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A broad family of distances between two covariance matrices C1, C2 ∈ R p×p , among which the Frobenhius, Fisher, Battacharrya distances as well as the Kullback-Leibler, Rényi and Wasserstein divergence for centered Gaussian distributions can be expressed as functionals

Consistent estimates of such distances based on few (n1, n2) samples xi ∈ R p having covariance C1, C2 have been recently proposed using random matrix tools in the regime where n1, n2 ∼ p. These estimates however demand that n1, n2 > p for most functions f . The article proposes to alleviate this limitation using a polynomial approximation approach. The proposed method is supported by simulations in practical applications.

INTRODUCTION

Evaluating the distance between covariance matrices is at the core of many machine learning and signal processing applications. They are notably used for covariance features-based classification (for instance in brain signal or hyperspectral image classification), as well as for dimensionality reduction and representation of high dimensional points. Denote C1, C2 ∈ R p×p two large dimensional covariance matrices for which we would like to compute the distance D(C1, C2) based on few (p-dimensional) sample vectors. We assume that D can be written as a linear functional 1 p p i=1 f (li) of the eigenvalue distribution of either C - 1 1 C2 (li = λi(C -1 1 C2)) (as with the Fisher, Battacharrya, Kullback Leibler, Rényi divergences) or C1C2 (li = λi(C1C2)) (for the Wasserstein distance).

The natural estimation of D(C1, C2) based on na samples x a i , a = 1, 2, is traditionally performed via D( Ĉ1, Ĉ2), where Ĉa =

1 na na i=1 x (a) i x (a)T i
. This is justified by the law of large number since D( Ĉ1, Ĉ2) a.s.

-→ D(C1, C2) as n1, n2 p. However, the estimate induces dramatic erroneous when n1, n2 ∼ p and even diverges for na < p.

To deal with the n1, n2 ∼ p scenario, [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] and [START_REF] Tiomoko | Random matrix improved covariance estimation for a large class of metrics[END_REF] proposed a random matrix improved consistent estimate for D(C1, C2) for all aforementioned metrics. The main idea behind these works consists in three steps: i) write the sought-for distance D(C1, C2) as a complex integral involving the Stieltjes transform of the limiting eigenvalue distribution of C -1 1 C2 (or C1C2), ii) exploit a functional identity relating the Stieltjes transforms of the limiting population and sample eigenvalue distributions (e.g., of C -1 1 C2 and Ĉ-1 1 Ĉ2) using the results from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] and iii) find (if possible) a closed form solution for the resulting complex integral.

However, although consistent for n1, n2 ∼ p, these improved estimators still demand that n1, n2 > p for all functions f (z) having a singularity at z = 0 (e.g., 1/z, log(z), log 2 (z), √ z). For functions f having no singularity at zero, this constraint may be relaxed (with some extra care though) as discussed in [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF], but almost no usual covariance matrix distance falls into this scenario (except for the Frobenius distance, which can at any rate be treated easily without resorting to these elaborate methods).

Based on a polynomial approximation of the functions of interest, this article proposes to retrieve consistent estimates for the challenging n1, n2 < p scenario. Besides, a closed-form and numerically convenient expression of the proposed estimator is derived for any (local) polynomial approximation of the functions.

The article is organized as follows. In section 2, we will explain briefly the general idea of the estimation and the problem induced by the challenging case n1 < p and n2 < p. A solution based on polynomial approximation is then proposed in section 3 to cover the case n2 < p. As an application, a dimensionality reduction framework shows the consistency of the proposed estimator in section 4.

Reproducibility. A set of Matlab codes for the various estimators introduced and studied in this article are available at https://github.com/maliktiomoko/RMTCovDistHDLSS.

PRELIMINARIES

Models and Assumption

For a ∈ {1, 2}, let Xa = [x (a) 1 , . . . , x (a) 
na ] be na independent and identically distributed random vectors with x

(a) i = C 1 2 a x(a)
i , where x(a) i ∈ R p has zero mean, unit variance and finite fourth order moment entries. This holds in particular for x (a) i ∼ N (0, Ca). In order to control the growth rates of n1, n2, p, we make the following assumption:

Assumption 1 (Growth Rates). As na → ∞, p/na → ca ∈ (0, ∞) and lim sup p max{ C -1 a , Ca } < ∞ for • the operator norm.

We define the sample covariance estimate Ĉa of Ca as

Ĉa ≡ 1 na XaX T a = 1 na na i=1 x (a) i x (a)T i .
Our objective is to estimate, under the difficult regime where p > na, the distance D(C1, C2) between the covariance matrices C1 and C2 of the form:

D(C1, C2) = 1 p p i=1 f (li)
where li = l - i are the eigenvalues of C -1 1 C2 or li = l + i are the eigenvalues of C1C2. As discussed at length in [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF], this form comprises, among others, the Fisher, Frobenius, Wasserstein and Battacharrya distances, along with the Kullbach-Liebler and Rényi divergences.

The proposed estimate relies on random matrix theory and particularly on the Stieltjes transform m θ (z) of a probability distribution θ defined as the complex function:

m θ : C \ supp(θ) → C, z → (λ -z) -1 dθ(λ).
The Stieltjes transform is here used to create a link between the population covariance eigenvalue distribution νp to the sample eigenvalue distribution µp defined by:

νp = 1 p p i=1 δ l i , µp = 1 p p i=1 δ li
where li = li are the eigenvalues of Ĉ-1 1 Ĉ2 or li = l+ i are the eigenvalues of Ĉ1 Ĉ2.

Previous Results

Theorem 1 from [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] and [START_REF] Tiomoko | Random matriximproved estimation of the wasserstein distance between two centered gaussian distributions[END_REF] provide an estimate of these distances in the "easy" regime where lim p/na < 1.

Theorem 1. Let f : C → C be analytic on a contour Γ ⊂ {z ∈ C, R[z] > 0} surrounding µp. Then, f dνp - 1 2πi Γ f ϕp(z) ψp(z) ψ p (z) ψp(z) - ϕ p (z) ϕp(z) ψp(z)dz c2 a.s.
-→ 0

where

ϕp(z) = z(1 + c1zmµ p (z)), µp = µ - p z 1-c 1 -c 1 zmµ p (z) , µp = µ + p ψp(z) = 1 -c2 -c2zmµ p (z).
To understand the generalization of Theorem 1 proposed in the present article, we need to recall the main steps of its proof (here for µp = µ - p ).

Sketch of Proof.

Using the Cauchy integral formula, we have

D(C1, C2) = 1 p p i=1 f (li) = f (t)νp(dt) (1) 
= 1 2πı Γν f (z) z -t νp(dt) = -1 2πı Γν f (z)mν p (z)dz.
Thus, estimating D(C1, C2) is equivalent to relating mν p to mµ p . Since X1 and X2 are independent, we can condition first on X2. By [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF], the limiting eigenvalue distribution of C2 Ĉ-1 1 , denoted ζ, can be written as a function C2C -1 1 , and similarly for the limiting eigenvalue distributions of Ĉ2 Ĉ-1 1 and C2 Ĉ-1 1 . This entails the two equations:

zmµ p (z) = ϕp(z)m ζp (ϕp(z)) + op(1) (2) mν p (z/Ψp(z)) = m ζp (z)Ψp(z) + op(1). (3) 
Through the changes of variable z → ϕp(z) and ω → Ψp(ω) applied in Γν f (z)mν p (z)dz, the result follows. (Bottom) n2 < p. For n2 < p, the left real crossing of Γν is necessarily negative (even if the mass at {0} of Sµ were not included in Γ). In case of singularities or branch-cuts (shown in red for the log(z) and √ z functions), the contours are invalid.

On the need for n2 > p and n1 > p in Theorem 1

Since distances involving the eigenvalues of C -1 1 C2 are estimated from the empirical matrix Ĉ-1 1 Ĉ2, the constraint n1 > p is inevitable to ensure the existence of Ĉ-1

1 . The requirement for n2 > p is less immediate. The two variable changes discussed in the proof of Theorem 1 are only licit if they realize a mapping from a contour Γ enclosing the limiting support Sµ of µp and a valid contour Γν enclosing the limiting support Sν of νp while enclosing no additional singular points of the function f (z) (otherwise the Cauchy formula used in (1) is incorrect). But for n2 < p, it can be proved (see details in [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF]) that the pre-image of Γµ by the variable changes wraps around Sν and around zero (with leftmost real crossing depending on the ratio n2/p). This is a problem for all functions f (z) singular at z = 0. In particular, 1/z, log(z), log 2 (z) and √ z are examples of such invalid functions which, for some, additionally have a branch-cut terminating at zero (that no valid contour may cross). This discussion is most conveniently illustrated in Figure 1.

Unfortunately, there seems to be no simple workaround to this situation. We propose in this article to (partially) solve the problem by introducing entire functions (thus analytical over C) as substitutes for the locally non-analytic functions log(z), log 2 (z) and √ z intervening in the distance D(C1, C2) formulation.

MAIN RESULTS

Proposed estimation

Our approach consists in approximating (arbitrarily closely) the analytic functions f under study that present singularities around zero by entire functions, and particularly degree-N polynomials fN (z) defined by fN (z) = N n=0 anz n . Our central argument relies in the fact that, since Ca and C -1 a are bounded (as per Assumption 1), the limiting support Sν of νp is a compact set strictly away from zero. As such, one needs not approximate f on the whole R + half-line (which would still pose problems in the vicinity of zero) but only on a subset [a, b] ⊂ (0, ∞) over which polynomials are universal approximators.

This gives rise to the following immediate extension of Theorem 1.

Theorem 2. Let Γ be a contour surrounding the limiting support Sµ of µp. Then, for all > 0, there exists N and fN (z) = N n=0 anz n a polynomial of order N , such that, under the notations of Theorem 1, lim sup 

D(X1, X2; fN ) = n2 2πip Γ fN ϕp(z) ψp(z) ϕ p (z) ϕp(z) - ψ p (z) ψp(z) ψp(z)dz -a0 1-c2 c2 .
The result immediately follows from our discussion above and Theorem 1. To avoid the numerical integration and proper choice of a contour in the statement of Theorem 2, we next provide closedform expressions for the estimate D(X1, X2; fN ). For simplicity of exposition, we consider here only the case n2 < n1.

Theorem 3 (Case C1C2). Let 0 < λ1 ≤ . . . ≤ λn 2 be the n2 non zero eigenvalues of Ĉ1 Ĉ2, and define {ξi} n 2 -1 i=1 and {ηi} n 2 i=1 the (increasing non zero) eigenvalues of Λ -1

n 1 √ λ √ λ T and Λ -1 n 2 √ λ √ λ T
, respectively, where λ = (λ1, . . . , λn 2 ) T and Λ = diag(λ). Then,

D(X1, X2; fN ) = a0 + an c2 n 2 -1 j=1 ξj 1 + c1 c2 -c1 + N n=2 an c2 n 2 -1 j=1 1 (n -2)! ∂ n-2 ∂z n-2 A ξ j n (z)C ξ n (z) | z=ζ j + N n=1 an c2 n 2 j=1 1 (n -1)! ∂ n-1 ∂z n-1 A η j n (z)C η n (z) |z=η j where A ξ j n (z) = ϕ(z) ψ(z) (z -ξj) n ψ(z) z -ξj A η j n (z) = ϕ(z) ψ(z) (z -ηj) n ψ(z) C ξ n (z) = -1 n -1 ϕ (z) ϕ(z) , C η n (z) = -1 n ψ (z) ψ(z) .
Theorem 4 (Case C -1 1 C2). Let 0 < λ1 ≤ . . . ≤ λn 2 the n2 non zero eigenvalues of Ĉ-1 1 Ĉ2, and define {ξi} n 2 -1 i=1 and {ηi} n 2 i=1 the (increasing non zero) eigenvalues of Λ -

1 p-n 1 √ λ √ λ T and Λ -1 n 2 √ λ √ λ T
, respectively, where λ = (λ1, . . . , λn 2 ) T and Λ = diag(λ). Then,

D(X1, X2; fN ) = a0 + an c2 n 2 -1 j=1 ξj 1 + c1 c2 -c1 + N n=2 an c2 n 2 -1 j=1 1 (n -2)! ∂ n-2 ∂z n-2 A ξ j n (z)Cn(z) | z=ξ j + n 2 j=1 an p (1 -n1 + n2 -p) - c1 c2 λj n where A ξ j n (z) = ϕ(z) ψ(z) (z -ξj) n ψ(z) z-ξ j Cn(z) = -1 n-1 ϕ (z) ϕ(z) -1 z
Proof. The proofs of Theorems 3 and 4 are similar. For conciseness we only sketch the proof of the Theorem 4. The ξi and ηi are the respective zeros of the rational functions 1 -p n 2 -p n 2 zm(z) and 1 + p n 1 zm(z). Thus, ϕp and ψp can be expressed as the following rational functions:

ϕp(z) = (1 -c1) z n 2 i=1 z -ηi n 2 i=1 z -λi , ψp(z) = z n 2 -1 i=1 z -ξi n 2 i=1 z -λi
and their derivatives as

ϕ p (x) ϕp(x) - ψ p (x) ψp(x) = n 2 i=1 1 x -ηi - n 2 -1 i=1 1 x -ξi .
The complex integral can thus be written as N n=1 an 2πıc 2

In(z)dz with the integrand In(z) given by the rational function:

In(z) = (1 -c1) n n 2 i=1 (z -ηi) n n 2 -1 i=1 (z -ξi) n-1 n 2 i=1 (z -λi) n × n 2 i=1 1 z -ηi - n 2 -1 i=1 1 z -ξi
for which we need to evaluate the residue at poles:

• the (n -1)-th and n-th order pole at ξj with residue (for n ≥ 2) by:

R1 = n 2 -1 j=1 lim z→ξ j 1 (n -2)! ∂ n-2 ∂x n-2 In(z)(z -ξj) n-1 + n 2 -1 j=1 lim z→ξ j 1 (n -1)! ∂ n-1 ∂x n-1 [In(z)(z -ξj) n ]
• the 1st order pole in λj with residue:

R3 = n 2 j=1 lim z→λ j In(z)(z -λj)
• the 1st order pole in ηj with residue (for n = 0):

R4 = n 2 j=1 lim z→η j ψ(z).
Putting all residues together and exploiting further relations involving the functions ϕp and ψp and their derivatives (see [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] for details) entails the result.

Although Theorems 3 and 4 are difficult to interpret, they are numerically easy to implement: the terms involving the k-th derivative can indeed be evaluated iteratively by remarking the following identities for any rational functional function

A(z) = i z-a i i z-b i and C(z) = i 1 z-c i -1 z-d i (ai, bi, ci, di ∈ R): ∂ n ∂z n (A(z)C(z)) = n k=1 k n ∂ k ∂z k A(z) ∂ n-k ∂z n-k C(z) ∂ n ∂z n A(z) = ∂ n-1 ∂z n-1 A(z)B(z) = n-1 k=1 k n -1 ∂ k ∂x k A(z) ∂ n-1-k ∂x n-1-k B(z) where B(z) = i 1 z-a i -1
z-b i , from which we obtain a recursive expression for the derivatives of A(z).

SIMULATIONS AND APPLICATIONS

Applications to synthetic Gaussian data

We confirm the consistency of the proposed estimates through simulations on synthetic Gaussian data, here for the Wasserstein distance (that is, for f (z) = √ z and µp = µ + p ) and for the p = 2n2 = 1.5n1. Table 1 compares the proposed estimator to the traditional sample covariance matrix plugin estimate DSCM = D( Ĉ1, Ĉ2, f ). It is clear in this setting that, while DSCM to be largely erroneous, the proposed estimate performs well down to rather small values of p. Somewhat surprisingly, polynomials of high orders, which threaten the stability of the method (due to the not-so-low probability of occurrence of large eigenvalues for Ĉ1 Ĉ2), display a stable behavior even for small values of p. This suggests the possibility, in practice, to run the proposed estimator for rather large values of N . 

∼ N (0, Ca); c1 = 1.5 and c2 = 2. Averaged over 10 trials. The function fN is the polynomial that best fits (in the least-squares sense)

√

D for D sampled logarithmically on the support of the eigenvalues of Ĉ1 Ĉ2. In boldface, distance estimates within 1% of relative error.

Application to dimensionality reduction

More interestingly in a statistical learning context, we now demonstrate the performance of the proposed estimator in a dimensionality reduction scenario. Consider m data points X1, . . . , Xm, each Xi ∈ R p×n i being obtained from ni independent p-dimensional centered Gaussian samples. For The objective is to depict the data in a two-dimensional projection space in order to identify the two classes based on their covariance matrices. To this end, we use kernel PCA [START_REF] Schölkopf | Kernel principal component analysis[END_REF] for a Wasserstein distance metric, which consists in a (2D) principal component analysis of the kernel matrix K ∈ R m×m with Kij = exp(-1 2 DW (C (i) , C (j) )). Being unknown, the distances are approximated using either the classical estimate DW ( Ĉ(i) , Ĉ(j) ) or the proposed estimator of the Wasserstein distance.

i ≤ m/2, E[[Xi]•j[Xi] •j ] = C (i) = C1 =
Figure 2 shows that the proposed estimator preserves the local neighborhood structure of the data where the classical estimate dramatically fails. Fig. 2. First versus second eigenvectors of K for distinct uniformly random ni ∈ {p/2, . . . , p}, p = 512 and polynomial fN chosen similarly as in Table 1 with N = 6.

CONCLUDING REMARKS

The polynomial approximation approach proposed in this article breaks the stringent limitation that demands p < n for a host of estimators, here for covariance distance estimation. Yet, it presents some technical difficulties when dealing with functions with high variations near zero (such as log 2 (x)). Combining polynomials P (x) and other family of better behaving functions (e.g., exp(-P (x))) may leverage the problem.

Moreover, there is still a need to cover the case p > n in estimators involving covariance matrix inverses for which Ĉ1 -1 Ĉ2 is not even defined. Random projections and regularization methods can be devised to tackle this scenario, however possibly to the detriment of the estimator consistency.

Fig. 1 .

 1 Fig. 1. Illustration of the contours maps Γ → Γν (from right to left) by the variable changes leading up to Theorem 1. (Top) n2 > p.(Bottom) n2 < p. For n2 < p, the left real crossing of Γν is necessarily negative (even if the mass at {0} of Sµ were not included in Γ). In case of singularities or branch-cuts (shown in red for the log(z) and √ z functions), the contours are invalid.

  , C2; f ) -D(X1, X2; fN )| < almost surely, where

  Ip and for i > m/2, C (i) = C2 a random (pdimensional) standard Wishart matrix with 100p degrees of freedom (to avoid trivial classification).
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