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Abstract

Dead-time compensators (DTCs) are a family of classical controllers derived from the Smith Predictor
(SP). Their main characteristic is that they explicitly employ the model of the open-loop process to
feedback a predicted value of the non-delayed system, thus obtaining compensation of the delay. Such
a perfect compensation is not achievable in the case of time-varying delays. In this paper, we address
stability analysis of a DTC structure in this situation, in addition to considering saturating actuators
and disturbances of limited energy. Specific challenges related to the DTC closed loop are taken into
account in the developed theoretical conditions, which are expressed in terms of linear matrix inequalities
(LMIs) by using an adequate Lyapunov-Krasovskii functional (LKF) and generalized sector conditions.
Furthermore, a new approach for the definition of the set of initial conditions in an augmented space
in conjunction with the LKF is presented. Besides theoretical innovations, practical discussion about
the relation between the tuning of DTC controllers and robustness for this class of systems is presented
through numerical examples. An experimental application on a neonatal incubator prototype is carried
out to emphasize the effectiveness of the results.

1 Introduction

Time delay, which appears in many industrial processes, is a challenging issue in the process control area since
the transport delay can lead the system to undesired oscillatory closed-loop response or even instability [26].
According to [8, 36], the stability analysis and the robust control of time-delay systems are also of theoretical
importance since it belongs to the wide class of infinite-dimensional systems (in the continuous-time case),
which are not so easy to handle theoretically.

Besides time delay, another major topic in control systems is actuator saturation [44, 52]. Most variables
in industrial processes work near or at their maximum and minimum limits in order to optimize production.
The nonlinear nature of the closed loop can also lead to instability. Therefore, such constraints must be
taken into account during closed-loop stability analysis prior to the controller practical implementation. The
presence of isolated nonlinearities, as the actuator saturation, is yet an active topic of research, see e.g.
[48, 49, 17]. The problem of sensor saturation has also recently been studied in [56, 41].

Regarding time delays, the so-called dead-time compensators (DTCs) have been widely studied over
the years due to their ability to improve the performance and robustness of the closed-loop system for
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processes with constant input or output time delay [26]. The first DTC was proposed in [42], also known
in the literature as the Smith predictor (SP). Since then, several extensions have been proposed to deal
with stable, unstable, and integrative processes, and to improve robustness, disturbance rejection, and
measurement noise attenuation [27]. Some recent works intended to improve these characteristics can be
found in [9, 22, 33, 46, 47], among others. Other solutions not involving the classical DTCs have also been
proposed in recent years, for example in [43] the adaptive control of a class of time-varying nonlinear systems
with constant delay is investigated. The robust control of nonlinear systems with constant delays was also
explored in [50]. In [32], tuning rules for low-order controllers (including proportional-integral-derivative
(PID) controllers) are revisited and the robust control of time-delayed single-input single-output (SISO) is
addressed.

Nonetheless, due to the growing importance of Networked Control Systems (NCSs) [51, 15, 54] the problem
of time-varying delays started to gain more importance in the recent years when compared to the case of
constant delays (even if the constant delay is uncertain). To cite a few works, the stability of structures for
the control of time-varying delay systems has recently been studied along the problems of linear time-varying
(LTV) processes [35], nonlinear systems [34], non-minimum phase systems [10], and mismatched disturbances
[14]. In this case, the traditional DTC will no longer be able to provide perfect compensation of the delay,
that is, will not be able to eliminate the delay from the feedback loop, which is its main characteristic. Due
to this problem, the work in [28] develops stability analysis of the Filtered Smith Predictor (FSP) for the
case of time-varying delay processes in order to evaluate the FSP ability to deal with this case. However,
saturating actuators, which is common in practical applications and places an undesired nonlinearity in the
closed-loop system, has not been considered in the aforementioned work.

Concerning the classical DTCs, in [26], it is argued that one strategy to take the saturation into account
in DTC structures is to include the model of the saturation at the input of the model of the plant. As
highlighted by the authors, the fundamental property of the Smith Predictor still holds in this situation: the
dead time is eliminated from the main feedback loop in the case of no modelling errors and no disturbances.
However, time-varying delays are not considered and a formal stability analysis with the characterization of a
set of initial conditions and/or disturbances for which the internal stability of the closed loop is preserved
is not presented by the authors. In [20], a practical solution for the control of systems with constant delay
and input saturation is presented based on the design of a DTC for the linear system plus the addition of
anti-windup to deal with saturation aspects. Nevertheless, a procedure for estimating the region of attraction
in the case of uncertain (or time-varying) delays is not presented either.

In the current paper, we revisit the DTC structure to provide theoretical conditions, expressed through
linear matrix inequalities (LMIs), for the stability analysis of the closed loop considering systems with both
input saturation and output time-varying delays. One of the objectives is to characterize the region of
admissible initial conditions for which the closed-loop stability is ensured despite the presence of saturating
input. To do this, we consider an adequate Lyapunov-Krasovskii functional and generalized sector conditions.
Additionally, we aim at using the analysis to relate the tuning of DTCs with both robustness and performance
of the closed loop. Although seminal works addressing the joint problems of time delays and input saturation
can be found in the literature [45, 7, 13, 11], fundamental differences can be cited: i) All of them consider
state delays, while we consider output delays, a different kind of delay present in numerous applications, as in
chemical reaction processes. ii) All of them are in continuous-time since they do not deal with model-based
controls. On the other hand, we propose the use of DTCs, which are high-order predictive controllers
employing the model of the process and that have been frequently used in practical applications in the last
decades. Since all strategies employing the plant model for the control of time-delay systems need to be, in
practice, digitally implemented, we work in the discrete-time domain which is more realistic in this case.
iii) Neither of them deals with time-varying delays, which appear in many real applications and are more
difficult to treat in a theoretical point of view. Additionally, in this paper, we propose a new methodology
for the estimate on the region of stability along with Lyapunov-Krasovskii functionals which can lead to
less conservative results than those commonly used (see Sections 2.3 and 4.1 of the paper). Such a novel
methodology can be applied in any work using LKFs for the stability of discrete-time time-delayed systems
and is, therefore, a technical contribution not necessarily linked with the DTC controller.
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The paper is organized as follows. Section 2 describes the complete system under consideration, the
involved contributions, and states the mathematical problem we intend to solve. Section 3 is dedicated to
some preliminary results. In Section 4, the main results are presented. Section 5 brings simulation results of
the DTC, followed by the experimental application in Section 6. Finally, concluding remarks are brought in
the last section of the paper.

Notation. For a matrix Y ∈ Rn×m, Y> ∈ Rm×n means its transpose, Y(i) denotes its ith row, while for

v ∈ Rm, v(i) denotes its ith component. For matrices W = W> ∈ Rn×n and Z = Z> ∈ Rn×n, W � Z means
that W − Z is positive definite. Likewise, W � Z means that W − Z is positive semi-definite. S+

n stands for
the set of positive definite matrices. I and 0 denote identity and null matrices of appropriate dimensions,
although their dimensions can be explicitly presented whenever relevant. In this case, 0n×m represents the

n×m null matrix, while In represents n× n identity matrix. The ? in

[
A B
? C

]
denotes symmetric blocks,

that is ? = B>. Finally, for matrices W and Z, diag(W,Z) corresponds to the block-diagonal matrix.

2 Problem formulation

2.1 General view

In the paper, we consider a discrete-time system controlled by a DTC and subject to input saturation. The
structure is depicted in Fig. 1 constituted by a plant P, a reference filter F0, subsystem S and a filter
Fr. In this paper, we consider the regulatory case, with reference r = 0, and the DTC controller from [46].
However, the developed LMIs can easily be applied to other variations of the Filtered Smith Predictor. The
complete system under consideration issued from the connection of the plant, the system S, and the filter Fr
is described as follows:

P ,

{
xpk+1

= Apxpk + Bp (uk + qk)

yk = Cpxpk−dk

(1)

S ,

{
xsk+1

= Asxsk + Bsuk

ysk = Csxsk
(2)

Fr ,
{
xfk+1

= Afxfk + Bfyk

yfk = Cfxfk + Dfyk
(3)

where xpk ∈ Rnp is the plant state vector, xsk ∈ Rns is the state of S, and xfk ∈ Rnf is the state of Fr.
yk ∈ R is the measured output and uk ∈ R is the control input, while ysk ∈ R and yfk ∈ R are the outputs of
S and Fr, respectively. Matrices Ap, Bp, and Cp are all constant, known, and of appropriate dimensions.
The plant output delay is bounded and time-varying such as 1 ≤ dm ≤ dk ≤ dM, and can arbitrarily vary
within such limits. Integers dm and dM are known, whereas the value of dk at each sampling time is unknown.
Additionally, the plant is subject to an input disturbance qk which supposedly belongs to the following set of
functions

Q = {qk : R+ 7→ R;

∞∑
k=0

q>k qk ≤ δ}, (4)

where δ > 0 represents a bound on the signal energy of qk. The connection between P, S and Fr is realized
by

uk = sat(vk)

vk = −ysk − yfk
(5)
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Figure 1: DTC controller implementation scheme.

where the saturation is classically defined as

sat(vk) = sign(vk)×min{|vk|,u},u> 0, (6)

u being the level of saturation.
Then, the closed-loop system (1), (2), (3) and (5) reads:

xk+1 = Axk + Adxk−dk + Bsat(vk) + Bqqk

vk = Kxk + Kdxk−dk
xk = φk, k ∈ [−dM, 0]

yk = Cxk−dk

(7)

with

A =

Ap 0 0
0 As 0
0 0 Af

 ,Ad =

 0 0 0
0 0 0

BfCp 0 0

 ,
 K

Kd

C

 =

 0 −Cs −Cf
−DfCp 0 0

Cp 0 0

 , [B Bq
]

=

Bp Bp
Bs 0
0 0

 ,
where xk =

[
x>pk x>sk x>fk

]> ∈ Rn, n = np +ns +nf , and φk is the initial condition at the interval [−dM, 0].

Remark 1. There is no loss of generality in considering the regulatory case, since industrial processes can
be modelled around an operation point, and a simple change of variables can transform the desired output in
zero.

2.2 Notes on the controller design

The controller matrices As, Bs, Cs, Af , Bf , Cf and Df have been designed following the steps in [46], that is,
to establish a desired response of the nominal linear system. In other words, the controller design considered
that the time delay dk was constant dk = dn, and the non-occurrence of the saturation. Since the objective
of this paper is not the controller design, but rather closed-loop stability analysis, we just briefly review some
properties of the controller. The computation of S depends on the process model with nominal delay dn

1,
the desired 2np − 1 closed-loop poles, and the robustness filter Fr. Furthermore, S provides perfect delay

1The nominal delay dn is defined as the rounding to the nearest integer of (dm + dM)/2.
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compensation for the nominal case, that is, nominal delay and no input saturation. The robustness filter Fr
should be designed to guarantee an internally stable implementation structure (Af and As must be Schur
stable matrices), to make the equivalent controller have integral action, and to establish a desired compromise
between robustness and disturbance rejection.

The state matrix Af can be defined as Af = ρInp+1, where 0 < ρ < 1 is the robustness filter tuning
parameter. In the linear time-invariant (LTI) case, by setting higher values of ρ, one can increase the
robustness of the system to modelling uncertainties, while smaller values of ρ speedup the disturbance
rejection response. More details on the design and tuning of DTC structures for LTI systems can be found in
its vast literature [28, 33].

Remark 2. In DTC structures, the choice of ρ is essential, being its most important tuning parameter.
Also, although ρ designates the robustness filter Fr poles, its value directly influences almost all of the other
controller matrices (As, Cs, Bf , Cf , Df ), which hampers the development of LMI based stabilization of the
whole system due to the difficulty to deal with nonlinearities. This will be subject of a succeeding work.

2.3 More details on the formulation and contributions

Although the open-loop process (1) has output delay, the closed-loop system representation (7) is in the
form of a state-delayed discrete-time system with control saturation. Many works can be cited regarding
the continuous counterpart of this kind of system [3, 2, 39]. Fewer are dedicated to the discrete-time case,
however one can cite [1], [24], and most recently [5], which deals with the linear parameter varying (LPV)
case. Besides dealing with the LPV case, it is important to highlight other differences from the formulation
in this work. First of all, the control law in [5] does not deal with the NCS case where the delay appears in
the plant output rather than in the plant state. Furthermore, the formulation proposed in [5] implements
a control law that assumes knowledge of the full history of the plant state, that is the extended state

xpk =
[
x>pk x>pk−1

· · · x>pk−dM

]>
, and its closed-loop representation does not contain the term Kdxk−dk

since it would require knowledge of the value dk at each sampling time. This is not the case in this work
since the actual implemented control law only requires knowledge/measurement of the output yk, and thus
the control vk in (7) is just the equivalent system for analysis.

It is also interesting to comment that, although works in this area usually employ Lyapunov-Krasovskii
functionals, [5] uses the approach of augmented Lyapunov. As highlighted by the authors therein, the main
drawback of the works based in the Lyapunov-Krasovskii approach is that all of them characterize the region
of attraction based on the norm of the sequence of initial conditions, which often leads to conservative
estimates. In order to deal with this problem, in [5] the estimate on the region of attraction is characterized
in an augmented space, which is convenient by means of the use of the augmented functional approach.

One of the theoretical innovation in this work comes from a mix between the ideas above. When dealing
with DTC structures, it is necessary to keep in mind the problem of high order dimensions of the closed loop,
which increases proportionally to the nominal delay dn and the plant order np. The total order of the closed
loop (7) is given by n = np + ns + nf , with nf = np + 1, ns = nf + dn, resulting in n = 3np + dn + 2. As
DTCs are usually applied to control systems with big delays (where conventional controllers such as PID and
feedback gains alone are not as effective), the LMI conditions should, ideally, have a low number of decision
variables to avoid tractability problems due to the high dimensionality of (7). Due to that, the augmented
functional approach of [5] is not practical and can lead to high numerical complexity. On the other hand,
differently from the works based on Lyapunov-Krasoviskii functionals, we define the initial conditions in an
augmented space, avoiding the conservatism linked with the norm of the sequence approach therein.

On the practical side, we apply the developed conditions to link the DTC tuning variable ρ with the
system robustness. The specific challenges related to the DTC closed loop are taken into account in the
developed theoretical conditions, and the relation between the tuning of DTCs and the robustness of the
closed loop is established. To the best of the authors’ knowledge, no work in the literature of DTC has done
that for the case of both time-varying delays and saturation. The experimental application considering both
these conditions is also unprecedented.
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2.4 Problem statement

The central objective with respect to system (7) can then be summarized as follows:

Problem 1. Given a process model defined by Ap, Bp, Cp and the nominal delay dn, the controller matrices
As, Bs, Cs, Af , Bf , and Cf , provide LMI-based stability analysis in the case of simultaneous output
time-varying delays and control saturation. More specifically, one aims at providing adequate conditions to
estimate:

i ) The size of sets of guaranteed asymptotic stability for the closed loop.

ii ) The energy bound on the external disturbance belonging to the set Q.

iii ) Lower and upper bounds on the time-varying delay.

Then, by means of numerical examples, one aims at using the solution to Problem 1 to relate the DTC
tuning parameter ρ to items (i), (ii) and (iii).

3 Preliminary Results

In general, the stability of time-delayed systems can be tackled by using either delay-independent or delay-
dependent conditions [8]. The latter case (in which bounds on the delay are explicitly considered) is adopted
in this work. The problem of providing stability guarantees for systems with delayed states can be solved by
choosing an appropriate Lyapunov functional Vk and its consequent manipulation, which can lead to more
or less conservative results. In recent years, many works have been dedicated to the construction of such
Lyapunov functionals. All these methods are relying on an appropriate choice of a Lyapunov Krasovskii
functional (LKF), and the way to upper bound some sums. Recently, many researchers have been dedicated
to the goal of decreasing the conservatism inherent of these upper-bounds by discovering new inequalities.
For more details, see the works of [53, 40, 21, 38, 16, 55, 37]. However, in this paper, we choose to use the
classical Jensen’s inequality [57], which in combination with the use of Finsler’s Lemma and the reciprocally
convex approach [30] can potentially yield a good compromise between numerical complexity and the level
of conservatism of the developed condition, as it will be shown later. Although the use of more complex
inequalities could be interesting, it will be done in the future.

3.1 Auxiliary lemmas

In the development of our conditions, we apply Finsler’s Lemma [4], the discrete-time version of the Jensen’s
inequality, taken from [57, 16], and the reciprocally convex approach [30, 36], stated in the following three
Lemmas.

Lemma 1. [4] Consider γ ∈ Rn, Υ = Υ> ∈ Rn×n, and Γ ∈ Rm×n. The following facts are equivalent:

i ) γ>Υγ < 0, ∀γ such that Γγ = 0, γ 6= 0.

ii ) Γ⊥
>

ΥΓ⊥ ≺ 0, where ΓΓ⊥ = 0.

iii ) ∃J ∈ Rn×m such that Υ + JΓ + Γ>J> ≺ 0.

Lemma 2. [57, 16] For integers a < b, a function f : Z[a, b] → Rn and a matrix R � 0, the following
inequality holds

b∑
k=a

f>k Rfk ≥
1

l

(
b∑

k=a

f>k

)
R

(
b∑

k=a

fk

)
, (8)

where l = b− a+ 1 denotes the length of interval [a, b] in Z.
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Lemma 3. [30, 36] For given positive integers n, m, a scalar α ∈ (0, 1), a matrix R1 in S+
n and two matrices

W1, W2 in Rn×m. Define, for all vector ζ ∈ Rm, the function Θ(α,R) given by:

Θ(α,R1) =
1

α
ζ>W>1 R1W1ζ +

1

1− αζ
>W>2 R1W2ζ.

If there exists U12 ∈ Rn×n such that

[
R1 U12

? R1

]
� 0, then the following inequality holds

min
α∈(0,1)

Θ(α,R) ≥
[
W1ζ
W2ζ

]> [
R1 U12

? R1

] [
W1ζ
W2ζ

]
.

3.2 Stability in the unsaturated case

We initially develop results for the unsaturated case (i.e. uk = vk) with no disturbance (qk = 0). This is an
important step in order to check if the trade-off between the numerical complexity of the condition and the
obtained results is well balanced. Especially, the ideal scenario for analysis of DTCs is to obtain conditions
that have fewer decision variables and work well with higher delays. Also, some of the content of the proof
in this section will be used in the main results in section 4. The developed conditions will be tested in a
benchmark example from the literature.

The simplified version of (7) by taking into account the connection uk = vk, and qk = 0, is given by:{
xk+1 = Axk + Adxk−dk
xk = φk, k ∈ [−dM, 0]

(9)

where 1 ≤ dm ≤ dk ≤ dM, xk ∈ Rn, φk is the initial condition at the interval [−dM, 0], A = A + BK, and
Ad = Ad + BKd. The system (9) has the same format of those studied in [38, 25], for example. The following
theorem establishes a sufficient condition to prove stability of system (9).

Theorem 1. Consider d∆ = dM − dm, and assume the existence of matrices Q, R, U, R1, U1 in S+
n , and

matrix U12 in Rn×n such that:

T=

[
R1 U12

? R1

]
� 0, Γ⊥

>
ΥΓ⊥ ≺ 0 (10)

where Γ⊥ =

[
A 0 0 Ad

I4n

]
and

Υ =


Υ11 Υ12 0 0 0
? Υ22 R 0 0
? ? Υ33 U12 R1 −U12

? ? ? −U1 − R1 R1 −U>12

? ? ? ? Υ55

 ,
with

Υ11 = Q + Rd2
m + R1d

2
∆,

Υ12 = −Rd2
m − R1d

2
∆,

Υ22 = Rd2
m − R + R1d

2
∆ −Q + U,

Υ33 = U1 − R1 − R−U,

Υ55 = U12 + U>12 − 2R1.

Then system (9) is asymptotically stable for any time-varying delay dm ≤ dk ≤ dM.
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Proof. Consider the following Lyapunov-Krasovskii functional from [8], which is the discrete-time counterpart
of the functional used for continuous-time systems in [6]:

Vk = VQk
+ VRk

+ VUk
+ VU1k

+ VR1k
(11)

with

VQk
= x>k Qxk,

VRk
= dm

−1∑
m=−dm

k−1∑
j=k+m

η>j Rηj ,

VUk
=

k−1∑
j=k−dm

x>j Uxj ,

VU1k
=

k−dm−1∑
j=k−dM

x>j U1xj ,

VR1k
= d∆

−dm−1∑
m=−dM

k−1∑
j=k+m

η>j R1ηj ,

where ηj = xj+1 − xj and Q,U,R,U1, and R1 are matrices in S+
n . Evaluating ∆Vk = Vk+1 −Vk along the

trajectories of (9), one gets

∆VQk
= x>k+1Qxk+1 − x>k Qxk (12)

∆VRk
= d2

mη
>
k Rηk − dm

k−1∑
j=k−dm

η>j Rηj (13)

∆VUk
= x>k Uxk − x>k−dmUxk−dm (14)

∆VU1k
= x>k−dmU1xk−dm − x>k−dM

U1xk−dM
(15)

∆VR1k
= d2

∆

η>k R1ηk −
k−dm−1∑
j=k−dM

η>j R1ηj

d∆

 (16)

By applying Lemma 2 to the summation term in the right-hand side of equation (13) we obtain the bound

∆VRk
≤

 xk+1

xk
xk−dm

> Rd2
m −Rd2

m 0
? Rd2

m − R R
? ? −R

 xk+1

xk
xk−dm

 . (17)

To deal with the summation term in (16), first note that it can be split in two parts, one gathering terms in
the interval k − dk to k − dm − 1 and the second between k − dM and k − dk − 1. Then, apply Lemma 2 to
get d∆

∑k−dm−1
j=k−dk η>j R1ηj ≥ H1 and d∆

∑k−dk−1
j=k−dM

η>j R1ηj ≥ H2, where

H1 =
d∆

dk − dm
(
x>k−dm − x>k−dk

)
R1 (xk−dm − xk−dk) ,

H2 =
d∆

dM − dk
(
x>k−dk − x>k−dM

)
R1 (xk−dk − xk−dM

) .

Consider then Lemma 3 with Θ(α,R1) = H1 + H2, α = dk−dm
d∆

, ζk =
[
x>k−dm x>k−dM

x>k−dk
]>

, W1 =[
I 0 −I

]
, W2 =

[
0 −I I

]
to obtain H1 + H2 ≥ χ>k Tχk, where

χk =

[
xk−dm − xk−dk
xk−dk − xk−dM

]
, and T =

[
R1 U12

? R1

]
� 0,
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for some full matrix U12, leading to:

∆VR1k
≤ d2

∆

(
x>k+1 − x>k

)
R1 (xk+1 − xk)− χ>k Tχk. (18)

Adding (12), (14), (15), (17), and (18), and considering vector γk =
[
x>k+1 x>k x>k−dm x>k−dM

x>k−dk
]>

,

we obtain the bound ∆Vk ≤ γ>k Υγk, ∀γ such that Γγ = 0, γ 6= 0, with Γ =
[
−I A 0 0 Ad

]
. Thus,

by guaranteeing that γ>k Υγk < 0, we ensure that ∆Vk < 0 and the asymptotically stability of system (9).

By application of Lemma 1, this holds if Γ⊥
>

ΥΓ⊥ ≺ 0, where Γ⊥ is a basis for the null space of Γ, thus
completing the proof of Theorem 1.

Remark 3. The condition in Theorem 1 could also be obtained by means of the equivalent form (iii) of
Lemma 1. However, this would lead to an increase of 5n2 in the total number of decision variables. In fact,
the use of (iii) is more advantageous in case of controller synthesis, due to the flexibility to choose special
forms for the Lagrange multiplier J.

3.3 Benchmark test of Theorem 1

In order to understand the level of conservatism of the conditions in Theorem 1, an example usually employed
in the literature is recovered. Consider system (9) with:

A =

[
0.8 0.0
0.05 0.9

]
, Ad =

[
−0.1 0.0
−0.2 −0.1

]
Table 1 shows the obtained results in comparison with others from the literature (see Table 1 in [29]).
Although there is a clear disadvantage in the results for lower bounds on the minimum delay dm ≤ 10, we
can see an interesting improvement as it becomes higher. As a matter of fact, the obtained results are very
close to the best obtained for delays with lower bound dm ≥ 25. Also, note that the numerical complexity
of the condition is much lower than that of most of the other approaches. This is very important since
DTCs are frequently applied to systems with big delay, and the order of the closed loop depends on it, with
n = 3np + dn + 2, as highlighted earlier in the paper. For comparison, for a process model with np = 2
and dn = 4, the number of variables of the second condition with least variables [40] is 122% higher than
the approach here, and the number of variables in [19] is 648% higher. This is a huge difference that could
impact the numerical performance of the conditions. Therefore, we conclude that the choice of LKF and its
manipulation has been adequate for the DTC problem in this paper, although it can be improved in future
research. In the next section, we use this LKF in conjunction with a generalized sector condition to provide
stability analysis to system (7).

Table 1: Admissible upper bound dM for various dm applying Theorem 1. Other results from the literature
come from Table 1 in [29].

Methods dm= 2 4 6 7 10 15 20 25 30 No. of variables

Theorem 1 17 17 17 18 20 23 27 31 35 3.5n2 + 2.5n
Proposition 1 [40] 17 17 18 18 20 23 27 31 35 8n2 + 3n
Theorem 2 [19] 22 22 22 22 23 25 28 32 36 27n2 + 9n
Theorem 5 [38] 20 21 21 22 23 25 29 32 36 10.5n2 + 3.5n
Theorem 7 [16] 20 21 21 22 23 25 29 32 36 20n2 + 5n

4 Main results

In this section, we present stability analysis conditions for the saturated closed-loop system (7). Theoretical
preliminaries are initially reviewed, including the generalized sector condition and the definition of a set of
initial conditions for which stability guarantees will be inspected.
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4.1 Theoretical preliminaries

Consider the deadzone nonlinearity ϕ, defined as follows

ϕ(vk) = vk − sat(vk), (19)

and the following set

L (v − θ,u) = {v ∈ R; θ ∈ R;−u≤ v − θ ≤ u}. (20)

We then recall the following result which was introduced in [12], here adapted for the simpler case of systems
with a one-dimensional control input.

Lemma 4. [Generalized sector condition] If v and θ belong to set L , then the deadzone nonlinearity ϕ(v)
satisfies the following inequality, which is true for any matrix W in S+

1

ϕ>(v)W[ϕ(v)− θ] ≤ 0. (21)

By taking into account the original system (7) and the identity (19), the following equivalent closed-loop
representation is obtained 

xk+1 = Axk + Adxk−dk − Bϕ(vk) + Bqqk

vk = Kxk + Kdxk−dk
xk = φk, k ∈ [−dM, 0]

(22)

where A = A + BK and Ad = Ad + BKd. This representation allows us to analyze the system stability using
a combination of the Lyapunov functional (11) and the generalized sector condition provided in Lemma 4.
Due to the saturating actuator, we need to analyse regional stability of (22), i.e. we need to find a set of
initial conditions φk for which the asymptotic stability of the closed loop is ensured. First of all, note that
we can rewrite the Lyapunov-Krasovskii functional (11) in the following augmented form Vk = x>k Pxk, with

xk =
[
x>k x>k−1 · · · x>k−dM

]>
and:

P =



P0 Pb
1

0 · · · 0 · · · 0

? Pa1

. . .
. . .

...
. . .

...

?
. . .

. . . P
bdm

0 · · · 0

...
. . . ? Padm

P
d1

. . .
...

? · · · ? ? Pc
1

. . . 0

...
. . .

...
. . .

. . .
. . . Pd

d∆

? · · · ? · · · ? ? Pc
d∆



,

where

P0 = Q + Rd2
m + R1d

2
∆,

Pai = U + 2R1d
2
∆ + Rdm (2dm − 2i+ 1) ,

Pbi = −R1d
2
∆ − Rdm (dm − i+ 1) ,

Pcj = U1 + R1d∆ (2d∆ − 2j + 1) ,

Pdj = −R1d∆ (d∆ − j + 1) ,

for i ∈ [1, dm] and j ∈ [1, d∆]. Then, we define the set of initial conditions as Dφ = {φk ∈ R(dM+1)×n;φ>k Pφk ≤
β}, with β>0.
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4.2 Stability in the saturated case

The following theorem provides a solution to Problem 1.

Theorem 2. For given positive scalar σ, assume the existence of matrices Q, R, U, R1, U1 in S+
n , matrices

U12 in Rn×n, Z in R1×n, W in S+
1 , and positive scalars δ, µ such that

T =

[
R1 U12

? R1

]
� 0, Ξ⊥

>
ΦΞ⊥ ≺ 0, (23)

Σ =

[
Q K>W − Z>

? 2Wσ − µ
(
σ
u

)2

]
� 0, (24)

µ− δ > 0, (25)

with Ξ =

[
A 0 0 Ad −B Bq

I4n+2

]
and

Φ =



Υ


0 0

Z> 0
0 0
0 0

Kd
>W 0



?

[
−2W 0
? −I

]


,

where Υ has been given in Theorem 1. Then

1. For any q ∈ Q and all φk ∈ Dφ = {φk ∈ R(dM+1)×n;φ>k Pφk ≤ β}, β = µ− δ, the trajectories of (22)
do not leave the ellipsoid given by Dx= {xk ∈ R(dM+1)×n;x>k Pxk ≤ µ}, for all k > 0.

2. For qk = 0, the set Dx is a region of asymptotic stability of (22).

Proof. First, consider an auxiliary matrix G ∈ R1×n and application of Lemma 4 with v = Kxk + Kdxk−dk ,
θ = Gxk + Kdxk−dk . If xk belongs to the resulting set

L (|K−G| ,u) = {x ∈ Rn;−u≤ (K−G)x ≤ u}, (26)

then the inequality:

−2ϕ>(vk)W
[
ϕ(vk)−Gxk −Kdxk−dk

]
≥ 0 (27)

is satisfied for some W in S+
1 .

Consider also relation (24). Use the fact that(µσ
u2 −W

)> µ−1u2

σ

(µσ
u2 −W

)
� 0

to replace 2Wσ − µ
(
σ
u

)2

by W>µ−1u2W in Σ. Then, pre- and post-multiply the obtained inequality by

diag
(
I,W−1

)>
to obtain relation: [

Q (K−G)
>

? µ−1u2

]
� 0

11



which ensures the inclusion of the ellipsoid ε(Q, µ) = {xk ∈ Rn;x>k Qxk ≤ µ} in the polyhedral set L . Since
x>k Qxk ≤ x>k Pxk ≤ µ, if φk ∈ Dφ, then xk ∈ ε(Q, µ) ⊂ L , ∀k > 0, and the sector condition is effectively
validated.

Now, consider relation (23). Replace Z> by G>W in Φ and note that left and right multiplication of the

resulting matrix by ξ>k and ξk =
[
γ>k ϕ(vk)> q>k

]>
, respectively, leads to the expression

ξ>kΦξk=γ>k Υγk−q>k qk−2ϕ>(vk)W
[
ϕ(vk)−Gxk−Kdxk−dk

]
, (28)

where the vector γk =
[
x>k+1 x>k x>k−dm x>k−dM

x>k−dk
]>

was first given in the proof of Theorem 1. From the

proof of Theorem 1 and relation (21), we have that γ>k Υγk ≥ ∆Vk and −2ϕ>(vk)W
[
ϕ(vk)−Gxk−Kdxk−dk

]
>

0, respectively, leading to
ξ>k Φξk ≥ γ>k Υγk−q>k qk ≥ ∆Vk − q>k qk. (29)

Therefore, by guaranteeing that ξ>k Φξk < 0 we guarantee that ∆Vk − q>k qk < 0 for all xk ∈ Dx, provided that

xk ∈ L . Then by computing
∑k
i=0

(
∆Vi − q>i qi

)
< 0 it follows Vk −V0 −

∑k
i=0 q

>
i qi < 0, ∀k ≥ 0. In other

words, this implies that

• Vk < V0 + ‖qk‖2 ≤ β + δ = µ, for all k ≥ 0, thus the trajectories of (22) remain bounded by the
ellipsoid given by Dx= {xk ∈ R(dM+1)×n;x>k Pxk ≤ µ}.

• If qk = 0, ∀k ≥ k≥ 0, then ∆Vk ≤ 0, ensuring that xk → 0, without leaving Dx, as k →∞.

From Lemma 1, satisfaction of ξ>k Φξk < 0, ∀ξ such that Ξξ = 0, ξ 6= 0, with Ξ =
[
−I A 0 0 Ad −B Bq

]
(and therefore of ∆Vk−q>k qk < 0) along the trajectories of (22) is equivalent to the satisfaction of Ξ⊥

>
ΦΞ⊥ ≺ 0,

where Ξ⊥ is a basis for the null space of Ξ, thus leading to (23). This completes the proof of all the items in
Theorem 2.

Remark 4. Although the dimension of the matrix P can be high, specially for long delays, it does not lead to
some numerical burden of the optimization schemes since the matrix P is not a decision variable in Theorem
2. In fact, the matrix P is assembled with the LKF matrices {Q,R,R1,U,U1}, which are the decision variables
in the theorem. Furthermore, as introduced in Section 2.3, all the works dealing with the LKF approach to
stability of saturated discrete-time delayed systems characterize the region of attraction by bounding some
norm of the sequence of initial condition (see for example [1]). In this case, conservative operations are
involved to find the scalar bound on the norm. No such conservatism is present in the case we utilise the
matrix P since it is an augmentation of the LKF, which does not require any extra bounding.

Additionally, for open-loop stable systems, one may look for a condition ensuring the global stability of
the closed-loop system.

Corollary 1. Assume the existence of matrices Q, R, U, R1, U1 in S+
n , matrices U12 in Rn×n and W in S+

1

such that T � 0, Ξ⊥
>

ΦΞ⊥ ≺ 0 with T, Ξ, and Φ defined in Theorem 2 and Z> = K>W, then

1. For qk = 0, the whole state-space is a region of asymptotic stability of (22).

2. For any q ∈ Q, and any initial condition φ ∈ R(dM+1)×n, the trajectories of (22) remain bounded as
follows:

Vk ≤ V0 + δ, ∀k ≥ 0.

Proof. Proof is straightforward by noting that (27) is satisfied for all xk ∈ Rn when G = K. In this case,
both relations (24) and (25) become pointless.
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4.3 Computational Issues

Theorem 2 provides conditions to prove regional stability results for the closed-loop system along with a
characterization of the ellipsoidal region of stability and the energy-bounded disturbance that affects the
system. By application of the presented convex conditions, different analysis results can be exploited. In the
following, we present two particular cases of interest. First, we would like to find out the maximum energy
bound (δ) on the external disturbance belonging to the set Q when the system is at equilibrium (x0 = 0).
Secondly, we are interested in maximizing, in some sense, the estimate of the region of attraction.

4.3.1 Disturbance tolerance maximization

In the case of x0 = 0, it follows that β = 0 and µ = δ, and we seek to maximize the system tolerance to
disturbances, that is, we aim at maximizing the energy bound on the set Q. For given positive scalar σ, the
following optimization procedure should be applied: max

{Q,R,U,R1,U1,U12,Z,W,µ}
µ

subject to (23), (24)
(30)

4.3.2 Maximization of the plant initial conditions set

Consider system (7) affected by a fixed level of disturbance, that is a fixed δ. In this case, one is interested
in maximizing the estimate on the region of attraction, that is the ellipsoid Dx. Many different criteria can
be adopted, such as volume maximization and maximization of the ellipsoid semi-minor axis. In this work,
we adopt the later criteria, which is equivalent to the minimization of the biggest eigenvalue of the matrix
Pµ−1. The length of the semi-minor axis of the ellipsoid is equal to the radius of the maximum ball inside the
ellipsoidal region of stability, and can be a useful qualitative measurement of the region in order to relate it
to both the DTC tuning parameter ρ and the size of the delay. A convex optimization procedure to indirectly
achieve this goal is to run the following optimization problem min

{Q,R,U,R1,U1,U12,Z,W,µ}
κ1λ− κ2µ

subject to (23), (24), (25),P ≺ λI(dM+1)×n

(31)

with κ1 and κ2 tuning weighting on λ and µ. The length of the semi-minor axis can then be computed by

ωb = λ
−1/2
max , where λmax is the maximum eigenvalue of the matrix Pµ−1. In the case that no perturbation

affects system (7), we have δ = 0. Since, we can remove the last column as well as the last line of Ξ⊥
>

ΦΞ⊥

in (23) while running optimization problem (31).

Remark 5. Note that the initial condition for the open-loop plant (1) is characterized only by xp0 . Although
for the time-delay closed-loop system (7) we could choose to consider the past states as zero and consider the

initial condition as the special case φk =
[
x>0 0 · · · 0

]>
, x0 =

[
x>p0

x>s0 x>f0

]>
, we chose to consider

the more general case in this paper with the sequence φk so that the initial condition can be anything as long
as it is inside the set Dφ = {φk ∈ R(dM+1)×n;φ>k Pφk ≤ β}.

5 Numerical Examples

5.1 Case study 1

This first example is dedicated to understanding how the DTC tuning parameter ρ relates to the system
robustness. Simulations are performed for the open-loop unstable process G(s) = 1

4s−1 , studied in [28]. This
model represents the linearized dynamical behaviour of the output concentration of some chemical reactors
around the unstable operation point.
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As in [28], it is assumed that there exists a measurement delay due to the time needed by the concentration
transducer to give the output variable, which can vary between 0.5 and 0.7 seconds. By considering a
sampling time of 0.1 seconds we obtain the discrete-time process model (1) with Ap = 1.0253, Bp = 0.1250
and Cp = 0.2025 and time-varying delay 5 ≤ dk ≤ 7.

Initially, we consider the DTC design from [46] with dn = 6, ρ = 0.90, and desired closed-loop pole {0.92},
so that fast set-point regulation is achieved in the ideal case (no saturation and no time-varying delay).

To illustrate the closed-loop system time-response, Fig. 2 shows simulation results for an initial condition
φk = 0 ∀k ∈ [−dM, 0], and disturbance signal of energy δ = 27.3053. Stability is guaranteed by means of
Theorem 2 with σ = 0.01, using optimization problem (30). In this case µ = δ. Three cases are plotted:

• Ideal case, that is constant delay dk = dn and no saturation u=∞.

• System with time-varying delay 5 ≤ dk ≤ 7 and no saturation, u=∞.

• System with both time-varying delay and saturation. In this case, for analysis purposes we consider
u= 1.5.

-1

0

1

2

-1.5

0

1.5

0 2 4 6 8 10 12
5

6

7

Figure 2: Case study 1 simulation results.
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In the following subsections, with the help from Theorems 1 and 2, and optimization procedures (30), (31),
we will give more comments on the simulations and how the values of ρ and u affect the system robustness
and effectiveness.

5.1.1 The unsaturated case

From Fig. 2, it can be noted that the DTC controller is robust to the uncertainty introduced by the
time-varying delay since the response is very close to the response of the ideal case. For an extended analysis,
by means of Theorem 1, Table 2 provides the admissible upper bound dM for various values of ρ with fixed
dm = 5.

From the DTC literature, it is well known that higher values of the robustness filter parameter ρ introduce
more robustness to the system regarding uncertainties in the delay (in the constant case). This was also
confirmed in the case of time-varying delays in [28]. As expected, Table 2 also illustrates this fact by showing
that higher values of ρ allow for an increase in the admissible upper bound dM on the delay. However, it
is well-known in the DTC literature that higher values of ρ can also cause slower rejection of disturbances,
which illustrates the trade-off between performance and robustness.

Table 2: Case study 1- Admissible upper bound dM for various values of ρ with dm = 5 (unsaturated case).

ρ 0.89 0.91 0.93 0.95 0.97

dM 9 10 12 15 18

5.1.2 The saturated case

From Fig. 2 note that although the control signal saturates at the beginning of the simulation, the controller
is capable of bringing the system back to equilibrium in a nice manner.

In order to better understand the relation between tuning parameter ρ, the bound on the control signal u,
the plant delay and robustness of the DTC strategy, Figures 3 and 4 show multiple 3-dimensional surfaces
for different values of the maximum delay dM built by interpolating a data grid of (ρ,u) values, in which
the z − axis represent δ and ωb (the radius of the maximum ball inside Dx), respectively. Such results are
obtained by means of optimization problems (30) and (31) (in this case, with δ = 0). One can observe that as
ρ increases, the values of both ωb and δ for which stability is guaranteed are increased. This nicely illustrates
that, as in the unsaturated LTI case, higher values of ρ improve the system overall robustness for systems

Figure 3: Relation between tuning parame-
ter ρ, saturation limit u, the maximum delay
dM (with dm = 5), and the energy bound of
the disturbance δ.

Figure 4: Relation between tuning parame-
ter ρ, saturation limit u, the maximum delay
dM (with dm = 5), and the radius ωb of the
maximum ball inside Dx.
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with both time-varying delays and input saturation. Of course, as the control bound u is increased, the system
also becomes suitable to deal with bigger initial conditions and disturbances of higher energy. Additionally,
as the maximum delay dM is increased, both the values of δ and ωb decrease. This illustrates the bad impact
of the time delay in the stability region, and also in the disturbance tolerance of the closed loop.

Finally, a special case worth of comment is that of known constant delay dm = dM = dn = 5. Using
optimization problems (30) and (31) with ρ = 0.93, u= 2, we find significant increases in both ωb and δ, being
1.0276 and 71.8202, respectively. This is due to the perfect delay compensation obtained by the predictor in
this case. For consistency of the results, the desired closed-loop pole for the DTC design and the Theorem 2
constant σ were kept as {0.95} and 0.05, respectively, throughout the simulations.

5.2 Case study 2

Consider the NCS studied in [18]:

ẋp =

[
−0.8 −0.01

1 0.1

]
xp +

[
0.4
0.1

]
u

By considering a sampling time of 0.5 seconds, an induced network time delay, and choosing the second

state as output for the DTC design, we obtain the discrete-time model (1) with Ap =

[
0.6693 −0.0042
0.4231 1.0501

]
,

Bp =

[
0.1647
0.0960

]
, and Cp =

[
0 1

]
. In [18], the control law is given by vk = −

[
1.2625 1.2679

]
xpk−dk

, which

guarantees closed-loop stability for a maximum induced delay of 1 second (or two samples), according to
Theorem 4 of [18]. By using Theorem 1 of the work herein with A = Ap, Ad = −Bp

[
1.2625 1.2679

]
,

we obtain that stability using the control law from [18] is guaranteed for a maximum delay in the range
1 ≤ dk ≤ 3. In the case of no delay, this control law would yield closed-loop poles {0.6950 + 0.0990i, 0.6950−
0.0990i}. To design the DTC controller for this example, the desired closed-loop poles are chosen as
{0.6950 + 0.0990i, 0.6950− 0.0990i, 0.7}, and we initially set ρ = 0.7, which guarantees stability for the system
by means of Theorem 1.

To illustrate the closed-loop system time-response, Fig. 5 shows simulation results for an initial condition

given by xp0
=

[
0.4919
0.4919

]
and 0 in all other positions of φk. For illustration purposes, the response of the

saturated closed loop is also plotted for the DTC with u= 1. Stability in this case is guaranteed by means of
Theorem 2 with σ = 0.05, using optimization problem (31) with δ = 0,κ1 = κ2 = 1, obtaining µ = 0.070866.
Both strategies present similar performance, but the control signal of the DTC strategy is less aggressive, and
the settling time for the first state is faster. It is important to recall, however, that opposed to the compared
control law, the DTC strategy obtained the results by feedback of only one of the states.

The main advantage of the DTC strategy is yet the possibility to deal with much bigger delays by simply
increasing the value of ρ. To illustrate this, Table 3 shows the relation between the maximum delay dM and ρ
for this example, obtained by means of Theorem 1. As shown in the Table, with the DTC it is possible to
guarantee stability for the system even for a time-varying delay in the range 1 ≤ dk ≤ 7 by only increasing ρ.

Table 3: Case study 2- Admissible upper bound dM for various values of ρ with dm = 1.

ρ 0.75 0.80 0.86 0.9

dM 4 5 6 7

In conclusion, the use of the DTC is advantageous when there is no access to the measurement of the full
state since the DTC is able to stabilize the system with only measurement of the output, and when it is
desired to stabilize the system for longer delays in the network. On the other hand, the advantage with the
classical state feedback law is its implementation simplicity, with closed-loop order n = np = 2, while the
closed-loop order using the DTC is n = 3np + dn + 2 = 10.
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Figure 5: Case study 2 simulation results.

6 Experimental Results

This section shows practical results of the DTC structure, applied for temperature control of an in-house
neonatal intensive care unit (NICU) prototype, depicted in Fig. 6 [31]. The physical structure of the NICU
prototype consists of two main parts: an acrylic dome in which the temperature should be controlled; and a
reservoir right below the acrylic dome containing a heating resistor, and a fan with constant speed. These
two environments are connected by two openings so that the heated air can circulate through the acrylic
dome. The control variable is the electrical voltage applied, by means of a driving circuitry, to the terminals
of the heating resistor, and is constrained in the range from 0 to 2 Volts.

The driving circuitry is commanded by a supervisory computer through the digital-to-analog converter
(DAC) channel of a data acquisition card. In order to close the control loop, the temperature sensor inside
the acrylic dome provides actual measurement to the supervisory computer by using a microcontroller (µC),
which implements the communication protocols of the sensor and converts the digital data from the sensor
to analogue voltage values, combined with the analog-to-digital converter (ADC) channel of the same data
acquisition card. The data acquisition card communicates with the supervisory computer through a USB
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Figure 6: Picture of the NICU prototype.

cable.
In front of the acrylic dome, two portholes for manipulation of newborns are present which, when opened,

disturb the temperature inside the dome due to the interaction with the external environment, which could
be in much higher or lower temperature.

Using a step-test identification procedure [26], the plant model has been identified around an equilibrium

point designated by the pair
(
xpeq = 28.3oC, ueq = 1 Volt

)
and is given by Pn(s) = 1.572e−1.17s

17.35s+1 , where the
time constant is given in minutes. Using a sampling time of 0.2 minutes, the discrete-time model is obtained
as Pn(z) = 0.018017

z−0.9885z
−6.

Figure 7: Experimental setup diagram of the NICU. Dashed lines refer to digital signals while solid ones refer
to analogue signals.

In order to experimentally validate the DTC ability to deal with both saturation and time-varying delays,
we introduce an additional artificial measurement delay (dAk

) which can vary between 0 and 4 samples and
has been induced by software using a random number generator. Therefore, we obtain the discrete-time
process model (1) with Ap = 0.9885, Bp = 0.0180, Cp = 1, time-varying delay 6 ≤ dk ≤ 10 and saturation
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level u= 1. A detailed diagram depicting the incubator and the experimental setting is shown in Fig. 7.
For the design of the DTC, the desired closed-loop pole is set as {0.94}, and the robustness filter Fr is

tuned with ρ = 0.93 to achieve a good trade-off between system robustness and disturbance rejection speed.
Global stability has been guaranteed by means of Corollary 1.

Experimental results are shown in Fig. 8 for an initial temperature of 27.3oC (one degree below the
equilibrium temperature). It is important to note that even though the plant input became saturated
during the first 12 minutes, the controller did not present windup issues and was able to go back to the
equilibrium temperature of 28.3oC. In order to further assess controller robustness, front portholes of the
NICU were opened between t = 31.4 min and t = 38.4 min. The room temperature was at 19.9oC during the
experiment, which introduces a high level of disturbance. Even though the control signal saturates again,
such a disturbance was properly rejected and equilibrium was restored some time after.
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Figure 8: Experimental results: Temperature control of a NICU.

Remark 6. The YALMIP toolbox [23] was used for solving the LMIs and optimization problems throughout
the paper. The obtained matrices {Q,R,U,R1,U1,U12,Z,W} for the two numerical examples and the
experimental application are stored in .mat files for Matlab, and can be consulted in the sumplementary
material at https://hal.archives-ouvertes.fr/.

7 Conclusion

This work presented, for the first time, stability analysis of a dead-time compensator structure for input-
saturated processes with output time-varying delays. The simulation case studies and the experiment for the
control of temperature in a neonatal incubator effectively showed the good qualities of DTC structures dealing
with the addressed type of process. The numerical examples were also used to show that the DTC tuning
parameter ρ may adjust the classical trade-off between robustness and disturbance rejection performance.
Since DTCs are a class of controller frequently used in practical applications, the developed analysis is of
importance for the control of industrial dead-time processes.

On the theoretical side, the developed conditions were effective to properly analyse stability of the closed
loop, and a potentially less conservative methodology for the definition of the set of initial conditions has
been proposed, which can be used in works employing the LKF approach for stability analysis of discrete-time
systems. Future work will address the stabilization problem by developing a full state-space approach for
the DTC which will allow LMI-based design of all the controller parameters, or of part of them. Also, we
aim at using more elaborated LKFs in conjunction with less conservative inequalities. The analysis of other
performance indexes as the H∞ norm between the disturbance and the regulated output are also desired to

19



be included. Finally, the extension to deal with Linear Parameter Varying (LPV) systems is also of great
interest.
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[22] T. Liu, P. Garćıa, Y. Chen, X. Ren, P. Albertos, and R. Sanz. New predictor and 2DOF control
scheme for industrial processes with long time delay. IEEE Transactions on Industrial Electronics,
65(5):4247–4256, May 2018.
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[34] R. Sanz, P. Garćıa, E. Fridman, and P. Albertos. Robust predictive extended state observer for a class
of nonlinear systems with time-varying input delay. International Journal of Control, 0(0):1–9, 2019.

[35] Ricardo Sanz, Pedro Garćıa, and Miroslav Krstic. Observation and stabilization of ltv systems with
time-varying measurement delay. Automatica, 103:573 – 579, 2019.

[36] A. Seuret and F. Gouaisbaut. Wirtinger-based integral inequality: Application to time-delay systems.
Automatica, 49(9):2860 – 2866, 2013.

[37] A. Seuret and F. Gouaisbaut. Stability of linear systems with time-varying delays using Bessel–Legendre
inequalities. IEEE Transactions on Automatic Control, 63(1):225–232, Jan 2018.

[38] A. Seuret, F. Gouaisbaut, and E. Fridman. Stability of discrete-time systems with time-varying delays
via a novel summation inequality. IEEE Transactions on Automatic Control, 60(10):2740–2745, Oct
2015.

[39] A. Seuret, S. Marx, and S. Tarbouriech. Hierarchical estimation of the region of attraction for systems
subject to a state delay and a saturated input. In 2019 18th European Control Conference (ECC), pages
2915–2920, 2019.

[40] H. Shao and Q. L. Han. New stability criteria for linear discrete-time systems with interval-like
time-varying delays. IEEE Transactions on Automatic Control, 56(3):619–625, March 2011.

[41] Y. Shen, Z. Wang, B. Shen, and F. E. Alsaadi. H∞ filtering for multi-rate multi-sensor systems with
randomly occurring sensor saturations under the p-persistent csma protocol. IET Control Theory
Applications, 14(10):1255–1265, 2020.

[42] O. J. M. Smith. Closed control of loops with dead-time. Chem Eng Progress, 53:217–219, 1957.

[43] W. Sun and B. Fu. Adaptive control of time-varying uncertain non-linear systems with input delay: a
hamiltonian approach. IET Control Theory & Applications, 10(15):1844–1858, 2016.

[44] S. Tarbouriech, G. Garcia, J. M. Gomes da Silva Jr., and I. Queinnec. Stability and Stabilization of
Linear Systems with Saturating Actuators. Springer, London, 2011.

[45] S. Tarbouriech and J. M. Gomes da Silva Jr. Synthesis of controllers for continuous-time delay systems
with saturating controls via lmis. IEEE Transactions on Automatic Control, 45(1):105–111, 2000.

[46] Bismark C. Torrico, Magno P. de Almeida Filho, Thiago A. Lima, Marcus D. do N. Forte, Rejane C. Sá,
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