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ABSTRACT

Inspired by human learning, which transfers knowledge from
learned tasks to solve new tasks, multitask learning aims at si-
multaneously solving multiple tasks by a smart exploitation of their
similarities. How to relate the tasks so to optimize their perfor-
mances is however a largely open problem.

Based on a random matrix approach, this article proposes an
asymptotic analysis of a support vector machine-inspired multitask
learning scheme. The asymptotic performance of the algorithm, val-
idated on both synthetic and real data, sets forth the relation between
the statistics of the data in each task and the hyperparameters relating
the tasks together. The article, as such, provides first insights on an
offline control of multitask learning, which finds natural connections
to the currently popular transfer learning paradigm.

Index Terms— Multitask Learning, Transfer Learning, Ran-
dom Matrix Theory.

1. INTRODUCTION

The performance of regression and classification tasks can be im-
proved by making the tasks learn from each other. In machine learn-
ing, the subject is approached by multitask learning (MTL) where,
by appropriately sharing the algorithm parameters, each task may
benefit from the others. This has been widely used in face recog-
nition [1], citywide passenger flow prediction [2], cancer survival
analysis [3], market preferences [4, 5], to cite a few.

Modelling the relatedness between the tasks is one of the key as-
pects of MTL. Among the proposed approaches, hierarchical Bayes
models [4, 5, 6, 7] are one of the most considered; these assume that
the tasks share a common hypothesis class. Natural extensions of
standard one-task methods (such as support vector machines) have
also been devised [8]. In this precise case, to further cope with the
possibly large complexity of training these algorithms, explicit least
square alternatives have been proposed [9].

Following up on the asymptotic analysis performed in [10] for
least-square support vector machines (in a single task setting), or
in [11] for a semi-supervised extension, this article provides a large
dimensional analysis of multitask least square support vector ma-
chines.

The analysis performed allows to predict the classification error,
then providing some insights about the algorithm and an automatic
way to tune the hyper parameters.

The remainder of the article is organized as follows. Section 2
introduces the multitask learning setting analyzed in Section 3.2,
which provides the asymptotic classification error and discusses the
results. Section 4 provides supporting experiments in both synthetic
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and real data settings, demonstrating a strong consistency with the
theoretical findings.
Notation. e[n]

m ∈ Rn is the canonical vector with [e
[n]
m ]i = δmi.

Moreover, e[2k]
ij = e

[2k]

2(i−1)+j . The notation A ⊗ B for matrices or
vectors A,B is the Kronecker product.

2. SETTING AND ASSUMPTIONS

Let X = [X1, . . . , Xk] ∈ Rp×n be the collection of n independent
data vectors drawn from k “tasks”. Task i is a binary classification
problem from the training samples Xi = [X

(1)
i , X

(2)
i ] ∈ Rp×ni

with X(j)
i = [xi1, . . . , xinij ] ∈ Rp×nij the nij vectors of class

j ∈ {1, 2} for the task i.
The multitask learning least square support vector machine

(MTL-LSSVM) aims to predict an output y ∈ {−1, 1} for any input
vector x ∈ Rp. To this end, MTL-LSSVM determines k hyperplanes
W = [ω1, ω2, . . . , ωk] and a bias term b = [b1, b2, . . . , bk]T that
minimize the objective function with constraints

min
W∈Rkp,b∈Rk

J (W, b) =
1

2
tr(WTW ) +

γ

2

k∑
i=1

‖ξi‖2,

s.t. yi = XT
i ωi + bi1ni + ξi ∀i ∈ {1, . . . , k}

with yi = [ei ⊗ 1T
ni1
, ei ⊗−1T

ni2
]T the label of the training data of

task i, and ξi ∈ Rni the errors on the training data. The hyperparam-
eter γ compromises the smallness of the errors (ξi)1≤i≤k against the
accuracy of the hyperplanes W .

In order to incorporate the relatedness between tasks, [9] further
considers that each hyper plane ωi can be written under the form
ωi = vi +ω0, where ω0 carries the “common” information between
tasks and vi is specialized to each task. The cost function thus be-
comes

J (ω0, V, b) =
1

2
‖ω0‖2 +

λ

2k
tr(V TV ) +

γ

2

k∑
i=1

‖ξi‖2 (1)

where the parameter λ enforces the relatedness of the tasks and V =
[v1, . . . , vk]. Figure 1 schematically depicts the multitask learning
framework.

By introducing the Lagrangian parameter α and solving the dual
formulation of the optimization problem, the solution of (1) is ex-
plicit and reads

ωi =
(
e

[k]
i

T
⊗ Ip

)
AZTα

where

α = Q(y − Pb)

b = (PTQP )−1PTQy
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Fig. 1. Hyperplanes of the multitask learning setting.

with y = [yT1 , y
T
2 , . . . , y

T
k ]T ∈ Rkn, Q = (Z

TAZ
kp

+ 1
γ
Ikp)

−1,

A = ( 2
λ
Ik + 1k1T

k) ⊗ Ip, Z =
∑k
i=1 e

[k]
i e

[k]
i

T
⊗Xi, and P =∑k

i=1 e
[k]
i e

[k]
i

T
⊗ 1ni .

The prediction of the label of any new data point x ∈ Rp for
task i is then obtained from classification score gi(x) given by

gi(x) =
1

kp

(
e

[k]
i ⊗ x

)T
AZα+ bi. (2)

Our objective is to quantify the performance of multitask learn-
ing, and thus of the (a priori intricate) statistics of gi(x). To this
end, we resort to a large dimensional analysis of gi(x) in the limit
of large p and nij . In order to keep our results valid for very gen-
eral (random) datasets, we work under the following concentration
of measure assumption for X .

Assumption 1 (Distribution ofX). There exist two constantsC, c >
0 (independent of n, p) such that, for any 1-Lipschitz function f :
Rp×n → R,

∀t > 0 : P(|f(X)− E[f(X)]| ≥ t) ≤ Ce−(t/c)2 .

We further define E[xij ] = µij and Cov[xi`] = Σi`, which only
depends on (i, j).

Assumption 1 notably encompasses the following scenarios:
xij ∈ Rp are (i) independent Gaussian random vectors with covari-
ance of bounded norm, (ii) independent random vectors uniformly
distributed on the Rp sphere, and most importantly (iii) any Lips-
chitz transformation φ(xij) of the above two cases, with bounded
Lipschitz norm. Scenario (iii) is particularly relevant to model very
realistic data settings as it was recently shown [12] that random data
(in particular images) generated by generative adversarial networks
(better known as GANs) are by definition concentrated random
vectors.

For our analysis, we further place ourselves under the following
large p, nij regime.

Assumption 2 (Growth Rate). As n → ∞, n/p → c0 > 0 and for
1 ≤ i ≤ k, 1 ≤ j ≤ 2, nij

n
→ cij > 0. Besides, ‖µij‖ = O(

√
p).

The assumption on the norm ‖µij‖ is quite natural (typically,
the norm of the vectors xi` is the same as that of their means). Yet,
in order to reach non-trivial (asymptotically simple) results in the
following, it will be necessary that ‖µij −µi′j′‖ = O(1) (i.e., tasks
are sufficiently similar).

Under these assumptions, by a careful exploitation of tools from
random matrix theory, we can derive the asymptotic distribution of
the classification score gi(x), which is our main result, discussed
next.

3. MAIN RESULT

3.1. Asymptotic classification error of MTL-LSSVM

Using algebraic identities and the definition of α, gi(x) can be con-
veniently rewritten as

gi(x) =
1

kp

(
e

[k]
i ⊗ x

)T
AZQ(y − Pb) + bi

=
1

kp

(
e

[k]
i ⊗ x

)T
A

1
2 Q̃A

1
2Z(y − Pb) + bi (3)

where Q̃ = (A
1
2 ZZTA

1
2

kp
+ 1

γ
Ikp)

−1.
To compute the statistics of gi(x), we shall resort to determining

so-called deterministic equivalents for the matrices Q̃, Q̃A
1
2Z, etc.,

which appear at the core of the formulation of gi(x). A deterministic
equivalent, say F̄ ∈ Rn×p, of a given random matrix F ∈ Rn×p,
denoted F ↔ F̄ , is defined by the fact that, for any deterministic
linear functional f : Rn×p → R, f(F − F̄ ) → 0 almost surely
(for instance, for u, v of unit norm, uT(F − F̄ )v

a.s.−→ 0 and, for
A ∈ Rp×n deterministic of bounded operator norm, 1

n
trA(F −

F̄ )
a.s.−→ 0). Deterministic equivalents are thus particularly suitable

to handle bilinear forms involving the random matrix F . Since gi(x)

is precisely a bilinear form involving Q̃A
1
2Z, the following lemma

is our key technical result.

Lemma 1 (Deterministic equivalents). Define, for class j in task i,
the data statistics matrices

M =
(
e

[k]
1 ⊗ [µ11, µ12], . . . , e

[k]
k ⊗ [µk1, µk2]

)
Cij = A

1
2

(
e

[k]
i e

[k]
i

T
⊗ (Σij + µijµ

T
ij)
)
A

1
2 .

Then we have the deterministic equivalents of first order

Q̃↔ ¯̃Q ≡

(
k∑
i=1

2∑
j=1

cij
c0

Cij
1 + ∆ij

+
1

γ
Ikp

)−1

Q↔ Q̄ ≡
∑
i,j

γ

1 + ∆ij
In −

γ

n
JMT

∆
¯̃QM∆J

T

A
1
2 Q̃A

1
2Z ↔MTA

1
2

¯̃QA
1
2M∆J

T

and of second order

Q̃A
1
2 SijA

1
2 Q̃↔ Aij

ZTA
1
2 Q̃A

1
2 SijA

1
2 Q̃A

1
2Z ↔M∆AijM∆ + E −MT

∆
¯̃QM∆C

in which we defined

C = diag

(
In11

1 + ∆11
tr (C11) , . . . ,

Ink2

1 + ∆k2
tr (Ck2)

)
E =

∑
i,j

tr(CijAij)e[2k]
ij e

[2k]
ij

T

Aij = ¯̃QA
1
2 SijA

1
2

¯̃Q+
∑
i,j

dij
n

tr(A ¯̃QCij
¯̃Q)Bij

Bij = ¯̃QCij
¯̃Q+

k∑
l=1

2∑
m=1

dlmT(il)(jm)
¯̃QClm

¯̃Q

D =
∑
i,j

dije
[2k]
ij e

[2k]
ij

T
, dij =

nij
n(1 + ∆ij)2



J = [j11, . . . , jk2],

jlm =
(

0T
n11+...+n(i−1)2

, 1T
nij
, 0T
n(i+1)1+...+nk2

)T
,

M∆ = M
∑
ij

1

1 + ∆ij
e

[2k]
ij e

[2k]T
ij

Sij = e
[k]
i e

[k]
i

T
⊗ Σij

T = T̃
(
I2k −DT̃

)−1

, T̃(il)(jm) =
1

n
tr(Cij

¯̃QClm
¯̃Q)

and the (∆11, . . . ,∆k2) are the unique positive solution of

∆ij =
1

p
tr(Cij

¯̃Q), ∀i, j.

With the help of Lemma 1, we then have our main result.

Theorem 1. Under Assumptions 1–2 and the notations of Lemma 1,

g(x)→ N (mij , σ
2
ij)

in distribution where

mij =
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2

¯̃QA
1
2M∆J

T(y − P b̄) + b̄i

σ2
ij =

1

(kp)2
(y − P b̄)T

(
MT

∆AijM∆ + E
)

(y − P b̄)

− 1

p2
(y − P b̄)TMT

∆
¯̃QM∆C(y − P b̄)

with b̄ =
(
PTQ̄P

)−1 (
PTQ̄y

)
.

Sketch of Proof. Using the definition of the score in (3), the mean
mij and the variance σij are respectively given by:

mij = E

[
1

kp
e

[2k]
ij

T
MTA

1
2 Q̃A

1
2Z(y − Pb)

]
σ2
ij = E

[
1

(kp)2
(y − Pb)TZTA

1
2 Q̃A

1
2 SijA

1
2 Q̃A

1
2Z(y − Pb)

]
.

Both quantities involve expectation of bilinear forms involving the
random matrices A

1
2 Q̃A

1
2Z and ZTA

1
2 Q̃A

1
2 SijA

1
2 Q̃A

1
2Z for

which Lemma 1 provides deterministic equivalents (these being ob-
tained from random matrix tools from, e.g., [13], omitted here for
conciseness). The result of the theorem then unfolds from the
lemma.

Since gi(x) has an asymptotic Gaussian limit centered about
mij , the (asymptotic) standard decision for x to be in Class 1 (x ∈
C1) or Class 2 (x ∈ C2) for Task i is obtained by the “averaged-
mean” test

gi(x) ≡ 1√
kp

(
e

[k]
i ⊗ x

)T
AZTα+ bi

C1
≷
C2

1

2
(mi1 +mi2)

the probability of classification error of which is, from Theorem 1,

P
(
gi(x) ≥ mi1 +mi2

2

∣∣∣x ∈ C1) = Q

(
mi1 −mi2

2σi1

)
+ o(1)

(4)

with mij , σij defined in Theorem 1 and Q(t) =
∫∞
t
e−

u2

2 du.
In practice, the values of the means and variances can be consis-

tently estimated. Indeed, they mostly involve up-to-2k dimensional
vectors of inner products of the means µij or bilinear forms of the
covariance matrices Σij ; random matrix methods have long been
developed to obtain such estimates.

3.2. Discussion about MTL-LSSVM

Theorem 1 is quite involved and seemingly leaves little room to in-
terpretation. We show here that, in simplified settings, interesting
intuitions in fact naturally arise.

First, it is interesting to note that the matrix A = ( 2
λ
Ik +

1k1T
k) ⊗ Ip weighs the constraint of common hyperplane through

the term 1k1T
k against the need for isolating tasks through the term

2
λ
Ik, with λ compromising the two terms.

In particular, letting γ � 1, the matrix Q̄ and ¯̃Q (which, as
in conventional least-square methods, mostly control the variance
of the algorithm) are essentially proportional to identity matrices.
Further assuming equal sized data per class and per task, up to a
leading constant κi, the averaged scores mij simplify as:

mij ≈ κi
k∑
a=1

2∑
b=1

(
2

λ
δia + 1

)
µT
ijµab(−1)b−1 + b̄i.

As such, λ � 1, mij is driven by
∑
a,b µ

T
ijµab(−1)b−1 so that

the distance between µi1 and µi2 depends on the difference in the
projections µT

i1(
∑
a µa1 −

∑
a µa2) and µT

i2(
∑
a µa1 −

∑
a µa2).

This is all the more convenient that the µa1 (and µa2) are correctly
aligned across a: in this case the tasks learn from each other. If
instead λ� 1, µi1 and µi2 differ by their projections onto µi1−µi2
and the tasks become independent of each other.

Note also interestingly that, if there exists a task a for which
‖µa1 − µa2‖ � 1 and that µT

ijµaj is positive and non-vanishing,
then Task a will make the possibly non-trivial Task i much easier
(and in fact asymptotically trivial). Exploiting the fact that JTy
leverages the size of each class in each task, the same reasoning
holds for any Task a for which na1, na2 � 1 and µT

ijµaj is positive
and non-vanishing.

4. EXPERIMENTS

4.1. Application to synthetic data

The asymptotic classification error derived in Equation (4) opens the
possibility to automatically tune the hyperparameters of the algo-
rithm. We focus here our analysis on λ which weighs the relatedness
between tasks. As previously mentioned, since the statisticsmij and
σ2
ij can be asymptotically estimated, the value of λ minimizing the

probability of error can be estimated (i.e., the algorithm can “auto-
tune” the relatedness of tasks) by solving

min
λ>0

Q

(
mi1 −mi2

2σi1

)
, mij = mij(λ), σij = σij(λ).

We experiment this approach on the following two-task setting
(k = 2): x1` ∼ N (±µ1, Ip) and x2` ∼ N (±µ2, Ip), where µ2 =

βµ1 +
√

1− β2µ⊥1 , where µ⊥1 is any vector orthogonal to µ1 and
β ∈ [0, 1]. This setting allows us to tune, through β, the similarity
between tasks.

Figure 2 compares, for different values of λ, the theoretical and
empirical classification errors, and emphasizes the error-minimizing
value of λ. Despite the not-so-large values assumed by n and p, a
very precise match is reported between the asymptotic theory and
the practical experiment, with in particular an accurate estimation of
the optimal value for λ.



10−5 10−4 10−3 10−2 10−1 100 101 102 103
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

λ

er
ro

r

Theoretical
Empirical

Fig. 2. Theoretical and empirical error of classification as func-
tion of λ and predicted value of λ in red dashed line. p = 256,
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4.2. Application to real dataset

To extend the theoretical analysis performed on concentrated ran-
dom vectors (and tested on Gaussian mixtures) to real data, we ap-
ply the multitask classification asymptotic to the handwritten digits
of the MNIST dataset [14]. Figure 3 depicts, as a function of λ, the
theoretical versus empirical classification errors for three different
“transfer learning” settings (that is, for k = 2, using Task 1 as a
support, or source, to the targeted Task 2).

It is interestingly observed that theoretical and practical graphs
are again a very close match and that, while for very similar tasks
with large numbers of data in the source task significant gains are
achieved at large λ (thereby corroborating the discussion of Sec-
tion 3.2), non-trivial gains are still reached on resembling tasks with
a non-trivial λ, but almost no gain is obtained for too dissimilar tasks.

5. CONCLUDING REMARKS

The present work provides a first theoretical analysis of multitask
learning, and indirectly of transfer learning, in the simplified setting
of a least square support vector machine adaptation, and for a linear
kernel (XTX) model. Already in this setting, the asymptotic algo-
rithm performance appears to be non trivial, yet carries several non-
trivial insights and opens the possibility of an on-line tuning of the
hyperparameters of the model. These insights are key to understand-
ing the (likely more involved) behavior of large dimensional data in
refined modern formulations of multitask and transfer learning.

A natural extension of the present analysis notably includes the
possibility to involve more elaborate data representations as well
as kernel models of data similarity as developed in the asymptotic
analysis of [15] and [13]. Similarly, the tools provided in [16] to
analyze the performance of implicit (rather than explicit, as in the
present work) solutions of optimization problems (standard support
vector machines, logistic regression, neural network formulations)
will bring the present analysis closer to modern considerations in
multitask learning.
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Fig. 3. Empirical (Top) versus theoretical (Bottom) classification
error of Task 1 of a two-task problem for different λ. Training
set of Task 1: noisy versions of digits 1 and 4 of MNIST dataset
(X(1)

1 = Z1 +W1 and X(2)
1 = Z4 +W2 with Z1 and Z4 images of

1 and 4 from the MNIST database, columns of W1,W2 independent
standard Gaussian), n11 = n12 = 50. Transfer learning performed
onto three possible Task 2 (in order of dissemblance): digits (1, 4),
digits (7, 9) and digits (3, 8) with n21 = n22 = 450.
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