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Abstract—The Internet of Things (IoT) is expected to integrate
a large number of sensors, and actuators to the Internet.
Multiple concurrent applications may cohabit on top of the
same IoT infrastructure, and may re-use the same data for
various purpose. However, privacy represents a major concern
for many IoT applications, such as in smart building and
healthcare. We propose here a multi-domain IoT framework
where each domain aggregates distinct data-streams to respect
their privacy concerns. We argue that removing sensitive meta-
data and aggregating values reported by each data-stream is
sufficient to hide individual private measurements. Moreover,
relying on the Named Data Networking (NDN) paradigm, we can
exploit caching strategies and perform in-network processing to
ensure both scalability and privacy. In this paper, we discuss the
necessary mechanisms to design a scalable inter-domain, privacy
aware NDN scheme.

I. INTRODUCTION

The Internet of Things (IoT) generates nowadays a sig-
nificant volume of data. Most typical IoT applications rely
on data-streams. Such streams are produced by sensors and
then transmitted to controllers (consumers) that process the
collected information to take smart decisions and possibly
using actuators. For instance, e-health relies on a collection
of sensors that monitor a large set of measurements (heart
rate, movement, etc.). In the same way, smart meters measure
the electricity consumption that is reported to the electricity
provider to enable the smart grid. Since IoT streams can
account for a large volume of data, there exists an oppor-
tunity to filter and aggregate them directly in the network to
mitigate the overall network load while still offering the same
application benefits to consumers.

To enable privacy, we propose to create a multi-domain
IoT: while different owners can cohabit in the same shared
network infrastructure, they should decide on their own the
data they want to share. Thus, we should be able to filter
the data-streams generated inside a domain, to avoid privacy
leaks when streams are forwarded to a neighboring domain.
In particular, we make a clear distinction between:

intra-domain streams, where privacy is not an issue: all the
devices have the same owner;

inter-domain streams, where data should be filtered and
aggregated to respect privacy concerns.

Current privacy enabling solutions often rely on ciphering
mechanisms so that private data is only decodable by the
consumers. An access control strategy is then required to
regulate finely which entity can access to which data [1].

Unfortunately, maintaining the keys and consistent access
control rules is very challenging in multi-tenant applications.

In this paper, we aim rather to enable privacy by design in
multi-domain IoT. In particular, we look for a framework en-
forcing the respect of privacy constraints in a scalable manner.
Data-streams are processed (i.e., agregated and transformed)
as they travel between domains. In summary, we propose two
main contributions:

1) we introduce the requirements for multi-domain applica-
tions, and explain how Named Data Networking (NDN)
can bring scalable privacy that is a major concern for a
large-scale IoT deployment;

2) We detail how aggregation helps to reach this goal, while
also allowing to benefit from the NDN caching strategy
to save bandwidth and enable re-usability.

II. RELATED WORK

Considering a decentralized IoT model requires both to
respect privacy concerns, and to enable a large-scale inter-
domain architecture.

A. Privacy enforcement

Privacy has always been a major requirement in IoT, par-
ticularly for sensitive information (e.g., healthcare, personal
sensors, smart buildings). However solutions must beware of
the limited resources of IoT devices since costly operations
jeopardize battery life due to longer processing and extra
network exchanges [2].

By using attribute based access control, cipher keys are
distributed by a mediator that verifies if the attributes of the
consumer match the requirements of the producer [1]. Such
approach requires several exchanges with the mediator in
order to acquire the access keys before each data acquisition
which can be quite costly to some IoT devices.

Anonymization, aggregation and filtering are alternatives to
ciphering. They provide privacy by decreasing the precision of
data. Aggregating data from several sensors hides the specific
values of each sensor while providing information on the
global population [3]. Filtering and anonymization remove or
mask sensitive information from data until some quantifiable
privacy requirements are reached, such as k-anonymity [4].
However, directly handling these filtering rules inside the
network infrastructure is still a challenge.
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B. Inter-IoT communications

Interoperability in the network stack is a requirement to
allow several autonomous IoT domains to exchange data.
Typically, proxies may help to translate information between
different applications [5], or even aggregate data among
different domains. They can also unify the semantics of data
from different networks [6]. However, these proxies solely
enable inter-domain data exchange, they do not handle privacy
natively.

Instead, middle boxes may help to provide privacy at the
borders of domains. Firewall-like devices are placed between
domains to block messages that breach security policies [7].
However, the rules to apply on such devices are challenging
to deploy and are only tailored for specific protocols.

III. REQUIREMENTS TO SUPPORT PRIVACY IN
MULTI-DOMAIN APPLICATIONS

We consider scenarios and applications possibly relying on
large scale multi-domain IoT topologies. As such, we rely on
a broad enough definition for describing such domains. They
may either represent a limited collection of devices having
the same owner, or having a specific application usage in
common. In any cases, the key aspect is that the raw data
may be exchanged within a domain, but privacy constraints
hold when data exit each domain.

For example, in the context of smart buildings, the follow-
ing properties illustrate well how a domain can be defined in
practice:
Geographic: devices which are located within the same room

/ building / block;
Application-based: devices in charge of a given system. For

instance, it can be a heating system regrouping tempera-
ture sensors, electric boiler, valves for the radiators and
the controller;

Manufacturer: devices of the vendor providing statistics
usage or predictive maintenance.

Finally, it is worth noting that we do not exclude the case of a
device belonging (directly or indirectly) to multiple domains,
e.g., the same sensor can re-used by several local applications
and is monitored remotely by the manufacturer.

A. Objectives

Here is the general challenge we aim to solve:

How to efficiently collect and aggregate/combine
numerous data-streams from multiple independent

domains while preserving the privacy constraints of
each data-producer?

This question can be split into four specific objectives that
are the underlying guidelines of our solution:
G1 Support heterogeneous applications with multiple inde-

pendent producers;
G2 Maintain producer-specific privacy constraints;
G3 Enable large scale data-stream exchanges;
G4 Answer IoT queries efficiently.

Smart
Homes

Smart
Buildings

Providers

Broker

Producers

Fig. 1: A multi-domain scenario.

B. Multi-domain Illustration

Let us consider the scenario in Fig. 1 to illustrate our goals.
Each smart home is typically an independent domain. These
domains can interact with a larger scale domain, a smart
building that aims to manage some characteristics of each
smart home (e.g., for the heating system). In turn, in order to
implement the smart grid and provide dynamic pricing (goal
G1), electricity providers need to get the overall real-time
consumption of the buildings.

While some information need to be exchanged among the
different domains, it is also critical to respect the privacy
concerns of each smart home (goal G2). That is isolating a
specific stream (from a given home) should not be possible for
non trusted domains. On a large scale, an aggregated real-time
information (with no privacy leak) is generally enough for
companies optimizing their process. It also favors the potential
emergence of brokers that can sell the aggregated data they
collected, leading to a global interconnection (goal G3) with
various consumers and producers. The main challenge being
here to respect privacy concerns without compromising the
efficiency of the network infrastructure. We aim to rely on
caching strategies and in-network processing to safely re-use
the same pre-processed data for different interests (goal G4).

C. A Query Model for Data-Streams

Typically, in our model, a request describes the desired data
by its type (e.g., temperature, humidity, wattage), cardinality
(the number of samples and sensors), frequency and location.
For example, a query may consist in asking for the humidity of
soil in farms of a specific region, or in the power consumption
from at least 100 houses every day. Such a description is
referred as the metadata provided in the query.

When a domain receives a query, it has to find and process
the data to match all the metadata criteria. As a typical request
asks for an aggregated value (both spatially and in time), the
domain handling it is both in charge of retrieving the data and
applying such a transformation to provide the desired granu-
larity to consumers. For instance, the energy consumption may
be averaged monthly and this simple transformation should be
applied as close as possible from the producer. Indeed, it is
not only about scalability (by transmitting only the resulting
value, the network load decreases), aggregations also enable
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privacy by masking specific samples. When possible, a domain
may apply such operations by itself or trust others to do it.

D. Trust Model between Domains

A producer may want to apply some critical pre-
transformations on the data it owns to provide a minimum
level of privacy (e.g. with anonymization or watermarking)
before exchanging data with its peers. Then, this peering
domain may also share the data not produced locally with
others domains and so on. In that case, the producer may ask
additional privacy constraints, such as k-anonymity with other
domains. Similarly, if a producer blacklists a given domain,
its peer must not export this data to the non trusted domain.

To exploit the full potential of our approach, we assume
that peering domains trust each other, i.e., one domain can
expect its peers to respect the privacy policies they agree on.
Tools like watermarking [8] may help producers to verify that
their peers correctly respect the defined policies. When a leak
is detected, watermarking indeed allows to identify the faulty
peer in the chain. That is why we expect that watermarking
may typically be part of the critical and minimal set of pre-
transformations applied before sharing any data-stream.

IV. A NDN MULTI-DOMAIN ARCHITECTURE

In the IoT context we consider, applications generate
streams, e.g., chronological sequences of measurements, sent
periodically. The NDN paradigm fits well with such applica-
tions because it can efficiently deal with IoT queries treated
as interests. We adopt the following terminology to put the
data at the core of our forwarding model:
a chunk of data is defined as a piece of data (e.g., sensor’s

measurement);
a data-stream is a temporal sequence of chunks;
a dataset represents the data that a domain accepts to export,

i.e., the values and its semantic characteristics like the
nature and cardinality of the dataset (e.g., temperature
measurements from 1,000 sensors).

A. NDN Support of IoT streams

NDN matches the design and needs of most IoT applica-
tions. By forwarding interests and datasets, routers directly
manipulate chunks of data, and not anymore opaque packets.
Hierarchical names replace numerical addresses, and this
naming hierarchy enables route aggregation thanks to prefix
based routing. Each NDN router has a cache (a.k.a. content
store) to maximize data re-usability, in particular for popular
interests. The cache policy behaves in the following way: i)
a router may insert in the content store any dataset that is
locally generated or forwarded; ii) routers forward an interest
if the answer is not in the content store, else a reply is directly
sent to the inquirer.

However, some NDN features need to be adapted specif-
ically for IoT needs [9]. In particular, to support IoT data-
streams: sensors generate a sequence of measurements, that
are exploited by consumers (e.g., HVAC uses the last tem-
peratures measured in a room). Besides, making the reverse
path entries persistent allows the consumers to implement
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Fig. 2: A multi-domain NDN topology.

subscriptions [10]. Producers can then keep on pushing their
measurements to their subscribers.

B. Towards an Inter-Domain Architecture

We envision a large scale NDN topology, where couples of
peering IoT domains rely on producer-consumer relationships.
More precisely, when datasets are exported, each NDN router
is in charge of executing the privacy functions. Let us consider
Fig. 2: R1 has to aggregate the 4 data-streams (from A, B, C,
and D), giving only the average value over 4 samples. Then,
this novel dataset is consumed by R2, that aggregates it with
the local streams (from G, E, and F) to form yet another
dataset that is used by R3 with its local streams (from I, J,
and H) to answer the final consumer.

This aggregation, performed at each hop of the inter-
domain route, helps to respect the privacy concerns as it hides
individual streams. To enable such a feature, NDN routers
expose to their peers the dataset they aim to export (using
the metadata description). When datasets can be aggregated,
because they share the same nature, a novel (super) dataset
can be exported in its turn. As any device (in any domain)
can query any dataset, being generated locally, aggregated or
exported from peering domains, this leads to an inter-domain
architecture enabling privacy by design.

C. Aggregation and Filtering in NDN

Ciphering each chunk of data is not scalable: the producer
must know a priori all the consumers which are susceptible
to query its data. Rather we propose to integrate aggrega-
tion and filtering features directly in the NDN routers. For
instance, we propose to remove sensible attributes, average
data from multiple producers, or decrease the accuracy of
some descriptors. It strongly mitigates the ability to identify
a given producer and exact values. In particular, there exists
some privacy metrics that allow to finely tune and quantify
the achieved level of privacy of such general methods. For
example, K-Anonymization denominates that each sample
is indistinguishable from K − 1 others while ε-differential
enforces that several datasets are similar enough with each
other.

In our architecture, the role of a NDN router is to apply such
transformations on the exported datasets. They are in charge of
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constructing novel datasets, from the locally produced streams
and imported ones. These dataset should comply to a set
of privacy concerns that are configured with both local and
peering policies. These policies typically take into account the
cardinality on which the aggregation function should apply
(e.g., an average value over at least 20 producers) for a given
type of measurements.

V. ILLUSTRATING THE POWER OF AGGREGATION

Let us consider a simple scenario to compare a flat approach
(Fig. 3a) to our inter-domain aggregation model (Fig. 3b).

In a flat NDN approach, each producer sends its raw stream
directly to the consumers. This strategy is efficient only if
several consumers (here C1 and C2) are interested in the same
data. An intermediary NDN router (e.g., R1) may have already
the popular chunk of data in its cache to reduce the bandwidth
consumption. However, each consumer needs to apply by
itself the aggregation function relevant for its application.

Raw data are disseminated in all the infrastructure, which is
prejudicial to privacy if not ciphered.

On the contrary, our aggregation-based strategy processes
the datasets directly inside the network. For instance, R2 is
both a consumer and a router as it consumes the streams
from its domain, and generates the average value (2) over
2 samples; this dataset is then re-exported to R1. R3 behaves
similarly, only exporting aggregated data. As with the flat
approach, the data can also be cached efficiently, but here
Content Stores contain only the aggregated values, not each
sample individually. It does not only bring scalability but
also privacy: final consumers never access and process the
individual raw data on their own.

VI. CONCLUSION

In this paper, we presented an NDN multi-domain ar-
chitecture for IoT streams. As privacy represents a major
concern, we propose that each NDN router is in charge of
filtering and modifying the data when it exits its domain.
In particular, with data aggregation, a consumer cannot infer
individual measurements from the aggregated one. We argue
that processing the streams directly in the network conforms
to the requirements of many IoT applications. Besides, by re-
using the NDN caching strategy to store aggregated chunks
of data, a router can use its Content Store to serve different
consumers that have similar interests. As future works, we
plan to investigate the complete integration of these features
in a multi-domain routing algorithm designed for NDN.
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