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Abstract

One of the main difficulties to analyze modern spectroscopic datasets is due
to the extremely large amount of data. For example, in atmospheric transmit-
tance spectroscopy, the solar occultation channel (SO) of the NOMAD instru-
ment onboard the ESA ExoMars2016 satellite called Trace Gas Orbiter (TGO)
had produced ∼10 millions of spectra in ∼20000 acquisition sequences since the
beginning of the mission in April 2018 until 15 January 2020. Other datasets
are even larger with ∼billions of spectra for OMEGA onboard Mars Express or
CRISM onboard Mars Reconnaissance Orbiter. Usually, new lines are discov-
ered after a long iterative process of model fitting and manual residual analysis.
Here we propose a new method based on unsupervised machine learning, to
automatically detect new minor species. Although precise quantification is out
of scope, this tool can also be used to quickly summarize the dataset, by giving
few endmembers ("source") and their abundances.

The methodology is the following: we proposed a way to approximate the
dataset non-linearity by a linear mixture of abundance and source spectra (end-
members). We used unsupervised source separation in form of non-negative
matrix factorization to estimate those quantities. Several methods are tested
on synthetic and simulation data. Our approach is dedicated to detect minor
species spectra rather than precisely quantifying them. On synthetic exam-
ple, this approach is able to detect chemical compounds present in form of 100
hidden spectra out of 104, at 1.5 times the noise level. Results on simulated
spectra of NOMAD-SO targeting CH4 show that detection limits goes in the
range of 100-500 ppt in favorable conditions. Results on real martian data from
NOMAD-SO show that CO2 and H2O are present, as expected, but CH4 is
absent. Nevertheless, we confirm a set of new unexpected lines in the database,
attributed by ACS instrument Team to the CO2 magnetic dipole.
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1. Introduction1

In modern exploration science, one has to face a major challenge : how to2

learn something new from analyzing a large dataset collection while taking into3

account what we already know. If the current knowledge outweight the analysis,4

the discovery of new elements may be difficult. Usually, in the field of spec-5

troscopy, one can compare laboratory spectra, model and observation spectra.6

Going back and forth leads to discovery of new lines by identifying unexpected7

residuals in the observation data (not expected by the model). Sometimes, ini-8

tial identification of lines can be wrong. As an example, spectroscopic evidence9

of atmospheric CO2 ice cloud was reported after the discovery of an emission10

spike at a wavelength of 4.3 μm from Mariner 6 and 7 infrared probings of the11

bright martian limb (Herr and Pimentel, 1970), but this spectral feature was12

mistaken for a resonant scattering band of CO2 fluorescence (López-Valverde13

et al., 2005).14

For one single spectrum, one can use simulation algorithm (see for instance15

Faisal et al., 2020). For large datasets, simplest ideas would be to scrutinize16

average spectra, or potential band depth distribution. Unfortunately, in the17

case of low signal-to-noise ratio (SNR, defined as signal / standard deviation of18

noise), such methods fail (as will be illustrated in the toy example). Analyzing19

residuals after modeling is a good method but it requires a lot of work.20

Several statistical tools with various approaches have been proposed, such21

as the Principal Component Analysis (PCA) (Penttilä et al., 2018; Geminale22

et al., 2015), or Independent Component Analysis (ICA) (Shashilov et al., 2006;23

Erard et al., 2009), but most of them require a human operator to pick end-24

members and trends since those methods are nothing more than a change of25

representation. Furthermore, none of these methods guarantees positivity of the26

component (which are sometimes also called source), which can be problematic27

during the interpretation. Recently, advanced machine learning methods based28

on non-negative matrix factorization have been proposed (Lee and Seung, 1999;29

Moussaoui et al., 2008; Dobigeon et al., 2009; Schmidt et al., 2010; Gillis and30

Glineur, 2012; Hinrich and Mørup, 2018). This approach is completely different31

from PCA/ICA: each source is positive and represents an endmember / a trend.32

A source is not one spectrum extracted from the dataset but a statistical recon-33

struction. By using this approach, the human operator doesn’t have to identify34

endmembers/trends anymore, since they are automatically picked by the al-35

gorithm in form of source. Furthermore when there are statistical / spectral36

correlations between sources PCA/ICA fails because it assumes orthogonality /37

independence, which is not the case for non-negative matrix factorization.38

Based on this new approach, we propose a tool:39

• to give an overview and quickly summarize a large and complex spectro-40

scopic dataset with simple variables41
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• to detect potential new spectroscopic features (unexpected minor species,42

new absorption lines,...)43

• to be performed in a fully blind way (without prior information on neither44

the spectra, nor the abundances).45

The target observation type of this study is solar occultation. This measure-46

ment principle has been proposed as early as 1900, an interesting review was47

published by Smith and Hunten (1990). Several recent instruments used this48

technique to investigate the composition of the Earth’s (SCIAMACHY/ENVISAT49

Bovensmann et al. 1999), Mars’ (SPICAM Bertaux et al., 2000) or Venus’ at-50

mospheres (SPICAV Bertaux et al., 2007). Here we will focus on the recent51

NOMAD instrument (Vandaele et al., 2015), and especially the SO channel,52

designed to study the Martian atmosphere and its trace gases, such as methane.53

Indeed the presence of CH4 on Mars is a very hot topic for the planetary science54

community (Giuranna et al., 2019; Korablev et al., 2019; Moores et al., 2019).55

In the present article, we propose to apply the tool for potential CH4 detection.56

Nevertheless, the approach can be extended to other types of spectroscopic57

measurements.58

2. Dataset59

We propose here to focus on the Nadir and Occultation for MArs Discovery60

(NOMAD) instrument onboard ESA’s ExoMars Trace Gas Orbiter and espe-61

cially the Solar Occultation (SO) channel (Vandaele et al., 2015). NOMAD is62

a compact, high-resolution, dual channel IR spectrometer (SO and LNO) cou-63

pled with a highly miniaturized UV-visible spectrometer (UVIS), capable of64

operating in different observation modes: solar occultation, nadir and limb.65

The SO channel operates at wavenumbers from 2320 cm−1 to 4550 cm−166

(wavelength 2.2 to 4.3 µm), using an echelle grating with a groove density of67

4 lines/mm in a Littrow configuration in combination with an Acousto-Optic68

Tunable Filter (AOTF) for spectral order selection. The width of the selected69

spectral ranges varies from 20 to 35 cm−1 depending on the selected diffrac-70

tion order. The detector is an actively cooled HgCdTe Focal Plane Array. SO71

achieves an instrument line profile resolution of 0.15 cm−1, corresponding to a72

resolving power λ/Δλ of approximately 25000. All details of the instrument are73

available in Neefs et al. 2015 and Vandaele et al. 2018. The orders with the74

maximum sensitivity to CH4 are: 119, 134 and 136. We will use the data from75

the beginning of the mission in April 2018 until 15 January 2020, in calibration76

version 1p0a. Due to temperature change, the spectral registration varies, pro-77

ducing a shift up to ∼10 spectels. We corrected it by aligning the full dataset to78

a reference spectra (arbitrarily choosen with the maximum band depth of water)79

by cross-correlation. No sub-spectel resampling has been performed but a sim-80

ple shift. When the calibration will be improved, this step will most probably be81

replaced by a routine correction. The data are available on the ESA/Planetary82

Science Archive after a 6 months embargo period.83
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3. Method84

In this section, we first describe the data pretreatment required for non-85

negative matrix factorization purpose followed by the data mining method.86

3.1. Data pretreatment87

After calibration, the NOMAD SO spectra are in transmittance T = I/I0,88

depending on wavenumber ν, with I the observed light intensity trough the89

atmosphere and I0 the solar spectra measured outside the atmosphere.90

Assuming that the atmosphere is homogeneous, and that multiple scattering91

and refraction are negligible (Smith and Hunten, 1990; Bovensmann et al., 1999),92

the optical depth τ is a linear combination of E(ν) the total extinction, and ε93

the slant column density, for each chemical species i:94

τ(ν) = − log T (ν) ≈
NS∑
i=1

Ei(ν).εi +MC(ν) (1)

with NS , the total number of species and MC(ν) a modeled continuum95

described below.96

The slant column density ε is directly related to the total number of particles97

N(s) along the line of sight s:98

ε =

∫
N(s)ds (2)

While the extinction by gas is usually highly structured, absorption by parti-99

cles, scattering by molecules and particles, and also reflection at the surface are100

broadband features. Such large features are modeled by a continuum MC(ν),101

often taken as a polynomial, that is filtered out.102

The problem with this continuum removal rationale is that when the optical103

depth is large, the SNR is decreased and the noise effect on continuum removal104

amplified (see Sup. Mat.).105

Instead of using this rationale, we propose to first correct for the continuum106

C(ν) in the transmittance space:107

T ∗(ν) = T (ν)− C(ν) (3)

Then convert the spectra into absorbance:108

X(ν) = 1− T ∗(ν) (4)

The final step is the linear mixture :109

X(ν) ≈
NS∑
i=1

Si(ν).Ai (5)

with Si(ν) the source spectra and Ai the spectral abundance. In this de-110

scription, the physical meaning of Si(ν) and Ai is lost but the apparent SNR111

4



is dramatically increased, which is much more important for our analysis. Nev-112

ertheless, assumptions required in eq. 1 are usually not relevant. Radiative113

transfer model used for precise quantification is highly non-linear.114

One has to consider that this unsupervised linear unmixing problem is al-115

ready very difficult for machine learning. Solving non-linear model in a unsu-116

pervised way is a research area that is clearly not solved yet. In addition, we117

would like to focus on spectral detection, rather than quantification. Thus, we118

will focus on S(ν) much more than A. We will show that for linear, but also119

non-linear simulation and real data, meaningful S(ν) can be retrieved. Due120

to non-linearity, A may differ significantly from truth, but the big tendencies121

should be respected. After the quick-look analysis, estimating Si and A, one122

must go back to the real data. The most trivial strategy is to pick the spectra123

X out of the collection, with the highest abundance of a selected source Si.124

In the following, we will use the continuum estimation C(ν) using asymmet-125

ric least square (Eilers and Boelens, 2005), with parameters : νsmooth = 103 and126

p = 1− 10−2, 10 number of iterations.127

3.2. Non negative matrix factorization128

For a collection of spectra, eq. 5 can be written in matrix formXkj≈Ski.Aij ,129

with i the source index (from 1 to NS) , j the observation index (from 1 to NO)130

and k the wavenumber index (from 1 to Nν). Thus, one have to estimate S and131

A, by minimizing the objective function:132

F = ‖X− S.A‖2 (6)

with ‖.‖, the Frobenius norm (usual L2 norm).133

Several algorithms have been proposed to solve this problem, subject to134

positivity (both S andA are non-negative). Such problem is called Non negative135

Matrix Factorization (NMF). This constraint is important to keep the physical136

meaning, but also to promote sparsity of S (a signal is sparse when most of the137

values are close to zero except several non-zero values). Let Ṡ and Ȧ be the138

estimation of those quantities.139

MU. We propose to use the Multiplicative Updates (MU) of Lee and Seung140

(1999) accelerated by Gillis and Glineur (2012). We used the convergence pa-141

rameter αMU = 1. Other alternative algorithms are possible but give equiv-142

alent results since they minimize the same cost function. This algorithm has143

the advantage of very fast computation time but the result may depend on144

initialization.145

BPSS2. We propose to test another kind of algorithm: the Bayesian Prior146

Source Separation (Moussaoui et al., 2006; Dobigeon et al., 2009), that has been147

optimized (Schmidt et al., 2010), hereafter called BPSS2. This algorithm has the148

main advantage to account for extra constraint : the sum-to-one or sum-lower-149

than-one on the abundances (
∑
iAij = 1) that also promotes sparsity of S. This150

algorithm, based on Monte Carlo approach is much more time consuming. One151
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approach to reduce the computation time is to select only relevant spectra out152

of the dataset (Moussaoui et al., 2008), but then the statistics may be biased153

(Schmidt et al., 2010). Thanks to the advances of computer capabilities, we154

propose to treat the full dataset. This kind of algorithm is very slow but since155

the formulation is Bayesian, it converge toward an unique solution.156

psNMF. In order to regularize the problem of eq. 6, one can add an extra157

penalization term to enforce sparsity on A (only few non zeros elements in A)158

(Kim and Park, 2007) :159

F = ‖X− S.A‖2 + λ ‖A‖1 (7)

With ‖.‖1, the L1 norm. The first term is called data attachment term (the160

usual squared difference). The second is called regularization term. The prob-161

lem with this approach, is that hyperparameter λ is not known and has to be162

tuned manually. A recent approach has been proposed to solve this problem in163

the Bayesian framework (Hinrich and Mørup, 2018). The main idea is to encom-164

pass all variables and hyperparameters in a unique problem that is estimated165

with variational update principle. We will refer this algorithm to probability166

sparse NMF (psNMF). This algorithm has the advantage to have a reduced167

computation time and no hyperparameter tuning. It also has a regularization168

term to avoid strong dependence of the initialization on the final solution.169

In order to estimate the precision of the reconstruction, we used the Root170

Mean Square Difference RMSD:171

RMSD =

√〈(
X− Ṡ.Ȧ

)2〉
〈X〉 (8)

With 〈.〉, the mean.172

Once the sources are estimated, we quantify their relevance for the global173

dataset. From the total reconstruction Ẋkj=Ṡki.Ȧij , for all i, we can estimate174

the contribution of source i′, that is to say: Ẋi
kj=Ṡki′ .Ȧi′j . Thus, the relevance175

of source i is defined as:176

Ri =

〈∣∣∣Ẋi − Ẋ
∣∣∣〉〈

Ẋ
〉 (9)

This definition is convenient since the sum of all Ri is one (this property177

is only present when sources and abundances are positive) and we can easily178

estimate the % contribution of each source in the final reconstruction. One has179

to note that relevance is not a measure of presence or not of a minor specie (for180

instance CH4) but a measure of how important is the source over the dataset.181

Major species, should always have a larger relevance than minor species. In the182

following, we plot all sources results by decreasing order of relevance.183
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3.3. Band depth (BD)184

We used the following band depth definition, difference of the geometric185

mean of two reference wavenumbers in the continuum, compared to the band:186

BD = X(νl)
νc−νl
νr−νl .X(νr)

νr−νc
νr−νl −X(νc) (10)

with X the observed spectra in transmittance, νc the wavenumber of the187

center of band, νl the wavenumber of the reference level on the left (smaller188

wavenumber), νr the wavenumber of the reference level on the right (larger189

wavenumber).190

4. Synthetic tests191

We simulated several synthetic observations in different conditions, to mimic192

the case of NOMAD-SO. The first section describes a simple toy model example193

and the second one presents extensive tests of this toy model with various cases.194

By hidden spectra, hidden compounds and hidden CH4, we always refer to a195

spectral dataset with a dominant major component (here water) and a minor196

specie (here CH4). The goal of the proposed approach is to pick up a source,197

containing CH4 only.198

4.1. Toy example199

4.1.1. Synthetic dataset200

In order to demonstrate the usefulness of our method, we propose here a toy201

example in a very difficult case. We will see that usual method fails detection202

but our method is able to detect the hidden compounds.203

For this toy example, we simulate a linear mixture of NO = 104 observations204

spanned over Nν = 320 spectels (see fig. 1) similar to order 136 of NOMAD-205

SO. Each spectrum is a mixture of a spectra of water vapor SH2O (coming206

from one actual source estimated from real data using psNMF) and theoretical207

methane SCH4 from Villanueva et al. (2018), with corresponding abundances208

AH2O, ACH4
:209

X = SH2O.AH2O + SCH4
.ACH4

+ n (11)

The noise n is assumed to be a Gaussian process with a standard deviation210

of σ=0.001 and no bias: n = G (0, σ). All spectra contain pure water vapor with211

a coefficient following AH2O = 5/6.β(1, 10) + 1/6.U(0, 1), a mixture of beta (β)212

distribution for 5/6 of the sample and an uniform (U) distribution for 1/6 of213

the sample. This process mimics well the water vapor band depth distribution214

(BD, see definition in section 3.3) of the real dataset (see Fig.2). As the baseline215

of SH2O is not zero, we also mimic baseline correction errors. In addition 100216

spectra out of 10000 contain methane with ACH4
= 1, such that the band depth217

of SCH4 is at 3-σ level. Please note that the model to generate the data is not218

fulfilling the sum-to-one constraint, but fully fulfilling the positivity constraint.219

Given the defined noise and signal level, the noise RMSD is 0.16.220
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Figure 1: Synthetic dataset containing 104 spectra with various abundances of H2O and 100
containing CH4 at 3-σ level of the noise. In blue the reference spectra SH2O of H2O (coming
from actual data analysis). In red the reference spectra SCH4

of CH4 (from theoretical data).

The final synthetic dataset is represented in Fig. 1.221

In order to check the quality of the estimation, we simply compute the222

correlation coefficient between SCH4 and the estimated NS sources Ṡ, using:223

Q = corr
{
SCH4

, Ṡ:i

}
(12)

The ith source with the maximum correlation is identified to CH4 contri-224

bution. The value to the maximum correlation is used as metric to assess the225

quality of the retrieval.226

4.1.2. Results227

By plotting the 10000 samples of the dataset, one is able to identify easily228

the H2O bands. Nevertheless, we cannot observe the target CH4 in the average229

spectrum, even at 3-σ level, because it is lost in the baseline changes.230
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Figure 2: Water vapor Band Depth distribution (left) in the real observation (right) modeled
by the toy example.

The second simple tool for detection would be the analysis of the band depth.231

Figure 3 (left) shows the histogram of the main CH4 band that exhibits no sign232

of the presence of CH4 (no asymmetry in the positive part). Figure 3 (right)233

represents the 100 spectra with the maximum CH4 BD at 3067.2 cm�1. Again,234

no particular elements can be used to argue for detection.235

Figure 4 represents the results from the non-negative matrix factorization236

using psNMF algorithm. One can clearly identify both H2O and CH4 sources.237

Since those 2 chemical compounds are not correlated in abundance, (AH2O and238

ACH4
are independent), two different source spectra are identified. Please note239

that the relevance of source 4 is very low (0.4%), meaning that only 0.4% of the240

variability in the dataset is due to CH4, a very low value, as expected for minor241

species.242

In this case, the correlation coefficient between estimated abundances Ȧ4:243

and true ones ACH4 is 0.73. Since the quantification of abundance is a more244

difficult problem, we will not pay excessive attention on this parameter.245

4.1.3. Convergence and computation time246

We set the MU algorithm convergence to relative difference of the cost func-247

tion < 10�8 and a maximum running time of 1000 seconds. For psNMF, we set248

the relative difference of the cost function to < 10�7 and a maximum iteration249

to 2000. For BPSS2, we compute a minimum burn in of 1000 iterations and after250

that when the long term statistics (1000 last iterations) of the Markov Chain is251

close to the short term statistics (100 last iterations), convergence is considered252

to be reached. Then another 1000 iterations are computed to estimate the final253

solution statistics.254

We run the 3 identified tools 10 times on the same dataset with different255

noise realization, and compute mean and standard deviation from these 10 ex-256

periments. Results are presented in Table 1. One can clearly see that the even257

if the convergence is set, there is a high variability in MU results, due to the258
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Figure 3: (left) Histogram of Band Depth at 3067.2 cm�1 from the dataset containing 100
CH4 at 3-� level out of 104 spectra. (right) 100 spectra with the maximum Band Depth at
3067.2 cm�1 specific of CH4. Signal is dominated by water and by noise. No specific signature
of CH4 is visible.
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is computed from Eq. 9.
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is computed from Eq. 9.
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MU psNMF BPSS2
Quality Q 0.35±0.12 0.822 ±0.005 0.41±0.06

RMSD relative error 0.1455±2.10−6 0.1461±5.10−6 0.1468±3.10−4
Computation time (s) 13±8 46±9 413±21

Table 1: Results (mean and standard deviation) from 10 realizations of a toy synthetic example
with NS = 5 (in agreement with next section on synthetic tests), NO = 10000, Nν = 320 and
300 CH4 spectra hidden at a level of 1 std of the noise. Quality is computed as a correlation
coefficient (see Eq. 12). RMSD is computed from Eq. 8. Computation time is expressed in
second.

lack of regularization. On this particular example, the best is clearly psNMF259

algorithm.260

The RMSD is computed for all cases and shown in Table 1. We can observe261

that the value is almost equivalent, around 0.146, for all method but MU is262

slightly better, due to the fact that the cost function has no other term. MU263

algorithm is just minimizing the reconstruction. As a comparison, the RMSD264

expected for a perfect reconstruction of the signal (and not the noise) of this265

toy example is 0.16. With 5 sources (significantly more than the 3 sources we266

define in this toy example), the noise is also fitted, as expected.267

The quality Q is the only parameter to assess the quality of the algorithm to268

detect minor specie (here CH4). In this particular toy example, psNMF seems269

to be the best algorithm, providing a source correlated with groundtruth CH4270

with a correlation coefficient up to 0.8. We will extensively test this performance271

in the next section.272

We also estimate the computation time on a 2.9 GHz Intel Core i7 with 16 Go273

DDR3 RAM as an example. All algorithms are implemented in ©Matlab using274

parallelized matrix computation. Results, presented in Table 1, demonstrate275

that MU is faster than psNMF but both are clearly less resources consuming276

than BPSS2. From the computation time and efficiency, we excluded BPSS2277

from the next tests.278

4.2. Extended synthetic tests279

For the first set of tests, we used the same toy model described in section280

4.1, except with 100 CH4 spectra hidden at a level of 2 and 3 standard deviation281

of the noise (this number is called “factor above noise level”). In order to have282

robust results, we made 10 realizations and averaged the results.283

Figure 5 represents the results as a function of the number of sources NS . It284

presents two quality indicators of the results: the average correlation coefficient285

Q (see Eq. 12) and the fraction of realization with acceptable results (with286

Q > 0.5). We can observe that the psNMF is always better than MU on287

average at cost of an higher variability (higher standard deviation). Adding288

sources seems to always increase the detection until reaching a plateau around289

NS = 5. Adding more sources will not drastically increase/decrease the source290

estimation. Nevertheless, it requires more computation time for a larger number291
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Figure 5: Results of the MU and psNMF algorithm for NS = 3 to 9, NO = 10000, N⌫ = 320,
as a function of the number of source. The average Q of 10 realizations of the best estimated
source (thick lines and standard deviation in thin lines) and the fraction of acceptable results
(with Q > 0.5). (left) with a factor above noise level of 2 (right) with factor above noise level
of 3.

of source ( approximately x2 between 3 and 9 sources but the computation time292

always stays below 200 seconds).293

For the second set of tests, we used the same toy model, except with 50 and294

100 CH4 spectra hidden at a level of 0.7, 1, 1.2, 1.5, 2.0, 2.5 and 3 standard295

deviation of the noise (this number is called “factor above noise level”). In296

order to have robust results, we made 10 realizations and averaged the results.297

Results are always with RMSD < 0.18 with an average ⇠ 0.16. RMSD from298

the noise level is 0.16 whatever the experiment (the CH4 is low enough so that299

it’s contribution to RMSD is negligible), so the reconstruction is in average as300

expected.301

Figure 6 presents two quality indicators of the results: the average correla-302

tion coefficient Q (see Eq. 12) and the fraction of realization with acceptable303

results (with Q > 0.5). Both indicators indicate that the method psNMF clearly304

outperforms MU at high factor above noise level. From our visual inspection of305

the results, we define the detection limit when at least 50% of the results are306

with Q > 0.5 (correlation coefficient > 0.5). This definition is debatable but307

there is no absolute way of defining it. Figure 6 shows that the detection limit308

is at 1.5 factor above noise level for 100 hidden spectra case, around 2 for 50309

hidden spectra. Below this limit, none of the method is able to detect the CH4310

spectra from the noise. For 20 hidden spectra, even at a factor above noise level311

of 3, none of the methods is able to detect the CH4 spectra. One can also note312

that the psNMF is less stable since the standard deviation is much larger.313
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of source ( approximately x2 between 3 and 9 sources but the computation time292

always stays below 200 seconds).293

For the second set of tests, we used the same toy model, except with 50 and294

100 CH4 spectra hidden at a level of 0.7, 1, 1.2, 1.5, 2.0, 2.5 and 3 standard295

deviation of the noise (this number is called “factor above noise level”). In296

order to have robust results, we made 10 realizations and averaged the results.297

Results are always with RMSD < 0.18 with an average ∼ 0.16. RMSD from298

the noise level is 0.16 whatever the experiment (the CH4 is low enough so that299

it’s contribution to RMSD is negligible), so the reconstruction is in average as300

expected.301

Figure 6 presents two quality indicators of the results: the average correla-302

tion coefficient Q (see Eq. 12) and the fraction of realization with acceptable303

results (with Q > 0.5). Both indicators indicate that the method psNMF clearly304

outperforms MU at high factor above noise level. From our visual inspection of305

the results, we define the detection limit when at least 50% of the results are306

with Q > 0.5 (correlation coefficient > 0.5). This definition is debatable but307

there is no absolute way of defining it. Figure 6 shows that the detection limit308

is at 1.5 factor above noise level for 100 hidden spectra case, around 2 for 50309

hidden spectra. Below this limit, none of the method is able to detect the CH4310

spectra from the noise. For 20 hidden spectra, even at a factor above noise level311

of 3, none of the methods is able to detect the CH4 spectra. One can also note312

that the psNMF is less stable since the standard deviation is much larger.313
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Figure 6: Results of the MU and psNMF algorithm for NS = 5, NO = 10000, N⌫ = 320, as a
function of the factor above noise level. The average Q of 10 realizations of the best estimated
source (thick lines and standard deviation in thin lines) and the fraction of acceptable results
(with Q > 0.5). (left) with 100 hidden CH4 spectra (right) with 50 hidden CH4 spectra

5. Simulation of NOMAD-SO314

5.1. Simulation dataset315

This second dataset has been generated with the most precise direct model,316

taking into account the full non-linear radiative transfer and instrumental effects317

to produce synthetic transmittance, highly comparable with actual observations.318

Synthetic transmittances were made for real NOMAD-SO observation files using319

the relevant geometry and instrument parameters to attempt to include the320

variability inherent in the true measurements.321

Model atmospheres for each occultation were developed from the GEM-Mars322

general circulation model (Neary and Daerden, 2018; Daerden et al., 2019). The323

output of the model were provided for 1 Martian day every 10 solar longitude,324

and 48 timesteps per Martian day. Atmospheric profiles were developed for each325

occultation by interpolating the model temperature and pressure to the solar326

longitude, local solar time, latitude, longitude, and tangent altitude relative to327

the areoid.328

To construct the simulated transmittance spectra, the high resolution irra-329

diances were computed for each occultation assuming a spherically symmetry330

and the tangent atmosphere developed from GEM-Mars for several different331

abundance of methane and water, which were simulated as constant volume332

mixing ratios. The spectroscopic data for methane and water were taking from333

HITRAN 2016 using CO2 broadening (Gordon et al., 2017; Gamache et al.,334

2016; Fissiaux et al., 2014). The instrument forward model was then applied335

to each simulation by considering the AOTF bandpass, instrument Instrument336

Line Shape (ILS), blaze function, spectel to wavenumber calibration, and the337

contribution of light coming from the main order and nearby orders. The final338

synthetic transmittance spectra is the ratio of this low-resolution irradiance to339

the top-of-atmosphere low resolution irradiance.340
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5.1. Simulation dataset315

This second dataset has been generated with the most precise direct model,316

taking into account the full non-linear radiative transfer and instrumental effects317

to produce synthetic transmittance, highly comparable with actual observations.318

Synthetic transmittances were made for real NOMAD-SO observation files using319

the relevant geometry and instrument parameters to attempt to include the320

variability inherent in the true measurements.321

Model atmospheres for each occultation were developed from the GEM-Mars322

general circulation model (Neary and Daerden, 2018; Daerden et al., 2019). The323

output of the model were provided for 1 Martian day every 10 solar longitude,324

and 48 timesteps per Martian day. Atmospheric profiles were developed for each325

occultation by interpolating the model temperature and pressure to the solar326

longitude, local solar time, latitude, longitude, and tangent altitude relative to327

the areoid.328

To construct the simulated transmittance spectra, the high resolution irra-329

diances were computed for each occultation assuming a spherically symmetry330

and the tangent atmosphere developed from GEM-Mars for several different331

abundance of methane and water, which were simulated as constant volume332

mixing ratios. The spectroscopic data for methane and water were taking from333

HITRAN 2016 using CO2 broadening (Gordon et al., 2017; Gamache et al.,334

2016; Fissiaux et al., 2014). The instrument forward model was then applied335

to each simulation by considering the AOTF bandpass, instrument Instrument336

Line Shape (ILS), blaze function, spectel to wavenumber calibration, and the337

contribution of light coming from the main order and nearby orders. The final338

synthetic transmittance spectra is the ratio of this low-resolution irradiance to339

the top-of-atmosphere low resolution irradiance.340
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CH4 [ppt] H2O [ppm] fraction of CH4[%] noise level
Value 0; 100; 500; 1000 0; 10; 100 1; 5; 10; 50; 100 0.001; 0.0001

Table 2: Simulation parameters. Fraction of CH4 is fraction of spectra containing methane
hidden in the simulation dataset.

The AOTF/echelle instrument was modeled using the latest available cali-341

bration (Liuzzi et al., 2019; Aoki et al., 2019), considering order addition from342

+/− 2 nearby orders (5 total). The spectral calibration of NOMAD-SO varies343

because it is affected by the instrument temperature, and is provided for each344

individual NOMAD spectra. The 320 spectels cover the range 3056.1 cm−1 to345

3080.4 cm−1 with a wavenumber step of 0.0763 cm−1.346

No simulation of dust has been performed. Due to the limited spectral range347

on a single order, about 25 cm−1, the major effect of dust and other aerosols348

is relatively flat baseline, which we remove at the pre-treatment of the spectra.349

When dust is optically thick, then non-linearity may appear that are out of the350

scope of this simulation.351

The simulation dataset consist of 12486 spectra, simulating observations352

of order 136 in the same configuration as the 106 solar occultations actually353

observed from May to December 2018.354

We add to the dataset a random noise with standard deviation of 0.001 and355

0.0001 in order to simulate the instrumental noise (corresponding to SNR of 100356

and 1000 approximately).357

We hide spectra containing CH4 in a fraction of the total number of spectra358

from 1% to 100% in a random manner. In real observation, CH4 may be spa-359

tially / temporally coherent but the number of scenarios is infinite. We feel that360

the random case is interesting enough to be tested. One has to note that con-361

trarily to the previous toy model of section 4, here abundance are quantitative362

abundance in the atmosphere.363

The simulation parameters are summed up in table 2.364

5.2. Detection limits365

We applied the psNMF method with NS = 5, which is the most promising366

one from the previous analysis. We compute the analysis 10 times for 10 different367

random noise realizations and average the results in order to present robust368

conclusion. We select a pure CH4 and a pure H2O spectra (noted PCH4 and369

PH2O) from the simulation as reference spectra.370

5.2.1. Methods to analyze the results371

The main difference with the toy model section in 4 is that H2O and CH4372

may be highly mixed in the sources. Simple correlation coefficient to pick the373

best source is thus not efficient enough. We propose here another approach to374

estimate the best source.375

For each estimated source Ṡ:i, we analyze it as a linear mixture of PH2O and376

PCH4 :377
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Ṡ:i = PH2O.αH2O,i + PCH4 .αCH4,i (13)

This problem is called supervised detection algorithm since PH2O and PCH4378

are known, contrary to the general one, presented in Eq. 5, where source spectra379

are not known. The source i∗ with the maximum αCH4,i∗ is selected as the best380

target CH4 source, called best source hereafter.381

We then propose to use three indicators of good detection :382

• Fraction of the 4 main CH4 peaks detected (at 3057.7, 3063.4, 3067.2 and383

3076.6 cm−1). This is computed using the peak detection algorithm from384

©Matlab on both simulation and best source with a tolerance of 2 spec-385

tels, i.e. detected peaks can be 2 spectels off the expected one. The peak386

must be with a maximum amplitude larger than 1/1000 the maximum of387

Ṡ:i∗ to be considered significant. Please note that even there are only 5388

possible fraction (0, 0.25, 0.5, 0.75 and 1), since we average on 10 realiza-389

tions, any number can appear.390

• Mean distance to the expected center. Mean distance in spectel between391

the CH4 peaks detected in the best source and the reference one.392

• Abundance of CH4 in the source. αCH4
(from Eq. 13), which describes393

the amplitude of the CH4 peaks in the best source.394

5.2.2. Analysis of the results395

Figure 7 summarizes all the results. Fraction of the 4 main CH4 peaks396

detected in the most relevant source has always a standard deviation < 0.43397

and a mean value of 0.06 over the 10 realizations. The Mean distance to the398

expected center has always a standard deviation < 0.40 and a mean value of399

0.07 over the 10 realizations. The abundance of CH4 in the source has always a400

standard deviation < 0.05 and a mean value of 0.005 over the 10 realizations.401

This figure shows that the detection limits clearly depend on CH4 density,402

but also on the fraction of hidden CH4 and noise level, as expected. Abundance403

of CH4 in the source αCH4
maximum is 25%, meaning that in any cases H2O is404

dominating the best source and so both CH4 and H2O are present in each best405

source. This is because CH4 is a minor specie (as expected from the conditions406

of our simulation), its absorption band generally follows the air-mass, as H2O407

does. So there is no particular source for CH4 only.408

When more than two lines are detected, we can consider it as a detection.409

This limit is reached for CH4 ≥ 500 ppt for 10 and 100 ppm of H2O. Never-410

theless, the detection limits lies between 100 and 500 ppt in the case of 10 ppm411

of H2O vapor since the detection is perfect (100% of the 4 main CH4 peaks412

detected) occurs for a fraction of CH4 5 to 50%. Interestingly, the optimum413

detection is not when 100% of the spectra contains CH4, but more between414

5-50 %. This behavior is due to the statistics that is richer when also CH4 is415

lacking in certain spectra. When 100% of spectra contain CH4, the statistical416

variability of the dataset is mainly due to airmass (atmosphere is assumed to417
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Figure 7: Results of the psNMF algorithm for NS = 5 on simulation dataset, averaged over 10
noise realizations, for different noise levels (0.001 and 0.0001) and different fractions of hidden
CH4 (1%, 5%, 10%, %, 100%). Hidden CH4 are taken within the same orbital sequences.
The left panels represent results for 10 ppm of water vapor and the right ones for 100 ppm
of H2O. From top to bottom, we show: a) Fraction of the 4 main CH4 peaks detected in the
best source ; b) Mean distance to the expected center in spectel and c) Abundance of CH4

in the source ↵CH4
. Please note that the absence of plotted data means that no source was

successfully detected.

be well mixed). So both CH4 and H2O are varying together and there is less418

statistics to base the detection on.419

Noise level does not affect first the fraction of the 4 main CH4 peaks but420

increases the spectral shift of the band center. In addition, it clearly affects the421

abundance and thus the band depth.422

In conclusion, from this simulation analysis, one could expect detection limits423

of CH4 in the range 100-500 ppt when operating in favorable conditions.424

6. Real data analysis425

In this section, we report the results of actual NOMAD data, focusing on426

diffraction orders with potential CH4 lines: 119, 134 and 136, are shown respec-427

tively on Fig. 8, 9 and 10. We used the 821 ingress and egress transit orbits428

for order 119, 2358 orbits for order 134 and 703 for order 136. We filter spectra429
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Figure 7: Results of the psNMF algorithm for NS = 5 on simulation dataset, averaged over 10
noise realizations, for different noise levels (0.001 and 0.0001) and different fractions of hidden
CH4 (1%, 5%, 10%, %, 100%). Hidden CH4 are taken within the same orbital sequences.
The left panels represent results for 10 ppm of water vapor and the right ones for 100 ppm
of H2O. From top to bottom, we show: a) Fraction of the 4 main CH4 peaks detected in the
best source ; b) Mean distance to the expected center in spectel and c) Abundance of CH4

in the source αCH4 . Please note that the absence of plotted data means that no source was
successfully detected.

be well mixed). So both CH4 and H2O are varying together and there is less418

statistics to base the detection on.419

Noise level does not affect first the fraction of the 4 main CH4 peaks but420

increases the spectral shift of the band center. In addition, it clearly affects the421

abundance and thus the band depth.422

In conclusion, from this simulation analysis, one could expect detection limits423

of CH4 in the range 100-500 ppt when operating in favorable conditions.424

6. Real data analysis425

In this section, we report the results of actual NOMAD data, focusing on426

diffraction orders with potential CH4 lines: 119, 134 and 136, are shown respec-427

tively on Fig. 8, 9 and 10. We used the 821 ingress and egress transit orbits428

for order 119, 2358 orbits for order 134 and 703 for order 136. We filter spectra429

with SNR > 100. Results are compared with NOMAD simulations (Villanueva430
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119 134 136
NO 134045 365985 140064

NS = 4 0.476 0.575 0.634
NS = 5 0.456 0.553 0.609
NS = 6 0.442 0.553 0.585
NS = 10 0.410 0.484 0.544

Table 3: Number of spectra NO and RMSD relative errors for 4 to 10 number of sources NS
resulting from the analysis of all observations of NOMAD data up to 15 January 2020, using
the psNMF algorithm. RMSD is computed from Eq. 8.

et al., 2018) using the calibration pipeline. This process adds ghost lines from431

adjacent orders, as in real data. Table 3 summarizes the relative error and the432

number of spectra. The approach here is to compute the analysis with psNMF433

using NS = 5 in agreement with the previous section.434

Please remind that our approach is fully blind: no spectral information has435

been included in the analysis (nothing about H2O, CO2 or CH4).436

For all orders, sources of H2O are estimated, as expected. Also a source pre-437

senting a residual of the continuum is always present. Due to non-linearities of438

the radiative transfer, the acquisition process (temperature dependence) and the439

wavenumber shift, the molecular species appears sometimes in different sources.440

Order 136 gives the 1 source related to the background and 4 sources re-441

lated to H2O. All 4 sources of water have the peaks but with different relative442

intensities and wavenumber shift.443

For order 119, both CO2 and H2O lines are identified (see Fig. 8). Since444

those two components are uncorrelated, separated sources are found by the445

algorithm.446

Interestingly, order 134 presents a source with unexpected lines. The main447

lines are at positions : 3016.70, 3017.07, 3018.12, 3019.54, 3020.90, 3022.25,448

3023.60, 3024.96, and 3027.29 cm−1. These lines has been also detected in449

the ACS instrument data and attributed to CO2 magnetic dipole transition450

(Trokhimovskiy et al., 2020). Further analysis shall be done to compare both451

NOMAD AND ACS data.452

Solar lines are never appearing in the sources. They are self-corrected by the453

calibration since we don’t use a reference solar spectra but the solar observation454

during the transit when the tangent altitude is so high that there is no martian455

atmosphere (typically > 200 km).456

None of the analyzed orders presents sources related to CH4.457

7. Discussions and Conclusion458

We implemented a new strategy to analyze spectroscopic datasets. This459

strategy is fully unsupervised, so that any kind of absorption bands can be460

discovered. The amount of prior information required is thus very low. The461

computation can be done on a regular hardware for the most common database462

and within reasonable amount of time (∼100000 spectra).463
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Figure 8: Results of the psNMF algorithm for the diffraction order 119 for NS = 5. The
sources 1, 3 and 5 are identified to CO2 (shift of 0.01 for clarity). The source 2 is identified
to the background level (continuum misestimation). The source 4 is identified to H2O. No
source seems to be related to CH4.
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Figure 8: Results of the psNMF algorithm for the diffraction order 119 for NS = 5. The
sources 1, 3 and 5 are identified to CO2 (shift of 0.01 for clarity). The source 2 is identified
to the background level (continuum misestimation). The source 4 is identified to H2O. No
source seems to be related to CH4.
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Figure 9: Results of the psNMF algorithm for the diffraction order 134 for NS = 5. The
source 1 is identified to the background level (continuum misestimation), the sources 3, 4 and
5 are identified to H2O. The sources 2 present unmodeled lines that are not present in the
spectroscopic database. These lines has been first detected in the ACS instrument data and
attributed to CO2 magnetic dipole transition (Trokhimovskiy et al., 2020). No source seems
to be related to CH4.
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Figure 9: Results of the psNMF algorithm for the diffraction order 134 for NS = 5. The
source 1 is identified to the background level (continuum misestimation), the sources 3, 4 and
5 are identified to H2O. The sources 2 present unmodeled lines that are not present in the
spectroscopic database. These lines has been first detected in the ACS instrument data and
attributed to CO2 magnetic dipole transition (Trokhimovskiy et al., 2020). No source seems
to be related to CH4.
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Figure 10: Results of the psNMF algorithm for the order 136 for NS = 5. The source 1 is
identified to the level background (continuum misestimation), the sources 2, 3, 4 and 5 are
identified to H2O, either directly either from the adjacent orders. No source seems to be
related to CH4.
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identified to the level background (continuum misestimation), the sources 2, 3, 4 and 5 are
identified to H2O, either directly either from the adjacent orders. No source seems to be
related to CH4.
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We illustrate the approach for typical atmospheric spectroscopy. We first put464

forward a synthetic test, based on simple linear mixing to give a toy example465

and to identify the best promising algorithm. The psNMF clearly outperformed466

MU and BPSS2.467

Then we proposed a simulation, based on realistic radiative transfer and468

instrumental effects, applied on NOMAD-SO spectra. The detection limits goes469

below 500 ppt in favorable conditions, with reduced H2O and low noise level.470

The same range of detection limits is reach with usual approach of model fitting471

at a much higher computation cost and analysis effort. Given the simplicity472

of use, this tool may be relevant to handle large and complex datasets at first473

glance. As a perspective, analysis of residuals after the non-linear retrieval of474

the data may lower the detection limits. One can then test if the residuals are475

simply Gaussian noise, or if they may contain interesting features.476

Interestingly, a molecular specie not well mixed in the atmosphere can be477

most easily detected with our approach.478

The last section presented the results of the application on real NOMAD-SO479

data, using orders 119, 134 and 136, selected as they are representative of the480

baseline strategy of measurements in NOMAD, allowing characterization of H2O481

and potential detection of CH4. The outcome is that no CH4 has been identified,482

but H2O and CO2 are detected. Interestingly a new set of spectral lines has483

been discovered in the NOMAD data. These lines has been first detected in484

the ACS instrument data and attributed to CO2 magnetic dipole transition485

(Trokhimovskiy et al., 2020). We thus confirm their presence with our current486

analysis.487

One way to go back to the data is to pick the real data with the highest488

source contribution Ȧ. Our quicklook analysis is thus only a starting point of489

a more complete scientific analysis. This second step will require much more490

prior information (chemical compounds, fundamental spectroscopic constants,491

radiative transfer model, ...).492

Future work should apply the proposed approach to other datasets, such493

as other NOMAD-SO orders, or other spectroscopic datasets (including hy-494

perspectral images) from laboratory measurements, ground based telescopes or495

space-born spectrometers. The approach is generic enough to treat datasets496

that can be at first order approximated to a linear mixture.497
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