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Abstract—In recent years, the use of drones as aerial base
stations (ABS) has attracted the attention of both scientific and
industrial communities as a promising solution to enhance the
network coverage. However, their deployment brings out many
challenges and restrictions. In this work, we model a realistic,
constrained scenario where unmanned aerial vehicles (UAVs) are
used as ABSs along with traditional ground base stations (GBSs)
to extend their coverage. We propose a scalable and efficient
social spider optimization (SSO) algorithm that determines the
placement of UAVs and their association with both user equip-
ments (UEs) and GBSs. Extensive computational experiments
were conducted to investigate the effect of the different SSO
metaheuristic parameters and tune them to the best values. The
efficiency of the proposed solution is then evaluated by comparing
its results to two other schemes. Simulation results show that
the proposed approach overcomes the two other strategies and
presents an average gain of 18% and 31% compared to the them.

Index Terms—drones, UAV, social spider optimisation, aerial
base stations, MINLP.

I. INTRODUCTION

The market of civilian and commercial drones (also known

as unmanned aerial vehicles or UAVs) has experienced signif-

icant growth recently, and is expected to support the definition

of a growing number of ambitious use cases in the 5G vertical

domains [1]. Using UAVs in wireless cellular networks as

aerial base stations (ABS) to assist the ground base stations

(GBSs) and provide coverage to unserved distant users is a

high-potential solution for the new generations of networks,

that brings out many challenges including: the optimal 3D

placement of ABSs, coverage optimization, resource alloca-

tion, cell association and interference management [2]. Unlike

ground BS, that has a strong reliable wired/wireless backhaul

connection, Untethered aerial base stations can only have a

limited wireless backhaul link. This latter is highly susceptible

to interference originating from a wide variety of sources,

such as adverse weather conditions, other small cells, and

macrocells as well [3]. Wireless backhaul restraints the number

of users that it can serve, and is affected by the UAV’s position

regarding to the GBS that provides it. In this paper, we tackle

the challenging problem of positioning a swarm of ABSs, in

order to extend the cellular network coverage. The problem

was addressed in a set of existing papers [4]- [5]. Yet, to

the best of our knowledge, the existing works ignore the

restraint backhaul constraint and the impact of the ABS’s

position -regarding to the GBS- on the backhaul capacity. They

either consider unlimited backhaul capacity or a fixed limited

capacity. The contributions of this paper are:

• We present and model a realistic, constrained scenario

where UAVs are used as ABSs along with traditional

ground base stations to extend their coverage,

• Unlike most existing works that simplify scenario’s as-

sumptions, we consider the backhaul constraint, in ad-

dition to interference between ABSs and GBSs and use

reliable 3GPP models to characterize channels,

• We propose a scalable and efficient metaheuristic Social

Spider (SSO) Algorithm that determines UAV’s place-

ment and their association with both UEs and GBSs,

• We conduct extensive computational experiments to tune

the parameters of the SSO and assess its efficiency.

The remainder of this paper is structured as follows: Section

II provides a brief overview of the literature related to the use

of UAVs as ABS. The optimization problem is presented in

Section III and solved using a Social Spider Optimisation al-

gorithm in Section IV. In Section V, the numerical simulation

results are provided and discussed. Finally, Section VI draws

the final conclusions.

II. RELATED WORK

The optimal placement of ABS in cellular networks have

been the subject of many papers that investigated it under

quality-of-service constraints, in order to maximize the number

of covered users. Two main categories can be distinguished:

A. Single ABS placement

In [6] and [7], the 3D placement of a single ABS, in order to

maximize the number of covered users is studied. The problem

in [6] is formulated as a quadratically-constrained mixed inte-

ger non-linear optimization problem, and a numerical solution

is proposed to solve it. While, in [7], it is modeled as a circle

placement and smallest enclosing circle problem under the

constraint of minimizing transmit power. In [8], the optimal

positioning of an ABS acting as a relay between a GBS and a

fixed position user in is investigated. The authors in [9] study

the efficiency of integration ABS into cellular networks as an

alternative to ultra-dense small cell deployment. They deploy

a single ABS to assist the ground base station network and

serve a group of moving users.
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B. Multiple ABS placement

The authors in [10] considered the problem of covering a

ground area using two ABSs, and investigated the impact of

the altitude and the distance between ABSs on coverage. In

[5], both drone base stations and drone users are considered.

A truncated octahedron shapes based method is proposed

for the 3-D placement of drone BSs and the optimal cell

association is then defined using optimal transport theory with

the objective of minimizing drone users’ latency. In [11], the

authors propose a framework that uses a swarm of ABSs to

assist a ground cellular network. It places the ABSs according

to a network planning approach based on stochastic geometry.

However, none of these works studied the 3D placement of

ABSs to maximize coverage with the constraint of backhaul

link between ABSs and GBSs except [12] and [13]. In [12],

an algorithm for the 3D placement of ABS and their users

association is proposed. It considers wireless backhaul con-

straint and its allocation management. Nonetheless, it doesn’t

consider the interfering signals between ABSs, GBSs, and

users. Authors in [13] consider the 3D placement of ABSs

to maximize coverage and the maximum rate of users under

a predefined limited backhaul rate and bandwidth. To the best

of authors’ knowledge, this article is unique on its definition

of the 3D unmanned ABSs placement problem; as it considers

the backhaul constraint and the impact of the ABS’s position

on its capacity and the number of UEs that can be served.

III. OPTIMIZATION PROBLEM MODELING

We consider a wireless communication system, where K ≥
1 GBSs are deployed to cover and provide access to a set

of terrestrial mobile users, and a limited group of M ≥ 1
UAVs acting as ABSs to extend coverage and provide access

to the subset of N ≥ 1 remaining uncovered single-antenna

UEs. Each ABS must be connected to a GBS by a sufficiently

high speed backhaul, through which information exchange and

traffic offload with negligible delays is possible. The GBS,

UE, and ABS sets are denoted as K, N and M, respectively.

Their positions are defined as U = {u1, u2, u3, ...uk}, V =
{v1, v2, v3, ...vm} and W = {w1, w2, w3, ...wn} , respectively.

We consider a downlink scenario in which each ABS, sched-

ules transmission over contiguous Resource Blocks (RB),

each consisting of a block of orthogonal frequency-division

multiplexing sub-carriers. The transmitting power of ABSs on

each RB is assumed to be constant.

We adopt reliable models for the characterization of the

wireless channels between GBSs, ABSs and UE. They were

tested and approved by the 3rd generation partnership project

(3GPP), or by scientific papers. Accordingly, for communica-

tion between:

• An ABS and a UE, we use the channel model from [14],

• An ABS and a GBS, we use the channel model from the

3GPP technical specifications [15],

• A GBS and a UE, we use the channel model from the

3GPP technical specifications [16],

• Two ABSs, we use the channel model proposed in [17]

.

Fig. 1: System model

A. Problem Formulation

In this section we formulate the problem of finding the 3D

coordinates of a set of ABSs in order to extend the cellular

network served and maximize the number of covered UEs.

We define the user, and backhaul association indicators

In,m, Jl,k, respectively, as:

In,m =

{

1, if user n is served by ABS m

0, otherwise

Jl,k =

{

1, if ABS l is getting backhaul from GBS k

0, otherwise

Note that a UE n can be served by an ABS m if it experiences

SINR equal to or higher than the required threshold. its

reachable throughput Rm,n can be calculated from its SINR,

using Shannon expression [18]. We denote the capacity of the

backhaul link that an ABS m receives from a GBS k as Rk,m.

The total number of served UEs can be calculated as:

S =
∑

n∈N

∑

m∈M

In,m

The required backhaul capacity for ABS m is expressed as:

Zm =
∑

n∈N

In,m ·Rm,n (1)

The objective is to find the optimal 3D positioning Ubest of

the ABSs & the joint association of UEs with their serving

ABSs I and the ABSs association with the GBSs providing

backhaul link J , in order to maximize the coverage, while

respecting the backhaul constraint. This can be formulated as:

max
U,I,J

∑

n∈N

∑

m∈M

In,m (2)

subject to:

Zm ≤
∑

k∈K

Jm,k ·Rk,m ∀m ∈M (3)

∑

m∈M

In,m ≤ 1 ∀n ∈ N (4)

∑

k∈K

Jm,k ≤ 1 ∀m ∈M (5)

where (3) ensures that the access provided by an ABS

doesn’t exceed its backhaul capacity, (4) denotes that a UE
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can’t be served by more than one ABS, while (5) denotes that

an ABS can’t get backhaul from more than one GBS.

Due to binary variables I , J , and continuous variables

U , the aforementioned ABSs positioning, and joint user &

backhaul association problem is considered as a mixed-integer

nonlinear programming (MINLP) problem. MINLP problems

have the difficulties of both of their sub-classes, i.e., the

combinatorial nature of mixed-integer programming (MIP)

and the difficulty in solving nonlinear programming (NLP).

Since both MIP and NLP are NP-hard, our ABSs placement

problem is considered as NP-hard and can’t be solved in a

polynomial time. We propose -in the next section- to adapt

the metaheuristic method, Social Spider Optimisation (SSO)

[19], to our problem. This choice is justified by the fact that the

SSO has demonstrated its efficiency and scalability on many

NP-hard optimization problems [20].

IV. SSO ALGORITHM FOR 3D ABS PLACEMENT

SSO is a recent swarm algorithm, based on an iterative

process. Basically, a population of initial solutions is generated

and classified. Each solution is represented by a male or female

search agent (spider). At each iteration, the set of female and

male spiders move according to their cooperative operators.

The information about encountered solutions is exchanged

by emitting vibrations over the communal web. Nearby male

and female members mate, thereby forming new offspring

solutions. The population is then updated and the resulting

broods replace the worst members. The process finishes when

a fixed number of iterations, without improvement of the

population is reached. The best solution is then returned. The

main steps of our adapted SSO are described in the following.

A. Population initialisation

Each solution s represented by a spider i is the 3D co-

ordinates of the M ABSs, and has a fitness value J(si)
regarding to the objective function. Each member of the initial

population is randomly generated by placing the M ABSs over

the search space. A weight wi is assigned to each spider i, to

indicate the quality of its solution: wi =
J(si)−worsts
bests−worsts

Where bests and worsts represent the best and the worst

fitness value of the population, respectively.

B. Spider’s evaluation

To compute the fitness of a spider and evaluate the quality

of its solution, the joint association of ABS to the GBS

providing backhaul link and UEs to their serving ABSs must

be performed. Here, we propose a heuristic algorithm inspired

by [21], that assigns each UE to its serving ABS.

We first associate each ABS i to the GBS providing the

highest SINR, to maximize its backhaul capacity Zi. We then

associate each UE j to the ABS providing the highest SINR

if it has a sufficient backhaul capacity as in Algorithm 1.

C. Information exchange and moving spiders

The coordination between the members of the population is

provided by the important messages that individuals exchange.

Algorithm 1 UEs association algorithm

1: Input: The positions of GBSs, ABSs, and UEs

2: Output: Li list of UEs served by each ABS i
3: Compute the SINR between each ABS and GBS.

4: Associate each ABS i to the GBS with the highest SINR

and compute its backhaul capacity Zi.

5: Compute SINR between each UE and ABS.

6: for each UE j do

7: Sort the list of possibly serving ABS Mj according to

their experienced SINR, in descending order.

8: for k = 1 to Mj .size do

9: cand←Mj [k]; Compute the required rate Rj,cand

10: if Rj,cand ≤ Zcand then

11: Lcand ← Lcand + j; Zcand ← Zcand −
SINRj,cand

12: break;

13: return L

These messages are encoded as small vibrations and transmit-

ted over the communal web. Practically, the vibrations that the

spider i perceives from the spider j are expressed as follows:

V ibi,j = wj · e
−d2

i,j where di,j is the Euclidean distance

between the individuals i and j. Based on these messages,

social spiders move and change their positions:

1) Female operator: Each female i demonstrates an at-

traction or repulsion behavior. It is modeled as the position

change of i and depends on a combination of three factors:

• The local best member sc: that emits the vibration V ibci.
• The global best member sb: emitting the vibration V ibbi.
• The random factor.

The choice of attraction or repulsion is a stochastic decision.

Thus, the female’s changing position is implemented as:

fk+1
i =



















fk
i + α · V ibci · (sc − fk

i ) + β · V ibbi · (sb − fk
i )

+γ · (rand− 1/2) with probability pf

fk
i − α · V ibci · (sc − fk

i )− β · V ibbi · (sb − fk
i )

−γ · (rand− 1/2) with probability 1− pf

2) Male operator: based on their weight, we distinguish:

• Dominant males: show an attraction to the closest female

sf , emitting the vibration V ibfi to perform mating.

• Non dominant males: they are attracted to the weighted

mean of the the male individuals, so as to benefit from

their underemployed resources.

Thus, the male’s changing position is implemented as:

mk+1
i =















mk
i + α · V ibfi · (sf −mk

i ) + γ · (rand− 1/2)

for dominant males

mk
i + α · (

∑Nm
h=1

mk
h·wNf+h

∑Nm
h=1

wNf+h

) for non-dominant males

D. Mating operator

Mating operation is carried out by a dominant male mm,

with a set Ef of the closest females, located within it’s

influence radius r, in order to produce a new off-spring.
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TABLE I: Basic Parameters

Parameter Value

Carrier frequency 2GHz

ABSs/GBSs bandwidth 20/20 MHz

Tx power of ABS 36dBm

Tx power of GBS 41dBm

SINR threshold -7dB

TABLE II: Scenarios’ Specifications

scenario area size GBSs UEs ABS

small 2km x 2km 1 100 10

medium 4km x 4km 2 200 10

large 5km x 5km 3 400 15

The resulting brood’s solution is a combination of its parents

Emat = Ef∩mm configurations. The effect of each parent on

the new off-spring depends on its weight, and is determined

by the roulette wheel, i.e. the probability pi of the influence

of the parent i ∈ Emat is calculated as: pi =
wi∑

j∈Emat wj

Algorithm 2 SSO algorithm

1: Input: popsize, itermax

2: Output: Sbest Best spider with best solution

3: generate the initial population of spiders.

4: Evaluate the fitness of each spider Si

5: iter ← 0
6: while iter ≤= itermax do

7: iter ← iter ++
8: Compute the weight of each spider Si.

9: Update each female/male position.

10: for each spider Si do

11: evaluate fitness J(si)
12: if J(si) > Jmax then

13: Jmax ← J(si); Sbest = Si ; iter ← 0

14: Perform Mating.

15: Evaluate the new off-spring S0

16: if J(s0) > Jmin then

17: Replace the worst spider by the new offspring

18: return Sbest

V. SIMULATION SCENARIOS AND PERFORMANCE

EVALUATION

In the following, we present the computational experiments

that were carried out in order to tune our SSO and evaluate

its performance. Our algorithm was coded using Matlab. All

the simulations were conducted on an Intel Xeon E5-2620 (16

Cores), 2.60GHz CPU, with 32GB memory (RAM).

To assess the scalability of the proposed algorithm, three

different scenarios with different area sizes, UEs, ABSs and

GBSs numbers are generated as illustrated in Table II. The

basic transmission parameters are summarized in Table I.

A. SSO Parameters

The proposed SSO has two major parameters:

• popsize, the number of search agents (spiders);

• itermax, or the stopping condition: the number of itera-

tions without improvement of the global best solution.

To find the right values for popSize and itermax, we ran the

algorithm on the medium scenario, while varying the value

of popSize between 5 and 20, and itermax between 5 and

25. The experiment was repeated 15 times, each time with

a different random seed. We then computed the percentage

deviation between the best achieved solution SSO and the

best solution achieved over all the runs Jmax as: GAP =
(Jmax−SSO

Jmax
) × 100. The collected results of are summarized

in Fig. 2, while Fig. 3 shows the average sruntime.

For all compared population sizes in Fig. 2, the average

deviation (GAP) is decreasing and the solution quality is

improving with the increase of itermax. In fact, as the itermax

increases, SSO keeps exploring new search areas and candidate

solutions that improve the best solution’s quality. As can be

seen, the values itermax = 25 and itermax = 20 lead to the

best solutions quality with GAPs of 0% and 1%, respectively.

The experiments show that increasing the size of the pop-

ulation significantly improves the GAP. SSO could not find

good solutions using small population size – 5 or 10 spiders.

It needs at least 15 spiders to achieve better solutions. The

further increase in the size of population does not lead to

significantly better results (less than 2%). It leads only to an

increase in computational time without significantly improving

the value of the objective function as can be seen in Fig.3 .

The CPU time needed to find a good solution increases with

increasing memory size. This latter must be large enough for

the solutions it contains to be diverse, but small enough for

the problem to be solved in a reasonable time.

Finally, the parameters itermax and popsize control the

computational time of the algorithm, and in order to achieve

a good compromise between the quality of the solution and

the execution time, we exclude itermax = 25 because of the

higher computation times and we opted in the following to set

popsize = 15 and itermax = 20.

B. Performance evaluation

To the best of our knowledge, our SSO algorithm is the first

algorithm to consider ABS’s placement according to backhaul

capacity constraints in interfering conditions. Thus, in order to

evaluate the performance of our proposed heuristic approach,

we carry out a comparison between its results and those of:

• The random search (RS) [22]: tries a number of randomly

chosen points in the search space, and holds the candidate

point with the best fitness value as the optimum solution,

• A uniform deployment (UD) of the ABSs.

The results of RS, UD and the SSO were obtained with 15

runs of each algorithm on each scenario.

Figure 4 depicts the mean values and 95% Confidence

Interval (CI) of the ratio of served UEs of our SSO compared

with those obtained with the RS and UD strategies, for the

three scenarios. Despite the fact that we provide the same

number of ABSs, SSO clearly outperforms the RS and UD

strategies. It presents an average gain of 18% and 31% over
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the RS and UD, respectively. In fact, the UD places the ABSs

uniformly over the search space, without considering the UEs

distributions, which leads to low coverage rates that globally

doesn’t exceed 50%. The RS tends to move randomly over

the search space in order to explore it, which provides a total

coverage rate of nearly 62%, while the SSO uses different

search agents (spiders) to explore the candidate solution’s

domain efficiently, leading to better performance and larger

average coverage rates of almost 81%.

VI. CONCLUSION

In this paper, we have proposed a novel algorithm to

solve efficiently the 3D placement of ABSs and joint user

& backhaul association problem. The performance evaluation

shows that the proposed approach significantly improves the

coverage rate of ABSs by serving an average of 81% of the

total number of users. In future works, we aim to extend

our solution to allow the consideration of multi-hop backhaul

links, where communication and coordination between the

swarm of ABSs is crucial.
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