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ABSTRACT

A broad family of distances between two covariance matrices
C1, C2 ∈ Rp×p, among which the Frobenhius, Fisher, Battacharrya
distances as well as the Kullback-Leibler, Rényi and Wasserstein
divergence for centered Gaussian distributions can be expressed as
functionals 1

p

∑p
i=1 f

(
λi(C

−1
1 C2)

)
or 1

p

∑p
i=1 f (λi(C1C2)) of

the eigenvalue distribution of C−1
1 C2 or C1C2. Consistent esti-

mates of such distances based on few (n1, n2) samples xi ∈ Rp

having covariance C1, C2 have been recently proposed using ran-
dom matrix tools in the regime where n1, n2 ∼ p. These estimates
however demand that n1, n2 > p for most functions f . The article
proposes to alleviate this limitation using a polynomial approxima-
tion approach. The proposed method is supported by simulations in
practical applications.

Index Terms— Random Matrix Theory, Statistical Inference,
Covariance Matrix

1. INTRODUCTION

Evaluating the distance between covariance matrices is at the core
of many machine learning and signal processing applications. They
are notably used for covariance features-based classification (for in-
stance in brain signal or hyperspectral image classification), as well
as for dimensionality reduction and representation of high dimen-
sional points. Denote C1, C2 ∈ Rp×p two large dimensional co-
variance matrices for which we would like to compute the distance
D(C1, C2) based on few (p-dimensional) sample vectors. We as-
sume that D can be written as a linear functional 1

p

∑p
i=1 f (li) of

the eigenvalue distribution of either C−1
1 C2 (li = λi(C

−1
1 C2)) (as

with the Fisher, Battacharrya, Kullback Leibler, Rényi divergences)
or C1C2 (li = λi(C1C2)) (for the Wasserstein distance).

The natural estimation of D(C1, C2) based on na samples xai ,
a = 1, 2, is traditionally performed via D(Ĉ1, Ĉ2), where Ĉa =
1
na

∑na
i=1 x

(a)
i x

(a)T
i . This is justified by the law of large number

since D(Ĉ1, Ĉ2)
a.s.−→ D(C1, C2) as n1, n2 � p. However, the

estimate induces dramatic erroneous when n1, n2 ∼ p and even di-
verges for na < p.

To deal with the n1, n2 ∼ p scenario, [1] and [2] proposed a
random matrix improved consistent estimate for D(C1, C2) for all
aforementioned metrics. The main idea behind these works con-
sists in three steps: i) write the sought-for distance D(C1, C2) as
a complex integral involving the Stieltjes transform of the limiting
eigenvalue distribution of C−1

1 C2 (or C1C2), ii) exploit a functional
identity relating the Stieltjes transforms of the limiting population
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and sample eigenvalue distributions (e.g., of C−1
1 C2 and Ĉ−1

1 Ĉ2)
using the results from [3] and iii) find (if possible) a closed form
solution for the resulting complex integral.

However, although consistent for n1, n2 ∼ p, these improved
estimators still demand that n1, n2 > p for all functions f(z) hav-
ing a singularity at z = 0 (e.g., 1/z, log(z), log2(z),

√
z). For

functions f having no singularity at zero, this constraint may be re-
laxed (with some extra care though) as discussed in [1], but almost
no usual covariance matrix distance falls into this scenario (except
for the Frobenius distance, which can at any rate be treated easily
without resorting to these elaborate methods).

Based on a polynomial approximation of the functions of inter-
est, this article proposes to retrieve consistent estimates for the chal-
lenging n1, n2 < p scenario. Besides, a closed-form and numeri-
cally convenient expression of the proposed estimator is derived for
any (local) polynomial approximation of the functions.

The article is organized as follows. In section 2, we will explain
briefly the general idea of the estimation and the problem induced
by the challenging case n1 < p and n2 < p. A solution based on
polynomial approximation is then proposed in section 3 to cover the
case n2 < p. As an application, a dimensionality reduction frame-
work shows the consistency of the proposed estimator in section 4.

Reproducibility. A set of Matlab codes for the various es-
timators introduced and studied in this article are available at
https://github.com/maliktiomoko/RMTCovDistHDLSS.

2. PRELIMINARIES

2.1. Models and Assumption

For a ∈ {1, 2}, let Xa = [x
(a)
1 , . . . , x

(a)
na ] be na independent and

identically distributed random vectors with x(a)
i = C

1
2
a x̃

(a)
i , where

x̃
(a)
i ∈ Rp has zero mean, unit variance and finite fourth order mo-

ment entries. This holds in particular for x(a)
i ∼ N (0, Ca). In order

to control the growth rates of n1, n2, p, we make the following as-
sumption:

Assumption 1 (Growth Rates). As na →∞, p/na → ca ∈ (0,∞)
and lim supp max{‖C−1

a ‖, ‖Ca‖} <∞ for ‖·‖ the operator norm.

We define the sample covariance estimate Ĉa of Ca as

Ĉa ≡
1

na
XaX

T
a =

1

na

na∑
i=1

x
(a)
i x

(a)T
i .

Our objective is to estimate, under the difficult regime where
p > na, the distance D(C1, C2) between the covariance matrices



C1 and C2 of the form:

D(C1, C2) =
1

p

p∑
i=1

f (li)

where li = l−i are the eigenvalues of C−1
1 C2 or li = l+i are the

eigenvalues of C1C2. As discussed at length in [1], this form com-
prises, among others, the Fisher, Frobenius, Wasserstein and Bat-
tacharrya distances, along with the Kullbach-Liebler and Rényi di-
vergences.

The proposed estimate relies on random matrix theory and par-
ticularly on the Stieltjes transform mθ(z) of a probability distribu-
tion θ defined as the complex function:

mθ : C \ supp(θ)→ C, z 7→
∫

(λ− z)−1dθ(λ).

The Stieltjes transform is here used to create a link between the pop-
ulation covariance eigenvalue distribution νp to the sample eigen-
value distribution µp defined by:

νp =
1

p

p∑
i=1

δli , µp =
1

p

p∑
i=1

δl̂i

where l̂i = l̂i
−

are the eigenvalues of Ĉ−1
1 Ĉ2 or l̂i = l̂+i are the

eigenvalues of Ĉ1Ĉ2.

2.2. Previous Results

Theorem 1 from [1] and [4] provide an estimate of these distances in
the “easy” regime where lim p/na < 1.

Theorem 1. Let f : C → C be analytic on a contour Γ ⊂ {z ∈
C,R[z] > 0} surrounding µp. Then,∫
fdνp −

1

2πi

∮
Γ

f

(
ϕp(z)

ψp(z)

)[
ψ′p(z)

ψp(z)
−
ϕ′p(z)

ϕp(z)

]
ψp(z)dz

c2

a.s.−→ 0

where

ϕp(z) =

{
z(1 + c1zmµp(z)), µp = µ−p

z
1−c1−c1zmµp (z)

, µp = µ+
p

ψp(z) = 1− c2 − c2zmµp(z).

To understand the generalization of Theorem 1 proposed in the
present article, we need to recall the main steps of its proof (here for
µp = µ−p ).

Sketch of Proof. Using the Cauchy integral formula, we have

D(C1, C2) =
1

p

p∑
i=1

f (li) =

∫
f(t)νp(dt) (1)

=
1

2πı

∫ [∮
Γν

f(z)

z − t

]
νp(dt) =

−1

2πı

∮
Γν

f(z)mνp(z)dz.

Thus, estimating D(C1, C2) is equivalent to relating mνp to mµp .
Since X1 and X2 are independent, we can condition first on X2.
By [3], the limiting eigenvalue distribution of C2Ĉ

−1
1 , denoted ζ,

can be written as a function C2C
−1
1 , and similarly for the limiting

eigenvalue distributions of Ĉ2Ĉ
−1
1 and C2Ĉ

−1
1 . This entails the two

equations:

zmµp(z) = ϕp(z)mζp (ϕp(z)) + op(1) (2)
mνp (z/Ψp(z)) = mζp(z)Ψp(z) + op(1). (3)

Through the changes of variable z → ϕp(z) and ω → Ψp(ω) ap-
plied in

∮
Γν
f(z)mνp(z)dz, the result follows.
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Fig. 1. Illustration of the contours maps Γ 7→ Γν (from right to
left) by the variable changes leading up to Theorem 1. (Top) n2 >
p. (Bottom) n2 < p. For n2 < p, the left real crossing of Γν is
necessarily negative (even if the mass at {0} of Sµ were not included
in Γ). In case of singularities or branch-cuts (shown in red for the
log(z) and

√
z functions), the contours are invalid.

2.3. On the need for n2 > p and n1 > p in Theorem 1

Since distances involving the eigenvalues of C−1
1 C2 are estimated

from the empirical matrix Ĉ−1
1 Ĉ2, the constraint n1 > p is in-

evitable to ensure the existence of Ĉ−1
1 . The requirement for n2 > p

is less immediate. The two variable changes discussed in the proof
of Theorem 1 are only licit if they realize a mapping from a con-
tour Γ enclosing the limiting support Sµ of µp and a valid contour
Γν enclosing the limiting support Sν of νp while enclosing no ad-
ditional singular points of the function f(z) (otherwise the Cauchy
formula used in (1) is incorrect). But for n2 < p, it can be proved
(see details in [1]) that the pre-image of Γµ by the variable changes
wraps around Sν and around zero (with leftmost real crossing de-
pending on the ratio n2/p). This is a problem for all functions f(z)
singular at z = 0. In particular, 1/z, log(z), log2(z) and

√
z are ex-

amples of such invalid functions which, for some, additionally have
a branch-cut terminating at zero (that no valid contour may cross).
This discussion is most conveniently illustrated in Figure 1.

Unfortunately, there seems to be no simple workaround to this
situation. We propose in this article to (partially) solve the problem
by introducing entire functions (thus analytical over C) as substi-
tutes for the locally non-analytic functions log(z), log2(z) and

√
z

intervening in the distance D(C1, C2) formulation.

3. MAIN RESULTS

3.1. Proposed estimation

Our approach consists in approximating (arbitrarily closely) the an-
alytic functions f under study that present singularities around zero
by entire functions, and particularly degree-N polynomials f̃N (z)

defined by f̃N (z) =
∑N
n=0 anz

n.
Our central argument relies in the fact that, since ‖Ca‖ and

‖C−1
a ‖ are bounded (as per Assumption 1), the limiting support Sν

of νp is a compact set strictly away from zero. As such, one needs
not approximate f on the whole R+ half-line (which would still pose
problems in the vicinity of zero) but only on a subset [a, b] ⊂ (0,∞)



over which polynomials are universal approximators.
This gives rise to the following immediate extension of Theo-

rem 1.

Theorem 2. Let Γ be a contour surrounding the limiting support Sµ
of µp. Then, for all ε > 0, there existsN and f̃N (z) =

∑N
n=0 anz

n

a polynomial of order N , such that, under the notations of Theo-
rem 1,

lim sup
n,p

|D(C1, C2; f)− D̂(X1, X2; f̃N )| < ε

almost surely, where

D̂(X1, X2; f̃N ) =

n2

2πip

∮
Γ

f̃N

(
ϕp(z)

ψp(z)

)[
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

]
ψp(z)dz − a0

1−c2
c2

.

The result immediately follows from our discussion above and
Theorem 1. To avoid the numerical integration and proper choice of
a contour in the statement of Theorem 2, we next provide closed-
form expressions for the estimate D̂(X1, X2; f̃N ). For simplicity of
exposition, we consider here only the case n2 < n1.

Theorem 3 (Case C1C2). Let 0 < λ1 ≤ . . . ≤ λn2 be
the n2 non zero eigenvalues of Ĉ1Ĉ2, and define {ξi}n2−1

i=1 and

{ηi}n2
i=1 the (increasing non zero) eigenvalues of Λ − 1

n1

√
λ
√
λ
T

and Λ − 1
n2

√
λ
√
λ
T

, respectively, where λ = (λ1, . . . , λn2)T and
Λ = diag(λ). Then,

D̂(X1, X2; f̃N ) =

a0 +
an
c2

n2−1∑
j=1

ξj

(
1 +

c1
c2
− c1

)

+

N∑
n=2

[
an
c2

n2−1∑
j=1

1

(n− 2)!

∂n−2

∂zn−2

(
A
ξj
n (z)Cξn(z)

)
|z=ζj

]

+

N∑
n=1

[
an
c2

n2∑
j=1

1

(n− 1)!

∂n−1

∂zn−1

(
A
ηj
n (z)Cηn(z)

)
|z=ηj

]

where

A
ξj
n (z) =

(
ϕ(z)

ψ(z)
(z − ξj)

)n
ψ(z)

z − ξj

A
ηj
n (z) =

(
ϕ(z)

ψ(z)
(z − ηj)

)n
ψ(z)

Cξn(z) =
−1

n− 1

ϕ′(z)

ϕ(z)
, Cηn(z) =

−1

n

ψ′(z)

ψ(z)
.

Theorem 4 (Case C−1
1 C2). Let 0 < λ1 ≤ . . . ≤ λn2 the n2

non zero eigenvalues of Ĉ−1
1 Ĉ2, and define {ξi}n2−1

i=1 and {ηi}n2
i=1

the (increasing non zero) eigenvalues of Λ − 1
p−n1

√
λ
√
λ
T

and

Λ − 1
n2

√
λ
√
λ
T

, respectively, where λ = (λ1, . . . , λn2)T and

Λ = diag(λ). Then,

D̂(X1, X2; f̃N ) =

a0 +
an
c2

n2−1∑
j=1

ξj

(
1 +

c1
c2
− c1

)

+

N∑
n=2

[
an
c2

n2−1∑
j=1

1

(n− 2)!

∂n−2

∂zn−2

(
A
ξj
n (z)Cn(z)

)
|z=ξj

+

n2∑
j=1

an
p

(1− n1 + n2 − p)
(
−c1
c2
λj

)n]

where
A
ξj
n (z) =

(
ϕ(z)
ψ(z)

(z − ξj)
)n

ψ(z)
z−ξj

Cn(z) = −1
n−1

[
ϕ
′
(z)

ϕ(z)
− 1

z

]
Proof. The proofs of Theorems 3 and 4 are similar. For conciseness
we only sketch the proof of the Theorem 4. The ξi and ηi are the
respective zeros of the rational functions 1 − p

n2
− p

n2
zm(z) and

1 + p
n1
zm(z). Thus, ϕp and ψp can be expressed as the following

rational functions:

ϕp(z) = (1− c1) z

∏n2
i=1 z − ηi∏n2
i=1 z − λi

, ψp(z) =
z
∏n2−1
i=1 z − ξi∏n2
i=1 z − λi

and their derivatives as

ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)
=

n2∑
i=1

1

x− ηi
−
n2−1∑
i=1

1

x− ξi
.

The complex integral can thus be written as
∑N
n=1

an
2πıc2

∮
In(z)dz

with the integrand In(z) given by the rational function:

In(z) = (1− c1)n
∏n2
i=1(z − ηi)n∏n2−1

i=1 (z − ξi)n−1
∏n2
i=1(z − λi)n

×

[
n2∑
i=1

1

z − ηi
−
n2−1∑
i=1

1

z − ξi

]

for which we need to evaluate the residue at poles:

• the (n − 1)-th and n-th order pole at ξj with residue (for
n ≥ 2) by:

R1 =

n2−1∑
j=1

lim
z→ξj

1

(n− 2)!

∂n−2

∂xn−2

[
In(z)(z − ξj)n−1]

+

n2−1∑
j=1

lim
z→ξj

1

(n− 1)!

∂n−1

∂xn−1
[In(z)(z − ξj)n]

• the 1st order pole in λj with residue:

R3 =

n2∑
j=1

lim
z→λj

In(z)(z − λj)

• the 1st order pole in ηj with residue (for n = 0):

R4 =

n2∑
j=1

lim
z→ηj

ψ(z).



Putting all residues together and exploiting further relations involv-
ing the functions ϕp and ψp and their derivatives (see [1] for details)
entails the result.

Although Theorems 3 and 4 are difficult to interpret, they are
numerically easy to implement: the terms involving the k-th deriva-
tive can indeed be evaluated iteratively by remarking the following
identities for any rational functional function A(z) =

∏
i z−ai∏
i z−bi

and

C(z) =
∑
i

1
z−ci

− 1
z−di

(ai, bi, ci, di ∈ R):

∂n

∂zn
(A(z)C(z)) =

n∑
k=1

(
k

n

)
∂k

∂zk
A(z)

∂n−k

∂zn−k
C(z)

∂n

∂zn
A(z) =

∂n−1

∂zn−1
A(z)B(z)

=

n−1∑
k=1

(
k

n− 1

)
∂k

∂xk
A(z)

∂n−1−k

∂xn−1−kB(z)

where B(z) =
∑
i

1
z−ai

− 1
z−bi

, from which we obtain a recursive
expression for the derivatives of A(z).

4. SIMULATIONS AND APPLICATIONS

4.1. Applications to synthetic Gaussian data

We confirm the consistency of the proposed estimates through simu-
lations on synthetic Gaussian data, here for the Wasserstein distance
(that is, for f(z) =

√
z and µp = µ+

p ) and for the p = 2n2 =
1.5n1. Table 1 compares the proposed estimator to the traditional
sample covariance matrix plugin estimate DSCM = D(Ĉ1, Ĉ2, f).
It is clear in this setting that, whileDSCM to be largely erroneous, the
proposed estimate performs well down to rather small values of p.
Somewhat surprisingly, polynomials of high orders, which threaten
the stability of the method (due to the not-so-low probability of oc-
currence of large eigenvalues for Ĉ1Ĉ2), display a stable behavior
even for small values of p. This suggests the possibility, in practice,
to run the proposed estimator for rather large values of N .

p D(f) D(f̃10) D̂(f̃10) D(f̃20) D̂(f̃20) DSCM

64 0.1325 0.1379 0.1478 0.1328 0.1307 0.8477
128 0.1364 0.1437 0.1388 0.1382 0.1432 0.8367
256 0.1352 0.1425 0.1464 0.1364 0.1377 0.8446
512 0.1342 0.1424 0.1453 0.1348 0.1375 0.8412

1024 0.1345 0.1427 0.1431 0.1352 0.1356 0.8403
2048 0.1347 0.1430 0.1434 0.1353 0.1361 0.8405

Table 1. Estimates of Wasserstein distance D(·) = DW(C1, C2, ·)
versus proposed estimate D̂(·) = D̂W(X1, X2, ·) and sample co-
variance (SCM) plugin estimate DSCM = DW(Ĉ1, Ĉ2, f); with
C1 = Ip, C2 a random (p-dimensional) standard Wishart matrix
with 2p degrees of freedom, x(a)

i ∼ N (0, Ca); c1 = 1.5 and
c2 = 2. Averaged over 10 trials. The function f̃N is the polyno-
mial that best fits (in the least-squares sense)

√
D for D sampled

logarithmically on the support of the eigenvalues of Ĉ1Ĉ2. In bold-
face, distance estimates within 1% of relative error.

4.2. Application to dimensionality reduction

More interestingly in a statistical learning context, we now demon-
strate the performance of the proposed estimator in a dimensional-
ity reduction scenario. Consider m data points X1, . . . , Xm, each
Xi ∈ Rp×ni being obtained from ni independent p-dimensional
centered Gaussian samples. For i ≤ m/2, E[[Xi]·j [Xi]

>
·j ] =

C(i) = C1 = Ip and for i > m/2, C(i) = C2 a random (p-
dimensional) standard Wishart matrix with 100p degrees of freedom
(to avoid trivial classification).

The objective is to depict the data in a two-dimensional pro-
jection space in order to identify the two classes based on their
covariance matrices. To this end, we use kernel PCA [5] for a
Wasserstein distance metric, which consists in a (2D) principal com-
ponent analysis of the kernel matrix K ∈ Rm×m with Kij =

exp(− 1
2
DW (C(i), C(j))). Being unknown, the distances are ap-

proximated using either the classical estimate DW (Ĉ(i), Ĉ(j)) or
the proposed estimator of the Wasserstein distance.

Figure 2 shows that the proposed estimator preserves the local
neighborhood structure of the data where the classical estimate dra-
matically fails.

Class 1 (proposed)
Class 2 (proposed)

Class 1 (classical)
Class 2 (classical)

Fig. 2. First versus second eigenvectors of K for distinct uniformly
random ni ∈ {p/2, . . . , p}, p = 512 and polynomial f̃N chosen
similarly as in Table 1 with N = 6.

5. CONCLUDING REMARKS

The polynomial approximation approach proposed in this article
breaks the stringent limitation that demands p < n for a host
of estimators, here for covariance distance estimation. Yet, it
presents some technical difficulties when dealing with functions
with high variations near zero (such as log2(x)). Combining poly-
nomials P (x) and other family of better behaving functions (e.g.,
exp(−P (x))) may leverage the problem.

Moreover, there is still a need to cover the case p > n in estima-
tors involving covariance matrix inverses for which Ĉ1

−1
Ĉ2 is not

even defined. Random projections and regularization methods can
be devised to tackle this scenario, however possibly to the detriment
of the estimator consistency.
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