
HAL Id: hal-02965660
https://hal.science/hal-02965660

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Edge Computing for Visual Navigation and Mapping in
a UAV Network

Mohamed Ayoub Messous, Hermann Hellwagner, Sidi-Mohammed Senouci,
Driton Emini, Dominik Schnieders

To cite this version:
Mohamed Ayoub Messous, Hermann Hellwagner, Sidi-Mohammed Senouci, Driton Emini, Dominik
Schnieders. Edge Computing for Visual Navigation and Mapping in a UAV Network. ICC 2020 -
2020 IEEE International Conference on Communications (ICC), Jun 2020, Dublin, Ireland. pp.1-6,
�10.1109/ICC40277.2020.9149087�. �hal-02965660�

https://hal.science/hal-02965660
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Edge Computing for Visual Navigation and 

Mapping in a UAV Network 

Mohamed Ayoub Messous1, Hermann Hellwagner2, Sidi-Mohammed Senouci1, Driton Emini3, Dominik Schnieders3 
1DRIVE EA1859, Univ. Bourgogne Franche Comté, France 

2Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria 
3Deutsche Telekom AG, Germany 

{ayoub.messous, sidi-mohammed.senouci}@u-bourgogne.fr, hermann.hellwagner@aau.at, {driton.emini,dominik.schnieders}@telekom.de 

Abstract—This research work presents conceptual 

considerations and quantitative evaluations into how 

integrating computation offloading to edge computing servers 

would offer a paradigm shift for an effective deployment of 

autonomous drones. The specific mission that has been 

considered is collaborative autonomous navigation and 

mapping in a 3D environment of a small drone network. 

Specifically, in order to achieve this mission, each drone is 

required to compute a low latency, highly compute intensive 

task in a timely manner. The proposed model decides for each 

task, while considering the impact on performance and mission 

requirements, whether to (i) compute locally, (ii) offload to the 

edge server, or (iii) to the ground station. Extensive simulation 

work was performed to assess the effectiveness of the proposed 

scheme compared to other models. 

Keywords—UAV Network, Edge Computing, Computation 

Offloading, Visual Navigation and Mapping. 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs), also commonly named 
drones, have proliferated extremely fast and continue to have 
far-reaching effects on today’s society, transforming our lives 
and the way we do business. While big UAV platforms have 
been initially introduced for strategic and defense 
applications, relatively small and very flexible new UAV 
platforms are proving to be very useful for a wide variety of 
applications such as disaster damage assessment, law 
enforcement surveillance, and earth science data collection [1-
4]. In order to accomplish their missions, UAVs are required 
to (i) collect data about their environment, (ii) compute and 
process the collected data for decision making, and (iii) relay 
specific information to their appropriate users [5-6]. To 
achieve these three basic requirements, depending of their 
mission, UAV platforms are equipped with different types of 
sensors, onboard computing capabilities and dedicated 
wireless communication interfaces. This would be essential 
for effective special awareness, realization of locally 
distributed processing along the communication path where 
applicable, and finally, for the dissemination of relevant 
information from producers to consumers while maintaining 
reliable and efficient air-to-air (UAV-to-UAV) and air-to-
ground (UAV-to-ground station) communications [7]. 

In this research work, we choose to focus on a specific 
mission where a small fleet of drones is deployed in order to 
achieve a collaborative autonomous 3D navigation and 
reconstruction task [8-9]. More precisely, using only inertial 
information, taken from IMU readings, and visual 
information, through captured imagery, the drones will be 
required to collectively map and efficiently navigate in an 
unknown 3D environment [10]. Technically, a process called 
visual inertial odometry is used [11]. Similar to other vision-
based localization and navigation methods, this process is 

prone to drift errors while estimating positions and attitudes of 
drones due to non-perfect sensory reading [12-13]. These drift 
errors would eventually build up, resulting in degrading flight 
and mapping accuracy. IMU data readings at a 1 kHz rate and 
image capturing at 30 images per seconds (30 Hz) would be 
ideal to keep drift errors as small as possible. However, the 
constrained computation and limited communication 
capabilities of drones would not allow such high sampling 
rates since the preprocessing and fusion of the sensor data in 
general and the image processing tasks in particular are 
computationally intensive. 

To address issues related to highly intensive computation 
tasks with low latency requirements, many previous research 
studies have resorted to computation offloading to powerful 
surrogate devices such as mobile edge computing (MEC). 
This newly emerging computation paradigm extends the 
capabilities of cloud servers to the edge of an access network. 
It provides computational power and data storage closer to the 
end users. Therefore, it can reduce traffic loads for central 
cloud servers, decrease latency, and improve QoS. Moreover, 
it supports users’ mobility and heterogeneity, provides 
location awareness, and permits high deployment scalability. 
MEC is perceived as one of the central building blocks for 5G 
networks [14-15]. For drone networks, the effective 
deployment of MEC, on the one hand, holds the promise of a 
high-throughput communication fabric, and on the other hand, 
is expected to enable low-latency capabilities and to perform 
specific computational services for the client devices [16-20]. 
In our case, drones would consider the offloading of some or 
all of the computational tasks involved in visual inertial 
odometry to an edge server. Indeed, MEC can not only bring 
performance benefits for heavy computational tasks, it can 
also act as a centralized entity for the nearby deployed swarm 
of drones. Moreover, the MEC servers deployed at the edge of 
the access network would help control the drones more 
accurately compared to decentralized control. They would 
even be expected to play an important role in synchronizing 
and ensuring the consistency of the mapping tasks. 

The main focus of the current study is to investigate how 
MEC can conceptually be integrated into a specific mission 
using a drone network, while evaluating the impact of 
computation offloading on the flight accuracy and the possible 
performance benefits of deploying an MEC-based scheme. 
The specific mission considered is the visual-inertial 
navigation and 3D mapping in an unknown remote 
environment. In order to tackle these challenges, the proposed 
solution aims to decide whether a computational task needs to 
be offloaded to be executed remotely or not. 

The remainder of this paper is organized as follows. In 
Section II, we present the system model and the mathematical 
formulation of our problem. Section III gives the details about 

1



the main computation offloading schemes. The simulation 
work and the results obtained are presented and discussed in 
Section IV. Finally, Section V concludes the paper and gives 
some future directions. 

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model, shown in Fig. 1, is composed of three 

main entities: (i) drones, (ii) edge server, and (iii) ground 

station. In the following subsections, we first present the 

mission requirements and justify our hypothesis. Then, we 

provide the problem formulation while explaining in detail 

the different possible computational use case scenarios. 

A. Mission Requirements and Scenario Definition 

We consider a set of small UAVs deployed in an unknown 

environment in order to execute a 3D mapping of their 

environment. Specifically, we consider as a main mission the 

collaborative autonomous 3D navigation and reconstruction 

application through a small network of drones, using inertial 

information (IMU data) and visual information (captured 

images) only (no GNSS information). The drones will 

reconstruct (map) an unknown 3D environment and navigate 

in that space. In order to perform such kind of mission, the 

UAVs are equipped with an onboard camera for visual 

imagery and also an inertial measurement unit (IMU) that 

provides basic information about their spatial orientation. We 

also consider for our use case scenario that the drones in this 

mission do not have access to GNSS positioning data. The 

lack of such information can be explained by the poor quality 

of GNSS signal or its absence altogether (in indoor 

environment) or due to problems related to precision (in a city 

district with a very dense building constellation). 

In such a context, the drones are required to perform a 

process named visual inertial odometry (VIO) in order to 

achieve their mission. Similar to other vision-based 

localization and navigation methods, this process is prone to 

drift errors in estimating positions and attitudes of drones in 

case of non-perfect sensor data; these drift errors will result 

in degrading flight and mapping accuracy. IMU data readings 

at a 1 kHz rate and image capturing at 30 images per seconds 

(30 Hz) would be ideal to keep drift errors as small as 

possible. However, the constrained computation and 

communication capabilities of small drones would not be able 

to handle such high sampling rates since the processing and 

fusion of the sensor data in general and the image processing 

tasks in particular are highly compute intensive. Due to these 

limitations, computation offloading from the drones to an 

edge server would offer a viable solution. 

Computational tasks involved in VIO can be fully or 

partially offloaded from the drones to an edge server. On the 

one hand, MEC would achieve better performance compared 

to local computing. On the other hand, an edge server would 

eventually act as a nearby deployed central entity for its 

associated drones, which would allow for an even more 

accurate control compared to a fully decentralized scheme, 

and would also ultimately perform the synchronization and 

mapping tasks more consistently. 

B. Computational Models 

As previously shown, the kind of missions considered 

involves performing highly intensive computation tasks. 

Each task Ti is defined through three basic parameters {Ci, Di, 

Fi} representing computational complexity, size of data and 

execution frequency, respectively. The first value Ci 

corresponds to the number of CPU cycles required to perform 

the task Ti. Di specifies the amount of data needed for the 

computation. Finally, Fi denotes the execution rate, i.e., how 

many times the task Ti is called upon per time unit. 

Furthermore, the defined tasks can be either executed 

locally in the drone itself or can be eventually fully or 

partially offloaded to a surrogate, more powerful device if 

required. In the present study two offloading choices are 

possible: (i) through a cellular network towards an edge 

server, or (ii) through a WLAN access towards a nearby 

ground station. Therefore, three possible choices can be 

enumerated, namely: (i) local computing, (ii) offloading to 

edge, and (iii) offloading to ground station. Details for each 

use case are provided in the following paragraphs. 

1) Local Computing

Since computation tasks in this case are executed locally,

no actual data ought to be sent via wireless interfaces. 

Therefore, the overhead of the task is equal to local 

computation overhead. The latter would only be impacted by 

the onboard computation power available in the device, i.e., 

the CPU frequency of the drones which is the number of 

computation cycles per time unit. So, the execution time for 

a task Ti if the local CPU frequency is FLocal
CPU is given as: 

TLocal =Ci/FLocal
CPU (1) 

2) Offloading to Edge

In this second case, the drone would send its computation

task via its cellular interface towards the edge server. 

Compared to the previous option, the delay required to obtain 

results for the task being executed, in addition to the 

computation time, will incur an extra overhead. This is due to 

the additional time necessary to transmit data up to the edge 

server. Therefore, the equation for the execution time is: 

TServer=Ci/FServer
CPU+Di/RCellular   (2) 

where FServer
CPU represents the frequency of the server 

CPU, which in practice is very big compared to the frequency 

of the mobile devices’ CPUs, and RCellular is the effective data 

rate achieved through the cellular link between the drone and 

the edge server. 

Fig. 1. Overall view of the system model 
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3) Offloading to Ground Station

This second offloading choice, and third possible case,

considers sending the computational data through a wireless 

access point to a neighboring ground station. The latter would 

compute the received task and send back results to the 

originating drone. In this case, the equation for the execution 

time is given as: 

TGS=Ci/FGS
CPU+Di/RWLAN (3) 

where FGS
CPU denotes the CPU’s frequency of the ground 

station and RWLAN is the effective data rate achieved through 

the wireless local network. 

C. Overhead Function 

Since computationally intensive tasks are known to 

necessitate a considerable amount of time to complete their 

execution, we define the overhead function as the 

combination of time delays required for data transfer and for 

data processing. Both, the communication links’ effective 

data rates and the available processors’ frequencies will play 

a significant role in choosing the more suitable computation 

choice as shown previously. Therefore, it is important to 

define and implement an appropriate utility function that 

considers the best possible tradeoff between these two 

competing parameters. The following equation shows the 

different parameters required to calculate the overall values 

for the overhead function for each task. 
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where N is the number of computation sub-tasks required 

to compute the global task; �

��������
��

 represents the 

execution time (computational overhead) required for 

processing each sub-task i; M characterizes the number of 

communication exchanges required; and ��
������
���
�� 

stands for time delay (communication overhead) to 

transfer/receive each message j. Additionally, � and � 

represent weight parameters of computational and 

communication delays, respectively, and �+� =1. 

Moreover, no normalization method was required in order 

to add these two different values since both represent time 

measurements. Furthermore, using a weighted function 

provides a much higher flexibility and answers a wide range 

of applications with specific requirements. Specifically, 

depending on the envisioned application or even the current 

system status, different tasks might use different weight 

parameters. For instance, if the system administrator wishes 

to put more emphasis on the computational delay part, he or 

she would give higher values for the weight �, whereas � 

would be increased in order to highlight the importance of 

communication delay. 

III. OFFLOADING COMPUTATION FOR VISUAL NAVIGATION

We provide herewith details regarding our implementation 

for possible choices of computation offloading in a visual 

navigation mission. Besides the classical approach, where all 

the computation is executed locally, we consider different 

task splitting possibilities. Furthermore, each global task can 

be divided into several elementary sub-tasks. There is always 

some computation that needs to be treated locally using the 

embedded processors. Typically, this process might involve 

the following operation: (i) collecting raw data from different 

onboard sensors, (ii) compression of raw data into a standard 

data format, (iii) aggregation of similar data within the same 

vector, and (iv) multi-sensor fusion. Parts of these low-level 

operations need to be executed locally and would not be 

suitable for offloading. However, other high-level operations 

can be offloaded, especially those including intensive 

computation routines. Figure 2 provides two examples for a 

partial-offloading and a full-offloading scenario. Details for 

each model are given in the following subsections. 

A. Partial Offloading 

In this first case, a first part of the collected data is 

computed locally before sending the results of execution 

along with specific information for further treatment in the 

edge server. As shown in Fig. 2(a), the partial offloading 

scheme starts with a locally executed task T1, then data are 

sent from the drone to the edge server through the 

communication link, denoted as communication step C1. 

Then, when all the required data are received, the edge server 

executes task T2 which ends with communicating results back 

to the drone (C2). Meanwhile, other local treatment would 

continue to be executed on the drone, which is denoted in Fig. 

2(a) as task T3. Finally, when C2 is completed, local 

processing can be resumed in T4 taking into account the 

newly received data. 

For the requirements of our use case scenario, the detailed 

execution routines for the different tasks are given in the 

following. First, task T1 involves (i) IMU data reading, (ii) 

attitude and acceleration deduction, and (iii) IMU data 

preintegration. T3 repeats the same instructions as in T1 but 

adds at the end of each cycle a “new pose estimation” routine. 

Data transferred in C1 encompasses: (i) the latest key frame 

image and (ii) up-to-date IMU data. The data sent in C1 will 

serve as input for T3, where the following operations are 

executed: (i) feature detection, (ii) feature tracking, and (iii) 

pose estimation and optimization. C2 will incorporate data 

about the newly estimated pose. Finally, the drone would 

(a) Partial offloading        (b) Full offloading 

Fig. 2. Possible offloading scenarios 
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focus in T4 on updating and optimizing the new pose graph 

based on inputs from C1 and T3. 

B. Full Offloading 

This second case considers that only essential 

computation, which cannot be offloaded to edge, would be 

treated locally onboard the drone. All the other actions would 

be executed remotely on the edge server, then results are sent 

back to the drone as shown in Fig. 2(b). The details for each 

elementary action are provided as follows. T1’ includes 

sensor data reading and compression. Only basic 

computation is achieved before sending gathered data in C1’. 

This step encompasses offloading a continuous flow of 

images taken by the onboard camera and inertial readings 

from the IMU. The edge server will do all the computations 

required for the mission in T2’ before sending back the new 

commands and instructions for the drone to follow in C2’. 

Finally, T3’ represents the control commands and updating 

the local pose estimate graph for the drone. 

IV. PERFORMANCE EVALUATION

Extensive simulation work has been done to evaluate the 

effectiveness of the proposed computation offloading 

scheme. In this section, the detailed assumptions regarding 

simulation work and scenario definition are first introduced. 

Then, numerical results are presented followed by thorough 

discussions to validate the feasibility and effectiveness of an 

edge-based solution for visual navigation missioned by a 

small set of drones. 

A. Simulation Setup 

In the simulation scenarios, we consider a single cell 

consisting of a base station (plus edge server) and a small 

number of drones (between 1 and 10) which also have access 

to a ground station (GS) via WLAN. The computation tasks 

considered for visual navigation differ in their computation 

complexity and also in their size of data required for effective 

computation. On the one hand, computation complexity is 

mainly affected by the number of features considered and the 

type of algorithm used for feature extraction. Since the main 

focus of the current study is the computation offloading 

problem and optimized decision making, only the number of 

features has been considered in representing computational 

complexity for different tasks. On the other hand, data that 

would need to be offloaded comes from imagery sensors and 

the IMU. However, practical estimation shows that data size 

required for IMU readings are negligible compared to image 

resolution, even with very high IMU reading rates. For 

simplicity, as shown in Table 1, three complexity levels are 

tested (between 50 and 200 features to extract from an image) 

with three different image resolutions (360p, 480p and 720p). 

Finally, in order to assess the possible offloading choices 

explained in Sect. III, different offloading rates have been 

implemented: ranging from local computing (0%) to full 

offloading (100%), along with three intermediary offloading 

rates (25%, 50% and 75%). Furthermore, beside the edge 

server a second surrogate device, namely the ground station, 

is considered as a second possible destination choice for 

offloading computation through a WLAN link (Fig. 1). 

TABLE I. TEST SCENARIOS 

Test Scenarios 

# of UAVs [1, 5, 10] 

# of Features [50, 100, 200] 

Image Resolution [360p, 480p, 720p] 

Edge Offload Rate (%) [0, 25, 50, 75, 100] 

GS Offload Rate (%) [0, 25, 50, 75, 100] 

To evaluate each model, we consider the global utility 

function presented in Sect. II.C. Furthermore, we give an 

equal importance to computation and communication delays, 

i.e., we choose � = � = ½. For a detailed study of the impact

that number of UAVs, number of features and image 

resolution might have on the overall utility, all the different 

possible combinations have been considered and tested. 

Other parameters used in our simulation setup are 

summarized in Table II. For the sake of simplicity, we 

consider the processing power of the ground station (F GS
CPU) 

and the edge server (F Edge 
CPU) to be respectively five and ten 

times the frequency of CPU available onboard the drone 

(FLocal
CPU). As for achievable data rates, the average data rates 

for wireless links with the ground station and with the edge 

server (R WLAN and R Cellular) are 50 and 20 Mbps, respectively. 

TABLE II. SIMULATION PARAMETERS 

Simulation Parameters Values 

F Local 
CPU 1 GHz

F Edge 
CPU 10 GHz

F GS
CPU 5 GHz

R Cellular 20 Mbps

R WLAN 50 Mbps

B. Results and Discussion 

In this subsection, we first evaluate the global average 

overhead achieved by the proposed approach compared to the 

three other models. The diagram shown in Fig. 3 represents 

the average system-wide overhead achieved through: (i) 

locally executed tasks, (ii) fully offloaded tasks to the edge, 

(iii) fully offloaded tasks to the ground station, and (iv) the 

optimal choice, which uses equation (4) as a premise for 

Fig. 3. Evaluation of global average overhead 
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decision-making. It reveals that the optimal selection 

approach clearly outperforms the three other models in terms 

of global overhead. This is due to the fact that the proposed 

model always chooses the most efficient offloading choice in 

terms of computational and communication delays. 

Moreover, the impact that different simulation parameters 

might have on the performances was thoroughly investigated. 

First, results shown in Fig. 4(a) represent the average 

overhead achieved in scenarios with different number of 

UAVs. We can notice that the growth in UAV swarm size 

does not impact the performance of locally executed tasks 

and has a slight impact on offloading tasks to the edge. 

However, it mostly affects the overhead values when 

offloading to the ground station. Next, the impact of 

computation complexity, expressed as the number of image 

features to be extracted, was tested. Fig. 4(b) shows that 

adaptive optimal selection outperforms the three other 

models in terms of average system overhead. The obtained 

results also show that overhead values increase with higher 

computation complexity. However, they increase much 

slower for full offloading approaches compared to locally 

executed tasks. Even though local computing achieves better 

performance for tasks with lower numbers of features, edge 

offloading was better for tasks with a higher number of 

features. This means that local computing is most suitable for 

less intensive computation tasks (less than 100 features), 

whereas offloading to the edge is more appropriate for highly 

compute intensive tasks (more than 200 features). Finally, 

Fig. 4(c) shows that the average overhead increases as the 

data size, expressing the different frame sizes in our case, 

increases in the two offloading approaches, due to the fact 

that big data induce high transmission overhead. While for 

high resolution (720p) local computing achieves comparable 

results to edge offloading, for lower resolutions (360p and 

480p) it is always more interesting to offload. However, 

adaptive optimal selection, on average, still outperforms all 

the other models for the three different frame sizes. 

The previous results shown in Fig. 3 and Fig. 4 only 

consider binary offloading choice; either all the task is 

computed locally or fully offloaded. For in-depth analysis, 

Fig. 5 shows the different possible intermediate offloading 

rates. As explained in Sect. III, a global task would be divided 

into several elementary sub-tasks that can be executed on 

different devices. Three intermediate offloading possibilities 

have been considered, namely 25%, 50% and 75%. As shown 

in Fig. 5, on average, higher offloading rates towards the edge 

server always achieve better performances compared to lower 

offloading rates in terms of average overhead. This is mostly 

true for very compute intensive tasks, since performing even 

a small part of the computation on the drone would penalize 

the overall performance. However, this statement is not true 

for the ground station, where offloading 50% and 75% of the 

computational task is better than full offloading. This later 

case (100% offload rate to the ground station) produced a 

similar average overhead compared to 25% offload rate. This 

observation proves that computation offloading is not always 

better compared to local execution. It also shows that parallel 

execution, even on slightly powerful devices, can really 

achieve better performance. It should be finally noted that 

sending more data would require also more time, which 

would eventually have more effect on average overhead in 

the 100% offload to ground station case compared to the 75% 

and 50% cases. 

V. CONCLUSION 

The rapid emergence of UAV-related technologies 

attracted the focus of many research groups, which paved the 

way for new possible use case applications. Throughout this 

study, we consider the deployment of a small fleet of UAVs 

in a navigation and 3D mapping mission based on visual and 

inertial data, which is time sensitive, requires high refresh 

rates, especially for IMU readings, yet entails highly 

intensive computations (image preprocessing, feature 

extraction, etc.). Therefore, a new framework based on the 

Fig.  4. Detailed evaluation of average overhead 
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MEC paradigm was introduced to better address these 

requirements. One of the main challenges we addressed is to 

conceptualize the effective integration of MEC into a specific 

flight mission. Then, we characterized different types of 

computational tasks to be offloaded from the drones to the 

edge servers. Moreover, we evaluated the impact of the 

proposed scheme on performance in different simulation 

settings and showed the possible benefits of the deployment 

of a drone network in a MEC environment for this specific 

mission. Simulation results show the effectiveness of the 

proposed model compared to other models. 

As future work, we plan to further evaluate the impact that 

our computation offloading solution might have on the flight 

accuracy. We also plan to integrate in our model environment 

reconstruction and 3D mapping as a second use case. 
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Fig. 5. Impact of different offloading rates on average overhead 
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