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Institut de Mécanique des Fluides de Toulouse (IMFT),
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Abstract

We develop a physical model of the dam-break flow of fine non-cohesive particles initially fluidized

by a gas. By revisiting previous experiments, we show that the dynamics of such flows involves

two uncoupled phenomena. On the one hand, the settling of the particles is the same as that of

a non-flowing suspension, so that the mass flux of particles that deposit can be related solely to

the properties of the suspension. On the other hand, the flow of the gas-particle mixture is similar

to that of an equivalent fluid of constant density and negligible viscosity. The momentum lost

by the flowing mixture is equal to the product of the deposited mass flux and the longitudinal

velocity. These properties allow us to model the time duration of the flow as the time taken by

the particles to settle and the slope of the final deposit as the ratio between the growth rate of

the deposit height and the velocity of the front of the dam-break flow. Finally, these findings

lead to the formulation of consistent shallow-water equations involving specific terms of mass and

momentum transfer at the bottom wall, which can be used to compute the dense lower layer of

ash flows generated by a volcanic eruption. They also provide tools for the interpretation of field

measurements by geologists.

I. INTRODUCTION

The fluidization of fine non-cohesive powders by a gas can lead to the formation of

a dense, homogeneously expanded suspension that deflates and settles progressively once

the gas supply is vanished. The mobility of such fluidized mixtures can be considerable,

especially when they travel large distances down gentle slopes, as usually observed in some

catastrophic episodes of explosive volcanic eruptions. They represent thereby one of the

most important natural hazards encountered in geophysics [1–3]. The physical description

of these flows has become a major issue for the prediction of both the eruption time and

the surface affected by the deposits, which may depend on the initial conditions at the vent.

This step requires therefore the determination of relevant scaling laws that may be achieved

first through an experimental analysis, performed in a well-controlled geometry, such as a

rectangular dam-break channel, which enables us to both generate a dense homogeneous
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suspension in the locked reservoir as well as a gravitational sedimenting current that travels

down the channel [4–12].

Previous studies, conducted in this way, have revealed important features of these flows.

Once released down the channel, the suspension collapses from a height h0 to form a quasi-

inviscid current, the front of which travels at a quasi-constant speed UF that scales with the

gravitational velocity
√
gh0 [8–12]. As the mixture is flowing, the particles sediment at a

velocity Used and form a deposit at the bottom of the channel that grows at a velocity Uagg.

Surprisingly, the values of Used and Uagg measured during the mixture is flowing are found to

be approximately constant both in time and all along the channel [12–15]. Moreover, they

are also equal to those determined in the same sedimenting mixture while confined, without

flowing, within the locked reservoir. This remarkable result suggests that ash particles within

dense natural pyroclastic flows settle at a rate that could be predicted independently of the

flow dynamics. Altogether, these results suggest that the flow of the mixture through the

channel, hereafter referred to as dam-break flow, and the settling of the particles, hereafter

referred to as particle sedimentation, are very weakly coupled.

The objective of the present study is to propose a physical analysis of these results in

order to reveal the underlying mechanisms. By assuming that dam-break flow and particle

sedimentation are independent, we derive mathematical expressions that relate together

the global characteristics of the phenomenon: front velocity UF , sedimenting velocity Used,

overall flow duration T , height hd∞ and length L of the final deposit. These relations are

validated by revisiting previous laboratory experiments conducted with volcanic ash by one

of the authors [12–15]. They can be used by volcanologists to infer the flow characteristics

from the properties of a deposit. In addition, they can also provide a model for the mass and

momentum transfers between the flowing mixture and the bottom wall, which enables the

way to shallow-water numerical simulations of pyroclastic flows that travel down variable

slopes.

The paper is organized as follows. Section II presents the flow configuration and known

results. Section III develops the physical model and compare its predictions to experimental

results. Consequences upon the modelling of the flow mixture are drawn in section IV. Final

discussion and conclusions are set out in section V.
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II. REFERENCE FLOW CONFIGURATION AND KNOWN RESULTS

Despite the multiplication of sophisticated models able to reasonably compute the be-

haviour of turbulent dilute surges [16–21], simulations of dense pyroclastic flows still fail to

reliably predict the flow duration, in particular because of a lack of relevant models for the

term of bottom friction employed to capture the deceleration and arrest of the suspension

during its final course [22–25]. Such a scientific lock needs to be addressed first experimen-

tally in order to capture the main features of these flows and to relate the initial suspension

geometry and properties to those of the final deposit. Dam-break flow configurations, com-

monly used in this purpose [9, 12], turn out to be the more consistent tool able to provide a

local description of the flow and particles trajectories, and thus to infer the key parameters

that govern such sedimenting suspensions. Specifically, they can help to understand how

the mixture properties can control the pyroclastic flow dynamics.

Figure 1 describes the successive steps of a typical experiment of the dam-break flow of

a fluidized suspension. First, the particles are poured into a locked reservoir in order to

form a packed bed of height hd0 (fig 1a). Then, a gas is supplied from the bottom at a

given velocity Uf such as the suspension expands to a height h0 at a solid volume fraction

Φs (fig 1b). From that point, two kinds of experiments can be carried out: a first non-

flowing defluidization process is performed by stopping the gas injection while the reservoir

remains locked (fig 1c); a second flowing and defluidization process is obtained by opening

the channel gate simultaneously to the stop of fluidization (fig 1d).

The sedimentation velocity in the non-flowing case (fig 1c) has been recently analyzed

[26] for fine heated particles including volcanic ash of random shape and almost spherical

synthetic particles (FCC) [26]. In any case, it is well described by the following semi-

empirical expression,

Used =
Uref
8.6

(
1− Φs

Φpack

)0.45

with Uref =
gρs (1− Φs) d

2

18 µf
, (1)

where g is the gravity acceleration, ρs the density of solid particle material, µf the gas

viscosity and d the average diameter of the particles. Here, Φpack is the volume fraction

of the deposit formed after settling of the fluidized suspension. In contrast with the non-

reproducible value obtained by pouring the particles into the reservoir, this parameter Φpack

is found to remain approximately constant after successive cycles of fluidization and sedi-
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FIG. 1. Schemes of the various experimental configurations: (a) packed state; (b) homogeneously

fluidized and expanded suspension; (c) non-flowing defluidization process; (d) simultaneous flow

and defluidization process performed through the dam-break flow; (e) final packed deposit after

flow has ceased.

mentation for a given initial heap. Remarkably, it turns out to be sufficient to encapsulate

all the geometric properties of the volcanic ash.

Note that eq (1) is valid under specific conditions. First, it requires a high density ratio

ρs/ρf between the two components of the mixture and a small particle Reynolds number,

defined as Rep = ρfUsedd/µf . Then, the suspension has to be fully fluidized and homoge-

neous, which reduces to the case where the solid volume fraction Φs lies in between the two

boundaries, Φup and Φlow, which respectively represent the limit of fluidization and the limit

of stability of the mixture. Above Φup, particles form arches and a part of their weight is

supported by the reservoir walls. Below Φlow, gas bubbles form and the suspension becomes

heterogeneous. Between Φup and Φlow, the particles weight is thus fully supported by the

gas whose pressure is hydrostatic. Then, the gas velocity Uf (Φs) necessary to fluidize the

suspension (fig 1c), and measured by means of flowmeters, is equal to the sedimentation
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velocity Used(Φs), determined from the settling of the top surface. Fully fluidized homoge-

neous gas-particles suspensions are solely obtained with non-cohesive materials belonging

to the group A of the Geldart’s classification [27] but can expand significantly only with

finer or lighter group C powders provided that they are heated at a temperature sufficient

(> 100◦C) to remove the effects of moisture, similarly to the volcanic ash investigated in [12]

which joined the group A, while exhibiting lower values of both Φlow/Φpack and Φup/Φpack

reported in Table I, with Rep < 0.025 (0.1 ≤ Used ≤ 1 cm/s). Since Φlow/Φpack remains

quite large for solid gas-particles mixtures, the hydrodynamic interactions between particles

play an important role in the regime under consideration. It is therefore not relevant to

extrapolate relation (1) to values of Φs much lower than Φlow in the expectation of finding

the value of an isolated particle.

When the gate is opened, the particle sedimentation is initiated simultaneously to the

dam-break flow (figs 1d and 2). The fluidization technique, which enables significant vari-

ation of Φs within the mixture [26], allows us to distinguish the dynamics of dry granular

materials governed by frictional interactions (Φs > Φup) [9, 28] from that of fully fluidized

suspensions (Φs < Φup) [8, 12]. This paper focuses on the second case, which is the subject

of the present study. Regarding the sedimentation, Used is found to be the same as in the

non-flowing case [12–15] and can therefore still be described by eq (1). Regarding the dam-

break flow, it involves three phases that can be distinguished by considering the velocity

UF of the front [8, 12]: a brief initial acceleration associated with the column collapse, a

second phase where the front velocity remains constant (UF = UF2), and a final deceleration

that lasts until the flow ceases. As noted in [29], similar phases are observed in the case

of a water flow, but the final deceleration involves different mechanisms. The second phase

is largely dominant and involves a velocity that is determined by gravity: UF2 = k
√
gh0.

The specific value of k, which depends in a complex way on the initial column collapse, has

not been modelled so far. It is observed to vary approximately between the value k =
√

2

corresponding to a vertical free fall and the value k = 2 associated with a dam-break under

shallow-water condition [7, 30].

At the end of the process, the particles form a deposit characterized by a maximal height

hd∞ and a total length L+ x0 (fig 1e).

In the next section, we shall formulate physical hypotheses based on the known features

previously reminded and that will allow us to derive expressions able to relate the initial
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flowing layer 

deposit

particles

FIG. 2. Picture of the dam-break flow of an expanded suspension of volcanic ash heated at 180◦C.

Note that the picture is not a pure side view, but taken from a point above the surface. The

whitish zone corresponds to the surface the suspension seen in perspective. The two inserts are

pictures of volcanic ash (on the left) and FCC particles (on the right).

conditions of the mixture (hd0 ,Φs,Φpack,Uref ) to the global properties of the flow (Used,T )

and of the final deposit (hd∞ ,L). The validity of this model will be assessed by revisiting

the experiments conducted by Girolami [13], which consisted in releasing highly expanded

suspensions made with hot volcanic ash and gas from a reservoir down to an impermeable

channel (figs 1d,e). These experiments were presented in detail in a series of articles [12,

14, 15], where extensive information was provided on the local flow dynamics. These data

have been reprocessed here such as extracting the bulk flow features required for evaluating

the present model. The particles and the range of volume fractions investigated are the

same as those studied in our recent work devoted to the sedimentation in a non-flowing

condition [26]. The considered cases involved two samples of natural volcanic ash, Ash1 and

Ash2, each made with particles of different shapes and sizes characterized by a specific size

distribution, as well as a sample of almost spherical synthetic FCC particles (Table I). The

materials were fully fluidized, then released down the channel until motion ceased (fig 2). In

a first set of experiments (“Set 1”), performed with all different materials, Φs was varied by

increasing the fluidization velocity, and so the height h0 of the suspension, while the mass of

particles was kept constant. In a second set of experiments (“Set 2”), performed with Ash1,

Φs was varied by changing the mass of particles whereas the initial height h0 was fixed. The

reservoir dimension (x0=300 mm) and the channel width (w0=150 mm) are much larger

than the particle size (<250 µm). The front velocity was found to range between 0.75 and
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Experimental parameters Ash1 Ash2 FCC

Solid particle density ρs (kg m−3) 1600 1490 1420

Mean particle equivalent diameter d (µm) 80 65 71

Range of concentration: Φlow/Φpack − Φup/Φpack 0.66−0.94 0.66−0.95 0.78−0.91

TABLE I. Properties of the materials used in the experiments.

2 m/s. The Reynolds number Redb of the dam-break flow can be estimated by considering

that the mixture can be described as an equivalent fluid of density ρm and viscosity µm.

According to [26], the kinematic viscosity µm/ρm at large concentrations (Φs/Φpack ' 0.95)

hardly reaches that of water. The Reynolds number Redb, based either on the channel width

w0 or the initial height h0, is thus larger than 105.

To sum up, the experiments are characterized by the following physical ranges of param-

eters: Rep � 1, ρs/ρf � 1, Φlow < Φs < Φup and Redb � 1, which are expected to be

representative of the dense basal ash flows generated by volcanic eruptions.

III. PHYSICAL MODEL AND VALIDATION

In this section, we develop a physical description, from previous experimental observations

described in section II, in the aim of formulating the model hypotheses that will allow us to

derive mathematical relations between the main flow features and the final deposit. Then,

we shall validate these predictions by comparison with experiments.

A. Hypotheses and predictions

Our flow model is based on the three following hypotheses.

- H1. The front velocity UF remains constant during the whole flow duration.

- H2. During propagation, the suspension forms two distinct homogeneous and overlying

layers, as illustrated in fig 1d: (1) at the bottom, a deposit of volume fraction Φpack

equal to both that of the initial random loosely packed bed (fig 1a) and that of the

deposit obtained after defluidization in the non-flowing case (fig 1c); (2) above, a
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suspension, in which the volume fraction Φs remains constant during the flow and

equal to that of the initial fluidized state (fig 1b).

- H3. Within the moving layer (fig 1d), the particles settle at a velocity Used that is the same

as in a non flowing suspension (fig 1c).

Hypothesis H1 amounts to neglect the existence of the short acceleration and deceleration

phases of the dam-break flow. The front velocity is thus equal to its average value, which is

the ratio between the total length L traveled by the flow and its total duration T ,

UF =
L

T
. (2)

Hypotheses H2 and H3 imply together that the particle sedimentation velocity within the

moving layer is given by eq (1) and only depends on the initial particle volume fraction Φs,

the particles properties involved in Uref and Φpack, and gravity acceleration. By considering

the mass conservation of particles between a homogeneous suspension at concentration Φs

and a deposit at concentration Φpack, these two hypotheses also lead to the following relation

between the sedimentation velocity Used and the aggradation velocity Uagg of the deposit,

ΦsUsed = (Φpack − Φs)Uagg . (3)

Note that even if the sedimentation velocity is oriented downward while the aggradation

velocity is oriented upward, Used and Uagg are chosen here to be positive. Since the growth

velocity of the deposit is constant, its height hd(x, t) can be obtained as the product of Uagg

by the time td of deposition. In the reservoir (x ≤ x0), td is simply the time t elapsed since

the stop of the gas supply. In the channel (x > x0), it is the time taken between the gate

opening and the considered distance reached by the mixture, td = t − (x − x0)/UF . The

deposit height is hence given by

hd(x, t) = Uagg t for x ≤ x0 , (4)

hd(x, t) = Uagg

(
t− x− x0

UF

)
for x > x0 . (5)

According to eqs (4)-(5), the shape of the deposit is represented by the dark gray zone

on fig 1d-e. Within the reservoir, its top forms a horizontal line located at a height that

increases with time according to eq (4). Within the channel, it is a straight line with a

negative slope s that does not vary in time,

s =
∂hd(x, t)

∂x
= −Uagg

UF
= −T Used

L

(
1

Φpack

Φs
− 1

)
. (6)
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At the end of the process (fig 1e), the shape of the final deposit is hence described by the

juxtaposition of a rectangle of length x0 and height hd∞ = UaggT with a triangle of height

x0 and length L. Since, according to hypothesis H2, their concentrations are the same, the

mass conservation implies that the volume of final deposit is equal to that of the initial bed

(fig 1a). This allows us to relate the final deposit height, hd∞ , to that of the initial packed

bed, hd0 ,

hd∞ = βhd0 with β =
x0

x0 + L
2

, (7)

Using eqs (4), (3) and (7), the total flow duration can be written as

T =
hd∞
Uagg

=
β hd0
Uagg

=
β hd0
Used

(
Φpack

Φs

− 1

)
. (8)

This result helps us to understand how the particle sedimentation and the dam-break flow

combine to determine T . The dam-break flow stretches the gas-particle mixture by a factor

1/β > 1 in the longitudinal direction and squeezes it by a factor β < 1 in the vertical

direction. This deformation does not change the particle concentration that remains homo-

geneous, neither alters the particles settling that occurs at a constant velocity. However, the

time taken by the particles to settle is reduced by a factor β compared with the non-flowing

case because the travel to the bottom wall is reduced by the same amount. Since the flow

lasts until all the particles have deposited, T is thus also reduced by a factor β.

It is worth mentioning that a constant particle concentration also implies that a rapid

deformation of the suspension due to the dam-break flow does not generate any pressure

gradient within the interstitial gas, which therefore remains hydrostatic, as in the non-

flowing sedimentation case. Therefore, no pore-pressure effect is expected to occur provided

that the gas is assumed to be incompressible. This condition is fulfilled when the pressure

at the bottom of the suspension is small compared to atmospheric pressure, which is the

case for a moving layer of less than one or two meters thick. The present results are thus

applicable without correction to small-volume pyroclastic flows.

B. Experimental validation

Now, we compare our model predictions with experimental results.

Figure 3 shows the experimental ratio L/(TUF2) as a function of the normalized initial

particle concentration Φs/Φpack. Whereas the front velocity significantly varies with the
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FIG. 3. Experimental ratio between the average front velocity , L/T , and the constant velocity of

the second phase of the dam-break-flow, UF2 , as a function of Φs/Φpack, for all experiments.

particle concentration, this ratio is remarkably constant and reasonably close to unity in

all cases. We can therefore conclude that hypothesis H1 is reasonable. In the rest of this

section, we consider a constant front velocity given by eq (2).

Black curves in fig 4 show various experimental profiles of the final deposit in the channel

(x0 ≤ x ≤ L). In agreement with our model, the experimental deposits have almost a

triangle shape. The blue curves are straight lines that connect the points of coordinates

(0,βhd0) and (L,0), where the values of hd0 and L are taken from the experiments. They fit

the experimental profiles quite well, which confirms the validity of eq (7).

Figure 5 compares the experimental slopes of the final deposit, hd∞/L, to values calculated

by means of eq (6), where Used is taken from non-flowing experiments at the same Φs/Φpack.

Both these quantities, plotted on fig 5a as a function of Φs/Φpack for all experiments, strongly

vary with the concentration. However, their ratio, plotted on fig 5b, is almost constant. It is

slightly larger than unity because the average velocity L/T slightly underestimates the front

velocity UF2 of the second flow phase during which the velocity is truly constant (fig 3). This

result confirms that eq (6) gives a good approximation of the relation between the deposit
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Ash1, Ash2, and FCC deposits obtained at a given value of Φs/ Φpack.
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(black symbols) and values predicted by eq (6) (blue symbols) as a function of Φs/Φpack, for all

experimental cases. (b) Ratio between measured and predicted slopes.

slope and the ratio between the front and sedimentation velocities.

Finally, we examine the total flow duration. Figure 6a shows the experimental values of T

as a function of Φs/Φpack. We observe that T strongly depends on the particle concentration

and varies between the various cases involving different materials or test conditions. Fig-

12



1

Ash : set 2

FCC

Ash : set 1

Ash

1
1
2

0

packs

0.5

1.5

2

1

Ash : set 2

FCC

Ash : set 1

Ash

1
1
2

0

packs

0.5

1.5

2
T 

(s
)

(a) (b)

m
ea

su
re

m
en

t /
 p

re
di

ct
io

n
FIG. 6. Assessment of the model regarding the total duration T . (a) measured values of T as
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predicted by eq (8).

ure 6b shows the ratio between the experimental values of T and those calculated by means

of eq (8), where again the values of Used are taken from non-flowing experiments. This ratio

remarkably gather the results around unity whatever the experimental conditions, confirm-

ing the relevance of eq (8).

Despite the rather crude nature of hypotheses H1-3, the relations they allow us to derive

between the initial conditions before release, the global characteristics of the flow of the

mixture and the geometry of the final deposit are in good agreement with experimental

results. These hypotheses therefore draw a correct first approximation of the dam-break

flow of sedimenting suspensions. The proposed relations thus constitute a reliable guide for

the analysis of laboratory flows as well as natural ones.

IV. CONSEQUENCES ON THE MODELLING OF THE FLOW MIXTURE

We have analyzed the flow deposit left by a highly-expanded non-cohesive gas-particle

suspension which has flowed at high Reynolds number in a horizontal straight channel. We

showed that all the features of the final deposit, as well as the overall time duration of

the flow, can be explained by assuming that the particle sedimentation is the same as that
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observed in a non-flowing homogeneous suspension which settles in a tank. That means

that the sedimentation process is not influenced by the complex flow of the mixture through

both the fluidization tank and the channel. It occurs at a constant velocity Used (hypothesis

H3) while maintaining a constant particle volume fraction (hypothesis H2). This conclusion

has been obtained by taking advantage that the front velocity UF of the dam-break flow in

the investigated configuration remains constant during almost the entire process (hypothesis

H1). However, in contrast with the sedimentation velocity which can be determined from

the sole knowledge of the initial properties of the suspension [26], the dam-break flow does

depend on the geometry of the channel. In particular, UF is not expected to be constant

in general and, for example, will change if the channel slope varies. The prediction of the

profiles of the suspension height, h(x, t), and of the average horizontal velocity of the mixture,

ũ(x, t), as well as the prediction of UF(t) in any geometry, requires us to solve the equations

of mass and momentum conservation. Although the flow within the fluidization reservoir

involves both significant horizontal and vertical velocities, the flow of the mixture within

the channel is almost parallel and can be described under the shallow-water approximation.

Shallow-water equations are commonly used to describe the flow of a heavy fluid into a

lighter one [7], as well as that of a fluid laden by solid particles into the same fluid [31].

The reader is referred to [32] for a comprehensive exposition of these equations in various

possible configurations. Here, we consider a suspension of particles in a gas of negligible

density flowing at high Reynolds number. The top of the suspension (z = h) is a free surface

at atmospheric pressure through which there is no exchange of mass or momentum. At the

bottom (z = hd), the suspension flows above a rigid deposit with which it exchanges mass

at rate ṁ and where it undergoes a friction τp. Under these conditions, the one-dimensional

equations write

∂(ρmδh)

∂t
+

∂(ρmδhũ)

∂x
= ṁ, (9)

∂(ρmδhũ)

∂t
+

∂(ρmδhξũ
2)

∂x
+

∫ z=h

z=hd

∂p

∂x
dz = τp , (10)

where p is a local pressure, ρm = Φsρs is the mixture density, ũ = 1
δh

∫ z=h
z=hd

u dz is the velocity

u of the mixture averaged over the thickness δh = h−hd, ξ = 1
ũ2δh

∫ z=h
z=hd

u2 dz is a correction

factor accounting for the shape of the velocity profile, which is unity when u is independent

of z.
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In general, an additional equation is required to account for the evolution of the particle

concentration [31]. However, for the type of flows under consideration, the concentration Φs

remains constant throughout the flowing layer and equal to Φpack within the deposit. It is

worth mentioning that the consistency of our model with a constant particle concentration

is ensured by the particular relation, given by eq. 3, that exists between the sedimentation

velocity and the aggradation velocity. Note that shallow-water equations are often formu-

lated in terms of the whole height h(x, t) of the gas-particle mixture, which is the sum of

the height hd(x, t) of the growing deposit and the thickness δh(x, t) of the flowing mixture.

Here, we have preferred to express them in terms of δh(x, t) because it is better suited to

describe transfers between the deposit and the flowing layer. Moreover, the fact that the

aggradation velocity is constant leads to a simple expression for the deposit height,hd(x, t) = 0 for 0 ≤ t ≤ tx,

hd(x, t) = (t− tx)Uagg for t > tx,
(11)

where tx is the time taken for the front to reach the location x, which is equal to (x−x0)/UF

in case the front velocity is constant.

Numerical simulations of the dam-break flow of such a suspension in a channel, based on

shallow-water equations, are presented in [25]. The solved equations are similar to eqs (9)-

(10), but written in terms of whole thickness h(x, t) instead of the thickness δh(x, t) of the

sole moving layer and ṁ is thus taken equal to zero. By modelling τp as a viscous friction,

the authors could found a correct front velocity for phase 2 but largely overestimated the

total time duration T of the flow. Finally, they introduced an additional solid friction to

force the flow to stop in a reasonable time. Such a combination of solid and viscous frictions

is often considered to interpret such flows [22, 33–36]. However, we have shown that T is

not determined by the friction on the channel bottom but is controlled by the time taken

by the particles to settle. The present results actually lead to simple expressions for ṁ and

τp when eqs 9-10 are written in terms of δh.

The mass transfer from the moving layer to the deposited layer is given by the product

of the aggradation velocity and the ratio between the volume fractions of these two layers,

ṁ = −Φpack

Φs

ρmUagg = − Φpack

(Φpack − Φs)
ρmUsed . (12)

The Reynolds number Redb of the flow mixture is larger than 105 in laboratory experiments

and much larger in natural flows, which implies a very thin boundary layer. Considering that
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the mixture moves as a plug flow above a fixed deposit is therefore a reasonable assumption,

substantiated by a constant front velocity observed in experiments and by the velocity

profiles determined with an optical flow method [14]. In the absence of any significant

vertical shear within the moving layer, ξ = 1 and as the pressure is hydrostatic, this leads

to ∫ z=h

z=hd

∂p

∂x
dz =

∫ z=h

z=hd

∂

∂x
(ρm g (h− z)) dz = ρm g

(
1

2

∂(δ2
h)

∂x
+ δh

∂hd
∂x

)
. (13)

Furthermore, the momentum lost by the moving layer is only due to the momentum lost by

the particles that deposit, passing from a velocity u to rest, so that

τp = ṁ u , (14)

which is identical to the friction term of the model L defined in [32]. Under these conditions

and accounting for the fact that ρm is constant within the moving layer, shallow water

equations write

∂δh
∂t

+
∂(δhũ)

∂x
= − Φpack

(Φpack − Φs)
Used, (15)

∂(δhũ)

∂t
+

∂(δhũ
2)

∂x
+
g

2

∂(δ2
h)

∂x
+ g δh

∂(hd)

∂x
= − Φpack

(Φpack − Φs)
Used ũ . (16)

Thus, combining eqs (15)-(16) with a model for the sedimentation velocity [26] should

constitute the first-order approximation of a dense layer of pyroclastic flows along the major

part of its course, excluding the initial formation which is fully three-dimensional and the

very last stage, when the thickness of the boundary layer in which the particles velocity drops

from ũ to rest (probably of the order of a few particle diameters) becomes comparable with

that of the moving layer. Solving these equations is beyond the scope of this paper. However,

it is interesting to estimate τp from experimental data by making some approximations about

the flow in order to discuss the role it plays in the whole process.

The magnitude of τp can be evaluated by inserting the front velocity UF in eq (14). Then

normalizing by ρsgd, we can build a Shields number,

Sh =
τp
ρsgd

, (17)

which compares the friction that forces a particle to stop when depositing with its weight.

Figure 7a shows the experimental values of Sh. In all experimental configurations, Sh is
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FIG. 7. Analysis of the wall friction τp and of its contribution to the dissipation from experimental

data. (a) Shields number comparing wall friction to particle weight; (b) Potential energy Ep

released during the total flow duration; (c) Energy Dsed dissipated by the sedimentation flow;

(d) Energy Ddb lost by dam-break flow due to τp, calculated under the assumption of a linear

longitudinal velocity profile, eq (22).

mainly sensitive to the particle concentration, becoming four times larger when Φs/Φpack

increases from 0.65 to 0.95. In any case, it is larger than 20, which means that the cohesion

of the deposit is not due to gravity but necessarily results from the solid friction between

the particles.

Another way to assess the role of τp is to analyze the respective contributions of the
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dam-break flow and of the sedimentation process to the total dissipation of mechanical

energy. The total energy that is dissipated during each experimental test is equal to the

potential energy of gravity that is released between the beginning and the end of the flow:

Ep = Mg(hg0 − hgd), where M is the total mass of particles, hg0 the elevation of the center

of mass of the fluidized mixture before its release in the channel (fig 1b), and hgd that of the

final deposit (fig 1e). The value of Ep, which can easily be calculated from experimental data,

is plotted in fig 7b. Note that it varies significantly according to experimental conditions.

Then, we consider the sedimentation process. The dissipation rate per unit volume εsed

during fluidization experiments within the initial reservoir – with the gate to the channel

closed – can be obtained as the product of the fluidization velocity, Uf , and the pressure

gradient within the bed of particles, Φsρsg. Since fluidization and sedimentation processes

were shown to be equivalent for a homogeneous suspension [26], the dissipation during the

sedimentation process is given by the same expression with taking Used in place of Uf ,

εsed = ΦsρsgUsed . (18)

Because the sedimentation is independent of the dam-break flow, the value of εsed given by

eq (18) is still relevant for the flowing suspension. The energy dissipated by the sedimenta-

tion process is therefore

Dsed = εsed

∫ T

0

ϑ(t)dt, (19)

where the volume ϑ(t) of the suspension at time t represents its initial volume ϑ0 minus the

deposited volume,

ϑ(t) = ϑ0 +

∫ T

0

ṁ

ρm
w0 xF(t)dt , (20)

where xF(t) = (x0 + UF t) is the position of the front and w0 the width of the channel.

Values of Dsed, computed by applying eqs (18)-(20) to experimental data and normalized

by Ep, are plotted in fig 7c. It is interesting to note that the results of the four cases are

similar despite significant differences in the total dissipated energy. Dsed strongly decreases

with Φs/Φpack, which indicates that it is mainly controlled by the particle concentration.

However, in any case, the sedimentation contributes less than 10% of the total dissipation.

Now, let us consider the energy Ddb that is dissipated by the dam-break flow. We start

by considering the mechanical energy Edb which is lost by the moving layer. Because we
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assume a plug flow, no dissipation occurs within the moving layer and Edb reduces to the

work of τp. After summation along the channel (x0 < x < L) and over the time interval

during which the flowing mixture is present ((x− x0)/UF < t < T ), we have

Edb = −
∫ L

x0

∫ T

x−x0
UF

w0 τp u(x, t) dtdx . (21)

Since we do not know the velocity profile in the experiments, we propose to estimate Edb by

assuming a linear evolution between the reservoir wall at x = 0 and the front position xF(t)

which moves at constant velocity UF ,

u(x, t) = (x/xF(t)) UF . (22)

This represents a crude assumption, which is however probably a reasonable first-order

approximation since the mixture surface h(x) is observed to be rather smooth and regular

(fig 2). One part of Edb corresponds to the energy Ddb that has been dissipated in heat within

the boundary layer, while a second part is associated to the potential energy of gravity that

has been transferred to the deposit, so that

Ddb = Edb −Mghgd . (23)

Values of Ddb, computed from experimental data by means of eqs (22)-(21), are plotted in

fig 7d. Despite the assumption made regarding the velocity profile and the fact that our

model is not expected to be valid during the first and the last stages of the flow, Ddb/Ep

is found to be of the order of unity and does not show any well defined trend to evolve

with Φs/Φpack. We can thus conclude that the present model of τp is consistent with the

experimental data.

V. CONCLUDING REMARKS

The lower layer of pyroclastic flows is made of a gas laden with fine non-cohesive ash

particles. Its properties can be investigated by means of laboratory experiments. By revis-

iting the characteristics of the final deposit and the total time duration measured in such

experiments, distinctive properties of these flows have been revealed, which shed light on

their dynamics and draw guidelines for the modelling of natural flows of ash generated by a

volcanic eruption.
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The most striking feature of such flows is the absence of a significant coupling between

the sedimentation process and the overall flow of the mixture. Both the volume fraction and

the sedimentation velocity of the particles are found not to be influenced by the rapid flow in

the channel, which however involves a strong elongation of the mixture in the longitudinal

direction. This means that the particles concentration Φs of the flowing mixture can be

considered to be constant in space and time. Also, it implies that the sedimentation velocity

Used is the same than that measured in a non flowing mixture confined within a reservoir,

which has been modeled in a previous work as a function of the ratio Φs/Φpack between the

particle volume fraction and its value at packing [26]. Because Φs is constant, the mass

flux, ṁ, of particles that settle down and the growth velocity Uagg of the deposit are directly

related to Used and can be determined from Φs/Φpack.

Furthermore, the mixture can be described as an equivalent fluid of constant density ρm

and viscosity µm. The Reynolds number of the flow mixture is larger than 105 in laboratory

experiments and much larger in natural flows. In addition, the contribution of the sedimen-

tation process to the dissipation of mechanical energy turns out to be small. Therefore, the

mixture can be reasonably approximated as inviscid and moving as a plug flow at velocity u.

The momentum flux that leaves the flowing mixture is thus determined by the momentum

lost by the particles as they deposit, τp = ṁu.

During the longest part of their run, such flows are quasi-parallel and the evolution of

both the thickness and the velocity of the moving mixture can be described by shallow-

water equations including ṁ and τp as sink terms of mass and momentum, respectively. The

present analyzis of experiments performed in a horizontal channel indicates that this should

lead to a good prediction of the total flow duration and of the deposit shape, provided that

the front velocity is correct. In addition, numerical solving of shallow-water equations for

an inviscid fluid in a similar geometry leads to a constant front velocity in agreement with

experiments [25]. We are therefore confident that shallow water equations with the sink

terms proposed here constitute a good tool to predict natural flows of hot dense volcanic

ash in any geometry with smooth slope variations, as it is the case when such flows travel

down valleys.

Beyond the fact that these equations allow to compute the complete longitudinal evolution

of the horizontal velocity and that of the mixture height, the findings of this study can

provide precious hints for the interpretation of the geologist’s field measurements. As an
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illustration, let us consider that the following quantities can be estimated from the analysis of

sediments: the total run-out distance L, the thickness of the deposit hd∞ , and the slope of the

deposit s. Then, if the properties of the ash particles (size, density, packing fraction Φpack)

can be determined from the analysis of the sediments, the relation between the aggradation

velocity, Uagg, and the particle volume fraction, Φs, of the flowing mixture can be estimated.

Combining the results of this study, we have the four following relations, Uagg = f(Φs/Φpack),

s = Uagg/UF , hd∞ = TUagg and UF = L/T , from which the four unknowns Φs, Uagg, UF

and T can be evaluated. Of course, if the flow dynamics is computed from shallow-water

equations, variations of the topography of the valley can be taken into account to interpret

variations of the flow deposit along the flow path.
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