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lattice Yang-Mills theories from outside the scaling window
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We study the machine learning techniques applied to the lattice gauge theory’s critical behav-
ior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge
theories. We find that the neural network, trained on lattice configurations of gauge fields at an
unphysical value of the lattice parameters as an input, builds up a gauge-invariant function, and
finds correlations with the target observable that is valid in the physical region of the parameter
space. In particular, if the algorithm aimed to predict the Polyakov loop as the deconfining order
parameter, it builds a trace of the gauge group matrices along a closed loop in the time direction.
As a result, the neural network, trained at one unphysical value of the lattice coupling β predicts the
order parameter in the whole region of the β values with good precision. We thus demonstrate that
the machine learning techniques may be used as a numerical analog of the analytical continuation
from easily accessible but physically uninteresting regions of the coupling space to the interesting
but potentially not accessible regions.

I. INTRODUCTION

The theory of strong interactions, Quantum Chromo-
dynamics (QCD), exhibits several nonperturbative prop-
erties that lack so far a solid theoretical explanation.
This theory challenges scientists with the phenomena of
confinement of color, mass-gap generation, and chiral
symmetry breaking observed at low temperatures. At
high enough temperature, QCD experiences a smooth
deconfinement transition of the crossover type, where
these properties are gradually lost, leaving the scene
for various thermal effects. High-temperature proper-
ties of QCD matter can be probed experimentally in rel-
ativistic heavy-ion collisions that create a quark-gluon
plasma that once existed in the early moments of our
Universe [1].

The nonperturbative physics of QCD appears as a re-
sult of the gluon dynamics encoded in the non-Abelian
gauge sector of the theory. Theoretically, these issues
can be addressed either in low-energy effective models or
in first-principle numerical simulations in a lattice for-
mulation of the theory. In practice, however, the quark
matter at finite baryon density poses a substantial chal-
lenge even for first-principle numerical simulations due to
the notorious sign-problem [2]. While particular meth-
ods, such as analytical continuation, can solve this prob-
lem for a low-density plasma, the most advanced lattice
QCD approaches encounter difficulties in dealing with
the moderate-density quark matter [3]. The dense regime
is particularly interesting as it will emerge in the next-
generation experiments to be performed at the NICA fa-
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cility in Dubna, Russia and FAIR facility at Darmstadt,
Germany.

One of the promising ways to engage the unsolvable
problems in lattice field theories, such as QCD, is based
on the application of the newest information process-
ing methods in combination with standard Monte-Carlo
techniques. In this work, we aim to discuss machine
learning (ML) approaches [4] in the context of non-
Abelian gauge theories. We focus on a pure Yang-Mills
theory without fermions in order to elucidate the finite-
temperature deconfinement phase transition, with a fur-
ther intention for future applications to the non-Abelian
theory with fermions.

It is widely believed that the ML approaches may
prove their usefulness in revealing complex mechanisms
of nonperturbative phenomena in systems with many (or
even infinite, in the thermodynamic limit) degrees of
freedom [5, 6]. The neural network may learn a phys-
ical phenomenon in an extensive system by building an
approximation of some input parameters’ function and
mapping it to the target physical observable. This pro-
cedure may give an insight into the physical mechanism
of the original phenomenon in question by analyzing the
way what the neural network learned it (see, for example,
Ref. [7]). Field configurations of the quantum field theory
and spin systems, viewed as statistical ensembles in the
thermodynamic limit, are well-suited for the application
of machine-learning techniques, as it was demonstrated
in a number of recent works [7–14].

In this article, we investigate the ability of a neural
network to construct gauge-invariant observables based
on the analysis of a limited set of lattice configurations.
Of particular interest is the ability of a neural network
– trained on data in a narrow range of parameters, or
even at a single isolated value – to predict observables
outside the training range. In particular, we will consider
the ability of a network trained at a nonphysical point
(which lies outside of a continuum limit of the theory),
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far from a phase transition, to predict critical behavior of
the corresponding order parameter in the scaling region
which is related to the continuum limit.

The structure of our paper is as follows. In Section II
we start with a short overview of the machine-learning
approaches to the lattice quantum field theories and de-
scribe the aims of the current study in the ML context.
In Section III we describe the subject of interest, Yang-
Mills theory on the lattice, highlighting the properties of
the training regions of the ML algorithms and determi-
nation of the phase transition. The main subject of our
paper is described in Section IV where we use the ma-
chine learning methods to built up the order parameter of
the lattice Yang-Mills theory using the data outside the
scaling window of the theory. The last section is devoted
to our conclusions.

II. MACHINE LEARNING OF LATTICE FIELDS

The use of the ML techniques in analysis of lattice
gauge theories may pursue different purposes.

Speeding up numerical calculations. Lattice QCD sim-
ulations often require vast computer power and capacious
data storage, especially in non-Abelian gauge theories
with dynamical fermions. This problem largely limits the
lattice volume and reduces the accumulated statistics of
numerical simulations. Besides improving the comput-
ing hardware, further development of the lattice QCD
applications requires radical amelioration of the existing
algorithms. The ML methods provide us with exciting
options for an advance in this direction.

In this approach, an neural network is trained to rec-
ognize certain observables at a limited number of lattice
Monte-Carlo configurations corresponding to a prelim-
inary chosen set of lattice parameters. A well-trained
neural network is then supposed to be able to predict
the values of these observables for a previously-unseen
lattice configuration in a broader range of parameter
space. Basically, the machine-learning algorithm works
as an improved tool which efficiently makes interpolation
and extrapolation in the space of thermalized configura-
tions based on a small number of learned reference points.
While the learning phase of the neural networks could be
rather slow, a well-rained neural network gives its pre-
dictions very fast. The use of the fast neural network
instead of the slow Monte-Carlo simulations may signifi-
cantly reduce the required computing power in comput-
ing observables over a wide range of the parameter space.
As an example, we mention that this approach shows es-
sential advantages in estimating the constant physics line
and the ability to overcome critical slowing down. [15].

The other direction of improving Lattice QCD sim-
ulations is the speeding up of configurations generation
and decreasing autocorrelation time. The ML techniques
allow generalizing Hamiltonian Monte Carlo Algorithm
(state-of-the-art algorithm in Lattice QCD) with neural
networks. Authors of [16] argue considerable improve-

ment in effective sample size and better mixing proper-
ties when HMC is stuck in one vacuum. Various ap-
proaches, such as Generative adversarial networks [17] or
normalizing flows [18], can be applied to the generation
of lattice configuration itself. Latter approach has been
recently applied to SU(N)lattice gauge theory [19] and
shown considerable improvement of autocorrelation time
in U(1) Lattice gauge theory [20].

The supervised machine learning was shown to be used
as an efficient reweighting technique to extrapolate the
Monte-Carlo data over continuous ranges in parameter
space [11].

The ML techniques can may be used to uncover the
position of a phase transition in the phase space of a
model. The key observation is that while the ML al-
gorithm can give robust results at both sides of (and
sufficiently far enough from) the phase transition, the
neural network becomes less confident as the transition
line is approached. This lack of confidence plays a posi-
tive role in determination of the phase diagram via ML-
based methods. The confusion of the machine-learning
algorithm may be quantified via a specific ML variable
and may therefore serve as an ML-based order parameter
used to determine the location of a phase transition [21].
This criterion, applied to Abelian monopoles, gives a
good prediction of a thermodynamically smooth decon-
finement phase transition of the Berezinskii-Kosterlitz-
Thouless type in a low-dimensional model that exhibits
the confinement phenomenon [13].

The ML techniques can also speed up the classification
of complicated (nonlocal) observables, for example, of the
topological charge in lattice Yang-Mills theory [12].

Uncovering underlying physics. The ML methods are
instrumental in the exploration of large datasets to re-
duce complexity and find new features and correlations.
These features motivate the application of the ML meth-
ods to the high-energy physics experiments to uncover
and characterize new particle reactions [22]. The lattice
field configurations, generated by the Monte-Carlo tech-
niques rather than by particle experiments, may also be
scrutinized by the ML techniques to determine unknown
correlations and pinpoint new physics.

Undoubtedly, the neural network itself can not identify
a new mechanism of the studied phenomenon. Instead,
the method provides an efficient numerical tool to find
new relationships between field observables hidden oth-
erwise in vast volumes of the data (field configurations).
The nature of the new relations – provided by the ML
algorithm – gives information for a researcher to pinpoint
the physical mechanism of the phenomenon.

A neural network may uncover necessary ingredients
of a mechanism that drives a phase transition. One
of the essential tasks of an ML algorithm is the phase
classification. The classification is done on the basis of
lattice configurations that contain all information about
the non-perturbative physics of the modeled system. In
the process of learning how to classify the phases, the
machine-learning algorithm studies the lattice data that
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was previously generated by the Monte-Carlo algorithm.
The network builds an internal observable (a decision
function) that allows it to distinguish the two phases. As
soon as the network acquires sufficient skills to distin-
guish the phases, the constructed decision becomes an
object for the further study: it gives explicitly the struc-
ture of the variable that the neural network has built to
distinguish the phases. A recent discussion of the use
of the machine learning techniques for understanding of
the phase structure of a lattice field theories through the
statistical analysis of Monte Carlo samples may be found
in Ref. [23].

The feasibility of this approach has recently been
demonstrated in Ref. [7] where the machine-learning al-
gorithm has constructed – via a training process – the
phase-sensitive observables in the Ising model and SU(2)
Yang-Mills theory on the lattice. It turned out that the
decision functions give, respectively, the mean magneti-
zation and the Polyakov loop variable which are indeed
well known order parameters that determine the phase
structure in these theories.

Application to problems unreachable with traditional
methods. An essential advantage of the machine learn-
ing methods is that they can be applied to certain phys-
ical phenomena which cannot be simulated with tra-
ditional Monte Carlo methods. For example, the au-
thors of Ref. [27] demonstrated that convolutional neural
networks may identify and locate phase transitions for
quantum many-fermion systems that experience severe
fermion sign problem where conventional approaches fail.
Notice, the ML model did not have any knowledge about
the Hamiltonian of the system. This result demonstrates
the power of the neural network, and the ability to make
physically sound predictions.

In our paper, we aim to solve yet a different problem
with the ML methods. Let’s assume that we have a lat-
tice system where the traditional Monte Carlo methods
work in a restricted domain of the parameter space that
cannot be extrapolated to the continuum limit. The im-
portance of this unphysical and seemingly useless region
is that in this particular domain of coupling constants
we know the value of the order parameter very well, in
a contrast with the physically interesting critical region.
we demonstrate the power of the ML algorithm which is
able to make correct predictions in the interesting domain
of the coupling space after being trained in an unphys-
ical single point of the model. The prediction requires
lattice configurations at the prediction points. Thus, this
approach does not solve the lattice configuration gener-
ation’s question in problematic areas. It is rather a tool
for extrapolating observables to the areas where direct
calculations are difficult or impossible.

Our study is motivated by the unsolved status of the
QCD phase diagram at nonzero baryonic density, where
the results are available at low values of the baryonic
chemical potential. The interesting region of the param-
eter space, that contains a critical endpoint, cannot be
reached with the direct Monte Carlo simulations. The

moderate-density region is accessible only with a combi-
nation of analytical and numerical tools such as Taylor
expansion and analytical continuation (see, for example,
a recent review in Ref. [3]). In this sense, our machine
learning approach may be considered as a purely numer-
ical technique that serves as an analytical continuation
tool.

To demonstrate the power of the method, we take a
well studied model as a playground. We consider the
lattice Yang-Mills theory for two and three colors, train
an neural network to guess an order parameter on the
configurations with a small physical volumes in a per-
turbative regime, and then show that the ML method
may extrapolate (“analytically continue”) the results to
the critical confining-deconfining region, using its lattice
configurations as input.

III. YANG-MILLS THEORY AT FINITE
TEMPERATURE

We consider lattice SU(N) gauge theories with N =
2 and N = 3 colors at finite temperature. The lattice
theory is formulated via the Euclidean path integral

Z =

∫ (∏
l

Ul

)
e−S[U ], (1)

where the integration over the lattice gauge fields Ul that
belong to the SU(N) gauge group.

The Wilson action of the lattice SU(N) Yang-Mills the-
ory,

S[U ] = β
∑
P

(
1− 1

N
Re TrUP

)
. (2)

is formulated in the Euclidean spacetime on the lattice
with the volume N3

s ×Nt. The sum runs over the lattice
plaquettes P = {x, µν} described by the position of a
plaquette corner x and the plane orientation with direc-
tions µ 6= ν. The non-Abelian plaquette field UP is given
by the ordered product of the non-Abelian link fields Ul
along the perimeter of the plaquette: UP =

∏
l∈∂P Ul.

The lattice coupling in the action (2) is related to the
gauge coupling g in the continuum limit:

β =
2N

g2
. (3)

The continuum limit of the lattice Yang-Mills theory (2)
corresponds to the weak-coupling regime, β →∞.

The length Ns of the shortest lattice direction deter-
mines the temperature T of the system:

T =
1

aNs
, (4)

where a is the physical lattice spacing. The critical tem-
perature of SU(2) and SU(3) gauge theories in the con-
tinuum limit are, respectively, as follows [24, 25]:

T SU(2)

c = 0.69(2)σ
1/2
SU(2), T SU(3)

c = 0.629(3)σ
1/2
SU(3), (5)
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where σSU(N) denotes the corresponding zero-temperatu-
re string tensions.

The knowledge of the physical value of the lattice spac-
ing a at a given value of the lattice coupling β allows us to
relate dimensionful lattice quantities to their continuum
counterparts. For example, the value of temperature (4)
at a critical lattice coupling βc allows us to recover the
deconfining temperatures in physical units (5). The con-
tinuum limit of lattice Yang-Mills theory is achieved in
a weakly-coupling region (g � 1 or, equivalently, β � 1)
where the dependence of the lattice spacing a on the
SU(N) coupling constant g is controlled by the renor-
malization group equation. For example, in pure SU(2)
gauge theory a two–loop calculation gives

aSU(2)

(
g2
)

=
1

ΛL
exp

{
−12π2

11g2
+

51

121
ln

24π2

11g2

}
, (6)

where ΛL ' 0.0221
√
σSU(2) is a fixed mass scale. The

coupling constants in the continuum g and on lattice β
are related to each other via Eq. (3).

The Yang-Mills theories possess the confining phase at
low temperature and the deconfinement phase at high
temperature. The phases are separated by the thermo-
dynamic phase transition. The phase transition in the
simplest two-color (N = 2) gluodynamics is of the second
order while the theories with the N > 3 colors possess
the stronger, first-order phase transition.

The order parameter of the deconfinement phase tran-
sition is the expectation value of the Polyakov loop. In
the lattice calculations, it is convenient to identify the
bulk Polyakov loop:

L =
1

V

〈∣∣∣∑
x

Lx

∣∣∣〉, (7)

where the sum goes over all spatial sites x of the lattice
and V = N3

s is the spatial volume. The local Polyakov
loop,

Lx =
1

N
Tr

Nt−1∏
t=0

Ux,t;4, (8)

is given by the ordered product of the lattice Ux,µ matri-
ces along the temporal direction µ = 4.

It is also convenient to define the susceptibility of the
Polyakov loop using a light abuse of notations:

χ2 ≡ 〈L2〉 − 〈L〉2 =
〈∣∣∣∑

x

Lx

∣∣∣2〉− 〈∣∣∣∑
x

Lx

∣∣∣〉2

. (9)

In the SU(3) gauge theory, we will also work with the real
and imaginary parts of the Polyakov loop, which amounts
to substitute Lx → ReLx, ImLx in Eq. (7) and below.

Susceptibility of the Polyakov loop is a good or-
der parameter for the determination of the confine-
ment/deconfinement phase transition and the critical lat-
tice coupling. In our study, we use rather low statis-
tics (about 100 lattice configurations) for the neural net-
work predictions. Therefore, statistical errors are large

and they do not allow us to determine the critical value
with acceptable errors using the susceptibility only. In
this study, we employed another statistical moment, the
Binder cumulant [26]:

C4 = 1− 〈L4〉
3〈L2〉2 , (10)

and determine the critical value βc by fitting data of the
Binder moments of the Polyakov loop with the help of
the following function:

Cfit
4 (β) = A+B tanh

β − βc
δβ

, (11)

where A and B are the fitting parameters that determine
the strength of the cumulant, while βc and δβ correspond
to the position of the transition and its width, respec-
tively. These critial values will be shown in the figures
below.

In the next section, we describe the machine-learning
algorithm which includes the training of the neural net-
work. The training points for SU(2) and SU(3) gauge
theories are set at the lattice coupling constants β = 4
and β = 10, respectively. Both these points correspond
to a deep weak-coupling regime where the gluons reside
in a perturbatively deconfining phase for the lattice sizes
used. In other words, at these parameters, the physical
size of the lattice is so small, that the confining string
has no space to develop itself. Since all distances in such
a volume are smaller than the confining scale, the Yang-
Mills theory resides necessarily in a deconfining state.
The perturbative deconfinement regime has obviously a
different nature compared to the usual deconfinement
phase: the former appears as a result of a finite spa-
tial volume while the latter comes as a consequences of
finite-temperature effects in the thermodynamic (infinite-
volume) limit.

In order to quantify the scales of the finite-volume de-
confinement, we notice that at the large lattice coupling
β = 4, the lattice spacing of the SU(2) gauge theory is
a = 3.4×10−3σ−1/2. In physical units, a = 1.6×10−3 fm,
where we adopted the phenomenological value

√
σ =

440 MeV ' (0.46 fm)−1 for the string tension. The con-
finement phase may only be realized at spatial lattice
sizes Ns & 300, for which the lattice size is of the or-
der or bigger than the typical confining distance scale,
aSU(2)Ns & σ−1/2. For a typical lattice size used in the
numerical simulations, Ns ∼ (a few)×10, the vacuum re-
sides in the finite-volume deconfining phase because the
maximal possible inter-quark distances are much smaller
than the perturbative scale r ' 0.1 fm. Similar estima-
tions are also valid for the SU(3) lattice theory.

The training points β = 4 and β = 10 do not corre-
spond to physically viable realizations of the continuum
SU(2) and SU(3) Yang-Mills theories in their thermody-
namic limits. These points are selected to represent an
uninteresting unphysical region of the theory at which,
however, the explicit calculations may be performed with
the help of a Monte Carlo technique. We will show that
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the information coming from the MC configurations are
enough for the ML algorithm to learn about the order pa-
rameter and make accurate predictions in the physically
relevant scaling window of the lattice Yang-Mills theory.

IV. RESTORATION OF THE ORDER
PARAMETER WITH NEURAL NETWORKS

In this section, we discuss application of the ML meth-
ods to predict an order parameter of the theory with lat-
tice configurations as an input. The study focuses on
building of an neural network that can predict observ-
ables of the SU(2) and SU(3) theories.

A. SU(2) gauge theory

To build a machine-learning algorithm that can ana-
lyze lattice data of non-Abelian theory, we need to con-
struct a multidimensional dataset from a lattice configu-
ration that is a matrices dataset. To this end, we use the
following vector representation for the SU(2) matrices:

U=

(
u11 u12

u21 u22

)
≡
(
a1 + ia2 a3 + ia4

−a3 + ia4 a1 − ia2

)
→

a1

a2

a3

a4

 , (12)

where a1 = Re(u11), a2 = Im(u11), a3 = Re(u12), and
a4 = Im(u12).

After the matrix dimension’s flattening, an array with
shape [Nt, Ns, Ns, Ns, Dim, 4] represents the lattice con-
figuration. The last dimension corresponds to the matrix
element numbering discussed above, and Dim is the di-
rection µ of the matrix Uµ(x) at every lattice site [Nt,
Ns, Ns, Ns]. We use 3D convolutional layers and reshape
lattice configuration as a 4D array (3 dimensions for spa-
tial coordinates and one for channels) due to technical
reasons. Since we build a neural network that searches
correlations between any two matrices Uµ(x) and Uν(y)
at the points x and y closed to each other, we merge the
last two dimensions of the array. Other two dimensions
could be also merged by cost of locality - array M [y][x]
can be presented as an array M [y ∗Ny + x] .

The resulting lattice data array has a dimension of
4. The first dimension corresponds to the numbering of
temporal layers of the lattice. The second dimension de-
scribed by single flattened array of two spatial axis, third
dimension of array corresponds to the last axis of the spa-
tial direction, and the last dimension corresponds to the
numbering of the matrix elements (12) for all lattice di-
rections µ.

For the lattices with Nt = 2, the neural network con-
sists of one three-dimensional convolutional layer with 16
filters and the kernel size 2× 1× 1 with Relu activation
function, and a final dense layer with a linear activa-
tion function with 16 neurons. The averaging layer over
the entire volume and the flattening layer separate the

convolutional and dense layers. The architecture for the
temporal lattice extension Nt = 2 is shown in Table I.

Layer Structure

InputLayer
In (Nt = 2, Ns×Ns, Ns, Dim×U)

Out (Nt = 2, Ns×Ns, Ns, Dim×U)

Conv3D
In (2, Ns×Ns, Ns, Dim×U)

Out (1, Ns×Ns, Ns, 16)

AveragePooling3D
In (1, Ns×Ns, Ns, 16)

Out (1, 1, 1, 16)

Flatten
In (1, 1, 1, 16)

Out (16)

Dense
In (16)

Out (1)

TABLE I. Architecture of the neural network for the predic-
tion of the Polyakov Loop in the SU(N) gauge theory with the
temporal size of the lattice Nt = 2. Here Dim is dimension of
theory, U is dimension of vector representation

.

It is important to stress that the convolution kernels
shape defines the physical observable that the neural net-
work can extract from the lattice data. For example, the
kernel size equal to Nt × 1 × 1 leads to the neural net-
work output with a function of Nt Uµ(x) matrices located
along the closed line in Nt direction that corresponds to
the Polyakov loop.

We generate 9000 lattice configurations at the one
value (β = 4) of the lattice coupling for lattices with
the spatial sizes Ns = 8, 16, 32 and the temporal sizes
Nt = 2, 4. We also generate 100 configurations for a
number of points at lower values of the coupling β, that
the neural network does not use for training but rather
for prediction.

Although a study of confinement-deconfinement phase
transition does not require configurations from all possi-
ble vacuum sectors, we found it essential to have high-
quality data generated from different vacuum sectors to
train a neural network.

We train the neural network on the lattice configura-
tions generated in the (volume-induced) deconfinement
phase at the point β = 4 for SU(2) that is far from the
phase transition point. The neural network is trained to
predict correctly the value of the Polyakov loop that is al-
ready known from the Monte Carlo simulations. We use
the mean squared error (MSE) as a loss function and the
Adam algorithm as the neural network parameters’ opti-
mization method. The training is done in batches of size
10 - 50 configurations for SU(3) and 10 - 50 for SU(2).
The training is halted when the loss function reached a
plateau so that the neural network gained the maximal
possible – for the given architecture – knowledge how to
reconstruct the order parameter from the lattice config-
urations.
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As the result, the neural network that trained on the
value of the β = 4 deep in the deconfinement region
reproduces the Polyakov loop with a perfect agreement
with Monte-Carlo data at all other values of the lattice
coupling constant including the region of the true decon-
finement transition. For the smallest spatial extension,
Nt = 2, the results are shown in Fig. 1.

The perfect (modulo statistical errors) overlap between
the predicted and the original data indicates that the
critical value of the coupling constant βc is recovered by
the machine-learning algorithm very well. The errors in
Fig. 1 correspond to the statistical uncertainties inherent
to the original Monte Carlo configurations of the gluon
fields. At the smallest lattice volume (Ns = 8), the statis-
tical errors are naturally larger. We use the same number
(100) configurations for all three lattice sizes.

We repeat the same analysis for the lattices with
Nt = 4 in which the critical coupling constant lies in the
scaling region of the theory. In this case, to find input
data correlations that correspond to the Polyakov Loop,
the neural network needs to analyze longer pathways in
the gauge groups in order to be able to cover at least one
winding of the path along the time direction. Thus, in-
creasing the Nt value requires an additional convolution
layer. A combination of two convolution layers allows
the machine-learning algorithm to find correlations along
four time-links on the lattice. The space of the correlated
parameters increases as well. Thus, the dense layer has
to contain more neurons to learn the correlations. In the
case of Nt = 4, the dense layer is built of 32 neurons (see
Table II).

Layer Structure

InputLayer
In (Nt = 4, Ns×Ns, Ns, Dim×U)

Out (Nt = 4, Ns×Ns, Ns, Dim×U)

Conv3D
In (4, Ns×Ns, Ns, Dim×U)

Out (2, Ns×Ns, Ns, 256)

Conv3D
In (2, Ns×Ns, Ns, 256)

Out (1, Ns×Ns, Ns, 32)

AveragePooling3D
In (1, Ns×Ns, Ns, 32)

Out (1, 1, 1, 32)

Flatten
In (1, 1, 1, 32)

Out (32)

Dense
In (32)

Out (1)

TABLE II. The same as in Table II but for Nt = 4.

The learning and validation curves for Nt = 4 lattice
are shown in Fig. 2. These are representative examples,
qualitatively valid for all studied systems with Nt = 2, 4
temporal extensions, Ns = 8, 16, 32 spatial sizes, and
both SU(2) and SU(3) gauge groups. The learning rate
lies in the range [0.001, 0.002] depending on lattice size

and theory. The training with the subsequent validation
has been done at the perturbatively deconfining point
with β = 4. Both learning and validation curves of Fig. 2
show the absence of under- and over-fitting as both curves
gradually approach a common plateau at the end of the
learning process.

The result of the neural network analysis of the
Nt = 4 lattice is presented in Fig. 1. One can
clearly see that machine-learning algorithm reproduces
the Polyakov loop with a perfect agreement with Monte-
Carlo data.

Our results point to the neural network’s ability to find
a physically meaningful correlation between the input pa-
rameters that correspond to the trace of the SU(2) matri-
ces product along the time direction. The lattice config-
urations of the gluon fields generated by the Monte Carlo
procedure contain noisy background related to the ultra-
violet fluctuations of the gluon fields and random trans-
formations of the SU(2) gauge-symmetry group. The
noise “hides” the signal of any observables that are not
prone to withstand these fluctuations. The ultraviolet
fluctuations affect any local observable, while the ran-
dom gauge transformations hide any non-gauge-invariant
quantity in the random noise.

We also check the vulnerability of the ML algorithm for
the gauge noise that could theoretically affect the accu-
racy in the prediction of the Polyakov loop. To this end,
we take 100 gluon configurations at the coupling β = 2.5
for the representative lattice size 163× 4. We then apply
several random gauge transformation to each gluon con-
figuration and subsequently initiate the machine learning
algorithm to predict the Polyakov loop using the gauge-
randomized gluons as an input. The result, presented in
Fig. 4, shows that the ML algorithm’s forecast is a gauge-
invariant quantity that does not depend on the strength
of the gluonic configuration’s randomization in the gauge
group’s space transformations.

Thus, the neural network selects a non-local and gauge-
invariant observable to characterize the phase. This sim-
ple observation explains the impressive ability of the
machine-learning algorithm to find correlations in the
data that correspond to the Polyakov Loop during the
learning phase, and subsequently find its values in the
full range of the coupling β during the prediction phase.

A correlation between the decision function of the
machine-learning algorithm and the Polyakov Loop was
pointed out in Ref. [7]. The correlation was found after
the phase classification for the SU(2) theory by polyno-
mial fit of the neural network prediction function. We
used a neural network with a 3D convolution layer (I) to
analyse the SU(2) group parameters (12) as independent
quantities. Our approach allows us to build and train
the neural network that can find the order parameter far
outside the range of the lattice coupling values used for
the training. As a result, the neural network recovers
the order parameter at all physically interesting values
of coupling.
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FIG. 1. The Polyakov loop in SU(2) gauge theory at the Nt = 2 and Ns = 8, 16, 32 lattices. The Monte-Carlo (MC) simulation,
shown by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the orange line, overlap within the
error bars. The vertical dashed line shows the critical value of β obtained with the fits (11) of the Polyakov loop susceptibility (9).
We use 100 configurations for all three lattice sizes.
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FIG. 2. Learning curves for training and validation at the
point β = 4 of the SU(2) gauge theory on 163× 4 lattice with
the mean squared error (MSE) used as a loss function. The
MSE normalized on the value of the order parameter squared,
〈|L|〉2, gives qualitatively the same picture.

B. SU(3) gauge theory

In this section we repeat the procedure of the pre-
diction/restoration of the order parameter for the SU(3)
configurations. We employ the same architecture of the
neural network that has already been used for the SU(2)
lattice gauge theory. Contrary to the SU(2) case, we use
the full set of 9 complex numbers in the SU(3) case.

In the case of the SU(3) group, the Polyakov loop is a
complex number. Therefore, we have to train and predict
its value independently both for real and imaginary part
of the Polyakov loop. As a training point, we use the
lattice coupling β = 10 that corresponds to artificially
small lattices which feature the perturbative deconfine-
ment. Similarly to the SU(2) case, we generate 9000
lattice field configurations for the training of the neural
network and use only 100 configurations for the predic-
tion. The error bars in the figures reflect the level of
statistical fluctuations of the original Monte Carlo con-

figurations.
Repeating the same procedures as we done in the case

of SU(2) Yang Mills theory, we obtain the Polyakov loop
in a perfect agreement with Monte Carlo simulations of
the SU(3) gauge theory. The neural network is able to
find the correlations in the lattice data at one (unphys-
ical) point of the lattice coupling and restore the be-
haviour of this order parameter in the full range of the
lattice couplings including the interesting region of the
real physical phase transition.

V. CONCLUSION

In our paper, we demonstrated that the neural net-
work may serve as an efficient numerical counterpart of
an “analytical continuation” of physical observable as a
function of lattice configuration. The machine-learning
algorithm allows us to restore a gauge-invariant order
parameter in the whole physical region of the parameter
space after being trained on lattice configurations at one
unphysical point in the lattice parameter space.

We have chosen the training point far away from the
physical region at a very weak coupling. This partic-
ular choice was deliberately made in the most-possible
unphysical way: the training point cannot serve, neither
in numerical approaches not in analytical techniques, for
any meaningful analysis of the phase structure of the the-
ory because the system experiences a finite-volume de-
confinement transition. Therefore, the model resides in
the perturbative regime and has no relation to the con-
tinuum non-perturbative Yang-Mills theory.

After the training phase, the neural network was aimed
to predict the Polyakov loop as the deconfining order pa-
rameter in the SU(2) and SU(3) gauge theories. The
machine learning algorithm was able to build a trace of
the gauge group matrices product along a closed loop
in the time direction. As a result, the neural network
trained at one (unphysical) value of the lattice coupling
β was able to predict the order parameter in the whole



8

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

β

0.0

0.1

0.2

0.3

0.4

0.5

|L
| SU(2)

83 × 4

Critical coupling, βc

ML (βtrain = 4)

MC

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

β

0.0

0.1

0.2

0.3

0.4

0.5

|L
| SU(2)

163 × 4

Critical coupling, βc

ML (βtrain = 4)

MC

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

β

0.0

0.1

0.2

0.3

0.4

0.5

|L
| SU(2)

323 × 4

Critical coupling, βc

ML (βtrain = 4)

MC

FIG. 3. The results for the Polyakov loop for SU(2) gauge theory at Nt = 4 coming from the Monte Carlo (MC) simulations
compared with the prediction of the machine-learning (ML) algorithm. The notations are same as in Fig. 1.
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FIG. 4. The degree of the gauge dependence in the prediction
of the order parameter by the ML algorithm. The predicted
order parameter along with the prediction uncertainty vs. the
number of the gauge randomization steps of the initial 163×4
gluon configuration at β = 2.5.

region of the β values with a good precision. We thus
demonstrated that the machine learning techniques may
be used as an analytical-type continuation from easily
reachable but physically uninteresting regions of the cou-
pling space to the interesting but potentially not acces-
sible regions. This approach may prove to be particu-
larly useful in models, where simulations in a physical
region cannot be done to due numerical (computational)
constraints provided the unphysical (extreme) points are
still available for training.
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