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ABSTRACT 

The massive use of insecticide-treated nets (ITNs) has drastically changed the 

environment for malaria vector mosquitoes, challenging their host-seeking behaviour 

and biting success. Here, we investigated the effect of a brief exposure to an ITN on the 

biting behaviour of Anopheles mambiae mosquitoes and the interaction between such 

behaviour and the kdr mutation that confers resistance to pyrethroids. To this aim, we 

developed a video assay to study the biting behaviour of mosquitoes with similar genetic 

background, but different kdr locus genotypes (SS i.e. homozygous susceptible, RS i.e. 

heterozygous and RR i.e. homozygous resistant), after a brief exposure to either control 

untreated nets or one of two types of pyrethroid-treated nets (deltamethrin or 

permethrin). In presence of untreated nets, the kdr mutation did not influence mosquito 

blood feeding success but caused differences in feeding and prediuresis durations and 

blood meal size. Exposure to deltamethrin ITN decreased the blood feeding success rate 

of RR and RS mosquitoes, whereas in presence of permethrin ITN, the kdr mutation 

increased the blood-feeding success of mosquitoes. Exposure to the two types of 

pyrethroid-treated nets reduced feeding duration, prediuresis duration and blood meal 

size of all three genotypes. Our study demonstrates a complex interaction between 

insecticide exposure and the kdr mutation on the biting behavior of mosquitoes, which 

may substantially impact malaria vector fitness and disease transmission. 
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xntroduction 

Malaria vector mosquitoes become infected by and then can transmit Plasmodium spp. parasites during 

blood meals. Plasmodium spp. transmission is strongly dependent on the mosquito biting rate on humans, as 

formalized by the Ross-MacDonald model of malaria (1). The behaviour and host preferences of blood-feeding 

mosquitoes are influenced by several factors, primarily their genetic background (2–5), but also environmental 

factors, such as host diversity and availability (6,7), and the presence/absence of physical and chemical 

barriers, such as Insecticide-Treated Nets (ITNs) (8–10). 

ITNs should hamper the contacts between humans and nocturnal, anthropophilic (i.e. that bite humans 

preferentially) and endophagic mosquitoes (i.e. that bite preferentially indoors), such as An. mambiae (11). The 

widespread use of pyrethroid (PYR) insecticides in public health (i.e. ITNs or indoor residual sprayings), crop 

protection and other selective pressures (such as pollutants in mosquito environment) drove adaptations in 

malaria vectors to reduce the insecticidal effect (12–17).  

Physiological PYR resistance involves two main mechanisms: (i) metabolic resistance, due to quantitative or 

qualitative changes in detoxification enzymes (cytochrome P450 monooxygenases, esterases and glutathione 

S-transferases), and (ii) target site resistance, due to non-synonymous mutations in the voltage-gated sodium 

channels that are called knock-down resistance (kdr) mutations (12,18).   

Mosquitoes can reduce vector control tools efficacy also through behavioural adaptations. In areas of sub-

Saharan Africa where large-scale vector control programmes have been implemented, several observations 

suggest that malaria vectors can avoid contacts with ITNs or insecticides on walls by modulating their host-

feeding activity. For instance, following the large scale distribution of ITNs in Benin, some An. funestus 

populations started to feed predominantly at dawn/early in the morning or in broad daylight (19,20), when 

most people are outside the nets (20). Behavioural modulation might also be influenced by physiological 

resistance mechanisms. Indeed, experimental hut trials showed that in An. mambiae, indirect behavioural 

indicators in response to ITN presence (deterrence and induced exophily, i.e. the proportion of mosquitoes 

that exit early and are found in exit traps relative to the untreated hut) are related to the physiological 

tolerance to insecticide (21). Moreover, a study demonstrated that kdr homozygous resistant mosquitoes have 

longer contacts with ITNs than homozygous susceptible mosquitoes, which are more excited by PYR irritant 

effect (22). Altogether, these findings indicate that insecticide treatments could affect the behaviour of malaria 

vectors. However, the effects of insecticide exposure and kdr mutations on the biting activity of An. mambiae 

remain poorly investigated.  

The last step of the mosquito host-seeking behaviour after reaching a host protected by an ITN is biting for 

taking a blood meal. During the host-seeking phase and the penetration through a hole in the net, mosquitoes 

can be exposed to sub-lethal doses of insecticide (23–25). Such doses do not cause death, but can have several 

physiological or behavioural effects on host-seeking mosquitoes (26). For instance, sub-lethal doses of 

insecticide can affect the feeding and reproductive behaviour of some blood-sucking insects (27). As the PYR 

insecticide on ITNs acts on specific sites in the mosquito nervous system, it might alter some physiological 

processes involved in the biting behaviour of malaria vectors. There is currently scarce literature on this subject 

(28). 
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In the present study, we investigated whether pre-exposure to an ITN modulates the mosquito ability to 

take a blood meal by using experimental conditions that mirror the exposure to insecticide occurring when a 

mosquito passes through an ITN after having located a host. We also assessed whether the kdr mutation 

(L1014F) modifies blood feeding success and biting behaviour of An. mambiae. 

Methods 

Ethical Considerations 

This study was carried out in strict accordance with the recommendations of Animal Care and Use 

Committee (29) named “Comité d’éthique pour l’expérimentation animale; Languedoc Roussillon” and the 

protocol was approved by this committee (CEEA-LR-13002 for the rabbits). 

 

Mosquito strains and rearing procedures 

Two mosquito laboratory strains were used for this study. One is the insecticide-susceptible Kisumu strain 

(KISUMU1, MRA-762, VectorBase stable ID VBS0000026 on vectorbase.org), isolated in Kenya in 1975. This 

strain is PYR-susceptible and homozygous (SS) for the L1014 codon. The second one is the Kdr-kis strain that is 

PYR-resistant and homozygous (RR) for the L1014F kdr mutation. The Kdr-kis strain was obtained by 

introgression of the kdr allele (L1014F) into the Kisumu genome through 19 successive back-crosses between 

Kisumu and VKPer (30).  The VKPer strain, originated from a rice growing area named Vallée du Kou, less than 

40 kms north of Bobo-Dioulasso (Burkina Faso) was used to obtain Kdr-kis. VKPer displayed the same 

expression level of metabolic resistance enzyme as Kisumu (31). Both Kisumu and Kdr-kis strains are 

maintained at the insectary of IRD (Institut de Recherche pour le Développement) – WHO collaborating center 

FRA-72 in Montpellier, France. 

Polymorphisms between Kisumu and Kdr-kis strains are expected to be restricted in the flanking region of 

the kdr allele (15 cM for 19 backcrossing generations (32)) and the observed phenotypes are therefore 

expected to be associated to this genetic area. 

Heterozygous individuals (RS) for the L1014F kdr mutation were obtained by crossing once Kisumu SS 

females (F1 progeny) with Kdr-kis RR males. Therefore, the three genotypes have a common genetic 

background for most of their genome. 

Mosquitoes were reared at 27 ± 1°C, 70-80% relative humidity under a 12h:12h (light : dark) photoperiod 

in the insectary and fed on rabbits. Mravid females were allowed to lay eggs on wet filter paper inside mesh-

covered cages. Eggs were dispensed in plastic trays containing osmotic water. Larvae were kept in trays and 

fed with TetraMin® fish food. Pupae were removed and allowed to emerge inside 30x30x30cm cages. After 

emergence, adults could feed ad libitum on 10% sucrose solution.  

On each experimental day, an average of 8 (2 to 16 according to the insectary production) female 

mosquitoes (7 to 9 days old) never fed with blood were randomly collected from the rearing cages and placed 

in cups covered by gauze. By using 7-9 days old An. mambiae, we expected to enhance the probability that 

these females were inseminated (33) and physiologically active for host-seeking (34). However, mated status 

was not checked. 
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Mosquitoes were starved the day before the experiment because sucrose inhibits blood avidity in 

mosquitoes (35).  

 

xnsecticide exposure  

To simulate the contact with an ITN that may occur before the vector finds a way to reach a host, starved 

females were individually exposed to PYR insecticide-treated netting using an experimental setup in which 

insects can only walk or stand on the net surface and that was initially designed to measure the median knock 

down time (36). We used three net types (i.e. treatments): an untreated net (negative control, hereafter UTN), 

an Olyset Net® (impregnated with 1000 mg/m2 of permethrin, hereafter Olyset) and a PermaNet® 2.0 (coated 

with 55 mg/m2 of deltamethrin, hereafter PermaNet). Based on previous experiments (25), each mosquito 

was exposed for 30 seconds. This is the median time of contact with permethrin-treated netting before PYR-

susceptible anopheles (SS genotype) locate a hole to reach the host (25). After exposure, a 1-min latency period 

was observed before releasing the insect in the behavioural assay setup. 

 

Behavioural assay 

Experiments were conducted in a biting behavioural assay setup designed for video recording the biting 

behaviour of the tested mosquitoes (Figure 1). The setup is made of a foam board and composed of an 

observation tunnel (OT) and an observation zone (OZ) separated by a transparent plastic (TP). The OZ is a 

triangular prism, closed on its base by a removable paper sheet with a 1-cm diameter hole. The hole allows 

mosquitoes to bite the ear of a rabbit (R) that is maintained immobile in a restraining cage (RC) to limit ear 

movement during blood feeding. The same rabbit was used during all experiments. The experimental room 

was faintly illuminated with a compact fluorescent lamp bulb placed at 15 cm from the OZ to allow the 

acquisition of the biting behaviour sequence by the digital video system. 

For each trial, a mosquito was individually released inside the behavioural assay through a circular opening 

(CO) located on its lateral face. Cotton was used to plug the CO after releasing. The number of released 

individual anopheles per genotype and treatment ranged from 43 to 86. Each mosquito was filmed for 10 

minutes using a Sony® Digital HD Video Camera (HDR-XR550) placed on the top of the OT (Figure 1). The video 

camera was connected to a computer screen placed outside the experimental room to allow real-time 

monitoring of each mosquito, to avoid any disturbance of the rabbit and interference of the experimenter on 

the mosquito behaviour. The MPEM-2 recordings (PAL video: 720x576 pixels at 25 frames/s) were analysed 

using the behavioural event recording program EVENT01, version 1.2.4 (©R.D. Collins and M.K. Tourtellot, 

1993-2002).  

The experimenter used latex gloves to avoid any contamination by human skin odours. The OZ was cleaned 

with ethanol and the removable paper was changed after each mosquito was tested to avoid any 

contamination by insecticide residues between behavioural assays. The feeding experiments were done under 

insectary conditions (temperature at 27 ± 1°C, and relative humidity 70-80%), in a dark room during the night 

(according to the Light:Dark photoperiod of the insectary). 
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Figure 1. Experimental set-up to monitor the biting behavioural sequence. OT: Observational tunnel, TP: 

Transparent plastic, OZ: Observational zone (mosquito biting the rabbit ear), R: Rabbit, RC: Restraining cage 

 

Feeding success and behavioural parameters 

As exposure to insecticide can induce a knockdown (KD) effect during the trial, mosquitoes were recorded 

as KD, if they were lying on their side or their back. A mosquito (whatever its KD phenotype) was scored as 

successful if it was fed at the end of the 10-min trial (whatever the amount of blood it took) and unsuccessful 

if it did not. After the trial, successfully fed mosquitoes were stored at -35°C for measuring the blood meal size 

(see below).  

Analysis of the acquired images allowed quantifying the following variables in fed mosquitoes: (i) number 

of probing events, (ii) probing duration (the time from the introduction of the stylet fascicule into the rabbit 

skin to blood appearance in the mosquito abdomen), (iii) feeding duration (from the blood appearance in the 

abdomen to the beginning of the stylet fascicule withdrawal), and (iv) prediuresis duration (the time during 

which excretion of rectal fluid (plasma, water, metabolic wastes) is observed as red bright drops during feeding 

and after proboscis withdrawal). 

 

Blood meal volume measurement  

The blood intake was evaluated by quantifying the haemoglobin amount, as described by Briegel et al. (37). 

Each engorged mosquito was stored in one 1.5 ml Eppendorf tube at -35°C. Then, the whole abdomen was 
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ground in the presence of 0.5 ml of Drabkin’s reagent until it was completely disintegrated. Haemoglobin then 

reacted with the Drabkin’s reagent and was converted into haemoglobin cyanide (HiCN). Samples were 

incubated at room temperature (25°C) for 20 min and then a chloroform solution was added in each tube. 

Samples were centrifuged at 5600 rpm for 5 min and the aqueous supernatant (containing HiCN) was placed 

in a new 1.5 ml Eppendorf tube. The absorbance was read at a wavelength of 550 nm using a microplate 

spectrophotometer. Two replicates of the reading were done for each mosquito and their absorbance values 

were averaged. A sample of the rabbit blood was used as control for calibration curves. 

As the blood meal volume is correlated with the mosquito size (38), the blood meal volume of all 

mosquitoes from the same batch was divided by the average weight of five randomly selected mosquitoes 

from the same rearing cage. The resulting ratio was expressed in µL of blood per µg of weight and called 

weighted blood meal volume or blood meal size.   

 

Statistical analysis 

All statistical analyses were performed using the R software, version 3.5 (39).  

We analysed the feeding success (coded as 1 for fed mosquitoes and 0 for unfed ones) with a binomial 

logistic mixed-effect model using function ‘glmmTMB’ in the ‘glmmTMB’ package (40). We analysed the 

number of probing events with a zero-truncated negative binomial mixed-effect model using function 

‘glmmTMB’. We analysed durations (probing, feeding and prediuresis) with a mixed effect Cox proportional 

hazard model using function ‘coxme’ of the ‘coxme’ package (41). We analysed weighted blood meal size with 

a linear mixed effect model using function ‘lmer’ in the ‘lme4’ package (42). All models included the kdr 

genotypes (SS, RS or RR), type of pre-exposure (UTN, Permethrin or Deltamethrin) and their interactions as 

fixed terms explanatory variables and the date of the experiment as a random intercept.  

In order to discriminate between the effect of KD phenotype and other pleiotropic effects of the kdr 

mutation on feeding success and behavioural parameters, we fitted all previously described models on the 

dataset but for KD mosquitoes. To complement the later analysis, we tested the effect of the KD phenotype 

on feeding success. For this task, we added KD phenotype and its interactions as explanatory variables in the 

binomial model of feeding success fitted only on mosquitoes exposed to the insecticide treatments 

(Permethrin and Deltamethrin). This allowed us to compare feeding success between KD and non-KD 

mosquitoes of each genotype and treatment. 

In order to assess the relationship between KD phenotype and the genotypes for the kdr mutation, KD 

(coded as 1 for KD mosquitoes and 0 for others) was analysed using a binomial model with the kdr genotypes 

(SS, RS or RR), type of exposure (Permethrin or Deltamethrin) and their interactions as fixed terms. Because 

the dataset showed data separation, we fitted the model using the bias-reduction method developed by Firth 

(43). We used the ‘brglmFit’ function of the ‘brglm2’ package (44) for this task. 

We used Tukey’s post-hoc test to perform multiple comparisons among genotypes and treatments using 

‘emmeans’ function (45). We computed Odds Ratios (OR) for the binomial models, Hazard Ratios (HR) for Cox 

models, Rate Ratios (RR) for the negative binomial models, Mean Differences (MD) for the linear models and 

their 95% confidence intervals. 

We calculated the binomial confidence interval of feeding rates and knock-down rates with the Wilson's 

score method using the ‘binconf’ command from the ‘Hmisc’ package (46). 
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Effect of feeding duration on blood meal size and prediuresis duration was analysed using a linear mixed 

effect model and a mixed effect cox proportional hazard model, respectively. Fixed terms included genotypes 

and treatment and interactions and date was set as a random intercept. We used function ‘emtrends’ of the 

‘emmeans’ package (45) to obtain estimates and 95% confidence intervals of the marginal slopes of the trends 

(between feeding duration and blood meal size or prediuresis duration) for each genotypes and treatments. 

Data and codes used for analyses and figures are available (47). 

Results 

In total, 511 An. mambiae females (182 SS, 156 RS and 173 RR) were released individually for the study. The 

number of mosquitoes released, fed, unfed and knock-downed among genotypes and treatments are shown 

in Table 1.  

  

Table 1. Numbers of mosquitoes released per genotype and treatment 

Menotype Treatment N tested 
Fed Unfed 

KD Non-KD KD Non-KD 

SS Untreated 86 0 41 0 45 

SS Permethrin 50 5 5 33 7 

SS Deltamethrin 46 1 15 18 12 

RS Untreated 70 0 40 0 30 

RS Permethrin 43 3 14 11 15 

RS Deltamethrin 43 1 9 15 18 

RR Untreated 70 0 40 0 30 

RR Permethrin 53 0 41 0 12 

RR Deltamethrin 50 4 12 12 22 

SS: homozygous susceptible genotype, RS: heterozygous genotype, RR: homozygous resistant genotype, KD: 

Knockdown. 

 

xmpact of the kdr mutation on feeding success and biting behaviour 

When female mosquitoes were pre-exposed to UTN (i.e., untreated netting), no difference in their feeding 

success was found among the three genotypes (ORRS-SS = 1.47 [0.67, 3.22]; ORRR-SS = 1.47 [0.68, 3.19]; ORRR-RS = 

1.00 [0.44, 2.25]; Figure 2A). 

Analysis of the biting behaviour of successful mosquitoes in absence of insecticide pre-exposure showed 

that feeding and prediuresis durations were shorter in RR than in both SS and RS mosquitoes (feeding duration: 

HRRR-SS = 2.15 [1.26, 3.69]; HRRR-RS = 2.46 [1.43, 4.23]; Figure 2B; prediuresis duration: HRRR-SS = 1.94 [1.02, 3.71]; 

HRRR-RS = 2.11 [1.11, 4.01]; Figure 2C). The weighted blood meal volume of RR mosquitoes was lower than that 

of RS mosquitoes (MDRS-RR = 0.99 [0.24, 1.74]; Figure 2D)). Number of probing events and probing duration 

were not significantly different among genotypes (SS, RS and RR) (Supplementary Tables 1 and 2).  
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Figure 2. Feeding success and biting behavior in absence of insecticide of Anopheles gambiae females of 

each kdr genotype. Feeding success of each genotype and 95% binomial confidence intervals of the 

proportions (error bars) are shown in panel A (numbers n of mosquitoes exposed to the untreated net are 

indicated). Panels B, C and D show boxes-and-whiskers plots of feeding duration, prediuresis duration and 

blood-meal size, respectively (numbers n of blood-fed mosquitoes tested for behavioural parameters are 

indicated in panel B). Boxes indicate 1st-3rd quartile and median values. Whiskers indicate 1.5 inter-quartile 

range. P-values according to Tukey’s test after binomial mixed-effect model (panel A), mixed-effect cox 

proportional hazard model (panels B and C) and after linear mixed effect model (panel D) are indicated. 

 

xmpact of insecticide exposure on knockdown rates 

Exposure to permethrin or deltamethrin induced 76 % [62.6, 85.7] and 41.3% [28.3, 55.7] KD rates in SS 

mosquitoes, respectively. It induced 32.6% [20.5, 47.5] and 37.2% [24.4, 52.1] KD rates in RS mosquitoes, 

respectively (Table 1). Among RR mosquitoes, permethrin exposure did not induce any KD effect, whereas 

deltamethrin exposure led to 30.2% [20.8, 45.8] of KD mosquitoes (Table 1). The kdr genotype was highly 

correlated with KD rates of mosquitoes exposed to permethrin (ORRR-RS = 0.019 [6.1x10-4, 0.597], ORRR-SS = 0.003 

[9.7x10-5, 0.095], ORRS-SS = 0.160 [5.41x10-2, 0.471]) but not for mosquitoes exposed to deltamethrin (ORRR-RS 

= 0.80 [0.29, 2.22], ORRR-SS = 0.67 [0.25, 1.83], ORRS-SS = 0.85 [0.31, 2.34]). 
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xmpact of insecticide exposure on feeding success   

When compared to the UTN condition, exposure to permethrin reduced significantly the feeding success of 

SS mosquitoes (ORperm-UTN = 0.28 [0.10, 0.73]; Figure 3A), but not that of RS (ORperm-UTN = 0.49 [0.19, 1.26]; Figure 

3B). Feeding success of RR mosquitoes was higher (marginally not significant) (ORperm-UTN = 2.58 [0.97, 6.84]; 

Figure 3B) when exposed to permethrin. Exposure to deltamethrin reduced significantly the feeding success 

of RS and RR mosquitoes (ORdelta-UTN = 0.23 [0.08, 0.64] and ORdelta-UTN = 0.35 [0.14 – 0.88]; Figure 3B and 3C), 

but not of SS mosquitoes (ORdelta-UTN = 0.58 [0.24, 1.43]; Figure 3A). When excluding KD mosquitoes from this 

analysis, all trends were kept (supplementary Figure 1) except that feeding success of SS mosquitoes was no 

longer reduced by permethrin exposure when compared to UTN (ORperm-UTN = 0.78 [0.18, 3.40]; supplementary 

Figure 1A). Indeed among SS mosquitoes, non-KD had higher feeding success than those recorded as KD 

(ORnonKD-KD = 4.71 [1.06, 20.9]; supplementary Table 3). The same was true for SS mosquitoes exposed to 

deltamethrin (ORnonKD-KD = 22.5 [2.59, 195]; supplementary Table 3). 

When comparing the feeding success among genotypes after insecticide exposure, the feeding rate of RR 

mosquitoes was higher than that of SS and RS mosquitoes after permethrin exposure (ORRR-SS = 13.82 [4.35, 

43.92]; ORRR-RS = 5.29 [1.76, 15.86], Supplementary Figure 1B), whereas the feeding success of RS mosquitoes 

was although higher, not significantly different than that of SS mosquitoes (ORRS-SS = 2.61 [0.85, 8.02], 

Supplementary Figure 2B). In contrast, exposure to deltamethrin did not induce any difference in the feeding 

success of the three genotypes (ORRR-SS = 0.891 [0.31, 2.53]; ORRR-RS = 1.55 [0.51, 4.76]; ORRS-SS = 0.57 [0.18, 

1.80], Supplementary Figure 2C). We observed the same trends when excluding KD mosquitoes from the 

analysis (supplementary Figure 3). 

 

xmpact of insecticide exposure on biting behaviour  

After exposure to deltamethrin, feeding duration, prediuresis duration and weighted blood meal size were 

significantly reduced in SS mosquitoes compared to the UTN condition (feeding duration: HRdelta-UTN = 4.38 

[2.09, 9.15]; prediuresis: HRdelta-UTN = 5.31 [2.11, 13.36]; blood meal size; MDdelta-UTN = -1.02 [-1.82, -0.23]; Figure 

4A, 4B and 4C, respectively). A similar trend was observed after exposure to permethrin for feeding duration 

(HRperm-UTN = 2.87 [1.21, 6.81]; Figure 4A) and weighted blood meal volume (MDperm-UTN = -0.97 [-1.85, -0.08]; 

Figure 4C) but not for prediuresis duration (HRperm-UTN = 2.27 [0.92, 5.63]; Figure 4B). For this latter parameter, 

the non-significance was probably due to a lack of power. 

Compared to UTN, permethrin and deltamethrin reduced the feeding and prediuresis durations as well as 

blood meal size of both RS (feeding duration: HR perm-UTN = 7.42 [3.55, 15.53], HRdelta-UTN = 4.57 [1.94, 10.76], 

Figure 4D; prediuresis duration: HRperm-UTN = 9.44 [3.36, 26.46] and HRdelta-UTN = 7.22 [2.70, 19.29], Figure 4E, 

blood-meal size: MDperm-UTN = -1.97 [-3.04, -0.90] and MDdelta-UTN = -2.01 [-2.97, -1.05], Figure 4F) and RR 

genotypes (feeding duration: HRperm-UTN = 2.06 [1.20, 3.51] and HRdelta-UTN = 3.78 [1.83, 7.82], Figure 4M; 

prediuresis duration: HRperm-UTN = 1.71 [0.80, 3.64] and HRdelta-UTN = 9.31 [3.57, 24.28], Figure 4H; blood-meal 

size: MDperm-UTN = -1.52 [-2.23, -0.81] and MDdelta-UTN = -1.41 [-2.28, -0.54], Figure 4I). Number of probing events 

and probing duration were not significantly different among treatments (UTN and ITNs) whatever the genotype 

(Supplementary Tables 4 and 5). 
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Figure 3. Feeding success after exposure to insecticides of Anopheles gambiae females of each kdr 

genotype. Feeding success of SS, RS, and RR (panels A, B and C, respectively) genotypes when exposed to 

untreated, permethrin-treated (Olyset) and deltamethrin-treated (PermaNet) nettings are shown with 95% 

binomial confidence intervals of the proportions (error bars). Numbers n of mosquitoes exposed to each 

treatment and for each genotype are indicated. P-values according to Tukey’s test after binomial mixed-

effect model is indicated. 

 

When comparing the biting behavior among genotypes after insecticide exposure, we found that 

prediuresis duration of RS mosquitoes was shorter than that of SS mosquitoes after permethrin exposure (HRRS-

SS = 3.82 [1.15, 12.7], supplementary Table 8). Moreover, prediuresis duration of RR mosquitoes was shorter 

than that of SS after deltamethrin exposure (HRRR-SS = 3.41 [1.13, 10.29], supplementary Table 8). For all other 

parameters, we were not able to evidence any differences among genotypes (Supplementary Tables 1, 2, 7 

and 8). 
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Figure 4. Biting behavior after exposure to insecticides of Anopheles gambiae females of each kdr 

genotype. Boxes-and-whiskers plots of feeding duration (panels A, D and M), prediuresis duration (panels B, E 

and H) and blood-meal size (panels C, F and I) are shown for each genotypes SS (panels A, B and C), RS 

(panels, D, E and F) and RR (panels M, H and I). Boxes indicate 1st-3rd quartile and median values. Whiskers 

indicate 1.5 inter-quartile range. Numbers n of blood-fed mosquitoes for each genotypes and tested for 

behavioural parameters are indicated in panels A, D and M. P-values according to Tukey’s test after mixed-

effect cox proportional hazard model (panels A, B, D, E, M and H) and after linear mixed effect model (panels 

D, F and I) are indicated. 

 

In absence of exposure to insecticide (UTN), the blood meal size and the prediuresis duration were 

positively correlated with the feeding duration for all genotypes (supplementary Tables 6 and 7). With the 

exception of blood meal size of RS exposed to permethrin, these relationships were not observed when 

mosquitoes were exposed to insecticides (supplementary Tables 9 and 10), suggesting a perturbation of 

processes underlying these correlations.  

Excluding 14 KD mosquitoes from the analyses of the biting behaviour parameters do not significantly 

change the results (supplementary Tables 11 to 22). 
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Discussion 

To investigate the influence of ITN exposure on the biting behaviour of An. mambiae mosquitoes, we used 

mosquitoes that share the same genetic background, but for the kdr allele locus, and then exposed them to 

ITN prior to blood feeding.  

The blood-feeding success did not differ between the three genotypes in the absence of insecticide 

exposure. Therefore, the kdr mutation was not associated with significant change of blood meal success rate. 

However, feeding duration and blood meal size were different between genotypes. RR mosquitoes spent less 

time taking their blood meal than RS and SS mosquitoes. This might confer an advantage as fast feeding 

reduces the risk to be killed because of the host defensive behaviour (48). On the other hand, RS mosquitoes 

took higher blood volumes than RR females. This could improve the completion of oogenesis in RS mosquitoes 

(49) and increase their fecundity compared to RR (50). However, large blood meals reduce the flying ability, 

escape speed and agility required to avoid predators (48,51,52). These different trades-offs between 

behavioural traits that might enhance fecundity or survival in the three genotypes are of great interest and 

deserve further investigations in relation with the ecological and vector control environment. Such trades-offs 

possibly affect mosquito fitness and may therefore drive not only the evolution of insecticide resistance in 

mosquitoes but also parasite transmission. For example, a decrease in blood meal duration and size might 

increase the frequency of multiple feedings and consequently the risk of Plasmodium transmission (53). 

Similarly, a bigger blood meal size might increase the probability of mosquito infection by gametocytes (54).  

Exposure to permethrin and deltamethrin induced opposite outcomes in term of blood feeding success 

(increase and decrease, respectively) in RR mosquitoes. This opposite effect on the feeding success rate of RR 

females might be linked to the different chemical properties of permethrin and deltamethrin that induce two 

types of bursting activity of sodium channels (55,56). Type II pyrethroids, such as deltamethrin, further delay 

the inactivation of the voltage-gated sodium channel and in a less reversible way than type I pyrethroids, such 

as permethrin (57). The lower PYR susceptibility of homozygous resistant mosquitoes could lead to their over-

stimulation compared to susceptible and heterozygous mosquitoes that are more affected by the toxic effect 

of such insecticides (58). 

In contrast, among females that have been successful in taking a blood meal, the behavioural sequence was 

altered in the same way by both insecticides. They both induced a decrease of feeding duration and prediuresis 

duration. This is in agreement with the results of Hauser et al. (50) showing that mosquitoes biting trough 

permethrin+PBO nets (Olyset Plus) had less feeding successes, shorter feeding duration and lower blood meal 

sizes compared to those biting trough untreated nets. As discussed above, short feeding durations and small 

blood-meal lead us to expect that exposure to insecticide may (i) reduce the risk of the vector to be killed due 

to the defensive behaviour of the host or due to predators, (ii) reduce the possible number of parasites 

ingested during one feeding attempt that may be compensated by (iii) the increase of multiple feeding (and 

therefore the higher risk of human-to-mosquito and mosquito-to-human parasite transmission).  

Whatever the genotype, blood meal size and prediuresis duration were correlated to feeding duration in 

absence of exposure to insecticides. This relationship was, in most cases, no longer observed when mosquitoes 

were exposed to insecticides indicating that sub-lethal contact with insecticides disrupt physiological processes 
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involved in blood meal intake. Such indirect evidence highlight the need to further investigate the 

consequences of sub-lethal contact with insecticides.  

Prediuresis duration was substantially reduced in RS and RR females after exposure to ITNs. Prediuresis is 

an intestinal mechanism that plays a crucial role in protein concentration during feeding (59) and contributes 

to thermoregulation (60,61). This perturbation of the prediuresis phase by sub-lethal doses of PYR insecticides 

could lead to toxic accumulation of metabolic wastes and products of oxidative stress in the haemolymph that 

might affect the lifespan of mosquitoes. This results suggest that mosquitoes with the kdr mutation might be 

more susceptible to new chemicals that target the mosquito renal system and that are currently developed as 

an alternative to the currently used insecticides (62).  

As expected, we found a strong relationship between kdr genotype and KD phenotype when mosquitoes 

were exposed to Permethrin. However with deltamethrin, we were not able to find such a relationship and 

mosquitoes carrying the kdr mutation experienced moderate levels of KD.  Indeed, deltamethrin is expected 

to induce higher knock-down rates than permethrin against resistant populations of An. mambiae (63). This 

observation is also true when looking at mortality in experimental hut trial in areas with high frequencies of 

the kdr mutation in the vector population (64–66). This difference between permethrin and deltamethrin 

effect may be linked to the different chemical properties of permethrin and deltamethrin (type I and Type II 

pyrethroids) as describe above.  

We found that KD reduced the feeding success of mosquitoes exposed to PYR insecticides, particularly in 

SS mosquitoes. However when analyzing feeding success and behavior of non-KD mosquitoes carrying the kdr 

mutation, we observed the same trends than we get when including KD mosquitoes. This indicates that 

observed differences in feeding success and behavior are therefore directly linked to the presence of the 

mutation and not only a consequence of the KD phenotype. 

This work has some limitations. First, we were not able to randomize genotypes over time because of 

rearing constraints. Consequently all RS mosquitoes were tested during the last month of experiments. This 

did not induce any effect when analyzing the treatment effect relative to the genotype but might have 

introduced a bias while comparing RS with RR and/or SS mosquitoes (as experimental period is possibly a 

confounding factor for RS genotype). The second limitation relies on body size measurement. Indeed, we chose 

to use an easy method to get a proxy of mosquito size. We randomly selected five anopheles females from 

each rearing cages used during the experiment, weighed them together and used the mean weight to adjust 

blood-meal size. An individual wing length measurement would allow to avoid any bias in developmental 

variability within each rearing cage. 

To conclude, our study demonstrates a complex interaction between insecticide exposure and the kdr 

mutation on the biting behaviour of mosquitoes. The behavioural modulation induced by PYR-treated nets also 

raises concerns about the consequences of the kdr resistance- insecticide interaction. In previous studies, we 

evidenced that RR mosquitoes prefer a host protected by a permethrin-treated net rather than an untreated 

net (67) and that heterozygotes RS mosquitoes have a remarkable ability to find a hole into a bet net (25). 

Herein, we have completed the sequence by showing that kdr homozygous resistant An. mambiae displayed 

enhanced feeding success when exposed to permethrin ITN. However here, we exposed all our mosquitoes for 

a constant duration to the treated nets which does not reflect the variability that happens in natural conditions. 

Indeed, we can expect from the literature (22,23,25) that both the genotype for the kdr mutation and the type 
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of pyrethroids on LLINs may affect the contact duration. It would be of great interest to decipher with the 

relationship between the time of contact with the insecticide and the feeding sequence. 

 Insecticide resistance genes in malaria vectors could modify vector competence and the dynamics of 

infection by P. falciparum. For instance, recent studies have shown that parasite infection increases insecticide 

susceptibility in mosquitoes carrying the kdr mutation (68) and that insecticide exposure reduces parasite 

development in resistant mosquitoes (69). In addition, malaria parasites have been shown to modify the 

feeding behaviour of their mosquito vectors in ways that favour their transmission (70–72), but the role of 

insecticide resistance that could modulate this phenomenon has not been investigated yet (73).  It is therefore 

urgent to decipher the links between insecticide exposure, resistance mechanisms and infection by P. 

falciparum on the host-seeking and biting behaviour of malaria vectors to better understand malaria 

transmission in areas where insecticidal tools for malaria prevention are implemented. All these interactions 

should then be used as variables to include host-seeking behavioural modulation by kdr resistance in models 

of resistance evolution and P. falciparum transmission to better understand and/or predict the efficacy of 

vector control strategies (74). 
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