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Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions

Malik Tiomoko 1 , Romain Couillet 1,2, * 1 CentraleSupélec, Université ParisSaclay, 2 GIPSA-lab, Université Grenoble-Alpes Abstract-This article proposes a method to consistently estimate functionals 1 ), when the size p and number na of the (zero mean) samples x (a) i are similar. As a corollary, a consistent estimate of the Wasserstein distance (related to the case f (t) = √ t) between centered Gaussian distributions is derived.

The new estimate is shown to largely outperform the classical sample covariance-based "plug-in" estimator. Based on this finding, a practical application to covariance estimation is then devised which demonstrates potentially significant performance gains with respect to state-of-the-art alternatives.

I. INTRODUCTION

Many machine learning and signal processing applications require an adequate framework to compare statistical objects, starting with probability distributions. The Wasserstein distance, initially inspired by Monge [START_REF] Gaspard Monge | Mémoire sur la théorie des déblais et des remblais[END_REF] and later by Kantorovich [START_REF] Kantorovich | On the translocation of masses[END_REF] in a transport theory analogy, provides a natural notion of dissimilarity for probability measures and finds a wide spectrum of applications in image analysis [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF], shape matching [START_REF] Su | Optimal mass transport for shape matching and comparison[END_REF], computer vision [START_REF] Ni | Local histogram based segmentation using the wasserstein distance[END_REF], etc.

However, computing the Wasserstein distance is expensive as it requires to minimize a cost function taking the form of an integral over the space of probability measures. Despite recent advances [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], where regularized approximations that reduce this numerical cost are proposed, the latter is still involved in general. Special cases exist for which the Wasserstein distance assumes a closed form, particularly when the underlying distributions are zero-mean Gaussian with covariance matrices C 1 and C 2 . The closed-form formula however involves the eigenvalues of C 1 C 2 and thus depends on the unknown population covariance matrices C 1 and C 2 . Assuming the observation of n 1 , n 2 p samples with covariances C 1 , C 2 , respectively, C 1 C 2 is conventionally approximated by its empirical version Ĉ1 Ĉ2 . As we will show, this induces a dramatic estimation bias in practical applications where p is rather large or, equivalently, n 1 , n 2 rather small, a standard assumption in big data applications.

Based on recent advances in random matrix theory, this article proposes a new consistent estimate for the Wasserstein distance between two centered Gaussian distributions when the dimension p of the samples is of the same order of magnitude as their numbers n 1 , n 2 . This work enters the scope of Mestre's seminal ideas [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF] on the estimation of *Couillet's work is supported by the ANR Project RMT4GRAPH (ANR-14-CE28-0006) and the IDEX GSTATS Chair at University Grenoble Alpes. functionals 1 p p i=1 f (λ i (C)) of the eigenvalue distribution of population covariance matrices C, which can be related to the (limiting) eigenvalue distribution of the sample estimates Ĉ via a complex integration trick. We recently extended this work to the estimation of functionals of the eigenvalue distribution of F-matrices in [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF], i.e., matrices of the form C -1 1 C 2 , and applied to the estimation of the natural geodesic Fisher distance, Battacharrya distance, and Rényi/Kullbach-Leibler divergences between Gaussian distributions.

Our main contribution is the extension of [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF], [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] to functionals f of the eigenvalues of products C 1 C 2 of population covariance matrices. The Wasserstein distance falls within this scope for f (t) = √ t. Unlike [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF], where the functionals of interest (f (t) = t, log(t), log 2 (t)) are amenable to explicit evaluations of the complex integrals, the present f (t) = √ t scenario is more technically involved and gives rise to real non-explicit, yet numerically computable, integrals.

In the remainder of the article, Section II introduces the main model and assumptions, Section III provides our key technical result and its corollary to the Wasserstein distance estimation, and a practical application to covariance matrix estimation is finally proposed in Section IV.

Reproducibility. Matlab codes for the various estimators introduced and studied in this article are available at https://github.com/maliktiomoko/RMTWasserstein II. MODEL AND MAIN OBJECTIVE

For a ∈ {1, 2}, let X a = [x (a) 1 , . . . , x (a) 
na ] be n a independent and identically distributed random vectors with x

(a) i = C 1 2 a x(a)
i , where x(a) i ∈ R p has zero mean, unit variance and finite fourth order moment entries. This holds in particular for x (a) i ∼ N (0, C a ). In order to control the growth rates of n 1 , n 2 , p, we make the following assumption:

Assumption 1 (Growth Rates). As n a → ∞, p/n a → c a ∈ (0, 1) and lim sup p max{ C -1 a , C a } < ∞ for • the operator norm.
We define the sample covariance estimate Ĉa of C a as

Ĉa ≡ 1 n a X a X T a = 1 n a na i=1 x (a) i x (a)T i . The Wasserstein distance D W (C 1 , C 2 )
between two zeromean Gaussian distributions with covariances C 1 and C 2 , respectively, assumes the form [9, Remark 2.31]:

D W (C 1 , C 2 ) = tr(C 1 ) + tr(C 2 ) -2tr (C 1 2 1 C 2 C 1 2 1 ) 1 2
.

(1)
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It is easily shown that, under Assumption 1,

1 p tr Ĉa - 1 p trC a → 0 almost surely. But estimating tr(C 1 2 1 C 2 C 1 2
1 )

12 is more involved: this is the focus of the article. Up to a normalization by p, this term can be written under the functional form:

1 p tr(C 1 2 1 C 2 C 1 2
1 )

1 2 = 1 p n i=1 λ i (C 1 C 2 ) ≡ D(C 1 , C 2 ; √ •) (2) with λ i (X) the i-th smallest eigenvalue of X.
Our objective is to estimate the more generic form

D(C 1 , C 2 ; f ) ≡ 1 p n i=1 f (λ i (C 1 C 2 )) (3) 
for f : R → R a real function admitting a complexanalytic extension. To this end, we shall relate the eigenval-

ues λ i (C 1 C 2 ) to λ i ( Ĉ1 Ĉ2 ) through the Stieltjes transform (m θ (z) ≡ dθ(λ)
λ-z for measure θ and z ∈ C) of their associated normalized counting measures

µ p = 1 p p i=1 δ λi( Ĉ1 Ĉ2) , ν p = 1 p p i=1 δ λi(C1C2) .
In particular,

m µp (z) = 1 p p i=1 1 λi-z for λ i = λ i ( Ĉ1 Ĉ2
). With these notations, we are in position to introduce our main results.

III. MAIN RESULTS

The following theorem provides a consistent estimate for the metric D(C 1 , C 2 ; f ) defined in [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF].

Theorem 1. Let Γ ⊂ {z ∈ C, real[z] > 0} be a contour surrounding ∪ ∞ p=1 supp(µ p ). Then, under Assumption 1, D(C 1 , C 2 ; f ) -D(X 1 , X 2 ; f ) a.s. -→ 0 where D(X 1 , X 2 ; f ) = n 2 2πip Γ f ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z)dz and, recalling m µp (z) = 1 p p i=1 1 λi-z for λ i = λ i ( Ĉ1 Ĉ2 ), ϕ p (z) = z 1-p n 1 -p n 1 zmµ p (z) , ψ p (z) = 1 -p n2 -p n2 zm µp (z). The result of Theorem 1 is very similar to [8, Theorem 1] established for functionals of the eigenvalues of C -1 1 C 2 .
The main difference lies in the expression of the function ϕ p (z).

Proof. The proof of Theorem 1 is based on the same approach as for [10, Theorem 1]. One first creates a link between the Stieltjes transform m νp and D(C 1 , C 2 ; f ) using Cauchy's integral formula:

1 p p i=1 f (λ i (C 1 C 2 )) = f (t)dν p (t) = 1 2πi Γν f (z) z -t dz dν p (t) = -1 2πi Γν f (z)m νp (z)dz (4) 
with Γ ν a contour surrounding the support supp(ν p ) of ν p . To relate the unknown m νp to the observable m µp , we proceed as follows. By first conditioning on Ĉ1 ,

Ĉ 1 2 1 Ĉ2 Ĉ 1 2 1
is seen as a sample covariance matrix for the samples

Ĉ 1 2 1 C 1 2 2
x(2) i , for which [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] allows one to relate m µp to the Stieltjes transform of the eigenvalue distribution

ζ p of C 1 2 2 Ĉ1 C 1 2
2 . The latter is yet another sample covariance matrix for the samples C x [START_REF] Gaspard Monge | Mémoire sur la théorie des déblais et des remblais[END_REF] i ; exploiting [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] again creates the connection from m ζp to m νp . This entails the two equations:

m µp (z) = ϕ p (z)m ζp (ϕ p (z)) + o p (1) (5) 
m νp z Ψ p (z) = m ζp (z)Ψ p (z) + o p (1). ( 6 
)
where Ψ p (z) ≡ 1 -p n2 -p n2 zm ζp (z). Successively plugging ( 5)-( 6) into ( 4) by means of two successive appropriate changes of variables, we obtain Theorem 1.

Theorem 1 takes the form of a complex integral which, for generic choices of f , needs be numerically evaluated. In the specific case of present interest where f (z) = √ z, this complex integral can be evaluated as follows.

Theorem 2. Let λ 1 ≤ . . . ≤ λ p , with λ i ≡ λ i ( Ĉ1 Ĉ2 ), and define {ξ i } p i=1 and {η i } p i=1 the (increasing) eigenvalues of Λ -

1 n1 √ λ √ λ T and Λ -1 n2 √ λ √ λ T
, respectively, where λ = (λ 1 , . . . , λ p )

T , Λ = diag(λ) and √ . is understood entry wise. Then, under Assumption 1,

D(C 1 , C 2 ; √ •) -D(X 1 , X 2 ; √ •) a.s.
-→ 0

where, if

n 1 = n 2 , D(X 1 , X 2 ; √ •) = 2 √ n 1 n 2 1 p p j=1 λ j + 2n 2 πp p j=1 ηj ξj - ϕ p (x) ψ p (x) ψ p (x)dx
with ϕ p , ψ p defined in Theorem 1 and, if

n 1 = n 2 , D(X 1 , X 2 ; √ •) = 2n 1 p p j=1 λ j -ξ j .
While still assuming an integral form (when n 1 = n 2 ), this formulation no longer requires the arbitrary choice of a contour Γ and significantly reduces the computational time to estimate D(C 1 , C 2 , √ •). For n 1 = n 2 , a case of utmost practical interest, the expression is completely explicit and computationally only requires to evaluate the eigenvalues ξ j of Λ-

1 n1 √ λ √ λ T .
The latter being a (negative definite) rank- Proof. The ξ i and η i , as defined in the theorem statement, are the respective zeros of the rational functions 1 -p n1p n1 zm μp (z) and 1-p n2 -p n2 zm μp (z) (see [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF]Appendix B]). Thus, ϕ p and ψ p can be expressed under the rational form:

ϕ p (z) = z p i=1 z -λ i p i=1 z -η i , ψ p (z) = p i=1 z -ξ i p i=1 z -λ i .
Evaluating the estimate from Theorem 1 for f (z) = √ z then requires to evaluate a complex integral involving rational functions and square roots of rational functions. Since the complex square root is multivalued, a careful control of "branch-cuts" is required. To perform this calculus, we deform the integration contour Γ of Theorem 1 into Γ as per Figure 1. In the case n 1 = n 2 , the closed null-integral contour Γ (blue in Figure 1) is the sum of the sought-for integral over Γ and of four extra components: 1) Integrals over -radius circles around ξ i : those are null in the limit → 0, as confirmed by a change of variable z = ξ i + e ıθ which allows one to bound the integrand; 2) Integrals over the real axis (in the → 0 limit):

A 2 = n 2 πp p j=1 ηj - ξj + -(ϕ p ψ p )(x) 2 ψ p (z) ψ p (z) - ϕ p (z) ϕ p (z) + ψ p (z) ψ p (z) dx = 2n 2 πp p j=1 ηj ξj -ϕ p ψ p (x) ψ p (z) ψ p (z) dx - n 2 πp p j=1 ηj - ξj + -ϕ p ψ p (x) ϕ p ψ p (x) d dx (ϕ p (x)ψ p (x)) dx = 2n 2 πp p j=1 ηj ξj - ϕ p (x) ψ p (x) ψ p (x)dx -2 n 2 πp p j=1 1 d dx 1 (ϕpψp(x)) (η j ) + o( )
3) Integrals over the -radius circles around η j , with → 0

A 3 = 2 n 2 πp p j=1 1 d dx 1 (ϕpψp(x)) (η j ) + o( )
which thus compensates the last ( -diverging) term in A 2 . 4) Residues in the λ j poles

A 4 = 2 n 2 p lim z→λj p j=1 (ϕ p ψ p )(z) = 2 n 2 p n 1 n 2 p j=1 λ j .
Putting these terms together entails the result of the theorem for the case where n 1 = n 2 . For n 1 = n 2 , it suffices to take the limit of the expression as ξ j → η j . This yields:

D(X 1 , X 2 ; √ •) = 2n 1 p p j=1 λ j + 2n 1 p p j=1 1 π lim t→ξj t ξj - ϕ p (x) ψ p (x) ψ p (x)dx = 2n 1 p p j=1 λ j - 2n 1 p p j=1 1 2πı lim →0 Γ ξ j -ϕ p ψ p (x) ψ p (x) ψ p (x) dx
where Γ ξj is an -radius circular contour around ξ j . The second equality is obtained by deforming the real integral in the complex plane (see [START_REF] Saff | Fundamentals of complex analysis with applications to engineering and science[END_REF] for complex analysis details).

The result unfolds by letting z = ξ i + e ıθ .

Consequently, we obtain the following n, p-consistent estimate for the Wasserstein distance D W (C 1 , C 2 ) of (1).

Corollary 1 (Consistent Estimate of D W (C 1 , C 2 )). Under Assumption 1, 1 p D W (C 1 , C 2 ) - 1 p tr( Ĉ1 + Ĉ2 ) -2 D(X 1 , X 2 ; √ •) a.s.
-→ 0

for D(X 1 , X 2 ; √ •) given by Theorem 2.

Remark 1

(Estimation of C 1 -C 2 2 
F
). The Frobenius distance between two covariance matrices also falls under the scope of the present article for the function f (z) = z. Indeed,

D F (C 1 , C 2 ) = C 1 -C 2 2 F = tr C 2 1 + C 2 2 -2tr (C 1 C 2 )
. Then under Assumption 1 and along with the fact that 1 p trC 2 1 can be estimated consistently from

1 p tr Ĉ2 1 -1 n1p (tr Ĉ1 ) 2 , 1 p D F (C 1 , C 2 )- 1 p tr( Ĉ2 1 + Ĉ2 2 ) - p n 1 1 p tr Ĉ1 2 - p n 2 1 p tr Ĉ2 2 -2 D(X 1 , X 2 ; •) a.s.
-→ 0.

In this case, D(X 1 , X 2 ; •) assumes the simple expression

D(X 1 , X 2 ; •) = 1 p p j=1 λ j = 1 p tr Ĉ1 Ĉ2 which follows from 1 p tr Ĉ1 Ĉ2 -1 p trC 1 C 2 a.s.
-→ 0 (by elementary probability arguments) or equivalently from a residue calculus based on Theorem 1 for f (z) = z.

IV. SIMULATIONS AND APPLICATIONS

In this section, we first corroborate our theoretical findings by comparing the classical plug-in estimator to our proposed estimator on synthetic Gaussian data. We then provide an application of our results to improved covariance matrix estimation based on few samples.

A. Confirmation of our results on synthetic data

We here compare the classical plug-in estimate of the Wasserstein distance (that is (1) with C a replaced by Ĉa , a = 1, 2) with our proposed estimate in Corollary 1. Table I lists the results obtained for Toeplitz matrices C 1 , C 2 estimated based on various values of p, n 1 , n 2 . While our proposed estimator is designed under a large p, n 1 , n 2 assumption (as per Assumption 1), it achieves competitive performances even for small values of p, corroborating here our findings in [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] for other classes of covariance matrix distances. 

p D W (C 1 , C 2 )
WITH [C 1 ] ij = .2 |i-j| , [C 2 ] ij = .4 |i-j| , x

B. Application to covariance matrix estimation

As a concrete application, Theorem 1 may be used to improve the actual estimation of covariance matrices under a small number n ∼ p of sample data, as similarly performed in [START_REF] Tiomoko | Random matrix improved covariance estimation for a large class of metrics[END_REF] for other covariance matrix distances.

The idea is as follows: we first particularize Theorem 1 and Theorem 2 to the case where one of the covariance matrices, say C 1 , is known by taking c 1 = 0 (i.e., n 1 → ∞ for all fixed p). This gives access to estimates for D W (M, C 2 ; √ •) for all deterministic positive definite matrix M . We then minimize this estimated distance over M in order to estimate C 2 by means of a gradient descent approach.

For C 1 known, we redefine µ p = 1 p p i=1 δ λi(C1 Ĉ2) and obtain, as a corollary of Theorem 1:

Theorem 3. Let Γ ⊂ {z ∈ C, real[z] > 0} a contour surrounding ∪ ∞ p=1 supp(µ p ). Then, D(C 1 , C 2 ; f ) - 1 2πic 2 Γ F -m μp (z) dz a.s. -→ 0 with m μp (z) = p n2 m µp (z) + p-n2 n2z and F (z) = f ( 1 z ).
Proof. For C 1 known (c 1 → 0), ϕ p (z) = z, and the estimator of Theorem 1 yields:

D(X 1 , X 2 ; f ) = 1 2πi Γ f z ψ p (z) ψ p (z) ψ p (z) - 1 z ψ p (z)dz c 2 .
Using the relation m μp (z) = -ψp(z) z , we then get

D(X 1 , X 2 ; f ) = - 1 2πic 2 Γ f - 1 m μp (z) m μp (z)zdz
and the result is immediate after an integration by parts.

For f (z) = √ z, one has F (z) = 2 √ z and we obtain, with a similar proof as for Theorem 2,

D(C 1 , C 2 ; √ •) -D(C 1 , X 2 ; √ •) a.s. -→ 0, D(C 1 , X 2 ; √ •) = 2 πc 2 p j=1 λj ξj √ m μp(x) dx.
Our objective is now to exploit the fact that

C 2 = argmin M 0 D W (M, C 2 ) (8) 
where the minimization is over the open cone of positive definite matrices. Using the approximation D(M, C 2 ; √ •) D(M, X 2 ; √ •), we are then tempted to minimize

1 p tr(M + Ĉ2 ) -2 D(M, X 2 ; √ •) in place of D W (M, C 2 ).
The former quantity however has a non zero probability to be negative, and we thus instead propose to estimate C 2 as:

Č2 = argmin M h(M ) h(M ) = 1 p tr(M + Ĉ2 ) -2 D(M, X 2 ; √ •) 2 .
To compute the gradient ∇h(M ) of h at position M , one needs to evaluate the differential Dh(M )[ξ], at M and in the direction ξ, in the Riemmanian manifold of p × p symmetric positive definite matrices (see [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF], [START_REF] Tiomoko | Random matrix improved covariance estimation for a large class of metrics[END_REF] to further technical details). We then use the relation Dh(M )[ξ] = ∇h(M ), ξ M where •, • . is the Riemmanian metric defined as η, ξ M = tr M -1 ηM -1 ξ . We obtain the relation

πıp ∇h(M ) 2 h(M ) = 1 p M 2 + p j=1 λj ξj 1 m μp (x) sym M Ĉ2 (M Ĉ2 -xI p ) -2 M dx
where sym(A) = 1 2 (A + A T ) is the symmetric part of A ∈ R p×p . We can write the latter as:

∇h(M ) = 2 h(M ) sym V Λ ∇ V -1 + 1 p M 2
where V is the orthogonal matrix of the eigenvectors of M Ĉ2 and Λ ∇ is the diagonal matrix with

[Λ ∇ ] kk = 1 πp j =k λj ξj 1 m μp (x) 1 (λ k -x) 2 dx + 1 πp j =k λ k ξ k 1 m μp (x) 1 (λ j -x) 2 dx. Algorithm 1 Proposed estimation algorithm. Require Positive definite initialization M = M 0 . Repeat M ← M 1 2 exp -tM -1 2 ∇h(M )M -1 2 M 1 2
with t either fixed or optimized by backtracking line search. Until Convergence.

Return M . This finally entails the gradient descent Algorithm 1.

Figure 2 depicts the results of the algorithm. There is displayed the Wasserstein distance D W (C, •) between a matrix C having four distinct eigenvalues of equal multiplicity (precisely, ν p = 1 4 (δ .1 + δ 3 + δ 4 + δ 5 )) and various estimators of C: the sample covariance matrix (SCM), the state-of-theart "non-linear shrinkage" estimators QuEST1 [START_REF] Ledoit | Spectrum estimation: A unified framework for covariance matrix estimation and pca in large dimensions[END_REF] (based on a Frobenius distance minimization) and QuEST2 [START_REF] Ledoit | Optimal estimation of a largedimensional covariance matrix under stein's loss[END_REF] (based on a Stein loss minimization), and the result of the gradient descent approach proposed in this section. For fair comparison, the iterative QuEST1, QuEST2 and our proposed method are all initialized at M 0 the linear shrinkage estimator from [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]. Note that our proposed choice of C is particularly suited to mimick an "optimal transport" problem of displacing the eigenvalues of M 0 to the discrete four positions of the eigenvalues of C.

In addition to the computational simplicity of our gradientdescent approach with respect to the QuEST estimators (see the numerical method details in [START_REF] Ledoit | Numerical implementation of the quest function[END_REF]), the figure demonstrates significant gains brought by our proposed approach for large values of p/n, where the SCM particularly fails.

V. CONCLUDING REMARKS Interestingly, while the Fisher distance or Kullbach-Liebler divergence, which depend on logarithms of inverse of covariance matrices, are understandably difficult to estimate in the n 1 , n 2 < p regime (see [START_REF] Couillet | Random matrix-improved estimation of covariance matrix distances[END_REF] for advanced discussions on this matter), the Wasserstein distance should not be confronted with this limitation. Yet, the invertibility of C 1 , C 2 and the request for c 1 , c 2 ∈ (0, 1) (i.e., p < n 1 , n 2 ) from Assumption 1 are fundamental to our proofs. Precisely, the variable changes exploited in the proof of Theorem 1 to reach a contour Γ ν correctly surrounding supp(ν p ) from a contour Γ surrounding supp(µ p ) are not satisfying if c 1 > 1 or c 2 > 1. These surprising difficulties need clarification.

Another point of interest lies in the comparative advantage of exploiting a particular covariance matrix distance in specific scenarios. For instance, it may seem that ill-conditioned matrices should be more tolerated by Wasserstein distance estimators than by Fisher distance estimators. Yet, this aspect is not obvious in our proofs and also deserves more insights.
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 1 Fig. 1. Deformation of the initial contour Γ (in black) into the new contour Γ (in blue). The branch cuts are represented in green (i.e., real z's for which the argument of ϕ(z)ψ(z) is negative).

  0, Ca); n 1 = 1024 AND n 2 = 2048 FOR DIFFERENT p. AVERAGED OVER 100 TRIALS.

TABLE I ESTIMATORS

 I OF THE WASSERSTEIN DISTANCE BETWEEN C 1 AND C 2

perturbation of Λ, by Weyl's interlacing lemma[START_REF] Joel N Franklin | Matrix theory[END_REF], the ξ j 's are interlaced with the λ j 's asξ 1 ≤ λ 1 ≤ ξ

≤ . . . ≤ ξ p ≤ λ p .As the λ j 's are of order O(1) with respect to p, |λ j -ξ j | ≤ |λ j -λ j-1 | = O(p -1), therefore explaining why the expression of D(X 1 , X 2 ; √ •) is of order O(1).
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) and (green) our proposed estimator, (blue) the sample covariance matrix, (red) and (light blue) the QuEST estimators proposed in [START_REF] Ledoit | Optimal estimation of a largedimensional covariance matrix under stein's loss[END_REF], [START_REF] Ledoit | Spectrum estimation: A unified framework for covariance matrix estimation and pca in large dimensions[END_REF]; for p = 100 and varying number of samples n averaged over 10 realizations.