problem is NP-hard.

PRoof. We consider a simple case where the attributes are not
correlated. The weight and the value of the attribute 𝑎𝑖 does not
depend on the attributes already included in the probe, and is sim-
ply defined as𝑤𝑖 and 𝑣𝑖 . We obtain a Knapsack Problem consisting
into picking the attributes to remove from 𝐴, to maximize the to-
tal value and keep the weight under the threshold 𝑊 . The ASP
is therefore a generalization of the KP with relative weights and
costs, making it at least as hard as the KP which is NP-hard. The
Attribute Selection Problem is therefore NP-hard. □

3.1.1 The Attribute Selection Problem as a Lattice of Partial Knap-
sack Problems. The Attribute Selection Problem can be modeled
as a lattice of partial Knapsack Problems (KP). We consider the
deletive way that starts from the set 𝐴 of the candidate attributes
and removes attributes without exceeding the threshold. The ini-
tial partial KP consists into picking attributes from 𝐴 to increase
the value and keep the weight under𝑊 . The value and weight of
each attribute 𝑎 ∈ 𝐴 is 𝑣 (𝑎 |𝐴) and 𝑤 (𝑎 |𝐴). Once we pick an at-
tribute 𝑎𝑝 , a new partial KP arises: the item set is 𝐴 \ {𝑎𝑝 }, the
capacity is 𝑊 −𝑤 (𝑎𝑝 |𝐴), and the value and weight of each at-
tribute 𝑎 ∈ 𝐴 \ {𝑎𝑝 } is now 𝑣 (𝑎 |𝐴 \ {𝑎𝑝 }) and 𝑤 (𝑎 |𝐴 \ {𝑎𝑝 }). Re-
cursively, it holds for any set 𝑅 of attributes to remove.The item set
is then 𝐴 \ 𝑅, the capacity is𝑊 −𝑤 (𝑅), and the value and weight
of each attribute 𝑎 ∈ 𝐴 \ 𝑅 are 𝑣 (𝑎 |𝐴 \ 𝑅) and 𝑤 (𝑎 |𝐴 \ 𝑅). Follow-
ing this, we are given a lattice17 of partial KP to solve recursively,
each node being a partial solution𝑅, until we reach unfeasible prob-
lems (i.e., empty set of items, no more item can fit) and find a final
solution among the partial solutions that reach this limit.
17This can be seen as a tree, but some paths lead to the same node. Indeed, removing
the attributes 𝑎1 then 𝑎2 from 𝐴 leads to the same partial problem as removing 𝑎2
then 𝑎1 .



FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

1

s = 0.30

c = 10

e = 67
2

s = 0.30

c = 15

e = 50

s = 0.25

c = 15

e = 60

∅ s = 1.00

c = 0

e = 30

1 2

s = 0.15

c = 20

e = 67

1 2 3

s = 0.05

c = 30

e = 0

2 3

s = 0.20

c = 25

e = 251 3

s = 0.25

c = 17

e = 52

α = 0.15

3

Figure 3: Example of a lattice of attribute sets, with their
cost c, their sensitivity s, and their efficiency e. The blue
node satisfies the sensitivity, the white nodes do not, and
the green node with a diamond satisfies the sensitivity and
minimizes the cost. The red line is the satisfiability frontier.

3.2 Lattice Model and Resolution Algorithm
In this section, we present how we model the possibility space as a
lattice of attribute sets, and describe the greedy heuristic algorithm
to approximately solve the ASP.

3.2.1 Lattice Model. The elements of the lattice are the subsets
of 𝐴 (𝐴 included) and the order is the subset relationship so that
𝐶𝑖 ≺ 𝐶 𝑗 if, and only if,𝐶𝑖 ⊂ 𝐶 𝑗 . The efficiency of an attribute set𝐶
is the ratio between its cost reduction (i.e., 𝑐 (𝐴) − 𝑐 (𝐶)) and its
sensitivity. Figure 3 shows an example of such lattice. The satisfia-
bility frontier represents the transition between the attribute sets
that satisfy the sensitivity threshold, and those that do not. The at-
tribute sets just above this frontier satisfy the sensitivity threshold
at a lower cost than any of their supersets. They comprise the so-
lution found by our resolution algorithm and the optimal solution
to the problem.

The sensitivity and the cost are bounded. The lower bound is lo-
cated at the empty set, which has a sensitivity of 1.0 and a null
usability cost. It is equivalent to not using browser fingerprint-
ing at all. On the other end, the set composed of the candidate
attributes 𝐴 is a superset of every attribute set, and provides the
lowest sensitivity and the highest usability cost. If 𝐴 does not sat-
isfy the sensitivity threshold, there is no solution as any other sub-
set has a higher or equal sensitivity.

3.2.2 Greedy Algorithm. We propose the greedy heuristic algo-
rithm presented in Algorithm 1 to find good solutions to the At-
tribute Selection Problem. It consists into a bottom-up exploration
of the lattice by following 𝑘 paths until reaching the satisfiability
frontier. The higher 𝑘 is, the larger is the explored space, but the
higher is the computing time. This algorithm is inspired by the
model of the ASP as a lattice of partial Knapsack Problems, and by
the Beam Search algorithm [25]. The similarity with the latter lies

Data: The candidate attributes 𝐴, the sensitivity
threshold 𝛼 , the number of explored paths 𝑘 .

Result: The attribute set of the explored paths that satisfies
the sensitivity threshold at the lowest cost.

𝑐𝑚𝑖𝑛,𝑇 , 𝐼 ← inf,∅,∅
𝑆 ← a collection of 𝑘 empty sets
if s(𝐴) > 𝛼 then

Quit as no solution exists
end
while 𝑆 is not empty do

𝐸 ← {𝐶 = 𝑆𝑖 ∪ {𝑎} :
∀𝑆𝑖 ∈ 𝑆,∀𝑎 ∈ 𝐴 \ 𝑆𝑖 , �𝐶 ′ ∈ 𝑇 ∪ 𝐼 ,𝐶 ′ ⊂ 𝐶}

𝑆 ← ∅
for 𝐶 ∈ 𝐸 do

if 𝑠 (𝐶) ≤ 𝛼 then
𝑇 ← 𝑇 ∪ {𝐶}
𝑐𝑚𝑖𝑛 ← 𝑐 (𝐶) if 𝑐 (𝐶) < 𝑐𝑚𝑖𝑛

end
else if 𝑐 (𝐶) < 𝑐𝑚𝑖𝑛 then

𝑆 ← 𝑆 ∪ {𝐶}
end
else

𝐼 ← 𝐼 ∪ {𝐶}
end

end
𝑆 ← the 𝑘 most efficient attribute sets 𝐶 of 𝑆 according
to c(𝐴)−c(𝐶)

s(𝐶)
end
return argmin𝐶∈𝑇 c(𝐶)

Algorithm 1: Greedy algorithm to find good solutions to the
Attribute Selection Problem.

in the successive expansion of a limited number of nodes, that are
chosen according to an order between partial solutions. The order
is the efficiency in our case. Our proposed algorithm is part of the
Forward Selection algorithms [50], as it iteratively picks attributes
according to a criterion, and takes into account those already cho-
sen. However, the proposed algorithm provides the ability to ex-
plore several sub-solutions instead of a single one, includes prun-
ing methods that help reduce the computing time, and stops when
it reaches the satisfiability frontier instead of when the criterion is
not statistically improved.

Algorithm Working. Algorithm 1 works by exploring 𝑘 paths
of the lattice. It starts from the empty set and stops when every
path reaches the satisfiability frontier. The collection 𝑆 holds the
attribute sets to expand and is initialized to 𝑘 empty sets. At each
stage, the attribute sets to explore are stored in the collection 𝐸.
They consist of each 𝑆𝑖 ∈ 𝑆 with one additional attribute. The cost
and the sensitivity of each attribute set 𝐶 ∈ 𝐸 is then measured.
If 𝐶 satisfies the sensitivity threshold 𝛼 , it is added to the collec-
tion𝑇 of the attribute sets that reach the satisfiability frontier, oth-
erwise it is added to the collection 𝑆 of the attribute sets to expand.
Finally, the collection 𝑆 is updated to only hold the 𝑘 most effi-
cient attribute sets. The efficiency of an attribute set is the ratio
between its gain (i.e., the cost reduction compared to the candidate
attributes) and its sensitivity. All this process is repeated until 𝑆 is



ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

Stage 𝐸 𝑇 𝑆

1 {{1}, {2}, {3}} {} {{1}, {3}}
2 {{1, 2}, {1, 3}, {2, 3}} {{1, 2}} {{1, 3}}
3 {} {{1, 2}} {}

Table 2: Example of the execution of Algorithm 1 on the lat-
tice of Figure 3, with the sensitivity threshold 𝛼 = 0.15 and
the number of explored paths 𝑘 = 2. Stage 𝑖 is the state at the
end of the 𝑖-th while loop.

empty, when all the 𝑘 paths have reached the satisfiability frontier.
The solution is then the attribute set of the lowest cost in 𝑇 .

Pruning Methods. Three properties allow us to reduce the num-
ber of attribute sets that are explored. First, we hold the minimum
cost 𝑐𝑚𝑖𝑛 of the attribute sets𝑇 that satisfy the sensitivity. Any ex-
plored attribute set that has a cost higher than 𝑐𝑚𝑖𝑛 is not added to
the collection 𝑆 of those to explore. Indeed, this attribute set does
not provide the lowest cost, nor do its supersets. Then, during the
expansion of two attribute sets 𝑆𝑖 and 𝑆 𝑗 of the same size, if 𝑆𝑖
satisfies the sensitivity and 𝑆 𝑗 does not, they can have a common
superset 𝑆𝑙 . In this case, 𝑆𝑙 does not need to be explored as it costs
more than 𝑆𝑖 . We store 𝑆𝑖 in 𝐼 so that we can check if an attribute
set𝐶 has a subset in 𝐼 , in which case we do not explore𝐶 . The same
holds if 𝑆𝑖 costs less than 𝑐𝑚𝑖𝑛 and 𝑆 𝑗 costs more than 𝑐𝑚𝑖𝑛 .

Algorithm Complexity. Starting from the empty set, we have
𝑛 supersets composed of one more attribute. From these 𝑛 super-
sets, we update 𝑆 to hold at most 𝑘 attribute sets. The attribute
sets 𝑆𝑖 ∈ 𝑆 are now composed of a single attribute, and each 𝑆𝑖
has 𝑛 − 1 supersets composed of one additional attribute. At any
stage, we have at most 𝑘𝑛 attribute sets to explore. This process is
repeated at most 𝑛 times, as we can add at most 𝑛 attributes, hence
the computational complexity of the Algorithm 1 is of O(𝑘𝑛2𝜔),
with 𝜔 being the computational complexity of the measures of us-
ability cost and sensitivity of an attribute set. The collection 𝐸 con-
tains at most 𝑘𝑛 attribute sets (at most 𝑛 supersets for each 𝑆𝑖 ∈ 𝑆).
The collections 𝑆 , 𝑇 , and 𝐼 can contain more sets, but are bounded
by the number of explored nodes which is 𝑘𝑛2. The memory com-
plexity of the Algorithm 1 is then of O(𝑘𝑛2).

Example. Table 2 displays an example of the execution of Algo-
rithm 1 on the lattice presented in Figure 3, with the sensitivity
threshold 𝛼 = 0.15 and the number of explored paths 𝑘 = 2. The
stage 𝑖 corresponds to the state at the end of the 𝑖-th while loop.
Initially, the collection 𝑆 is {∅,∅}. At stage 1, the two most effi-
cient attribute sets of 𝐸 are {1} and {3}, which are stored into 𝑆 .
At stage 2, we assume that the attribute set {1, 2} is measured first
as there is no order among 𝐸. In this case, this attribute set is added
to the collection𝑇 , and the minimum cost is now 20. The attribute
set {1, 3} is then added to 𝑆 , but {2, 3} is not as it has a higher cost
than the minimum cost. At stage 3, the attribute set {1, 2, 3} is not
added to the collection 𝐸 as it is a superset of one attribute set of
the collection 𝑇 . The final solution is the less costly attribute set
of 𝑇 , which is {1, 2} in this case, and happens to be the optimal
solution.

3.3 Illustrative Measures of Sensitivity and
Usability Cost

In this section, we illustrate a sensitivity measure as the proportion
of impersonated users given the strongest attacker of our model
that knows the fingerprint distribution among the protected users.
We also illustrate a usability cost measure according to the finger-
prints generated by a fingerprinting probe on a browser popula-
tion.

3.3.1 Sensitivity Measure. We measure the sensitivity of a given
attribute set according to an instantiated attacker and a population
of users sharing browser fingerprints. The attacker knows the fin-
gerprint distribution of the protected users, and submits orderly
the most probable fingerprints, until reaching the threshold on the
number of submissions. The illustrative sensitivity measure evalu-
ates the proportion of users that are impersonated considering the
matching function.

From an attribute set 𝐶 , we retrieve the fingerprint domain 𝐹𝐶
such that 𝐹𝐶 =

∏
𝑎∈𝐶 domain(𝑎), with domain(𝑎) being the do-

main of the attribute 𝑎 and
∏

being the Cartesian product. We
denote 𝐹𝐴 the fingerprints when considering the set𝐴 of the candi-
date attributes. We denote𝑈 the set of the users that are protected
by the verifier.The setM = {(𝑢, 𝑓 ) : 𝑢 ∈ 𝑈 , 𝑓 ∈ 𝐹𝐴} represents the
mapping from the users to their fingerprint, so that the user 𝑢 has
the fingerprint 𝑓 stored.

We denote project(f,C) the function that projects the finger-
print 𝑓 ∈ 𝐹𝐶′ from the set of attributes𝐶 ′ to the set of attributes𝐶 ,
with the requirement that 𝐶 ⊆ 𝐶 ′. Finally, the function denoted
dictionary(𝑝, 𝐹𝐶 , 𝛽) retrieves the 𝛽-most probable fingerprints of
𝐹𝐶 given the probability mass function 𝑝 . We note that it is trivial
to retrieve the distribution of the fingerprints composed of any at-
tribute subset𝐶 ⊂ 𝐴 from the distribution of the fingerprints com-
posed of the candidate attributes 𝐴.

We denote 𝑓 [𝑎] the value of the attribute 𝑎 for the fingerprint 𝑓 ,
and 𝑓 [𝑎] ≈𝑎 𝑔[𝑎] thematching between the value of the attribute𝑎
for the stored fingerprint 𝑓 and the submitted fingerprint 𝑔. It is
true only if 𝑓 [𝑎] matches with𝑔[𝑎], meaning that𝑔[𝑎] is deemed a
legitimate evolution of 𝑓 [𝑎]. Finally, we define the set of thematch-
ing functions of each candidate attribute as Φ = {≈𝑎 : 𝑎 ∈ 𝐴}.

We measure the sensitivity as the proportion of impersonated
users among a population of protected users, against the attacker
that knows the fingerprint distribution among them, using Algo-
rithm 2.The illustrative sensitivity measure ismonotonic as demon-
strated in Appendix A.

The number of submissions is defined by the verifier according to
her rate limiting policy [17] (e.g., blocking the account after three
failed attempts).This limit could be set to 1 as a user cannotmistake
his browser fingerprint. However, a user can browse from a new or
a public browser, and taking preventive action on this sole motive
is unreasonable.

3.3.2 Usability Cost Measure. There is no off-the-shelf measure
of the usability cost of the attributes (e.g., the UserAgent HTTP
header [47] has no specified size, collection time, nor change fre-
quency). This cost also depends on the fingerprinted population
(e.g., mobile browsers generally have fewer plugins than desktop
browsers, resulting in smaller values for the list of plugins [5]). As



FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

Data: The attribute set 𝐶 , the limit on the number of
submissions 𝛽 , the mappingM from the users to
their browser fingerprint, the probability mass
function 𝑝 , and the set Φ of matching functions.

Result: The proportion of impersonated users.
𝑅 ← {}
𝐹𝐶 ← the fingerprint domain when considering 𝐶
𝑉 ← dictionary(𝑝, 𝐹𝐶 , 𝛽)
forall (𝑢, 𝑓 ∗) ∈ M do

𝑓 ← project(𝑓 ∗,𝐶)
if ∃𝑔 ∈ 𝑉 st. ∀𝑎 ∈ 𝐶, 𝑓 [𝑎] ≈𝑎 𝑔[𝑎] then

𝑅 ← 𝑅 ∪ {𝑢}
end

end
return card(𝑅)

card(𝑈 )
Algorithm 2: Illustrative sensitivity measure.

a result, we design an illustrative cost measure that combines three
sources of cost (i.e., space, time, and instability), which is computed
by the verifier on her fingerprint dataset. The fingerprint dataset
used to measure the costs is denoted 𝐷 = {(𝑏, 𝑓 ) : 𝑏 ∈ 𝐵, 𝑓 ∈ 𝐹𝐴},
with 𝐵 being the set of observed browsers.

Thememory cost is measured as the average fingerprint size.The
attribute values are stored and not compressed into a single hash,
which is necessary due to their evolution through time. We denote
mem(𝐶, 𝐷) the memory cost of the attribute set 𝐶 , and size(𝑥) the
size of the value 𝑥 . The memory cost is defined as

mem(𝐶, 𝐷) = 1
card(𝐷)

∑
(𝑏,𝑓 ) ∈𝐷

∑
𝑎∈𝐶

size(𝑓 [𝑎]) (1)

The temporal cost is measured as the average fingerprint col-
lection time, and takes into account the asynchronous collection
of some attributes. Although attributes can be collected asynchro-
nously, some require a non-negligible collection time (e.g., the dy-
namic attributes [38, 45]). We denote time(𝐶, 𝐷) the temporal cost
of the attribute set𝐶 . Let𝐴seq be the set of the sequential attributes,
and 𝐴async the set of the asynchronous attributes, so that we have
𝐶 = 𝐴seq ∪𝐴async. Let t(𝑏, 𝑓 [𝑎]) be the collection time of the at-
tribute 𝑎 for the fingerprint 𝑓 collected from the browser 𝑏. The
temporal cost is defined as

time(𝐶, 𝐷) = 1
card(𝐷)

∑
(𝑏,𝑓 ) ∈𝐷

max({t(𝑏, 𝑓 [𝑎]) : 𝑎 ∈ 𝐴async}

∪ {
∑

𝑠∈𝐴seq

t(𝑏, 𝑓 [𝑠])})
(2)

The instability cost is measured as the average number of chang-
ing attributes between two consecutive observations of the finger-
print of a browser. We denote ins(𝐶, 𝐷) the instability cost of the
attribute set 𝐶 . We denote C(𝐷) the non-empty set of the consec-
utive fingerprints coming from the same browser in the dataset 𝐷 ,
and 𝛿 (𝑥,𝑦) the Kronecker delta being 1 if 𝑥 equals 𝑦 and 0 other-
wise. The instability cost is defined as

ins(𝐶, 𝐷) = 1
card(C(𝐷))

∑
(𝑓 ,𝑔) ∈C(𝐷)

∑
𝑎∈𝐶

𝛿 (𝑓 [𝑎], 𝑔[𝑎]) (3)

The three dimensions of the cost are weighted by a three-dimen-
sional weight vector denoted 𝛾 = [𝛾1, 𝛾2, 𝛾3] such that the weights
are strictly positive numbers. The verifier tunes these weights ac-
cording to her needs (e.g., allowing fingerprints to be more un-
stable, but requiring a shorter collection time). She can do this
by defining an equivalence between the three dimensions (e.g.,
one millisecond of collection time is worth ten kilobytes of size),
and setting the weights so that these values amount to the same
quantity in the total cost. For a concrete example, we refer to Sec-
tion 4.2.3.

Finally, we denote cost(𝐶, 𝐷) the cost of the attribute set𝐶 given
the fingerprint dataset 𝐷 . The illustrative usability cost measure is
monotonic as demonstrated in Appendix A, and is formalized as

cost(𝐶, 𝐷) = 𝛾 · [mem(𝐶, 𝐷), time(𝐶, 𝐷), ins(𝐶, 𝐷)]⊺ (4)

4 EXPERIMENTAL VALIDATION
In this section, we describe the experiments that we perform to
validate our framework. We begin by presenting the fingerprint
dataset that is used, and describing how the usability cost and
the matching function are implemented. Then, we present the re-
sults of the attribute selection framework executed with different
parameters, and compare them with the results of the common
baselines.The experiments were performed on a desktop computer
with 32GB of RAM and 32 cores running at 2GHz.

4.1 Fingerprint Dataset
The fingerprint dataset used in this work is the same dataset as
the one studied by Andriamilanto et al. in [4, 5]. It was collected
from December 7, 2016, to June 7, 2017, during a real-life exper-
iment in which the authors integrated a fingerprinting probe to
two pages of one of the 15 most visited websites in France. We
refer to their studies [4, 5] that provide an in-depth analysis of
this dataset, a comprehensive description of the fingerprint collec-
tion, a precise description of the preprocessing steps that include
a cookie resynchronization process similar to [13], and an exhaus-
tive list of the attributes with their properties. In a nutshell, the pre-
processed dataset contains 5, 714, 738 entries (comprising identical
fingerprints for a given browser if interleaved18) and 4, 145, 408 fin-
gerprints (no identical fingerprint counted for the same browser),
that are collected from 1, 989, 366 browsers.The instability is evalu-
ated from 3, 725, 373 pairs of consecutive fingerprints, coming from
the 27.53% of browsers that have multiple entries. The fingerprints
are composed of 253 candidate attributes, of which 49 attributes
are completely correlated with another one [5], so that knowing
the value of the other attribute allows to completely infer their
value. Although these attributes are correlated, we cannot simply
remove them as the attributes present dissimilar costs that also de-
pend on the attributes that are already considered.

18A browser can present interleaved fingerprints [5] like 𝑎, 𝑏, then 𝑎 again. They
typically come from a switch between two environments, like a laptop to which an
external screen is plugged and unplugged. This browser has 3 entries, but only has 2
fingerprints (𝑎 and 𝑏) to avoid over counting. These interleaved fingerprints are held
when measuring the instability cost.



ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

Total Memory Time Instability Total Memory Time Instability
Cost dimension for the Attribute Selection Framework

100

101

102

103

104

Co
st

 o
f a

tt
ri

bu
te

 s
et

s 
(l

og
 s

ca
le

) ASF-1 ASF-3

Total Memory Time Instability Total Memory Time Instability
Cost dimension for the baselines

100

101

102

103

104

Co
st

 o
f a

tt
ri

bu
te

 s
et

s 
(l

og
 s

ca
le

) Entropy Conditional Entropy

Figure 4: Cost of the attribute sets found by the ASF with 1 explored path (ASF-1), the ASF with 3 explored paths (ASF-3), the
entropy, and the conditional entropy. The costs are in points, so that 10, 000 additional points increases the size of fingerprints
by 10 kilobytes, their collection time by 1 second, or the number of changing attributes between observations by 1 attribute, on
average. A solution exists for 9 of the 12 cases.The gray horizontal line is the cost when considering all the candidate attributes.

4.2 Instantiation of the Experiments
In this section, we present the instantiation of the parameters for
the experiments.We first describe how the verifier and the attacker
are instantiated by presenting the chosen user population, sensitiv-
ity thresholds, and number of submissions. Then, we detail the im-
plementation of the usability cost measure and the matching func-
tion between fingerprints, alongside the value of the parameters
or weights that they use.

4.2.1 Verifier Instantiation. On the verifier side, we simulate a user
population by randomly sampling 30, 000 browsers from the first
month of the experiment to represent a medium-sized website.The
observed fingerprint is considered as the fingerprint stored for the
user who owns the browser.We configure the resolution algorithm
to have 1 and 3 explored paths to compare the gain achieved by a
larger explored space. We call ASF-1 and ASF-3 our attribute selec-
tion method with respectively 1 and 3 explored paths. We consider
the set of sensitivity thresholds {0.001, 0.005, 0.015, 0.025}. Bonneau
et al. [11] defined the resistance against online attacks as a compro-
mise of 1% of accounts after a year when 10 guesses per day are
allowed. Hayashi et al [21] estimated that 0.001 is equivalent to a
random guess of four-digit. However, to the best of our knowledge,
no standard value exists. Hence, we make the choice of these val-
ues starting from 0.001 and going to 0.025 to obtain a range from
a strict security requirement to one that is less strict. We admit
that 0.025 (2.5%) is already high, but it is close to the proportion
of users that share the 10 most common passwords in previously
leaked datasets [60].

4.2.2 Attacker Instantiation. On the attacker side, an instance is
parameterized with the number of fingerprints 𝛽 that he can sub-
mit, and his knowledge over the fingerprint distribution. We con-
sider the strongest attacker of our attack model that knows the
fingerprint distribution among the user population.

We consider the set of number of submissions {1, 4, 16}. To the
best of our knowledge, no standard value exists. The choice of 1

Value Cost (pts) Memory (B) Time (s) Inst. (chgs)
Candidate 134,270 6,114 9.98 2.83
Max. cost 99,846 1,102 9.98 0.51
Avg. cost 8,794 26 0.87 1.13 10−2
Min. cost 1 1 0 0.00

Table 3: The cost of the 253 candidate attributes, together
with the maximum, the average, and the minimum cost of a
single attribute for each cost dimension.

is for a strict rate limiting policy that blocks the account on any
failure and asks the user to change his password. The choice of
4 is for a policy that would require a CAPTCHA after 3 failed at-
tempts, and would perform the blocking and password change af-
ter the fourth failed attempt. Finally, the choice of 16 is for a pol-
icy that would let more attempts before performing the blocking
and password change. The chosen values are close to the number
of submissions allowed into policies enforced in real life [17], and
the ones estimated as reasonable values against online guessing
attacks [10].

4.2.3 Implementation of the Usability Cost Measure. The imple-
mented usability cost function measures the memory in bytes (a
character per byte), the time in milliseconds, and the instability as
the average number of changing attributes between the consecu-
tive fingerprints.We configure the three-dimensionalweight vector
to the values 𝛾 = [1; 10; 10, 000] to have an equivalence between
10 kilobytes, 1 second, and 1 changing attribute on average, which
are all equal to 10, 000 points. Table 3 displays the cost of the 253
candidate attributes, together with the minimum, the average, and
the maximum cost of a single attribute for each cost dimension.

4.2.4 Implementation of the Matching Function. The implemented
matching function checks that the distance between the attribute



FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

values of the submitted fingerprint and the stored fingerprint is be-
low a threshold. Similarly to previous studies [13, 26, 59], we con-
sider a distance measure that depends on the type of the attribute.
The minimum edit distance [24] is used for the textual attributes,
the Jaccard distance [62] is used for the set attributes, the absolute
difference is used for the numerical attributes, and the reverse of
the Kronecker delta (i.e., 1 − 𝛿 (𝑥,𝑦)) is used for the categorical at-
tributes. The dynamic attributes (e.g., HTML5 canvas) are matched
identically (i.e., using a threshold of 1) as they serve the challenge-
response mechanism. More complex matching functions exist (e.g.,
based on rules and machine learning [59]). They can be integrated
to the framework as long as they are monotonic19.

The distance threshold for each attribute is set using Support
Vector Machines (SVM) [22] and the following methodology. First,
we split our dataset into 6 samples (one for each month) and ex-
tract the positive and negative classes. They respectively consist
into the consecutive fingerprints of a browser, and two randomly
picked fingerprints of different browsers. We assume that a user
spends at most one month between each connection, and other-
wise would accept to process a heavier fingerprint update process.
Then, for each attribute, we train an SVMmodel on the two classes
of each monthly sample, and extract the threshold from the result-
ing hyperplane. Finally, we compute the average of the 6 obtained
thresholds to get the distance threshold for each attribute.

4.2.5 Baselines. We compare our method with common attribute
selection methods. The entropy-based method [8, 23, 29, 35] con-
sists into picking the attributes of the highest entropy until reach-
ing an arbitrary number of attributes. The method based on the
conditional entropy [14] consists into iteratively picking the most
entropic attribute according to the attributes that are already cho-
sen, and re-evaluating the conditional entropy of the remaining
attributes at each step, until an arbitrary number of attributes is
reached. Instead of limiting to a given number of attributes, we
pick attributes until the obtained attribute set satisfies the sensi-
tivity threshold. For simplification, we call entropy and conditional
entropy the attribute selection methods that rely on these two met-
rics.

4.3 Attribute Selection Framework Results
In this section, we present the results obtained on the previously
presented dataset by processing theAttribute Selection Framework
on the instantiated attackers, and compare themwith the results of
the baselines.The results are obtained for the 12 cases consisting of
the Cartesian product between the values of the sensitivity thresh-
old 𝛼 and those of the number of submissions 𝛽 . We present here
the obtained results and discuss the attributes that are the most
selected by the framework. The exhaustive list of the selected at-
tributes is provided in Appendix C.

4.3.1 Key Results. The attribute sets found by the Attribute Selec-
tion Framework (ASF) generate fingerprints that are 12 to 1, 663
times smaller, 9 to 32, 330 times faster to collect, and with 4 to
30 times less changing attributes between two observations, com-
pared to the candidate attributes and on average. Compared to

19A matching function is monotonic if two fingerprints that match for an attribute
set𝐶 also match for any subset of𝐶 .

the attribute sets found by the baselines, the ones found by the
ASF-1 generate fingerprints that are up to 97 times smaller, are
collected up to 3, 361 times faster, and with up to 7.2 times less
changing attributes between two observations, on average. These
gains come with a higher computation cost, as the ASF-1 explores
more attribute sets by three orders of magnitude compared to the
baselines. However, the implemented attribute sets can be updated
rarely, and the usability gain is reflected on each authentication
performed by each user.

Increasing the number of explored paths by the ASF to three
does not significantly change the results. The attribute sets found
by the ASF-3 can have a lower usability cost, or a higher usability
cost due to local optimum (see Section 4.3.4). We show that even
when considering all of our candidate attributes, the strongest at-
tacker that is able to submit 4 fingerprints can impersonate 63 users
out of the 30, 000 users of our sample. If this attacker is able to sub-
mit 16 fingerprints, this number increases to 152 users.

4.3.2 Results of the Attribute Selection Framework. Figure 4 dis-
plays the cost of the attribute sets found by the ASFwith 1 explored
path (ASF-1), the ASF with 3 explored paths (ASF-3), the entropy,
and the conditional entropy. The costs are in points, so that 10, 000
additional points increase the size of fingerprints by 10 kilobytes,
their collection time by 1 second, or the number of changing at-
tributes between observations by 1 attribute, on average. There is
a solution for 9 out of the 12 cases. The cases without a solution
are discussed in Section 4.3.6.

Half of the attribute sets found using the ASF-1 generate fin-
gerprints that, on average, have a size lower than 34 bytes (less
than 522 bytes for all sets), are collected in less than 0.59ms (less
than 1.01 seconds for all sets), and have less than 0.02 changing
attributes between two observations (less than 0.07 attributes for
all sets). Compared to the candidate attributes and on average, the
generated fingerprints are 12 to 1, 663 times smaller, 9 to 32, 330
times faster to collect, and with 4 to 30 times less changing at-
tributes between two observations.

The difference in usability cost of the attribute sets found by the
ASF-3 and the ASF-1 is negligible. The attribute sets found by the
ASF-3 are as less costly as they are more costly than the attribute
sets found by the ASF-1. This results in the median additional cost
of each dimension being zero. The average resulting fingerprint is
from 198 bytes smaller to 30 bytes larger, takes from 3ms less to
collect to 0.3msmore, and has from 0.03 less changing attributes to
0.04more. Exploring more paths can counter-intuitively provide a
higher usability cost, due to the local optimum problem described
in Section 4.3.4. Indeed, when exploring more nodes, the followed
paths can diverge as we hold more temporary solutions, which can
be local optimum. The computation cost of increasing the number
of explored paths is not worth the expected gain in our experimen-
tal setup.

4.3.3 Comparison with the Baselines. The ASF-1 finds attribute
sets that consume less resources than the baselines in all the 9 cases
having a solution.The attribute sets found by the entropy consume
more resources than the attribute sets found by the ASF-1, with a
total cost from 1.8 to 14 times higher.The average generated finger-
print by the attribute sets chosen by the entropy, compared to the
attribute sets chosen by the ASF-1, is from 1.6 to 97 times larger,



ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

ASF-1 ASF-3 Entropy Conditional Entropy
Selection method

100

101

102

103

104

N
um

be
r 

of
 e

xp
lo

re
d 

at
tr

ib
ut

e 
se

ts

Figure 5: Number of explored attribute sets by the attribute
selection methods.

1 4 16
Number of submissions

10 4

10 3

10 2

10 1

100

Pr
op

or
ti

on
 o

f i
m

pe
rs

on
at

ed
 u

se
rs

= 0.001

= 0.005

Figure 6: Proportion of impersonated users among the
30, 000users, considering the candidate attributes, thematch-
ing function, and as a function of the number of submis-
sions. The sensitivity thresholds 𝛼 that have no solution for
some cases are displayed.

has a collection time that is from 1.5 to 1, 872 times higher, and has
from 1.5 to 7.2 times more changing attributes between the con-
secutive fingerprints. The attribute sets found by the conditional
entropy consume more resources than the attribute sets found by
the ASF-1, with a total cost from 1.3 to 15 times higher. The aver-
age generated fingerprint by the attribute sets chosen by the condi-
tional entropy, compared to the attribute sets chosen by the ASF-1,
is from 1.5 to 16 times larger, has a collection time that is from 1.3
to 3, 361 times higher, and has from 1.1 to 4.7 times more changing
attributes between the consecutive fingerprints.

4.3.4 Reasons for Sub-optimal Results. The sub-optimal solutions
that are found by the Attribute Selection Framework are due to
a problem of local optimum. At a given step, the most efficient
attribute sets 𝑆 can have supersets of higher cost than the supersets
of another 𝑆 ′.The supersets of 𝑆 are then explored, whereas the less
costly supersets here would have been the supersets of 𝑆 ′.

4.3.5 Computation Cost. The attribute selection framework has a
higher computation cost. Indeed, at each stage of the exploration,
the ASF explores up to 𝑛 − 1 attribute sets20 for each temporary
solution, with𝑛 being the number of candidate attributes.The ASF-
1 explores more attribute sets by three orders of magnitude com-
pared to the baselines. However, this is an upper bound as the base-
lines require preprocessing. Indeed, the attributes has to be sorted
by their entropy or by their conditional entropy.

Figure 5 displays the number of attribute sets explored by the
attribute selection methods. The number of explored attribute sets
by the ASF-1 goes from 748 to 5, 522. The ASF-3 explores approx-
imately 3 times more attribute sets than the ASF-1: from 1, 730
to 16, 659 explored attribute sets. The number of attribute sets ex-
plored by the entropy ranges from 3 to 217, and from 3 to 10 for the

20The set of the explored attribute sets can overlap as two temporary solutions can
have a common superset.

conditional entropy. However, the conditional entropy method re-
quires to sort the 𝑛 attributes by their conditional entropy, which
requires

∑𝑛
𝑖=0 𝑛 − 𝑖 steps. This difference of explored attribute sets

between the entropy and the conditional entropy is explained by
the latter avoiding selecting correlated attributes.

4.3.6 Lower Bound on the Impersonated Users. The obtained sensi-
tivity against our instantiated attackers ranges from the minimum
sensitivity when considering the candidate attributes, as displayed
in Figure 6, to the maximum sensitivity of 1.0when considering no
attribute at all. All the possible attribute sets have their sensitivity
comprised between these two extremum. The instantiated attack-
ers that are allowed 4 submissions are able to impersonate 63 users
out of the 30, 000 users, which exceeds the sensitivity threshold of
0.001. When allowed 16 submissions, the number of impersonated
users increases to 152, which exceeds the sensitivity threshold of
0.005 that corresponds to 150 users.

4.3.7 Selected Attributes. We have 9 combinations of sensitivity
threshold and number of submissions that show a solution. The
attribute selection framework is executed twice with two number
of explored paths (1 and 3), hence we have 18 cases for which it
found a solution. We discuss below the six most selected attributes
that are selected in more than five cases. We remark that they con-
cern hardware and software components that we expect to not be
correlated. Indeed, we do not expect a strong link to exist between
the browser window size, the number of logical processor cores,
the graphics driver, the browser version, a scheme drawn in the
browser, and the type of network connection. The results about
the attributes that we present here come from their analysis by
Andriamilanto et al. [5].

The innerHeight property of the window JavaScript object pro-
vides the height of the visible part of the browser window. It is
selected in all the cases, and is the first attribute to be selected dur-
ing the exploration as it provides the highest efficiency. Indeed,
its usability cost is low with, on average, a size of 3.02 bytes, a



FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

collection time of 0.14ms, and a change between 9.38% of the ob-
servations. Moreover, it is the fifth most distinctive attribute of our
dataset, with an entropy of 8.53 bits and the most common value
being shared by 2.70% of the fingerprints.

The hardwareConcurrency property that is collected from the
navigator JavaScript object provides the number of logical pro-
cessor cores of the device that runs the browser. This attribute is
selected in 11 cases, and shows a high efficiency mostly due to
the very low usability cost. Indeed, it shows, on average, a size of
1 byte (the value is majoritarily a single digit), a collection time of
0.17ms, and a change between 0.11% of the observations. However,
it shows a lower distinctiveness, with an entropy of 1.88 bits and
the most common value being shared by 39.64% of the fingerprints.

The UNMASKED_RENDERER_WEBGL property of an initialized We-
bGL Context provides a textual description of the graphics driver.
This attribute is selected in 8 cases and shows a high efficiency. In-
deed, it has, on average, a size of 24.51 bytes, a collection time of
0.27ms, and a change between 0.91% of the observations. Although
the most common value is shared by 28.27% of the fingerprints, it
still provides an entropy of 5.89 bits.

The appVersion property of the navigator JavaScript object
provides the version of the browser. This attribute is selected in
7 cases. It shows, on average, a size of 101.76 bytes, a collection
time of 0.13ms, and a change between 1.57% of the observations.
Although the most common value is shared by 22.61% of the fin-
gerprints, it still provides an entropy of 7.52 bits.

The HTML5 canvas inspired by the AmIUnique study [33] is
selected in 7 cases, mainly due to its high distinctiveness. It has,
on average, a size of 63.98 bytes, a collection time of 71.17ms, and
a change between 1.36% of the observations. It shows an entropy
of 7.76 bits, and the most common value is shared by 7.09% of the
fingerprints.

The connection.type property of the navigator JavaScript ob-
ject provides the type of the network connection in use by the
browser. This attribute is selected in 6 cases, mainly due to its
low usability cost. It provides, on average, a size of 1.47 bytes, a
collection time of 0.21ms, and a change between 0.80% of the ob-
servations. It shows a lower distinctiveness compared to the other
attributes, with an entropy of 0.61 bits and the most common value
being shared by 89.52% of the fingerprints.

5 DISCUSSION
5.1 Usage of Multiple Browsers
Users tend to browse websites using multiple devices, typically a
desktop and amobile device21. FPSelect can be extended to support
the usage of multiple browsers by the users, by changing the sensi-
tivity measure so that a user is impersonated if one of his browsers
is spoofed by the attacker. Using a monotonic matching function
(e.g., the matching function described in Section 4.2.4), this sen-
sitivity measure is also monotonic22. Boda et al. [9] showed that
some attributes provide information about the underlying system

21https://www.javelinstrategy.com/coverage-area/how-online-vs-mobile-shifting-
browser-vs-app
22Indeed, if the fingerprint of one of the user’s browsers matches with the fingerprint
of the attacker for an attribute set𝐶 , it also matches for any subset of𝐶 .

(e.g., the list of fonts) and can be used for cross-browser finger-
printing. Although such technique is interesting in an authentica-
tion context (e.g., recognizing the common attributes between the
browsers of a user), this is out of the scope of our work.

5.2 Update of Attributes through Time
The verifier can keep the attributes of the fingerprinting probe up
to date by re-executing the framework. To do so, she performs a
fingerprint collection on a browser population close to the popula-
tion of her web platform, using a wide-surface of fingerprinting at-
tributes. We emphasize that the usability requirement is less strict
for such experiment (e.g, the fingerprints can take more time or
more space). Web technologies do not evolve frequently. For ex-
ample, Andriamilanto et al. [5] analyze the dataset that we study,
and do not observe any significant change over the 6 months of
the experiment. Moreover, changing the attribute set requires to
update the fingerprint that is stored for each user. Hence, the ver-
ifier can – and should – perform this process rarely (e.g., once per
semester or per year). Finally, the verifier can monitor the distinc-
tiveness and the stability of the stored fingerprints, and perform
an update if a drastic change is detected (e.g., an attribute becomes
highly unstable [30] or homogeneous).

5.3 Attribute Sets in a Per-Browser Basis
The attribute set can also be selected in a per-browser basis, but
FPSelect is not designed for this. However, it is possible to execute
FPSelect on subpopulations of browsers (e.g., mobile and desktop
browsers) to obtain an attribute set per subpopulation. To do so,
the whole framework is simply executed on the subpopulation of
browsers. The sensitivity measure then considers that the attacker
focus on this subpopulation (i.e., he knows the fingerprint distribu-
tion of this subpopulation).The costs are also specificallymeasured
on the subpopulation (e.g., the list of plugins is most of the time
empty for the mobile browsers [5, 53], hence is less costly for this
subpopulation).The thresholds of the subsets have to be set so that
the overall sensitivity threshold is satisfied. The simplest way is to
set the thresholds of the subsets to the overall threshold. Indeed, if
less than 𝑥 percent of the users of each subset are impersonated,
less than 𝑥 percent of the overall users are.

6 RELATEDWORKS
6.1 Attribute Selection
Previous works identify the need to reduce the included attributes,
and used variousmethods to perform the selection.Most of the pre-
viousworks either remove the attributes of the lowest entropy [59],
or leverage greedy algorithms that iteratively pick the attributes
of the highest weight (typically the entropy) until a threshold (typ-
ically on the number of attributes) is reached [8, 23, 29, 35, 56].
These methods do not consider the correlation that can occur be-
tween the attributes. Indeed, two attributes can separately have a
high entropy, but, when taken together, provide a lower entropy
than another attribute set. Table 1 displays a concrete example of
such case.

To the best of our knowledge, two works take the correlation
into account in their attribute selection method. Fifield and Egel-
man [14] weigh the attributes by the conditional entropy given

https://www.javelinstrategy.com/coverage-area/how-online-vs-mobile-shifting-browser-vs-app
https://www.javelinstrategy.com/coverage-area/how-online-vs-mobile-shifting-browser-vs-app


ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

the attributes that are already picked. The conditional entropy of
each attribute is updated on each turn, and picking two correlated
attributes is therefore avoided. Pugliese et al. [44] propose two at-
tribute selection methods that iteratively pick the attribute that
maximizes a criterion, given the attributes that are already chosen.
The first criterion to maximize is the number of users for which
their fingerprints are not shared by any other user and stay iden-
tical between at least two observations. The second criterion to
maximize is the duration for which these fingerprints stay identi-
cal. These two works only maximize one criterion, and ignore the
usability cost of the attributes. On the contrary, our framework
performs a trade-off between the sensitivity that is tied to the dis-
tinctiveness, and the usability cost that has a stability dimension.

Gulyás et al. [18] study the problem of finding the set of 𝑠-items
(e.g., fonts, plugins, applications) for which to check the presence
on a device, to reduce the number of devices that agree on the
same value. They prove that this problem is NP-hard, and propose
greedy algorithms to find the closest approximation in polynomial
time. Our problem is different because we do not choose the items
to check the presence for, that consist of binary value, but on se-
lecting the categorical attributes to collect. Moreover, they seek
to reduce the number of collected attributes, and to minimize the
users that agree on the same values. We seek to reduce the sensi-
tivity against dictionary attackers, and to minimize the usability
cost that comprises various aspects. Indeed, the attributes are not
equal regarding their usability cost (e.g., some are collected almost
instantly whereas others take seconds).

Flood and Karlsson [16] evaluate every possible attribute set ob-
tained from their 13 attributes to find the set that provides the best
classification results. An exhaustive search is feasible on a small
set of candidate attributes, but unrealistic on a larger set. Indeed,
there are 2𝑛 possible attribute sets for 𝑛 candidate attributes.

6.2 Evaluation of the Sensitivity of an
Attribute Set

Alaca et al. [3] rate fingerprinting attributes given properties that
include the resource usage and the resistance to spoofing. They
also model attackers according to different strategies and knowl-
edge. The rating of the attributes mainly comes from estimations,
and most of their spoof-resistant attributes are outside our bound-
aries on attribute choice. Indeed, we only consider the attributes
collected via HTTP headers or JavaScript properties, that are acces-
sible without permission and do not directly concern the user (e.g.,
IP address, geolocation) but rather his web browsing platform.

Laperdrix et al. [31] propose a challenge-response mechanism
based on dynamic attributes which values also depend on provided
instructions (e.g., the HTML5 canvas depends on drawing instruc-
tions). They identify various attacks that can be executed on an au-
thentication mechanism that includes browser fingerprinting. The
attacks notably include the submission of the most common finger-
prints. We also consider the attacker that submits the most com-
mon fingerprints following his knowledge, and consider in addi-
tion a matching function to measure his reach in a realistic context
(i.e., a fingerprint can spoof others that are similar).

7 CONCLUSION
In this study, we propose FPSelect, a framework for a verifier to tai-
lor his fingerprinting probe by picking the attribute set that limits
the sensitivity against an instantiated attacker, and reduces the us-
ability cost. We formalize the Attribute Selection Problem that the
verifier has to solve, show that it is a generalization of the Knap-
sack Problem, model the potential solutions as a lattice of attribute
sets, and propose a greedy exploration algorithm to find a solution.
We evaluate FPSelect on a real-life browser fingerprint dataset, and
compare it with common attribute selection methods that rely on
the entropy and the conditional entropy. The attribute sets found
by FPSelect generate fingerprints that are 12 to 1, 663 times smaller,
9 to 32, 330 times faster to collect, and with 4 to 30 times less chang-
ing attributes between two observations, compared to the candi-
date attributes and on average. Compared to the baselines, the at-
tribute sets found by FPSelect generate fingerprints that are up to
97 times smaller, are collected up to 3, 361 times faster, and with
up to 7.2 times less changing attributes between two observations,
on average.

In future works, we will first extend our attack model with the
attackers that possess targeted knowledge about users (e.g., the
value of fixed attributes, components of their web environment).
Indeed, the attacker that manages to infer the fingerprint distribu-
tion of small subpopulations (e.g., grouped by the operating sys-
tem), and to link users to a subpopulation, would obtain a more
skewed distributionwhich could help him to extend his reach.More-
over, the attacker that has the knowledge of previous challenges of
dynamic attributes and the associated responses, can try to forge
the response to an unseen challenge using other methods (e.g., im-
age processing for the canvas). The study of the ability of these at-
tackers, and the measure of the sensitivity against them, are let as
future works. Second, the behavior of our framework on other ex-
perimental setups (browser population, dataset, measures, param-
eters) would be interesting, and is let as future works.

ACKNOWLEDGMENTS
We want to thank the anonymous reviewers for their usefull re-
views; Benoît Baudry, David Gross-Amblard, Joris Duguépéroux,
and Louis Béziaud for their valuable comments; and Alexandre
Garel for his work on the experiment.

REFERENCES
[1] Mustafa Gunes Can Acar. 2017. Online Tracking Technologies and Web Privacy.

https://lirias.kuleuven.be/retrieve/454271
[2] Nasser Mohammed Al-Fannah. 2017. One Leak will sink a Ship: WebRTC IP Ad-

dress Leaks. In International Carnahan Conference on Security Technology (ICCST)
(2017-10). 1–5. https://doi.org/10.1109/CCST.2017.8167801

[3] Furkan Alaca and P. C. van Oorschot. 2016. Device Fingerprinting for Aug-
menting Web Authentication: Classification and Analysis of Methods. In An-
nual Conference on Computer Security Applications (ACSAC) (2016-10). 289–301.
https://doi.org/10.1145/2991079.2991091

[4] NampoinaAndriamilanto, TristanAllard, andGaëtan LeGuelvouit. 2021. “Guess
Who?” Large-Scale Data-Centric Study of the Adequacy of Browser Fingerprints
for Web Authentication. In Innovative Mobile and Internet Services in Ubiqui-
tous Computing (IMIS) (2021), Leonard Barolli, Aneta Poniszewska-Maranda, and
Hyunhee Park (Eds.). 161–172. https://doi.org/10.1007/978-3-030-50399-4_16

[5] Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre
Garel. 2020. A Large-scale Empirical Analysis of Browser Fingerprints Proper-
ties for Web Authentication. (2020). https://arxiv.org/abs/2006.09511 under
reviews.

https://lirias.kuleuven.be/retrieve/454271
https://doi.org/10.1109/CCST.2017.8167801
https://doi.org/10.1145/2991079.2991091
https://doi.org/10.1007/978-3-030-50399-4_16
https://arxiv.org/abs/2006.09511


FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

[6] Mohammadreza Ashouri, HoomanAsadian, and Christian Hammer. 2018. Large-
Scale Analysis of Sophisticated Web Browser Fingerprinting Scripts. (2018).
https://hal.archives-ouvertes.fr/hal-01811691

[7] Peter Baumann, Stefan Katzenbeisser, Martin Stopczynski, and Erik Tews. 2016.
Disguised Chromium Browser: Robust Browser, Flash and Canvas Fingerprint-
ing Protection. In ACM Workshop on Privacy in the Electronic Society (WPES)
(2016). 37–46. https://doi.org/10.1145/2994620.2994621

[8] C. Blakemore, J. Redol, and M. Correia. 2016. Fingerprinting for Web Applica-
tions: From Devices to Related Groups. In IEEE Trustcom/BigDataSE/ISPA (2016-
08). 144–151. https://doi.org/10.1109/TrustCom.2016.0057

[9] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. 2012.
User Tracking on the Web via Cross-browser Fingerprinting. In Nordic Confer-
ence on Information Security Technology for Applications (NordSec) (2012). 31–46.
https://doi.org/10.1007/978-3-642-29615-4_4

[10] Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Cor-
pus of 70 Million Passwords. In IEEE Symposium on Security and Privacy (S&P)
(2012-05). 538–552. https://doi.org/10.1109/SP.2012.49

[11] J. Bonneau, C. Herley, P. C. v Oorschot, and F. Stajano. 2012. TheQuest to Replace
Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In IEEE Symposium on Security and Privacy (S&P) (2012-05). 553–567.
https://doi.org/10.1109/SP.2012.44

[12] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. 2016. Pi-
casso: Lightweight Device Class Fingerprinting for Web Clients. In Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM) (2016-10-24).
93–102. https://doi.org/10.1145/2994459.2994467

[13] Peter Eckersley. 2010. How Unique is Your Web Browser?. In International Con-
ference on Privacy Enhancing Technologies (PETS) (2010). 1–18. https://doi.org/
10.1007/978-3-642-14527-8_1

[14] David Fifield and Serge Egelman. 2015. Fingerprinting Web Users Through
Font Metrics. In Financial Cryptography and Data Security (FC) (2015), Rainer
Böhme and Tatsuaki Okamoto (Eds.). 107–124. https://doi.org/10.1007/978-3-
662-47854-7_7

[15] David Fifield and Mia Gil Epner. 2016. Fingerprintability of WebRTC. (2016).
https://arxiv.org/abs/1605.08805

[16] Erik Flood and Joel Karlsson. 2012. Browser Fingerprinting. https://hdl.handle.
net/20.500.12380/163728

[17] Maximilian Golla, Theodor Schnitzler, and Markus Dürmuth. 2018. “Will Any
Password Do?” Exploring Rate-Limiting on the Web. In USENIX Symposium on
Usable Privacy and Security (SOUPS) (2018-08-12).

[18] Gábor György Gulyás, Gergely Acs, and Claude Castelluccia. 2016. Near-
Optimal Fingerprinting with Constraints. 2016, 4 (2016), 470–487. https:
//doi.org/10.1515/popets-2016-0051

[19] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in
the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale. In The Web Conference (TheWebConf) (2018-04). https://doi.org/10.1145/
3178876.3186097

[20] Weili Han, Zhigong Li, Minyue Ni, Guofei Gu, and Wenyuan Xu. 2018. Shadow
Attacks Based on Password Reuses: A Quantitative Empirical Analysis. 15, 2
(2018), 309–320. https://doi.org/10.1109/TDSC.2016.2568187

[21] Eiji Hayashi, Rachna Dhamija, Nicolas Christin, and Adrian Perrig. 2008. Use
your Illusion: Secure Authentication Usable Anywhere. In Symposium on Usable
Privacy and Security (SOUPS) (2008). 35–45. https://doi.org/10.1145/1408664.
1408670

[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. 1998. Support Vector Machines. 13, 4 (1998), 18–28. https://doi.
org/10.1109/5254.708428

[23] Peter Hraška. 2018. Browser Fingerprinting. https://virpo.sk/browser-
fingerprinting-hraska-diploma-thesis.pdf

[24] Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2
ed.). Pearson. 23–27 pages.

[25] Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2Nd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 325–326 pages.

[26] Nian-hua KANG, Ming-zhi CHEN, Ying-yan FENG, Wei-ning LIN, Chuan-bao
LIU, and Guang-yao LI. 2017. Zero-Permission Mobile Device Identification
Based on the Similarity of Browser Fingerprints. In International Conference on
Computer Science and Technology (CST) (2017-07-31). https://doi.org/10.12783/
dtcse/cst2017/12531

[27] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting. In
Network and Distributed System Security Symposium (NDSS) (2020). https://doi.
org/10.14722/ndss.2020.24383

[28] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems.
Springer-Verlag. https://www.springer.com/gp/book/9783540402862

[29] Amin Faiz Khademi, Mohammad Zulkernine, and Komminist Weldemariam.
2015. An Empirical Evaluation of Web-Based Fingerprinting. 32, 4 (2015), 46–52.
https://doi.org/10.1109/MS.2015.77

[30] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling.
2016. Fingerprinting Mobile Devices Using Personalized Configurations. 2016,
1 (2016). https://doi.org/10.1515/popets-2015-0027

[31] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. 2019.
Morellian Analysis for Browsers: Making Web Authentication Stronger With
Canvas Fingerprinting. In Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA) (2019-06). 43–66. https://doi.org/10.1007/978-3-030-22038-
9_3

[32] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2015. Mitigating
Browser Fingerprint Tracking: Multi-level Reconfiguration and Diversification.
In IEEE/ACM International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS) (2015-05). 98–108. https://doi.org/10.1109/
SEAMS.2015.18

[33] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.
In IEEE Symposium on Security and Privacy (S&P) (2016-05). 878–894. https:
//doi.org/10.1109/SP.2016.57

[34] Paul Marks. 2020. Dark Web’s Doppelgängers Aim to Dupe Antifraud Systems.
63, 2 (2020), 16–18. https://doi.org/10.1145/3374878

[35] João Pedro Figueiredo Correia Rijo Mendes. 2011. noPhish – Anti-phishing
System using Browser Fingerprinting. https://estagios.dei.uc.pt/cursos/mei/
relatorios-de-estagio/?id=279

[36] Grzergor Milka. 2018. Anatomy of Account Takeover. In Enigma (2018). https:
//www.usenix.org/node/208154

[37] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting Information in JavaScript Implementations. In Proceedings of W2SP
(2011-05), Helen Wang (Ed.), Vol. 2.

[38] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. , 12 pages. https://www.ieee-security.org/TC/W2SP/2012/papers/
w2sp12-final4.pdf

[39] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, EdgarWeippl, and FCWien. 2013. Fast and Reliable Browser Iden-
tification with Javascript Engine Fingerprinting. InWeb 2.0Workshop on Security
and Privacy (W2SP) (2013), Vol. 5.

[40] Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich. 2015. Hardware Fingerprint-
ing Using HTML5. (2015). https://arxiv.org/abs/1503.01408

[41] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web Pup-
pets: Abusing Web Browsers for Persistent and Stealthy Computation. In Net-
work and Distributed System Security Symposium (NDSS) (2019-02). https:
//doi.org/10.14722/ndss.2019.23070

[42] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris Ioan-
nidis. 2015. Two-factor Authentication: Is the World Ready? Quantifying 2FA
Adoption. In European Workshop on System Security (EuroSec) (2015-04-21). 1–7.
https://doi.org/10.1145/2751323.2751327

[43] Davy Preuveneers and Wouter Joosen. 2015. SmartAuth: Dynamic Context Fin-
gerprinting for Continuous User Authentication. In Annual ACM Symposium on
Applied Computing (SAC) (2015). 2185–2191. https://doi.org/10.1145/2695664.
2695908

[44] Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. 2020.
Long-Term Observation on Browser Fingerprinting: Users’ Trackability and Per-
spective. 2020, 2 (2020), 558–577. https://doi.org/10.2478/popets-2020-0041

[45] Jordan S. Queiroz and Eduardo L. Feitosa. 2019. A Web Browser Fingerprinting
Method Based on the Web Audio API. (2019). https://doi.org/10.1093/comjnl/
bxy146

[46] Florentin Rochet, Kyriakos Efthymiadis, François Koeune, and Olivier Pereira.
2019. SWAT: Seamless Web Authentication Technology. In The Web Conference
(TheWebConf) (2019-05). 1579–1589. https://doi.org/10.1145/3308558.3313637

[47] Julian F. Reschke Roy T. Fielding. 2014. RFC 7231 - Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. https://tools.ietf.org/html/rfc7231#section-
5.5.3 accessed 2020-06-30.

[48] T. Saito, K. Yasuda, T. Ishikawa, R. Hosoi, K. Takahashi, Y. Chen, and M. Za-
lasiński. 2016. Estimating CPU Features by Browser Fingerprinting. In Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiquitous Com-
puting (IMIS) (2016-07). 587–592. https://doi.org/10.1109/IMIS.2016.108

[49] Takamichi Saito, Koki Yasuda, Kazuhisa Tanabe, and Kazushi Takahashi. 2017.
Web Browser Tampering: Inspecting CPU Features from Side-Channel Informa-
tion. In International Conference on Broadband and Wireless Computing, Commu-
nication and Applications (BWCCA) (2017-11-08). 392–403. https://doi.org/10.
1007/978-3-319-69811-3_36

[50] Rachel Schutt and Cathy O’Neil. 2014. Doing data science: Straight talk from the
frontline. O’Reilly. 181–182 pages.

[51] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
Browser Extensions via Web Accessible Resources. In ACM Conference on Data
and Application Security and Privacy (CODASPY) (2017). 329–336. https://doi.
org/10.1145/3029806.3029820

[52] Jesus Solano, Luis Camacho, Alejandro Correa, Claudio Deiro, Javier Vargas, and
Martín Ochoa. 2019. Risk-Based Static Authentication inWeb Applications with

https://hal.archives-ouvertes.fr/hal-01811691
https://doi.org/10.1145/2994620.2994621
https://doi.org/10.1109/TrustCom.2016.0057
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1145/2994459.2994467
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1007/978-3-662-47854-7_7
https://arxiv.org/abs/1605.08805
https://hdl.handle.net/20.500.12380/163728
https://hdl.handle.net/20.500.12380/163728
https://doi.org/10.1515/popets-2016-0051
https://doi.org/10.1515/popets-2016-0051
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.1109/TDSC.2016.2568187
https://doi.org/10.1145/1408664.1408670
https://doi.org/10.1145/1408664.1408670
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
https://virpo.sk/browser-fingerprinting-hraska-diploma-thesis.pdf
https://virpo.sk/browser-fingerprinting-hraska-diploma-thesis.pdf
https://doi.org/10.12783/dtcse/cst2017/12531
https://doi.org/10.12783/dtcse/cst2017/12531
https://doi.org/10.14722/ndss.2020.24383
https://doi.org/10.14722/ndss.2020.24383
https://www.springer.com/gp/book/9783540402862
https://doi.org/10.1109/MS.2015.77
https://doi.org/10.1515/popets-2015-0027
https://doi.org/10.1007/978-3-030-22038-9_3
https://doi.org/10.1007/978-3-030-22038-9_3
https://doi.org/10.1109/SEAMS.2015.18
https://doi.org/10.1109/SEAMS.2015.18
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1145/3374878
https://estagios.dei.uc.pt/cursos/mei/relatorios-de-estagio/?id=279
https://estagios.dei.uc.pt/cursos/mei/relatorios-de-estagio/?id=279
https://www.usenix.org/node/208154
https://www.usenix.org/node/208154
https://www.ieee-security.org/TC/W2SP/2012/papers/w2sp12-final4.pdf
https://www.ieee-security.org/TC/W2SP/2012/papers/w2sp12-final4.pdf
https://arxiv.org/abs/1503.01408
https://doi.org/10.14722/ndss.2019.23070
https://doi.org/10.14722/ndss.2019.23070
https://doi.org/10.1145/2751323.2751327
https://doi.org/10.1145/2695664.2695908
https://doi.org/10.1145/2695664.2695908
https://doi.org/10.2478/popets-2020-0041
https://doi.org/10.1093/comjnl/bxy146
https://doi.org/10.1093/comjnl/bxy146
https://doi.org/10.1145/3308558.3313637
https://tools.ietf.org/html/rfc7231#section-5.5.3
https://tools.ietf.org/html/rfc7231#section-5.5.3
https://doi.org/10.1109/IMIS.2016.108
https://doi.org/10.1007/978-3-319-69811-3_36
https://doi.org/10.1007/978-3-319-69811-3_36
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1145/3029806.3029820


ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

Behavioral Biometrics and Session Context Analytics. In Applied Cryptography
and Network Security Workshops (ACNS) (2019), Jianying Zhou, Robert Deng,
Zhou Li, Suryadipta Majumdar, Weizhi Meng, LingyuWang, and Kehuan Zhang
(Eds.). 3–23. https://doi.org/10.1007/978-3-030-29729-9_1

[53] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2015. Mobile Device Fin-
gerprinting Considered Harmful for Risk-based Authentication. In European
Workshop on System Security (EuroSec) (2015). 6:1–6:6. https://doi.org/10.1145/
2751323.2751329

[54] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2017. Leveraging Battery
Usage from Mobile Devices for Active Authentication. (2017). https://doi.org/
10.1155/2017/1367064

[55] Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Finger-
printability of Browser Extensions. In IEEE Symposium on Security & Privacy
(S&P) (2017-05-24). 941–956. https://doi.org/10.1109/SP.2017.18

[56] Kazuhisa Tanabe, Ryohei Hosoya, and Takamichi Saito. 2018. Combining Fea-
tures in Browser Fingerprinting. In Advances on Broadband and Wireless Com-
puting, Communication and Applications (BWCCA) (2018), Leonard Barolli, Fang-
Yie Leu, Tomoya Enokido, and Hsing-Chung Chen (Eds.). 671–681. https:
//doi.org/10.1007/978-3-030-02613-4_60

[57] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi,
Yarik Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Mar-
golis, Vern Paxson, and Elie Bursztein. 2017. Data Breaches, Phishing, or Mal-
ware? Understanding the Risks of Stolen Credentials. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2017-10-30). 1421–1434.
https://doi.org/10.1145/3133956.3134067

[58] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl.
2013. SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting.
In International Conference on Availability, Reliability and Security (ARES) (2013-
09). 255–261. https://doi.org/10.1109/ARES.2013.33

[59] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking Browser Fingerprint Evolutions. In IEEE Symposium on
Security and Privacy (S&P) (2018-05-21). 728–741. https://doi.org/10.1109/sp.
2018.00008

[60] DingWang, Zijian Zhang, PingWang, Jeff Yan, and Xinyi Huang. 2016. Targeted
Online Password Guessing: An Underestimated Threat. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2016-10-24). 1242–1254.
https://doi.org/10.1145/2976749.2978339

[61] MattWeir, Sudhir Aggarwal, Breno deMedeiros, and Bill Glodek. 2009. Password
Cracking Using Probabilistic Context-Free Grammars. In IEEE Symposium on
Security and Privacy (S&P) (2009-05). 391–405. https://doi.org/10.1109/SP.2009.8

[62] Wenjia Wu, Jianan Wu, Yanhao Wang, Zhen Ling, and Ming Yang. 2016. Effi-
cient Fingerprinting-Based Android Device Identification with Zero-Permission
Identifiers. 4 (2016), 8073–8083. https://doi.org/10.1109/ACCESS.2016.2626395

A DEMONSTRATIONS OF MEASURES
MONOTONICITY

A.1 Monotonicity of the Illustrative Sensitivity
TheoRem A.1. Considering the same limit on the number of sub-

missions 𝛽 , the mapping from users to their browser fingerprintM,
the probability mass function 𝑝 , and the set of matching functions Φ.
For any couple of attribute sets 𝐶𝑘 and 𝐶𝑙 so that 𝐶𝑘 ⊂ 𝐶𝑙 , we have
s(𝐶𝑘 ) ≥ s(𝐶𝑙 ) when measuring the sensitivity using Algorithm 2.

PRoof SKetch. We focus on a fingerprint 𝑓 ∈ 𝐹𝐶𝑙 when consid-
ering the attribute set𝐶𝑙 , and the dictionary𝑉 used to attack 𝑓 . We
project 𝑓 to the attribute set 𝐶𝑘 to obtain the fingerprint 𝑔 ∈ 𝐹𝐶𝑘 .
This fingerprint 𝑔 can be attacked using the dictionary 𝑊 com-
posed of the fingerprints of 𝑉 projected to 𝐶𝑘 . As the matching
function works in an attribute basis, if a fingerprint ℎ ∈ 𝑉 matches
with 𝑓 , we have 𝑓 [𝑎] ≈𝑎 ℎ[𝑎] : ∀𝑎 ∈ 𝐶𝑙 that is true. As𝐶𝑘 is a sub-
set of𝐶𝑙 , we also have 𝑓 [𝑎] ≈𝑎 ℎ[𝑎] : ∀𝑎 ∈ 𝐶𝑘 that is true. The pro-
jection of ℎ to 𝐶𝑘 then spoofs 𝑔, hence the fingerprints spoofed
when considering 𝐶𝑙 are also spoofed when considering 𝐶𝑘 . The
sensitivity when considering 𝐶𝑘 is therefore at least equal to that
when considering 𝐶𝑙 .

When projecting the fingerprints of the attack dictionary to the
attribute set𝐶𝑘 , some of them can come to the same fingerprint. In

which case, more fingerprints can be added to the dictionary un-
til reaching the submission limit 𝛽 . This can lead to more spoofed
fingerprints and impersonated users. The sensitivity when consid-
ering 𝐶𝑘 can be higher than when considering 𝐶𝑙 .

For any attribute sets 𝐶𝑘 and 𝐶𝑙 so that 𝐶𝑘 ⊂ 𝐶𝑙 , we then have
s(𝐶𝑘 ) ≥ s(𝐶𝑙 ) when measuring the sensitivity using Algorithm 2.

□

A.2 Monotonicity of the Illustrative Usability
Cost

TheoRem A.2. For a given fingerprint dataset 𝐷 , and attribute
sets 𝐶𝑘 and 𝐶𝑙 so that 𝐶𝑘 ⊂ 𝐶𝑙 , we have cost(𝐶𝑘 , 𝐷) < cost(𝐶𝑙 , 𝐷).

PRoof. We consider 𝐶𝑖 and 𝐶 𝑗 two attribute sets, so that they
differ by the attribute 𝑎𝑑 such that𝐶 𝑗 = 𝐶𝑖 ∪ {𝑎𝑑 }. We consider the
fingerprint dataset 𝐷 from which the measures are obtained.

The memory cost of𝐶 𝑗 is strictly greater than the memory cost
of 𝐶𝑖 . As 𝐶 𝑗 and 𝐶𝑖 differ by the attribute 𝑎𝑑 , we have

mem(𝐶 𝑗 , 𝐷) = mem(𝐶𝑖 , 𝐷) +
∑
(𝑏,𝑓 ) ∈𝐷 size(𝑓 [𝑎𝑑 ])

card(𝐷) (5)

The size of the attribute 𝑎𝑑 is strictly positive, hence we have the
inequality mem(𝐶 𝑗 , 𝐷) > mem(𝐶𝑖 , 𝐷).

The temporal cost of 𝐶 𝑗 is greater than or equal to the tempo-
ral cost of 𝐶𝑖 , as adding an attribute cannot reduce the collection
time. The attribute 𝑎𝑑 can be sequential or asynchronous, and can
take identical or more time than the current longest attribute of𝐶𝑖 .
Below, we explore all these cases. (1) If 𝑎𝑑 is asynchronous, we
have the following cases: (a) 𝑎𝑑 takes less time than the longest
asynchronous attribute 𝑎𝑙 , then the collection time is either that
of 𝑎𝑙 or the total of the sequential attributes, so 𝑎𝑑 does not influ-
ence the collection time and time(𝐶 𝑗 , 𝐷) = time(𝐶𝑖 , 𝐷), (b)𝑎𝑑 takes
more time than the longest asynchronous attribute, but less or
equal to the total of the sequential attributes, then the maximum is
the total of the sequential attributes and time(𝐶 𝑗 , 𝐷) = time(𝐶𝑖 , 𝐷),
(c)𝑎𝑑 takesmore time than both the longest asynchronous attribute
and the total of the sequential attributes, then the collection time
is that of 𝑎𝑑 , and time(𝐶 𝑗 , 𝐷) > time(𝐶𝑖 , 𝐷). (2) If 𝑎𝑑 is sequen-
tial, we have the following cases: (a) 𝑎𝑑 increases the total collec-
tion time of the sequential attributes, but the total stays below that
of the longest asynchronous attribute, then we have the equality
time(𝐶 𝑗 , 𝐷) = time(𝐶𝑖 , 𝐷), (b)𝑎𝑑 increases the total collection time
of the sequential attributes, which is then higher than that of the
longest asynchronous attribute, then time(𝐶 𝑗 , 𝐷) > time(𝐶𝑖 , 𝐷)23.
These are all the possible cases, hence time(𝐶 𝑗 , 𝐷) ≥ time(𝐶𝑖 , 𝐷).

The instability cost of 𝐶 𝑗 is greater than or equal to that of 𝐶𝑖 ,
as either 𝑎𝑑 is completely stable and ins(𝐶 𝑗 , 𝐷) = ins(𝐶𝑖 , 𝐷), oth-
erwise 𝑎𝑑 is unstable and ins(𝐶 𝑗 , 𝐷) > ins(𝐶𝑖 , 𝐷). We then have
ins(𝐶 𝑗 , 𝐷) ≥ ins(𝐶𝑖 , 𝐷).

As the cost weight vector𝛾 is composed of strictly positive num-
bers, the cost of 𝐶 𝑗 is therefore strictly higher than the cost of 𝐶𝑖
23Either the total collection time of the sequential attributes of 𝐶𝑖 does not exceed
that of its longest asynchronous attribute, and adding 𝑎𝑑 results in the total col-
lection time of the sequential attributes surpassing that of the longest asynchro-
nous attribute. In this case, time(𝐶 𝑗 , 𝐷) > time(𝐶𝑖 , 𝐷) . Either the total collection
time of the sequential attributes of 𝐶𝑖 exceeds that of its longest asynchronous at-
tribute. As 𝑎𝑑 increases the total collection time of the sequential attributes, we have
time(𝐶 𝑗 , 𝐷) > time(𝐶𝑖 , 𝐷) .

https://doi.org/10.1007/978-3-030-29729-9_1
https://doi.org/10.1145/2751323.2751329
https://doi.org/10.1145/2751323.2751329
https://doi.org/10.1155/2017/1367064
https://doi.org/10.1155/2017/1367064
https://doi.org/10.1109/SP.2017.18
https://doi.org/10.1007/978-3-030-02613-4_60
https://doi.org/10.1007/978-3-030-02613-4_60
https://doi.org/10.1145/3133956.3134067
https://doi.org/10.1109/ARES.2013.33
https://doi.org/10.1109/sp.2018.00008
https://doi.org/10.1109/sp.2018.00008
https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1109/SP.2009.8
https://doi.org/10.1109/ACCESS.2016.2626395


FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms ACSAC 2020, December 7–11, 2020, Austin, USA

500 1000 1500 2000 2500 3000 3500
Average collection time in milliseconds

0

1

2

3

4

5

6

7
N

um
be

r 
of

 a
tt

ri
bu

te
s 

(a
m

on
g 

23
)

Figure 7: Distribution of the average collection time among
the 23 asynchronous attributes.

due to the memory cost. Recursively, it holds for any 𝐶𝑘 and 𝐶𝑙
so that 𝐶𝑘 ⊂ 𝐶𝑙 , hence the cost is monotonic. For any fingerprint
dataset 𝐷 , and attribute sets 𝐶𝑘 and 𝐶𝑙 so that 𝐶𝑘 ⊂ 𝐶𝑙 , we have
cost(𝐶𝑘 , 𝐷) < cost(𝐶𝑙 , 𝐷). □

B USABILITY COST OF ATTRIBUTES
In this appendix, we discuss the distribution of the three usability
cost dimensions among the attributes. For more insight into the
fingerprints and the attributes of the dataset of this study, we refer
to the study of Andriamilanto et al. [5] which includes an analysis
of this dataset.

Figure 7 presents the distribution of the average collection time
among the 23 asynchronous attributes. These attributes comprise
the extension detection methods that require to wait for the web
page to render [51, 55], heavy processes like the WebRTC finger-
printing method [2, 15] that creates dummy connections, and the
audio fingerprinting methods [45]. Figure 8 presents the distribu-
tion of the average collection time among the 173 sequential at-
tributes. Only 9 attributes take more than 25 milliseconds on aver-
age to collect, among which we retrieve the six canvases [33, 38],
the list of WebGL extensions, the list of available streaming codecs,
and the string representation of a specific date. The sequential and
asynchronous attributes do not sum to the 253 candidate attributes.
We do not show the HTTP headers that are collected instantly,
which have a null collection time. Moreover, we only display the
collection time of the attributes source of the extracted attributes,
as they have the same collection time. Indeed, the source attributes
are the one that are actually collected, and the extracted attributes
are inferred from them.

Figure 9 presents the distribution of the average storage size
among the 253 attributes. We have 29 attributes that weigh more
than 50 bytes on average.They are the list attributes (e.g., list of plu-
gins), the verbose properties (e.g., the UserAgent), and the string
representation of the hashed canvases.

Figure 10 presents the distribution of the average instability of
the 253 attributes. Only 16 attributes have more than 0.05 changes
per observation on average. They comprise the attributes related

to the screen resolution, the size of the browser window, the can-
vases, the experimental WebRTC fingerprinting method, the list
of speech synthesis voices, the Cache-Control HTTP header, and
the attribute that stores the HTTP headers that are not stored in a
dedicated attribute.

C ATTRIBUTES SELECTED BY THE
ATTRIBUTE SELECTION FRAMEWORK

In this appendix, we provide the list of the 21 attributes that are
selected by the attribute selection framework. Table 4 lists the se-
lected attributes. We name them according to the same nomencla-
ture as [5].We denoteN the navigator object, S the screen object,
W the window object, and A an initialized Audio Context. Finally,
we denoteWG an initializedWebGL Context, andWM the WG.MAX_
prefix. To get the WG.[…].UNMASKED_RENDERER_WEBGL at-
tribute, we first get an identifier named id from the unmasked
property of the getExtension('WEBGL_debug_renderer_info')
object, and then get the actual value by calling getParameter(id).
We use square brackets so that A.[B, C] means that the property
is accessed through A.B or A.C.



ACSAC 2020, December 7–11, 2020, Austin, USA Andriamilanto, et al.

0 100 200 300 400 500 600
Average collection time in milliseconds

0

20

40

60

80

100

120

140

160

N
um

be
r 

of
 a

tt
ri

bu
te

s 
(a

m
on

g 
17

3)

Figure 8: Distribution of the average col-
lection time among the 173 sequential at-
tributes.

0 200 400 600 800 1000 1200
Average storage size in bytes

0

50

100

150

200

N
um

be
r 

of
 a

tt
ri

bu
te

s
Figure 9: Distribution of the average
storage size among the attributes.

0.0 0.1 0.2 0.3 0.4 0.5
Instability in average number of changing attributes

0

50

100

150

200

N
um

be
r 

of
 a

tt
ri

bu
te

s

Figure 10: Distribution of the average in-
stability among the attributes.

Selected Attribute

𝑘 = 1 𝑘 = 3

𝛽 = 1 𝛽 = 4 𝛽 = 16 𝛽 = 1 𝛽 = 4 𝛽 = 16

𝛼
=
0.
00
1

𝛼
=
0.
00
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

𝛼
=
0.
00
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

𝛼
=
0.
00
1

𝛼
=
0.
00
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

𝛼
=
0.
00
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

𝛼
=
0.
01
5

𝛼
=
0.
02
5

W.innerHeight • • • • • • • • • • • • • • • • • •
N.hardwareConcurrency • • • • • • • • • • •
WG.[…].UNMASKED_RENDERER_WEBGL • • • • • • • •
N.appVersion • • • • • • •
HTML5 canvas inspired by AmIUnique (PNG) • • • • • • •
N.connection.type • • • • • •
N.plugins • • • • •
[[N, W].doNotTrack, N.msDoNotTrack] • • • •
Accept-Encoding HTTP header • • •
Height of first bounding box • •
Origin of a created div • •
W.ontouchstart support • •
W.[performance, console].jsHeapSizeLimit •
S.width •
W.openDatabase support •
WM.COMBINED_TEXTURE_IMAGE_UNITS •
N.platform •
HTML5 canvas similar to Morellian (PNG) •
Accept-Language HTTP header •
WM.CUBE_MAP_TEXTURE_SIZE •
A.sampleRate •

Table 4:The attributes selected by the attribute selection framework for each experimentation setup. We denote 𝑘 the number
of explored paths, 𝛽 the number of fingerprint submissions, and 𝛼 the sensitivity threshold.


	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Authentication Mechanism
	2.2 Attack Model
	2.3 Attribute Selection Problem
	2.4 Illustration of the Attribute Selection Problem

	3 Attribute Selection Framework
	3.1 Similarity to the Knapsack Problem
	3.2 Lattice Model and Resolution Algorithm
	3.3 Illustrative Measures of Sensitivity and Usability Cost

	4 Experimental Validation
	4.1 Fingerprint Dataset
	4.2 Instantiation of the Experiments
	4.3 Attribute Selection Framework Results

	5 Discussion
	5.1 Usage of Multiple Browsers
	5.2 Update of Attributes through Time
	5.3 Attribute Sets in a Per-Browser Basis

	6 Related Works
	6.1 Attribute Selection
	6.2 Evaluation of the Sensitivity of an Attribute Set

	7 Conclusion
	Acknowledgments
	References
	A Demonstrations of Measures Monotonicity
	A.1 Monotonicity of the Illustrative Sensitivity
	A.2 Monotonicity of the Illustrative Usability Cost

	B Usability Cost of Attributes
	C Attributes Selected by the Attribute Selection Framework

