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Inspired by human learning, which transfers knowledge from learned tasks to solve new tasks, multitask learning aims at simultaneously solving multiple tasks by a smart exploitation of their similarities. How to relate the tasks so to optimize their performances is however a largely open problem.

Based on a random matrix approach, this article proposes an asymptotic analysis of a support vector machine-inspired multitask learning scheme. The asymptotic performance of the algorithm, validated on both synthetic and real data, sets forth the relation between the statistics of the data in each task and the hyperparameters relating the tasks together. The article, as such, provides first insights on an offline control of multitask learning, which finds natural connections to the currently popular transfer learning paradigm.

INTRODUCTION

The performance of regression and classification tasks can be improved by making the tasks learn from each other. In machine learning, the subject is approached by multitask learning (MTL) where, by appropriately sharing the algorithm parameters, each task may benefit from the others. This has been widely used in face recognition [START_REF] Zhuang | Multi-task learning of cascaded cnn for facial attribute classification[END_REF], citywide passenger flow prediction [START_REF] Zhong | Spatiotemporal multi-task learning for citywide passenger flow prediction[END_REF], cancer survival analysis [START_REF] Gu | An improved muti-task learning algorithm for analyzing cancer survival data[END_REF], market preferences [START_REF] Greg | Marketing models of consumer heterogeneity[END_REF][START_REF] Arora | A hierarchical bayes model of primary and secondary demand[END_REF], to cite a few.

Modelling the relatedness between the tasks is one of the key aspects of MTL. Among the proposed approaches, hierarchical Bayes models [START_REF] Greg | Marketing models of consumer heterogeneity[END_REF][START_REF] Arora | A hierarchical bayes model of primary and secondary demand[END_REF][START_REF] Bakker | Task clustering and gating for bayesian multitask learning[END_REF][START_REF] Heskes | Empirical bayes for learning to learn[END_REF] are one of the most considered; these assume that the tasks share a common hypothesis class. Natural extensions of standard one-task methods (such as support vector machines) have also been devised [START_REF] Evgeniou | Regularized multi-task learning[END_REF]. In this precise case, to further cope with the possibly large complexity of training these algorithms, explicit least square alternatives have been proposed [START_REF] Xu | Multi-output least-squares support vector regression machines[END_REF].

Following up on the asymptotic analysis performed in [START_REF] Liao | A large dimensional analysis of least squares support vector machines[END_REF] for least-square support vector machines (in a single task setting), or in [START_REF] Mai | A random matrix analysis and improvement of semi-supervised learning for large dimensional data[END_REF] for a semi-supervised extension, this article provides a large dimensional analysis of multitask least square support vector machines.

The analysis performed allows to predict the classification error, then providing some insights about the algorithm and an automatic way to tune the hyper parameters.

The remainder of the article is organized as follows. Section 2 introduces the multitask learning setting analyzed in Section 3.2, which provides the asymptotic classification error and discusses the results. Section 4 provides supporting experiments in both synthetic and real data settings, demonstrating a strong consistency with the theoretical findings.

Notation. e [n]

m ∈ R n is the canonical vector with [e

[n] m ]i = δmi. Moreover, e [2k] ij = e [2k]
2(i-1)+j . The notation A ⊗ B for matrices or vectors A, B is the Kronecker product.

SETTING AND ASSUMPTIONS

Let X = [X1, . . . , X k ] ∈ R p×n be the collection of n independent data vectors drawn from k "tasks". Task i is a binary classification problem from the training samples Xi

= [X (1) i , X (2) i ] ∈ R p×n i with X (j) i = [xi1, . . . , xin ij ] ∈ R p×n ij the nij vectors of class j ∈ {1, 2} for the task i.
The multitask learning least square support vector machine (MTL-LSSVM) aims to predict an output y ∈ {-1, 1} for any input vector x ∈ R p . To this end, MTL-LSSVM determines k hyperplanes W = [ω1, ω2, . . . , ω k ] and a bias term b = [b1, b2, . . . , b k ] T that minimize the objective function with constraints

min W ∈R kp ,b∈R k J (W, b) = 1 2 tr(W T W ) + γ 2 k i=1 ξi 2 , s.t. yi = X T i ωi + bi1n i + ξi ∀i ∈ {1, . . . , k} with yi = [ei ⊗ 1 T n i1 , ei ⊗ -1 T n i2 ]
T the label of the training data of task i, and ξi ∈ R n i the errors on the training data. The hyperparameter γ compromises the smallness of the errors (ξi) 1≤i≤k against the accuracy of the hyperplanes W .

In order to incorporate the relatedness between tasks, [START_REF] Xu | Multi-output least-squares support vector regression machines[END_REF] further considers that each hyper plane ωi can be written under the form ωi = vi + ω0, where ω0 carries the "common" information between tasks and vi is specialized to each task. The cost function thus becomes

J (ω0, V, b) = 1 2 ω0 2 + λ 2k tr(V T V ) + γ 2 k i=1 ξi 2 (1)
where the parameter λ enforces the relatedness of the tasks and V = [v1, . . . , v k ]. Figure 1 schematically depicts the multitask learning framework.

By introducing the Lagrangian parameter α and solving the dual formulation of the optimization problem, the solution of (1) is explicit and reads 1. Hyperplanes of the multitask learning setting.

ωi = e [k] i T ⊗ Ip AZ T α where α = Q(y -P b) b = (P T QP ) -1 P T Qy • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ω1 ω2 ω k . . . ω0 + . . . + + = 1 k Fig.
with y = [y T 1 , y T 2 , . . . , y T k ] T ∈ R kn , Q = ( Z T AZ kp + 1 γ I kp ) -1 , A = ( 2 λ I k + 1 k 1 T k ) ⊗ Ip, Z = k i=1 e [k] i e [k] i T ⊗ Xi, and P = k i=1 e [k] i e [k] i T ⊗ 1n i .
The prediction of the label of any new data point x ∈ R p for task i is then obtained from classification score gi(x) given by gi

(x) = 1 kp e [k] i ⊗ x T AZα + bi. ( 2 
)
Our objective is to quantify the performance of multitask learning, and thus of the (a priori intricate) statistics of gi(x). To this end, we resort to a large dimensional analysis of gi(x) in the limit of large p and nij. In order to keep our results valid for very general (random) datasets, we work under the following concentration of measure assumption for X.

Assumption 1 (Distribution of X).

There exist two constants C, c > 0 (independent of n, p) such that, for any 1-Lipschitz function f : R p×n → R,

∀t > 0 : P(|f (X) -E[f (X)]| ≥ t) ≤ Ce -(t/c) 2 .
We further define E[xij] = µij and Cov[x i ] = Σ i , which only depends on (i, j).

Assumption 1 notably encompasses the following scenarios: xij ∈ R p are (i) independent Gaussian random vectors with covariance of bounded norm, (ii) independent random vectors uniformly distributed on the R p sphere, and most importantly (iii) any Lipschitz transformation φ(xij) of the above two cases, with bounded Lipschitz norm. Scenario (iii) is particularly relevant to model very realistic data settings as it was recently shown [START_REF] Seddik | Kernel random matrices of large concentrated data: the example of gan-generated images[END_REF] that random data (in particular images) generated by generative adversarial networks (better known as GANs) are by definition concentrated random vectors.

For our analysis, we further place ourselves under the following large p, nij regime.

Assumption 2 (Growth Rate). As n → ∞, n/p → c0 > 0 and for 1 ≤ i ≤ k, 1 ≤ j ≤ 2, n ij n → cij > 0. Besides, µij = O( √ p).
The assumption on the norm µij is quite natural (typically, the norm of the vectors x i is the same as that of their means). Yet, in order to reach non-trivial (asymptotically simple) results in the following, it will be necessary that µij -µ i j = O(1) (i.e., tasks are sufficiently similar).

Under these assumptions, by a careful exploitation of tools from random matrix theory, we can derive the asymptotic distribution of the classification score gi(x), which is our main result, discussed next.

MAIN RESULT

Asymptotic classification error of MTL-LSSVM

Using algebraic identities and the definition of α, gi(x) can be conveniently rewritten as

gi(x) = 1 kp e [k] i ⊗ x T AZQ(y -P b) + bi = 1 kp e [k] i ⊗ x T A 1 2 QA 1 2 Z(y -P b) + bi (3) 
where

Q = ( A 1 2 ZZ T A 1 2 kp + 1 γ I kp ) -1 .
To compute the statistics of gi(x), we shall resort to determining so-called deterministic equivalents for the matrices Q, QA 1 2 Z, etc., which appear at the core of the formulation of gi(x). A deterministic equivalent, say F ∈ R n×p , of a given random matrix F ∈ R n×p , denoted F ↔ F , is defined by the fact that, for any deterministic linear functional f : R n×p → R, f (F -F ) → 0 almost surely (for instance, for u, v of unit norm, u T (F -F )v a.s.

-→ 0 and, for A ∈ R p×n deterministic of bounded operator norm, 1 n trA(F -F ) a.s.

-→ 0). Deterministic equivalents are thus particularly suitable to handle bilinear forms involving the random matrix F . Since gi(x) is precisely a bilinear form involving QA 1 2 Z, the following lemma is our key technical result.

Lemma 1 (Deterministic equivalents). Define, for class j in task i, the data statistics matrices

M = e [k] 1 ⊗ [µ11, µ12], . . . , e [k] k ⊗ [µ k1 , µ k2 ] Cij = A 1 2 e [k] i e [k] i T ⊗ (Σij + µijµ T ij ) A 1 2 .
Then we have the deterministic equivalents of first order

Q ↔ Q ≡ k i=1 2 j=1 cij c0 Cij 1 + ∆ij + 1 γ I kp -1 Q ↔ Q ≡ i,j γ 1 + ∆ij In - γ n JM T ∆ QM∆J T A 1 2 QA 1 2 Z ↔ M T A 1 2 QA 1 2 M∆J T
and of second order

QA 1 2 SijA 1 2 Q ↔ Aij Z T A 1 2 QA 1 2 SijA 1 2 QA 1 2 Z ↔ M∆AijM∆ + E -M T ∆ QM∆C
in which we defined

C = diag In 11 1 + ∆11 tr (C11) , . . . , In k2 1 + ∆ k2 tr (C k2 ) E = i,j tr(CijAij)e [2k] ij e [2k] ij T Aij = QA 1 2 SijA 1 2 Q + i,j dij n tr(A QCij Q)Bij Bij = QCij Q + k l=1 2 m=1 d lm T (il)(jm) QC lm Q D = i,j dije [2k] ij e [2k] ij T , dij = nij n(1 + ∆ij) 2 J = [j11, . . . , j k2 ], j lm = 0 T n 11 +...+n (i-1)2 , 1 T n ij , 0 T n (i+1)1 +...+n k2 T , M∆ = M ij 1 1 + ∆ij e [2k] ij e [2k]T ij Sij = e [k] i e [k] i T ⊗ Σij T = T I 2k -D T -1 , T(il)(jm) = 1 n tr(Cij QC lm Q)
and the (∆11, . . . , ∆ k2 ) are the unique positive solution of

∆ij = 1 p tr(Cij Q), ∀i, j.
With the help of Lemma 1, we then have our main result.

Theorem 1. Under Assumptions 1-2 and the notations of Lemma 1,

g(x) → N (mij, σ 2 ij ) in distribution where mij = 1 kp e [k] i ⊗ µij T A 1 2 QA 1 2 M∆J T (y -P b) + bi σ 2 ij = 1 (kp) 2 (y -P b) T M T ∆ AijM∆ + E (y -P b) - 1 p 2 (y -P b) T M T ∆ QM∆C(y -P b)
with b = P T QP -1 P T Qy .

Sketch of Proof.

Using the definition of the score in (3), the mean mij and the variance σij are respectively given by:

mij = E 1 kp e [2k] ij T M T A 1 2 QA 1 2 Z(y -P b) σ 2 ij = E 1 (kp) 2 (y -P b) T Z T A 1 2 QA 1 2 SijA 1 2 QA 1 2 Z(y -P b) .

Both quantities involve expectation of bilinear forms involving the random matrices

A 1 2 QA 1 2 Z and Z T A 1 2 QA 1 2 SijA 1 2 QA 1 2
Z for which Lemma 1 provides deterministic equivalents (these being obtained from random matrix tools from, e.g., [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF], omitted here for conciseness). The result of the theorem then unfolds from the lemma.

Since gi(x) has an asymptotic Gaussian limit centered about mij, the (asymptotic) standard decision for x to be in Class 1 (x ∈ C1) or Class 2 (x ∈ C2) for Task i is obtained by the "averagedmean" test

gi(x) ≡ 1 √ kp e [k] i ⊗ x T AZ T α + bi C 1 ≷ C 2 1 2 (mi1 + mi2)
the probability of classification error of which is, from Theorem 1,

P gi(x) ≥ mi1 + mi2 2 x ∈ C1 = Q mi1 -mi2 2σi1 + o(1) (4) 
with mij, σij defined in Theorem 1 and 2 du. In practice, the values of the means and variances can be consistently estimated. Indeed, they mostly involve up-to-2k dimensional vectors of inner products of the means µij or bilinear forms of the covariance matrices Σij; random matrix methods have long been developed to obtain such estimates.

Q(t) = ∞ t e -u 2 

Discussion about MTL-LSSVM

Theorem 1 is quite involved and seemingly leaves little room to interpretation. We show here that, in simplified settings, interesting intuitions in fact naturally arise.

First, it is interesting to note that the matrix A = ( 2 λ I k + 1 k 1 T k ) ⊗ Ip weighs the constraint of common hyperplane through the term 1 k 1 T k against the need for isolating tasks through the term 2 λ I k , with λ compromising the two terms.

In particular, letting γ 1, the matrix Q and Q (which, as in conventional least-square methods, mostly control the variance of the algorithm) are essentially proportional to identity matrices. Further assuming equal sized data per class and per task, up to a leading constant κi, the averaged scores mij simplify as:

mij ≈ κi k a=1 2 b=1 2 λ δia + 1 µ T ij µ ab (-1) b-1 + bi.
As such, λ 1, mij is driven by a,b µ T ij µ ab (-1) b-1 so that the distance between µi1 and µi2 depends on the difference in the projections µ T i1 ( a µa1a µa2) and µ T i2 ( a µa1a µa2). This is all the more convenient that the µa1 (and µa2) are correctly aligned across a: in this case the tasks learn from each other. If instead λ 1, µi1 and µi2 differ by their projections onto µi1 -µi2 and the tasks become independent of each other.

Note also interestingly that, if there exists a task a for which µa1 -µa2

1 and that µ T ij µaj is positive and non-vanishing, then Task a will make the possibly non-trivial Task i much easier (and in fact asymptotically trivial). Exploiting the fact that J T y leverages the size of each class in each task, the same reasoning holds for any Task a for which na1, na2

1 and µ T ij µaj is positive and non-vanishing.

EXPERIMENTS

Application to synthetic data

The asymptotic classification error derived in Equation (4) opens the possibility to automatically tune the hyperparameters of the algorithm. We focus here our analysis on λ which weighs the relatedness between tasks. As previously mentioned, since the statistics mij and σ 2 ij can be asymptotically estimated, the value of λ minimizing the probability of error can be estimated (i.e., the algorithm can "autotune" the relatedness of tasks) by solving

min λ>0 Q mi1 -mi2 2σi1 , mij = mij(λ), σij = σij(λ).
We experiment this approach on the following two-task setting (k = 2): x 1 ∼ N (±µ1, Ip) and x 2 ∼ N (±µ2, Ip), where µ2 = βµ1 + 1 -β 2 µ ⊥ 1 , where µ ⊥ 1 is any vector orthogonal to µ1 and β ∈ [0, 1]. This setting allows us to tune, through β, the similarity between tasks.

Figure 2 compares, for different values of λ, the theoretical and empirical classification errors, and emphasizes the error-minimizing value of λ. Despite the not-so-large values assumed by n and p, a very precise match is reported between the asymptotic theory and the practical experiment, with in particular an accurate estimation of the optimal value for λ. 1 + e

[p]
2 ),

µ ⊥ 1 = √ 2(e [p]
3 + e

[p] 4 ), β = 0.5, γ = 10 -3 .

Application to real dataset

To extend the theoretical analysis performed on concentrated random vectors (and tested on Gaussian mixtures) to real data, we apply the multitask classification asymptotic to the handwritten digits of the MNIST dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF]. Figure 3 depicts, as a function of λ, the theoretical versus empirical classification errors for three different "transfer learning" settings (that is, for k = 2, using Task 1 as a support, or source, to the targeted Task 2). It is interestingly observed that theoretical and practical graphs are again a very close match and that, while for very similar tasks with large numbers of data in the source task significant gains are achieved at large λ (thereby corroborating the discussion of Section 3.2), non-trivial gains are still reached on resembling tasks with a non-trivial λ, but almost no gain is obtained for too dissimilar tasks.

CONCLUDING REMARKS

The present work provides a first theoretical analysis of multitask learning, and indirectly of transfer learning, in the simplified setting of a least square support vector machine adaptation, and for a linear kernel (X T X) model. Already in this setting, the asymptotic algorithm performance appears to be non trivial, yet carries several nontrivial insights and opens the possibility of an on-line tuning of the hyperparameters of the model. These insights are key to understanding the (likely more involved) behavior of large dimensional data in refined modern formulations of multitask and transfer learning.

A natural extension of the present analysis notably includes the possibility to involve more elaborate data representations as well as kernel models of data similarity as developed in the asymptotic analysis of [START_REF] Couillet | Kernel spectral clustering of large dimensional data[END_REF] and [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF]. Similarly, the tools provided in [START_REF] Mai | A large scale analysis of logistic regression: Asymptotic performance and new insights[END_REF] to analyze the performance of implicit (rather than explicit, as in the present work) solutions of optimization problems (standard support vector machines, logistic regression, neural network formulations) will bring the present analysis closer to modern considerations in multitask learning. 

= Z1 + W1 and X

(2) 1

= Z4 + W2 with Z1 and Z4 images of 1 and 4 from the MNIST database, columns of W1, W2 independent standard Gaussian), n11 = n12 = 50. Transfer learning performed onto three possible Task 2 (in order of dissemblance): digits (1, 4), digits (7, 9) and digits [START_REF] Gu | An improved muti-task learning algorithm for analyzing cancer survival data[END_REF][START_REF] Evgeniou | Regularized multi-task learning[END_REF] with n21 = n22 = 450.
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 83 Fig. 3. Empirical (Top) versus theoretical (Bottom) classification error of Task 1 of a two-task problem for different λ. Training set of Task 1: noisy versions of digits 1 and 4 of MNIST dataset (X
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