
HAL Id: hal-02965660
https://hal.science/hal-02965660

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Edge Computing for Visual Navigation and Mapping in
a UAV Network

Mohamed Ayoub Messous, Hermann Hellwagner, Sidi-Mohammed Senouci,
Driton Emini, Dominik Schnieders

To cite this version:
Mohamed Ayoub Messous, Hermann Hellwagner, Sidi-Mohammed Senouci, Driton Emini, Dominik
Schnieders. Edge Computing for Visual Navigation and Mapping in a UAV Network. ICC 2020 -
2020 IEEE International Conference on Communications (ICC), Jun 2020, Dublin, Ireland. pp.1-6,
�10.1109/ICC40277.2020.9149087�. �hal-02965660�

https://hal.science/hal-02965660
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Edge Computing for Visual Navigation and

Mapping in a UAV Network

Mohamed Ayoub Messous1, Hermann Hellwagner2, Sidi-Mohammed Senouci1, Driton Emini3, Dominik Schnieders3
1DRIVE EA1859, Univ. Bourgogne Franche Comté, France

2Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
3Deutsche Telekom AG, Germany

{ayoub.messous, sidi-mohammed.senouci}@u-bourgogne.fr, hermann.hellwagner@aau.at, {driton.emini,dominik.schnieders}@telekom.de

Abstract—This research work presents conceptual

considerations and quantitative evaluations into how

integrating computation offloading to edge computing servers

would offer a paradigm shift for an effective deployment of

autonomous drones. The specific mission that has been

considered is collaborative autonomous navigation and

mapping in a 3D environment of a small drone network.

Specifically, in order to achieve this mission, each drone is

required to compute a low latency, highly compute intensive

task in a timely manner. The proposed model decides for each

task, while considering the impact on performance and mission

requirements, whether to (i) compute locally, (ii) offload to the

edge server, or (iii) to the ground station. Extensive simulation

work was performed to assess the effectiveness of the proposed

scheme compared to other models.

Keywords—UAV Network, Edge Computing, Computation

Offloading, Visual Navigation and Mapping.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also commonly named
drones, have proliferated extremely fast and continue to have
far-reaching effects on today’s society, transforming our lives
and the way we do business. While big UAV platforms have
been initially introduced for strategic and defense
applications, relatively small and very flexible new UAV
platforms are proving to be very useful for a wide variety of
applications such as disaster damage assessment, law
enforcement surveillance, and earth science data collection [1-
4]. In order to accomplish their missions, UAVs are required
to (i) collect data about their environment, (ii) compute and
process the collected data for decision making, and (iii) relay
specific information to their appropriate users [5-6]. To
achieve these three basic requirements, depending of their
mission, UAV platforms are equipped with different types of
sensors, onboard computing capabilities and dedicated
wireless communication interfaces. This would be essential
for effective special awareness, realization of locally
distributed processing along the communication path where
applicable, and finally, for the dissemination of relevant
information from producers to consumers while maintaining
reliable and efficient air-to-air (UAV-to-UAV) and air-to-
ground (UAV-to-ground station) communications [7].

In this research work, we choose to focus on a specific
mission where a small fleet of drones is deployed in order to
achieve a collaborative autonomous 3D navigation and
reconstruction task [8-9]. More precisely, using only inertial
information, taken from IMU readings, and visual
information, through captured imagery, the drones will be
required to collectively map and efficiently navigate in an
unknown 3D environment [10]. Technically, a process called
visual inertial odometry is used [11]. Similar to other vision-
based localization and navigation methods, this process is

prone to drift errors while estimating positions and attitudes of
drones due to non-perfect sensory reading [12-13]. These drift
errors would eventually build up, resulting in degrading flight
and mapping accuracy. IMU data readings at a 1 kHz rate and
image capturing at 30 images per seconds (30 Hz) would be
ideal to keep drift errors as small as possible. However, the
constrained computation and limited communication
capabilities of drones would not allow such high sampling
rates since the preprocessing and fusion of the sensor data in
general and the image processing tasks in particular are
computationally intensive.

To address issues related to highly intensive computation
tasks with low latency requirements, many previous research
studies have resorted to computation offloading to powerful
surrogate devices such as mobile edge computing (MEC).
This newly emerging computation paradigm extends the
capabilities of cloud servers to the edge of an access network.
It provides computational power and data storage closer to the
end users. Therefore, it can reduce traffic loads for central
cloud servers, decrease latency, and improve QoS. Moreover,
it supports users’ mobility and heterogeneity, provides
location awareness, and permits high deployment scalability.
MEC is perceived as one of the central building blocks for 5G
networks [14-15]. For drone networks, the effective
deployment of MEC, on the one hand, holds the promise of a
high-throughput communication fabric, and on the other hand,
is expected to enable low-latency capabilities and to perform
specific computational services for the client devices [16-20].
In our case, drones would consider the offloading of some or
all of the computational tasks involved in visual inertial
odometry to an edge server. Indeed, MEC can not only bring
performance benefits for heavy computational tasks, it can
also act as a centralized entity for the nearby deployed swarm
of drones. Moreover, the MEC servers deployed at the edge of
the access network would help control the drones more
accurately compared to decentralized control. They would
even be expected to play an important role in synchronizing
and ensuring the consistency of the mapping tasks.

The main focus of the current study is to investigate how
MEC can conceptually be integrated into a specific mission
using a drone network, while evaluating the impact of
computation offloading on the flight accuracy and the possible
performance benefits of deploying an MEC-based scheme.
The specific mission considered is the visual-inertial
navigation and 3D mapping in an unknown remote
environment. In order to tackle these challenges, the proposed
solution aims to decide whether a computational task needs to
be offloaded to be executed remotely or not.

The remainder of this paper is organized as follows. In
Section II, we present the system model and the mathematical
formulation of our problem. Section III gives the details about

1

the main computation offloading schemes. The simulation
work and the results obtained are presented and discussed in
Section IV. Finally, Section V concludes the paper and gives
some future directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model, shown in Fig. 1, is composed of three

main entities: (i) drones, (ii) edge server, and (iii) ground

station. In the following subsections, we first present the

mission requirements and justify our hypothesis. Then, we

provide the problem formulation while explaining in detail

the different possible computational use case scenarios.

A. Mission Requirements and Scenario Definition

We consider a set of small UAVs deployed in an unknown

environment in order to execute a 3D mapping of their

environment. Specifically, we consider as a main mission the

collaborative autonomous 3D navigation and reconstruction

application through a small network of drones, using inertial

information (IMU data) and visual information (captured

images) only (no GNSS information). The drones will

reconstruct (map) an unknown 3D environment and navigate

in that space. In order to perform such kind of mission, the

UAVs are equipped with an onboard camera for visual

imagery and also an inertial measurement unit (IMU) that

provides basic information about their spatial orientation. We

also consider for our use case scenario that the drones in this

mission do not have access to GNSS positioning data. The

lack of such information can be explained by the poor quality

of GNSS signal or its absence altogether (in indoor

environment) or due to problems related to precision (in a city

district with a very dense building constellation).

In such a context, the drones are required to perform a

process named visual inertial odometry (VIO) in order to

achieve their mission. Similar to other vision-based

localization and navigation methods, this process is prone to

drift errors in estimating positions and attitudes of drones in

case of non-perfect sensor data; these drift errors will result

in degrading flight and mapping accuracy. IMU data readings

at a 1 kHz rate and image capturing at 30 images per seconds

(30 Hz) would be ideal to keep drift errors as small as

possible. However, the constrained computation and

communication capabilities of small drones would not be able

to handle such high sampling rates since the processing and

fusion of the sensor data in general and the image processing

tasks in particular are highly compute intensive. Due to these

limitations, computation offloading from the drones to an

edge server would offer a viable solution.

Computational tasks involved in VIO can be fully or

partially offloaded from the drones to an edge server. On the

one hand, MEC would achieve better performance compared

to local computing. On the other hand, an edge server would

eventually act as a nearby deployed central entity for its

associated drones, which would allow for an even more

accurate control compared to a fully decentralized scheme,

and would also ultimately perform the synchronization and

mapping tasks more consistently.

B. Computational Models

As previously shown, the kind of missions considered

involves performing highly intensive computation tasks.

Each task Ti is defined through three basic parameters {Ci, Di,

Fi} representing computational complexity, size of data and

execution frequency, respectively. The first value Ci

corresponds to the number of CPU cycles required to perform

the task Ti. Di specifies the amount of data needed for the

computation. Finally, Fi denotes the execution rate, i.e., how

many times the task Ti is called upon per time unit.

Furthermore, the defined tasks can be either executed

locally in the drone itself or can be eventually fully or

partially offloaded to a surrogate, more powerful device if

required. In the present study two offloading choices are

possible: (i) through a cellular network towards an edge

server, or (ii) through a WLAN access towards a nearby

ground station. Therefore, three possible choices can be

enumerated, namely: (i) local computing, (ii) offloading to

edge, and (iii) offloading to ground station. Details for each

use case are provided in the following paragraphs.

1) Local Computing

Since computation tasks in this case are executed locally,

no actual data ought to be sent via wireless interfaces.

Therefore, the overhead of the task is equal to local

computation overhead. The latter would only be impacted by

the onboard computation power available in the device, i.e.,

the CPU frequency of the drones which is the number of

computation cycles per time unit. So, the execution time for

a task Ti if the local CPU frequency is FLocal
CPU is given as:

TLocal =Ci/FLocal
CPU (1)

2) Offloading to Edge

In this second case, the drone would send its computation

task via its cellular interface towards the edge server.

Compared to the previous option, the delay required to obtain

results for the task being executed, in addition to the

computation time, will incur an extra overhead. This is due to

the additional time necessary to transmit data up to the edge

server. Therefore, the equation for the execution time is:

TServer=Ci/FServer
CPU+Di/RCellular (2)

where FServer
CPU represents the frequency of the server

CPU, which in practice is very big compared to the frequency

of the mobile devices’ CPUs, and RCellular is the effective data

rate achieved through the cellular link between the drone and

the edge server.

Fig. 1. Overall view of the system model

2

3) Offloading to Ground Station

This second offloading choice, and third possible case,

considers sending the computational data through a wireless

access point to a neighboring ground station. The latter would

compute the received task and send back results to the

originating drone. In this case, the equation for the execution

time is given as:

TGS=Ci/FGS
CPU+Di/RWLAN (3)

where FGS
CPU denotes the CPU’s frequency of the ground

station and RWLAN is the effective data rate achieved through

the wireless local network.

C. Overhead Function

Since computationally intensive tasks are known to

necessitate a considerable amount of time to complete their

execution, we define the overhead function as the

combination of time delays required for data transfer and for

data processing. Both, the communication links’ effective

data rates and the available processors’ frequencies will play

a significant role in choosing the more suitable computation

choice as shown previously. Therefore, it is important to

define and implement an appropriate utility function that

considers the best possible tradeoff between these two

competing parameters. The following equation shows the

different parameters required to calculate the overall values

for the overhead function for each task.

�������� 	
� �
�����������

�� � �� ��
������������

���

(4)

where N is the number of computation sub-tasks required

to compute the global task; �
����������

 represents the

execution time (computational overhead) required for

processing each sub-task i; M characterizes the number of

communication exchanges required; and ��
�����������

stands for time delay (communication overhead) to

transfer/receive each message j. Additionally, � and �

represent weight parameters of computational and

communication delays, respectively, and �+� =1.

Moreover, no normalization method was required in order

to add these two different values since both represent time

measurements. Furthermore, using a weighted function

provides a much higher flexibility and answers a wide range

of applications with specific requirements. Specifically,

depending on the envisioned application or even the current

system status, different tasks might use different weight

parameters. For instance, if the system administrator wishes

to put more emphasis on the computational delay part, he or

she would give higher values for the weight �, whereas �

would be increased in order to highlight the importance of

communication delay.

III. OFFLOADING COMPUTATION FOR VISUAL NAVIGATION

We provide herewith details regarding our implementation

for possible choices of computation offloading in a visual

navigation mission. Besides the classical approach, where all

the computation is executed locally, we consider different

task splitting possibilities. Furthermore, each global task can

be divided into several elementary sub-tasks. There is always

some computation that needs to be treated locally using the

embedded processors. Typically, this process might involve

the following operation: (i) collecting raw data from different

onboard sensors, (ii) compression of raw data into a standard

data format, (iii) aggregation of similar data within the same

vector, and (iv) multi-sensor fusion. Parts of these low-level

operations need to be executed locally and would not be

suitable for offloading. However, other high-level operations

can be offloaded, especially those including intensive

computation routines. Figure 2 provides two examples for a

partial-offloading and a full-offloading scenario. Details for

each model are given in the following subsections.

A. Partial Offloading

In this first case, a first part of the collected data is

computed locally before sending the results of execution

along with specific information for further treatment in the

edge server. As shown in Fig. 2(a), the partial offloading

scheme starts with a locally executed task T1, then data are

sent from the drone to the edge server through the

communication link, denoted as communication step C1.

Then, when all the required data are received, the edge server

executes task T2 which ends with communicating results back

to the drone (C2). Meanwhile, other local treatment would

continue to be executed on the drone, which is denoted in Fig.

2(a) as task T3. Finally, when C2 is completed, local

processing can be resumed in T4 taking into account the

newly received data.

For the requirements of our use case scenario, the detailed

execution routines for the different tasks are given in the

following. First, task T1 involves (i) IMU data reading, (ii)

attitude and acceleration deduction, and (iii) IMU data

preintegration. T3 repeats the same instructions as in T1 but

adds at the end of each cycle a “new pose estimation” routine.

Data transferred in C1 encompasses: (i) the latest key frame

image and (ii) up-to-date IMU data. The data sent in C1 will

serve as input for T3, where the following operations are

executed: (i) feature detection, (ii) feature tracking, and (iii)

pose estimation and optimization. C2 will incorporate data

about the newly estimated pose. Finally, the drone would

(a) Partial offloading (b) Full offloading

Fig. 2. Possible offloading scenarios

3

focus in T4 on updating and optimizing the new pose graph

based on inputs from C1 and T3.

B. Full Offloading

This second case considers that only essential

computation, which cannot be offloaded to edge, would be

treated locally onboard the drone. All the other actions would

be executed remotely on the edge server, then results are sent

back to the drone as shown in Fig. 2(b). The details for each

elementary action are provided as follows. T1’ includes

sensor data reading and compression. Only basic

computation is achieved before sending gathered data in C1’.

This step encompasses offloading a continuous flow of

images taken by the onboard camera and inertial readings

from the IMU. The edge server will do all the computations

required for the mission in T2’ before sending back the new

commands and instructions for the drone to follow in C2’.

Finally, T3’ represents the control commands and updating

the local pose estimate graph for the drone.

IV. PERFORMANCE EVALUATION

Extensive simulation work has been done to evaluate the

effectiveness of the proposed computation offloading

scheme. In this section, the detailed assumptions regarding

simulation work and scenario definition are first introduced.

Then, numerical results are presented followed by thorough

discussions to validate the feasibility and effectiveness of an

edge-based solution for visual navigation missioned by a

small set of drones.

A. Simulation Setup

In the simulation scenarios, we consider a single cell

consisting of a base station (plus edge server) and a small

number of drones (between 1 and 10) which also have access

to a ground station (GS) via WLAN. The computation tasks

considered for visual navigation differ in their computation

complexity and also in their size of data required for effective

computation. On the one hand, computation complexity is

mainly affected by the number of features considered and the

type of algorithm used for feature extraction. Since the main

focus of the current study is the computation offloading

problem and optimized decision making, only the number of

features has been considered in representing computational

complexity for different tasks. On the other hand, data that

would need to be offloaded comes from imagery sensors and

the IMU. However, practical estimation shows that data size

required for IMU readings are negligible compared to image

resolution, even with very high IMU reading rates. For

simplicity, as shown in Table 1, three complexity levels are

tested (between 50 and 200 features to extract from an image)

with three different image resolutions (360p, 480p and 720p).

Finally, in order to assess the possible offloading choices

explained in Sect. III, different offloading rates have been

implemented: ranging from local computing (0%) to full

offloading (100%), along with three intermediary offloading

rates (25%, 50% and 75%). Furthermore, beside the edge

server a second surrogate device, namely the ground station,

is considered as a second possible destination choice for

offloading computation through a WLAN link (Fig. 1).

TABLE I. TEST SCENARIOS

Test Scenarios

of UAVs [1, 5, 10]

of Features [50, 100, 200]

Image Resolution [360p, 480p, 720p]

Edge Offload Rate (%) [0, 25, 50, 75, 100]

GS Offload Rate (%) [0, 25, 50, 75, 100]

To evaluate each model, we consider the global utility

function presented in Sect. II.C. Furthermore, we give an

equal importance to computation and communication delays,

i.e., we choose � = � = ½. For a detailed study of the impact

that number of UAVs, number of features and image

resolution might have on the overall utility, all the different

possible combinations have been considered and tested.

Other parameters used in our simulation setup are

summarized in Table II. For the sake of simplicity, we

consider the processing power of the ground station (F GS
CPU)

and the edge server (F Edge
CPU) to be respectively five and ten

times the frequency of CPU available onboard the drone

(FLocal
CPU). As for achievable data rates, the average data rates

for wireless links with the ground station and with the edge

server (R WLAN and R Cellular) are 50 and 20 Mbps, respectively.

TABLE II. SIMULATION PARAMETERS

Simulation Parameters Values

F Local
CPU 1 GHz

F Edge
CPU 10 GHz

F GS
CPU 5 GHz

R Cellular 20 Mbps

R WLAN 50 Mbps

B. Results and Discussion

In this subsection, we first evaluate the global average

overhead achieved by the proposed approach compared to the

three other models. The diagram shown in Fig. 3 represents

the average system-wide overhead achieved through: (i)

locally executed tasks, (ii) fully offloaded tasks to the edge,

(iii) fully offloaded tasks to the ground station, and (iv) the

optimal choice, which uses equation (4) as a premise for

Fig. 3. Evaluation of global average overhead

4

decision-making. It reveals that the optimal selection

approach clearly outperforms the three other models in terms

of global overhead. This is due to the fact that the proposed

model always chooses the most efficient offloading choice in

terms of computational and communication delays.

Moreover, the impact that different simulation parameters

might have on the performances was thoroughly investigated.

First, results shown in Fig. 4(a) represent the average

overhead achieved in scenarios with different number of

UAVs. We can notice that the growth in UAV swarm size

does not impact the performance of locally executed tasks

and has a slight impact on offloading tasks to the edge.

However, it mostly affects the overhead values when

offloading to the ground station. Next, the impact of

computation complexity, expressed as the number of image

features to be extracted, was tested. Fig. 4(b) shows that

adaptive optimal selection outperforms the three other

models in terms of average system overhead. The obtained

results also show that overhead values increase with higher

computation complexity. However, they increase much

slower for full offloading approaches compared to locally

executed tasks. Even though local computing achieves better

performance for tasks with lower numbers of features, edge

offloading was better for tasks with a higher number of

features. This means that local computing is most suitable for

less intensive computation tasks (less than 100 features),

whereas offloading to the edge is more appropriate for highly

compute intensive tasks (more than 200 features). Finally,

Fig. 4(c) shows that the average overhead increases as the

data size, expressing the different frame sizes in our case,

increases in the two offloading approaches, due to the fact

that big data induce high transmission overhead. While for

high resolution (720p) local computing achieves comparable

results to edge offloading, for lower resolutions (360p and

480p) it is always more interesting to offload. However,

adaptive optimal selection, on average, still outperforms all

the other models for the three different frame sizes.

The previous results shown in Fig. 3 and Fig. 4 only

consider binary offloading choice; either all the task is

computed locally or fully offloaded. For in-depth analysis,

Fig. 5 shows the different possible intermediate offloading

rates. As explained in Sect. III, a global task would be divided

into several elementary sub-tasks that can be executed on

different devices. Three intermediate offloading possibilities

have been considered, namely 25%, 50% and 75%. As shown

in Fig. 5, on average, higher offloading rates towards the edge

server always achieve better performances compared to lower

offloading rates in terms of average overhead. This is mostly

true for very compute intensive tasks, since performing even

a small part of the computation on the drone would penalize

the overall performance. However, this statement is not true

for the ground station, where offloading 50% and 75% of the

computational task is better than full offloading. This later

case (100% offload rate to the ground station) produced a

similar average overhead compared to 25% offload rate. This

observation proves that computation offloading is not always

better compared to local execution. It also shows that parallel

execution, even on slightly powerful devices, can really

achieve better performance. It should be finally noted that

sending more data would require also more time, which

would eventually have more effect on average overhead in

the 100% offload to ground station case compared to the 75%

and 50% cases.

V. CONCLUSION

The rapid emergence of UAV-related technologies

attracted the focus of many research groups, which paved the

way for new possible use case applications. Throughout this

study, we consider the deployment of a small fleet of UAVs

in a navigation and 3D mapping mission based on visual and

inertial data, which is time sensitive, requires high refresh

rates, especially for IMU readings, yet entails highly

intensive computations (image preprocessing, feature

extraction, etc.). Therefore, a new framework based on the

Fig. 4. Detailed evaluation of average overhead

5

MEC paradigm was introduced to better address these

requirements. One of the main challenges we addressed is to

conceptualize the effective integration of MEC into a specific

flight mission. Then, we characterized different types of

computational tasks to be offloaded from the drones to the

edge servers. Moreover, we evaluated the impact of the

proposed scheme on performance in different simulation

settings and showed the possible benefits of the deployment

of a drone network in a MEC environment for this specific

mission. Simulation results show the effectiveness of the

proposed model compared to other models.

As future work, we plan to further evaluate the impact that

our computation offloading solution might have on the flight

accuracy. We also plan to integrate in our model environment

reconstruction and 3D mapping as a second use case.

ACKNOWLEDGMENTS

This work was partially supported by Magenta Telekom (T-

Mobile Austria GmbH) and Deutsche Telekom AG as well as

by Alpen-Adria-Universität Klagenfurt (scholarship for

visiting researcher M.A. Messous).

REFERENCES

[1] L. Ma, M. Li, L. Tong, Y. Wang, and L. Cheng, “Using unmanned
aerial vehicle for remote sensing application”, 21st International
Conference on Geoinformatics, pp. 1-5, 2013.

[2] M.A. Messous, H. Sedjelmaci, and S-M. Senouci, “Implementing an
emerging mobility model for a fleet of UAVs based on a fuzzy logic
inference system”, Elsevier Pervasive and Mobile Computing, vol. 42,
pp. 393-410, 2017.

[3] M.A. Messous, S.-M. Senouci, and H. Sedjelmaci, "Network
connectivity and area coverage for UAV fleet mobility model with
energy constraint," IEEE Wireless Communications and Networking
Conference, pp. 1-6, 2016.

[4] N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-Altitude
Unmanned Aerial Vehicles-Based Internet of Things Services:
Comprehensive Survey and Future Perspectives”, IEEE Internet of
Things Journal, vol. 3, no. 6, pp. 899-922, 2016.

[5] G. Pajares, “Overview and Current Status of Remote Sensing
Applications Based on Unmanned Aerial Vehicles (UAVs)”,
Photogrammetric Engineering & Remote Sensing, vol. 81, iss. 4, pp.
281–329, 2015.

[6] O. S. Oubbati, A. Lakas, F. Zhou, M. Güne�, and M. B. Yagoubi, “A
survey on position-based routing protocols for Flying Ad hoc Networks
(FANETs),” Elsevier Vehicular Communications, vol. 10, pp. 29–56,
2017.

[7] J. Liu, Y. Shi, Z. M. Fadlullah and N. Kato, "Space-Air-Ground
Integrated Network: A Survey," in IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2714-2741, 2018.

[8] A.A. Ravankar, A. Ravankar, Y. Kobayashi, and T. Emaru,
“Autonomous Mapping and Exploration with Unmanned Aerial
Vehicles Using Low Cost Sensors”. International Electronic
Conference on Sensors and Applications, 2018.

[9] Q. Wang, “Towards Real-time 3D Reconstruction using Consumer
UAVs”, 28th Workshop on Information Technologies and Systems,
2018.

[10] Y. Lu, Z. Xue, G-S. Xia, and L. Zhang, “A survey on vision-based
UAV navigation”, Geo-spatial Information Science journal, 21:1, 21-
32, 2018.

[11] A. Z. Zhu, N. Atanasov, and K. Daniilidis, "Event-Based Visual
Inertial Odometry," 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) , pp. 5816-5824, 2017.

[12] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, "Navion:
A Fully Integrated Energy-Efficient Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones," IEEE
Symposium on VLSI Circuits, pp. 133-134, 2018.

[13] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, "Navion:
A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones," IEEE
Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1106-1119, 2019.

[14] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, "A Survey
on Low Latency Towards 5G: RAN, Core Network and Caching
Solutions," IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pp. 3098-3130, 2018.

[15] X. Zheng, M. Li, M. Tahir, Y. Chen, and M. Alam, "Stochastic
Computation Offloading and Scheduling Based on Mobile Edge
Computing," IEEE Access, vol. 7, pp. 72247-72256, 2019.

[16] M.A. Messous, S.-M. Senouci, H. Sedjelmaci, and S. Cherkaoui, "A
Game Theory Based Efficient Computation Offloading in an UAV
Network," IEEE Transactions on Vehicular Technology, vol. 68, no. 5,
pp. 4964-4974, 2019.

[17] J. Zhang et al., "Stochastic Computation Offloading and Trajectory
Scheduling for UAV-Assisted Mobile Edge Computing," IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3688-3699, 2019.

[18] T. Bai, J. Wang, Y. Ren, and L. Hanzo, "Energy-Efficient Computation
Offloading for Secure UAV-Edge-Computing Systems," IEEE
Transactions on Vehicular Technology, vol. 68, no. 6, pp. 6074-6087,
2019.

[19] M.A. Messous, A. Arfaoui, A. Alioua, and S.-M. Senouci, "A
Sequential Game Approach for Computation-Offloading in an UAV
Network”, IEEE Global Communications Conference, 2017.

[20] M.A. Messous, S.-M. Senouci, and H. Sedjelmaci, “Computation
Offloading Game for an UAV Network in Mobile Edge Computing”,
IEEE International Conference on Communications, 2017.

Fig. 5. Impact of different offloading rates on average overhead

0

50

100

150

200

250

300

350

400

Edge Offload Ground Station Offload

A
v

e
ra

g
e

 O
v

e
rh

e
a

d

0% 25% 50% 75% 100%

6

