
HAL Id: hal-02965556
https://hal.science/hal-02965556

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient configuration of a QoS-aware AFDX network
with Deficit Round Robin

Aakash Soni, Jean-Luc Scharbarg, Jérôme Ermont

To cite this version:
Aakash Soni, Jean-Luc Scharbarg, Jérôme Ermont. Efficient configuration of a QoS-aware AFDX
network with Deficit Round Robin. 18th IEEE International Conference on Industrial Informatics,
Jul 2020, Warwick, United Kingdom. �hal-02965556�

https://hal.science/hal-02965556
https://hal.archives-ouvertes.fr

Efficient configuration of a QoS-aware AFDX
network with Deficit Round Robin

Aakash Soni
University of Toulouse - France

Aakash.Soni@irit.fr

Jean-Luc.Scharbarg
University of Toulouse - France
Jean-Luc.Scharbarg@enseeiht.fr

Jérôme Ermont
University of Toulouse - France

Jerome.Ermont@enseeiht.fr

Abstract—AFDX is the de facto communication standard in
avionics domain. It is primarily used for the transmission of criti-
cal avionic flows. The mandatory certification process requires to
upper bound the end-to-end transmission delay for each critical
flow. Therefore, worst-case traversal time analysis has been
implemented. However, it leads to a very lightly loaded network
(up to 10%) as it considers very rare worst-case situations.
Introducing a QoS mechanism is often a good solution to improve
network utilisation since it allows differentiating critical flows
based on their constraints as well as the transmission of less/non-
critical flows with bounded impact on critical ones. Deficit Round
Robin is such a mechanism and it is envisioned for future
avionic networks. Using this mechanism, we propose to share
the bandwidth between n − 1 classes for critical flows and one
class for non-critical ones. Therefore the contributions of this
paper are (1) to propose a quantum assignment that ensures
that critical flows always respect their deadlines and maximises
the bandwidth for non-critical ones and (2) to propose a heuristic
for the distribution of the flows among different classes.

Index Terms—Quantum Allocation, Deficit Round Robin,
WCTT analysis, AFDX, Switched Ethernet, Quality of Service

I. INTRODUCTION

Avionics Full DupleX switched Ethernet (AFDX) [1] has
become the de facto standard for the transmission of (critical)
avionic flows. It has been tailored to meet avionic constraints
and a Worst-Case Traversal Time analysis (WCTT) allows
the computation of an upper bound for the end-to-end delay
of each flow. This analysis is based on Network Calculus
(NC) for the certification of A380 and A350 backbones. It
makes pessimistic assumptions that leads to a very lightly
loaded network. Typically, less than 10% of the available
bandwidth is used for the transmission of avionic flows on an
AFDX network embedded in an aircraft. A classical solution
to improve utilisation of the network is to introduce Quality-
of-Service (QoS) mechanisms. First, it can decrease worst-case
delay for the most constrained avionic flows. Second, less/non-
critical additional flows can be transmitted on the network with
bounded impact on avionic ones. Existing AFDX switches
implement Fixed Priority service discipline with two priority
levels. Up to now, they are rarely used. Thus avionic flows are
transmitted, following a FIFO service discipline.

It has been shown [2] that distributing avionic flows be-
tween these two priority levels can significantly decrease the
highest end-to-end delay that any flow can experience. These
preliminary results are promising. Further studies have shown
that Deficit Round Robin (DRR) allows an efficient and safe

bandwidth sharing between critical avionic flows and non-
critical additional ones [3].

DRR [4] achieves fair sharing of the capacity of a server
among several flow classes, thanks to quanta which are allo-
cated to classes per round. Several papers address the analysis
of DRR latency bound [5]–[7]. In particular, the analysis of
a server with DRR scheduler based on NC is proposed in [5]
and optimised in [7].

The work in [3] is based on the WCTT analysis of [5]. It
considers a switched Ethernet network with DRR scheduler,
shared by critical and non-critical flows. It considers n − 1
classes for critical flows and one for non-critical ones. [3]
assumes that flows have been assigned to classes. It determines
a quantum assignment which guarantees that critical flows
respect their deadlines (valid assignment) and maximises the
bandwidth allocated to non-critical flows. A similar problem
has been addressed in the context of non-critical flows with
Weighted Round Robin (WRR) [8]. To the best of our knowl-
edge, the only work that addresses this problem is [3]. It
suffers from two main limitations.
• First, it does not benefit from the optimised NC WCTT

analysis for DRR presented in [7]. Indeed it is based on
assumptions that do not hold for this optimised analysis.

• Second, it does not propose an assignment of flows to
classes. Such an assignment makes sense for avionic
flows. The goal is to find the best valid assignment in
terms of bandwidth for non-critical flows.

This paper integrates both aspects in the approach in [3]. First,
we redesign the quantum assignment algorithm in [3] so that it
can cope with the WCTT analysis in [7]. Second, we propose
a heuristic for the allocation of critical flows to classes.

Section II presents the context of the study and states the
problem. An improved quantum assignment is proposed in
Section III. Flow distribution among classes is addressed in
Section IV. The proposed solution is evaluated on a realistic
case study in Section V. Section VI concludes the paper and
gives some directions for future works.

II. CONTEXT OF THE STUDY

AFDX network interconnects a set of end-systems by
switches via full-duplex links. End-systems are the sources and
destinations of flows statically defined as virtual links (VL).
Each flow vi is constrained by a minimum interval BAGi

between any two consecutive frames at end system level, a

maximum (lmax
i) and a minimum (lmin

i) frame length. The
path Pi followed by vi is statically defined with a bounded
switching latency sl in each switch. Unlike TSN, AFDX is
an asynchronous network: it doesn’t provide a global clock to
avionics systems in order to mitigate certification issue.

Critical avionic flows consume a small part of the available
bandwidth. Thus it is envisioned to use the free bandwidth to
transmit additional less/non-critical flows which are presently
transmitted on other networks. Obviously, the impact of these
additional flows on the critical ones must be bounded in order
to guarantee that critical flows never miss deadlines.

Fixed priority service discipline with two priority levels is
implemented in existing AFDX switches and it can be used
to that purpose. Critical flows are assigned the high priority
and non-critical flows the low one. However, this solution
presents limitations [3]. First, non critical flows have to wait
as long as there are high priority ones to be served. It can
lead to long delays in case of bursts of high priority frames.
However, the constraint is to transmit critical flows within
their deadlines. Thus critical frames could be delayed by non-
critical ones, provided that it does not jeopardise the respect
of their deadlines. Second, assigning all critical flows to the
same priority means that they are not differentiated. It can be
quite inefficient [3]: critical flows should be treated differently,
depending on their deadlines.

DRR scheduler is promising to mitigate these limitations
[3]. It is an approximation of fair queuing technique that
allows each flow passing through a network device to get a
fair share of network bandwidth at a very low implementation
complexity. Therefore, an enhanced switch implementing DRR
policy is under consideration, leading to a QoS aware AFDX
network. In such a network, a set of n queues is associated
with each output port h. Each queue stores the frames of a
given traffic class.

Let us illustrate the operation of DRR scheduling on the
network example in Figure 1. Two switches (S1 and S2)
interconnect eight end-systems (e1 to e8). Twenty one (critical)
avionic flows (v1 to v21) and one (non-critical) additional flow
(v22) are transmitted on this network. Each switch output port
implements a DRR scheduler. The maximum link bandwidth
is R = 100 Mbits/s. Flow features are given in Table I. An
arbitrary distribution of these flows is presented in Table II
where the deadline in each class is limited to its smallest flow
deadline (i.e. v1 (300µsec) for C1, v6 (600µsec) for C2 and
v14 (900µsec) for C3).

..

v12 v13v1 v17 v21

v2 v14 v18 v20

v6v3

v7 v9 v10v4

v8 v11v5 v16

v1 ...v21

S2

 v15 v19

..

S1

e3

e4

e5

e6

e1
v18 v20

e2
v2 v14

e8

e7
v22

v22

v22

Fig. 1. AFDX Network Example

One possible scenario for DRR scheduling at S2 is shown
in Figure 2 where frames of critical flows v1, v2, v3, v7,
v6, v8, v9, v14, v16, v15, v17 arrive at the output port of S2

simultaneously and they are arbitrarily buffered in this order.

TABLE I
VL PARAMETERS IN NETWORK EXAMPLE (FIGURE 1)

Flow BAGi lmax
i DL Flow BAGi lmax

i DL
v1 128 99 300 v12 128 100 660
v2 64 100 310 v13 128 100 890
v3 64 99 340 v14 64 99 900
v4 64 100 390 v15 64 99 900
v5 64 100 590 v16 64 100 910
v6 128 100 600 v17 128 99 920
v7 128 99 600 v18 64 100 930
v8 128 99 610 v19 64 99 930
v9 128 99 620 v20 128 100 950
v10 64 100 650 v21 64 100 950
v11 64 99 650 v22 - 100 -

Units: BAG in msec. lmax in bytes. Deadline (DL) in µsec.
For all flows lmin = 80 bytes.

TABLE II
FLOW CLASSIFICATION (ARBITRARY)

Category Class Flows Frame length Deadline

Critical
C1 v1 – v5 80 – 100 300
C2 v6 – v13 80 – 100 600
C3 v14 – v21 80 – 100 900

Non-Critical CBE v22 80 – 100 -

We assume maximum traffic in non-critical class, which means
there is at least one frame from v22 in CBE buffer at all time.

0C
re

di
t

(b
yt

es
)

round1

frame

100
198
200
297

v1

99

round2

t

v2 v3v7 v6 v8 v16 v15v22v22v14 '

99 99 99 100 98 100 99 100 99 100 99size

v22' v22'' '' v9 v17

100 98 99 99

Fig. 2. DRR scheduling scenario at S2

DRR scheduler serves the classes in rounds. Each class
Ci is allocated a quantum of QCi bytes. In Figure 2, a
quantum of 198 bytes is considered for each class. DRR
scheduler maintains a deficit counter per class, that represents
the number of bytes (a.k.a credit) that an active class is allowed
to transmit each time it is selected by the scheduler. Initially,
the deficit ∆Ci for all the classes is 0. Each time a class Ci is
selected, its credit is set to ∆Ci

+ QCi
. Then, Ci can transmit

frames as long as its queue is not empty and its credit is larger
than the head-of-line frame in its queue. On each transmission
of a frame, the credit is reduced by the frame size. If the queue
becomes empty, the remaining credit is discarded, otherwise,
it is preserved in ∆Ci . Then the next class is selected to be
served.

In Figure 2, we assume that C1 is selected first. It gets a
credit of 198 bytes (its quantum value). Frame from v1 is first
in the queue and it is transmitted, since its size (99 bytes) is
less than the available credit. Since the remaining credit of 99
bytes is not enough for the transmission of next frame (v2) in
C1, it is preserved in ∆C1

to be utilised in the next round.
Therefore, the scheduler moves to the next active class C2

which also gets a credit of 198 bytes. It allows the transmission

of v7 frame but not v6 one and the deficit is 99 bytes. A similar
scenario occurs in C3 that allows transmission of v14. In CBE ,
the first two frames from v22 are in total 198 bytes which is
equal to its credit. Thus they are transmitted and the deficit
is 0. In the next round, C1 gets a credit of 99 (its deficit) +
198 (its quantum) = 297 bytes. C1 consumes 199 bytes for
the transmission of v2 and v3 frames. Since C1 queue is now
empty its deficit is set to 0. Similarly, C2 and C3 also get 297
bytes of credit sequentially, which allows transmission of v6,
v8 v16 and v15 leaving deficit of 98 bytes and so on.

In order to allow a class Cx to be served at least once in
each round its quantum cannot be less than its maximum frame
length lmax

Cx
, so

QCx ≥ lmax
Cx

(1)

Therefore each class with critical traffic can be assigned
the bandwidth it needs to meet the deadlines of its traffic.
The remaining bandwidth (in each round) is available for non-
critical flows and they do not have to wait until there is no
more pending critical traffic. Several classes can be reserved
for critical flows, making it possible to treat differently the
flows with different deadlines.

In contrast to WRR [9] that shares bandwidth, based on
number of frames (without considering their lengths), DRR
allows fair sharing of bandwidth among variable length flow
frames. Moreover in DRR scheduler, if a flow experiences a
deficit of service due to insufficient credit in a given round
then this deficit is compensated in the next round.

A WCTT analysis is mandatory in order to guarantee that
critical flows always respect their deadline. Such an analysis
is presented in the next paragraph.

A. DRR WCTT analysis

The WCTT analysis for DRR was proposed in [5] and
optimised for AFDX in [7]. Both approaches are based on
NC and are now summarised.

The NC is a mathematical framework, based on the (min,
+) algebra, applied to guaranteed service networks in [10]
to compute guaranteed backlog and delay bounds. The delay
computations are based on piecewise-linear curves. In NC, the
traffic and network elements are represented by arrival curves
and service curves respectively.

Based on [5], in a switch deploying DRR scheduler, the
worst-case delay Dh

i for a flow vi of Cx at h is upper bounded
by the maximum horizontal difference between the cumulative
curve (αh

Cx
) of the arrival curves of Cx flows in h and the

service curve βh
Cx

offered to Cx. These curves are shown in
Figure 3 (left).

Since a DRR scheduler shares the network bandwidth
among all the classes, each class Cx gets only a fraction ρhCx

of the link rate R and experiences a scheduler latency ΘCx
.

Thus Cx service is a sequence of periods where it is being
served at full rate and periods where it is waiting for its turn.
It leads to a staircase curve, as shown in Figure 3 (left). Such
a staircase curve can lead to high mathematical complexity in
delay computation. Therefore, the residual service curve for

Cx at h is derived in [5] as an under-approximation of this
staircase curve which is given as

βh
Cx

(t) = ρhCx
× [t−Θh

Cx
− sl]+ (2)

The bandwidth fraction ρhCx
depends on the quantum assigned

to Cx and the sum of quantum assigned to all the classes and
is given by:

ρhCx
=

Qh
Cx∑

1≤j≤nQ
h
j

×R (3)

bits

t
sl

αh
Cx βh

Cx

ρhCx

≥ ρhCx

R
Dh

i,opt

End of Cy service

R

ρhCx

bits

Dh
i

t
sl

αh
Cx

Θh
Cx

βh
Cx

Θh
Cx

Fig. 3. Delay upper bound computation in NC

It has been shown in [7] that the computation of delay Dh
i

based on βh
Cx

of [5] can be too pessimistic as it does not make
any assumption on the volume of competing traffic from other
classes. It assumes that the competing classes Cy (y 6= x)
remain active during the active period of Cx flows and they
consume their maximum credit in each DRR service round.
Hence the residual service for Cx is βCx

(which depends only
on Qx and sum of quantum assigned to all the classes but not
on the distribution of this sum between these classes). It might
not be the case. In some cases, the traffic in Cy can be too low
to remain active and to consume their full credit during the
active period of Cx. So, the residual service of Cx can be much
higher (illustrated in Figure 3 (right)) and it is not independent
of the quantum distribution between competing classes. Thus
[7] optimises the computation by quantifying the maximum
amount of traffic of each competing class within the delay
bound computed by [5]. Therefore the optimised delay in [7]
is obtained by subtracting the time required to transmit the
overestimated traffic assumed by βh

Cx
in the duration [0, Dh

i].
This optimised delay is given by

Dh
i,opt = Dh

i −

nh∑
y=1,y 6=x

over-estimated portion of Cy traffic

R
(4)

And the end-to-end delay upper bound of vi can be computed
by:

DETE
i,opt =

∑
h∈Pi

Dh
i,opt (5)

where Pi is the path followed by vi.
Since [7] takes into account the volume of traffic from

competing classes and not an over-approximated traffic, the
obtained delay bound is tighter. For more information on
Dh

i,opt computation, readers may refer to [7].

B. Problem statement

As briefly explained earlier, DRR scheduling allows to
differentiate critical flows with different deadlines by assigning
them to different classes. Then the bandwidth assigned to these
critical classes can be tailored to the minimum value which
guarantees that no deadlines are missed. All the remaining
bandwidth is available for non-critical flows. The idea is to
maximise the quantity of additional flows that can be served
before critical flows such that the delay of critical flows is
increased but do not exceed the deadline.

Two points have to be addressed:
• distribute critical flows among critical classes,
• find the best possible quantum assignment for these

classes, i.e. one that maximises the bandwidth available
for non-critical flows while ensuring no missed deadlines
for critical ones.

The second point has been addressed in [3]. However, the
proposed solution is based on the basic NC approach of [5].
In the next section, we present an extension which is based
on the optimised NC approach of [7]. Such an extension is
not trivial, since the quantum assignment in [3] is based on
assumptions that do not hold for the NC approach of [7].

We address the first point in Section IV. This flow distribu-
tion has a big impact on results, as it will be shown with the
results in Table V.

III. QUANTUM ASSIGNMENT

First we recall the existing solution proposed in [3]. Then
we show how it can be extended in order to use the optimised
WCTT analysis of [7]. The goal is to significantly increase
the residual service of non-critical class CBE .

A. Overview of the existing quantum assignment approach

The algorithm in [3] is based on two fundamental properties:
• The worst-case delay computation by NC of [5] is in-

dependent of the quantum distribution among competing
classes (Lemma 3.1 in [3]). It means that, in order to
compute the end-to-end delay bound in Cx, only QCx

(a portion of Q) and Q (the sum of quantum distributed
among all the classes) is needed.

• The part of Q available to the non-critical class CBE is
higher for the smaller values of Q provided that each
critical class is assigned the minimum quantum which
guarantees that no deadline is missed, based on the
WCTT analysis of [5] (Lemma 3.2 in [3]).

Based on these properties the basic idea of the proposed
algorithm is to give minimum (yet sufficient) fraction of
quantum sum to critical classes so that the residual quantum
of the non-critical class is maximised. The basic parts of this
algorithm are presented in Algorithm 1.

The process starts with an initial value InitVal for the sum
of quanta Q (line 1). The minimum portion QCi

(called valid
quantum) of Q required by each critical class Ci is computed.
The constraint is that no Ci frame misses its deadline (line 5,
function QUANTUMMIN).

The process stops as soon as the unused portion QResid of
Q is smaller than the computed QCi value (line 6-7) or all the
critical classes have been treated (line 4-8). In the latter case,
the unused portion QResid is assigned to non-critical class
CBE (line 9) and a solution has been obtained. The solution
is improvable (line 10) if the quantum in each class is greater
than the minimum possible value, i.e. its maximum frame size
(equation 1). The improved Q is obtained (line 11) by dividing
it by a factor representing the smallest ratio of the quantum
of a class to its maximum frame size.

The outcome of this algorithm is the distribution of the
smallest Q among all the classes such that every critical flow
respects its deadline and the residual service of non-critical
frames is maximised.

Algorithm 1: Quantum assignment algorithm in [3]
input : Initial sum of quanta (ValInit : Integer)
output: Per class quantum (QC1

, QC2
. . . : Integer)

Data: Remaining quantum (QResid)
1 Q← V alInit ;
2 while true do
3 QResid← Q ;
4 for each critical class Ci do
5 QCi

← QUANTUMMIN(Ci, Q));
6 if QCi > QResid then
7 terminate;
8 QResid← QResid - QCi

;

9 QCBE
← QResid;

10 if ISIMPROVABLE() then
11 IMPROVE(Q);
12 else
13 break;

Let us illustrate the operation of this algorithm on the
network example given in Figure 1 with flows divided into
3 critical classes and 1 non-critical class as shown in Table
II. The maximum service rate at each output port is R = 100
bits/µsec.

Initially, let us assume a sum of quanta Q = 741 bytes. The
process starts with critical class C1 whose deadline is 300
µsec. The minimum quantum needed by C1 to meet all its
deadline is determined, thanks to a binary search between the
maximum possible value (741 bytes) and the maximum C1

frame size. We get Q1 = 270 bytes.
The minimum quanta for C2 and C3 are determined with a

similar process. We get QC2
= 106 bytes and QC3

= 100 bytes.
Thus, the residual quantum for non-critical class is QCBE

=
741 - (270+106+100) = 265 bytes, which is 265

741 × 100 =
35.76% of Q.

Since a valid quantum distribution for each class is obtained
and at least one class (C3) receives a quantum equal to its
maximum frame length, the algorithm returns the quantum
distribution QC1

= 270, QC2
= 106, QC3

= 100 and QCBE
=

265 as its solution.

B. Improved quantum assignment

As mentioned earlier, [3] relies on WCTT analysis based
on NC approach of [5] which is shown to be pessimistic and
optimised in [7].

Due to this pessimism, the delay bounds computed in Algo-
rithm 1 are much higher than the actual delays in the network.
Delay bounds on the example in the previous paragraph are
given in Table III. For the quantum distribution QC1

= 270,
QC2

= 106, QC3
= 100 and QCBE

= 265 bytes resulting from
Algorithm 1 the maximum end-to-end delays, computed by
NC of [7], in critical classes are Dmax

C1,opt
= 245.612, Dmax

C2,opt

= 390.72 and Dmax
C3,opt

= 483.32 µsec. They are significantly
lower than those computed by the NC approach considered in
Algorithm 1.

TABLE III
EFFECT OF PESSIMISM ON THE RESULTS OF [3]

Flow Di Di,opt Flow Di Di,opt

C1

v1 224.42 216.49 v2 297.79 245.612
v3 216.34 208.41 v4 216.42 208.49
v5 216.42 208.49

C2

v6 583.18 382.64 v7 583.27 382.72
v8 583.27 382.72 v9 583.27 382.72
v10 583.27 382.72 v11 583.27 382.72
v12 591.35 390.72 v13 591.35 390.72

C3

v14 892.54 483.32 v15 613.72 382.52
v16 613.80 382.6 v17 621.80 390.6
v18 892.54 483.32 v19 613.72 382.52
v20 892.54 483.32 v21 621.80 390.6

Di : End-to-end delays (in µsec) obtained by NC from [5]
Di,opt End-to-end delays (in µsec) obtained by optimised NC from [7]

Function QuantumMin in Algorithm 1 stops decreasing the
quantum QCx

for a given critical class Cx when its computed
delay bound (based on NC of [5]) is near (and smaller) to
its deadline. Since this delay bound can be pessimistic, there
remains a possibility to decrease the quantum share for Cx

(eventually increasing the residual quantum share for CBE)
while still respecting its deadline.

However, the optimised NC approach cannot be directly
integrated in Algorithm 1. As mentioned earlier, the imple-
mentation of the function QuantumMin in Algorithm 1 is
based on the assumption that the WCTT analysis is carried out
independently for each class, i.e. in order to compute the end-
to-end delay bound in a class Cx, only QCx

(a portion of Q)
and Q (the sum of quantum distributed among all the classes)
is needed. This assumption does not hold for the optimised NC
approach of [7]. In order to compute tight delay bounds, [7]
takes into account the impact from competing classes, which
is affected by the distribution of Q in these classes.

Therefore, we propose an extension to Algorithm 1 which
takes the quantum distribution result from Algorithm 1 and
improves it by deploying the NC approach from [7]. The main
idea is to improve the quantum share of the non-critical class
by decreasing the quantum of critical classes and/or increasing
the quantum of non-critical class until the computed delay
bound (based on NC in [7]) in critical classes is near (and
smaller) to their respective deadlines.

Before giving the algorithm, he process is illustrated on the
example in Figure 1 with flow classification in Table II.

1) Process overview: Table IV summarises the steps of the
process. It starts with the quantum assignment computed by
the algorithm in [3]. Using the optimised WCTT analysis of
[7], the maximum end-to-end delays for critical classes are
smaller than those which are considered by the algorithm
in [3] (as shown in Table III). Therefore there is a margin
for each critical class, which is the differences between this
optimised end-to-end delay bound and the deadline. These
margins are listed in Table IV. For instance, for class C1,
it is 18.129% (between 245.612 µs and 300 µs). This initial
quantum assignment reserves 35.76% of the bandwidth to non-
critical flows.

The first step of the process consists in decreasing quanta
associated with critical classes as much as possible, keeping
the quantum assigned to non-critical class. It comes to find
the smallest quanta for critical classes such that, for each
critical class, the end-to-end delay bound computed with the
optimised WCTT analysis is not greater than the deadline
and the quantum is at least the maximum frame size. For
the considered example, quanta for C1 and C2 are reduced
to 199 and 100 bytes, while quantum for C3 is not changed.
They cannot be further decreased since they correspond to the
minimum frame size (for classes C2 and C3) or it would lead
to a delay bound greater than the deadline (class C1). Now
the non-critical class gets 39.91% of the bandwidth.

The second step consists in increasing, as much as possible,
the quantum assigned to the non-critical class while keeping
the quanta assigned to critical ones. This step gives a quantum
of 311 bytes which leads to 43.8% of the bandwidth.

At this point, the critical class quanta cannot be decreased.
However, margins for class C2 and C3 are large (around 29%
and 41%). Therefore, in the third step, the quantum of class
C1 (the one with no margin) is increased in order to be able to
increase the quantum for non-critical class. It gives 398 bytes
for C1 quantum.

Now, the bandwidth for the non-critical class is decreased
to 34.21%. However, since no critical class has a margin close
to 0, the second step can be applied again (as a fourth step). It
gives 554 bytes for non-critical class quantum, corresponding
to 48.09% of bandwidth. These steps (second to forth) gives
a gain of around 5% by increasing quanta of classes C1 and
CBE .

A similar process can be applied again, i.e. increase the
quantum of class C2 (the critical class with the smallest
margin) to 125 and then the quantum of CBE to 624. The
new bandwidth for non-critical class is 50.04%.

Since all margins are small, there is no point to apply the
same process again. However, the quanta for the critical classes
can still be decreased, down to the situation where decreasing
them more would lead to a delay bound greater than the
deadline or a quantum smaller than the maximum frame size.
At the end, the bandwidth for the non-critical flows is 54.97%.

The improvement from the existing approach in [3] is sig-
nificant (from 35.76% to 54.97%). We argue that the obtained

TABLE IV
IMPROVED QUANTUM ASSIGNMENT PROCESS

Quantum (bytes) Margin (%) BW
C1 C2 C3 CBE C1 C2 C3 CBE

Quantum assignment from [3]
270 106 100 265 18.128 34.88 46.297 35.76%

First step: decrease critical class quanta
199 100 100 265 6.229 34.88 46.3 39.91%

Second step: increase non-critical class quantum
199 100 100 311 0.089 29.36 40.98 43.8%

Third step: increase quantum for critical classes with no margin
398 100 100 311 27.32 29.32 40.95 34.21%

Fourth step: increase non-critical class quantum
398 100 100 554 7.88 0.113 12.84 48.09%

Fifth step: increase quantum for the critical class with no margin
then for the non-critical class

398 125 100 624 0.95 0.005 4.75 50.04%
Final step: decrease quanta for critical classes

299 112 100 624 1.54 0.005 4.75 54.07%

quantum assignment should be close to optimum, assuming
the WCTT analysis of [7]. Indeed, margins for critical classes
are small (less than 5%) and the quantum cannot be smaller
for class C3 (largest margin), since it is the maximum frame
size. We recall that it has been shown in [3] that smaller values
of sum of quanta Q lead to a higher bandwidth for CBE .

2) Algorithm: Algorithm 2 implements the process de-
scribed in the previous paragraph. Every WCTT computation
is based on the optimised NC approach of [7].

Algorithm 2: Improved quantum assignment algorithm
input : Quantum distribution from Algorithm in [3] :

QC1
. . . QCn

(Integer)
output: Per class quantum: res{QC1 . . . QCn} (array)

1 while true do
2 for i = 1 to (n− 1) do // Minimise Ci service

3 REDUCETOMIN(QCi
);

4 res ← {QC1
. . . QCn

};
5 previousQCn

← QCn
;

6 while true do // Maximise Cn service

7 INCREASETOMAX(QCn);
8 if CHECKSTOPCONDITION(ε) then
9 break;

10 else
11 INCREMENTSMALLESTDIFF();

12 if previousQCn == QCn then
13 break;

Three operations have to be executed one or several times.
• REDUCETOMIN(QCi

) decreases quantum assigned to
critical class Ci as much as possible, while keeping the
quantum of the non-critical class. The implementation is
based on a binary search between the current value of
QCi

and its minimum possible value, i.e. the maximum
frame size of Ci traffic.

• INCREASETOMAX(QCn
)) increases the quantum associ-

ated with the non-critical class as much as possible while

keeping the quanta assigned to critical classes. The value
of QCn is doubled as long as it does not lead to missed
deadlines for critical classes. As soon as it is the case, a
binary search is implemented between the reached value
and the previous one.

• INCREMENTSMALLESTDIFFERENCE() increases the
quantum assigned to the critical class with the smallest
margin (so that the quantum associated with the non-
critical class can be increased furhter). The quantum of
the critical class Ci with minimum margin is doubled.
If it does not lead to missed deadlines for other critical
classes, the new value is kept as quantum for Ci.
Otherwise, a binary search is implemented between the
new value and the initial one.

The algorithm takes the quantum distribution from Algo-
rithm 1, i.e. QC1 , . . . QCn , as input.

First, the quantum QCi
for each critical class Ci (i 6= n)

is reduced so that the corresponding end-to-end delay bound
remains less than the delay constraint in Ci and the quantum
is at least the maximum frame size (line 2–3). The resulting
quantum values are stored in res.

Next, the maximum quantum QCn for non-critical class Cn

is computed (line 6–11). This step is divided in two parts. In
the first part, the quantum QCn

is increased while the end-to-
end delay bounds in all the critical classes remain less than
their respective delay constraint in Ci. In the second part,
the quantum of the critical class with the smallest margin is
increased.

Both parts are repeated until the margin for each critical
class is reduced below a value ε (line 8–9). The whole process
is repeated until QCn

reaches a value which cannot be further
improved (line 12–13).

IV. FLOW DISTRIBUTION

Up to now it has been considered that critical flows have
been distributed in classes and the proposed quantum assign-
ment maximises the bandwidth available for non-critical flows
with no missed deadlines for critical ones. In this section,
we show that the distribution of critical flows in classes has
a significant impact on achievable bandwidth for non-critical
ones. Finding an optimal distribution by exhaustive search is
intractable, even for configurations with limited number of
flows (e.g. configuration in Figure 1 with 21 critical flows).
Thus we identify flow features which have to be taken into
account in order to propose a flow distribution heuristic.

Let’s come back to the network configuration in Figure 1
and consider the three following flow distributions for critical
flows (v1 to v21):

FD1: a single critical class C1 with flows v1 . . . v21,
FD2: two critical classes C1 and C2 with v1, v6, v12, v13

in C1 and the other critical flows in C2,
FD3: three critical classes C1, C2 and C3 with v1, v2, v3,

v8, v9 in C1, v4, v5, v7, v10, v11, v12, v15, v16 in C2

and the other critical flows in C3.
In each flow distribution case, our improved quantum assign-
ment algorithm is applied and the corresponding results are

shown in Table V. These results show that distributed critical

TABLE V
FLOW DISTRIBUTION IN CRITICAL CLASSES AND THE RESULTS OF

QUANTUM ASSIGNMENT ALGORITHM

Flows DL QCi
QCBE

FD
1

C1 v1 – v21 300 219
(67.8%)

104
(32.2%)

FD
2 C1 v1, v6, v12, v13 300 100

(12.84%) 231
(29.65%)

C2
v2–v5, v7–v11,

v14–v21
310 448

(57.51%)

FD
3

C1 v1, v2, v3, v8, v9 300 199
(24.12%)

376
(45.58%)C2

v4, v5, v7, v10,
v11, v12, v15, v16

390 150
(18.18%)

C3
v6, v13, v14, v17,
v18, v19, v20, v21

600 100
(12.12%)

FD
4

C1 v1 – v4 300 249
(23.29%)

608
(56.88%)C2 v5 – v12 590 112

(10.48%)

C3 v13 – v21 890 100
(9.35%)

Units: Deadline (DL) in µsec. Quantum distribution in bytes

flows in different classes is not always beneficial. Indeed, FD1

(one critical class) leads to 32.2% of bandwidth for non-critical
flows and is better than FD2 (two critical classes, 29.65% of
bandwidth for non-critical flows), but worse than FD3 (three
critical classes, 45.58% of bandwidth for non-critical flows).
Actually, two main factors impact the results:
• the difference between flow deadlines within each class:

the overall deadline of a class (input of quantum assign-
ment) is the smallest deadline among all the flows in the
class. It comes to consider that all the flows in the class
have to respect this smallest deadline. As soon as some
flows in the class have a much higher deadline, the result
is to significantly increase the required bandwidth for the
class, leading to a reduction of the bandwidth available
to non-critical flows. Thus, the difference between flow
deadlines within a class should be as small as possible.

• the number of classes: increasing the number of classes
increases the scheduler latency computed by NC ap-
proach, since this computation considers the worst case
for the deficit of competing classes (quantum plus maxi-
mum frame size minus one byte). Moreover, the residual
bandwidth that can be provided to any class decreases
since the total bandwidth has to be shared among more
classes in each DRR scheduling round.

These impacts can be illustrated on the results in Table V.
Class C1 in FD1 includes flows with very different deadlines
(from 300 µs to 950 µs). Deadline variations are similar
for FD2 (from 300 µs to 890 µs for C1, from 310 µs to
950 µs for C2). Therefore FD2 is mainly impacted by the
increased scheduler latency induced by the additional critical
class, leading to a reduced bandwidth for non-critical flows.
Conversely, the deadline variation within classes is smaller for
FD3 (from 300 µs to 620 µs for C1, from 390 µs to 910 µs
for C2, from 600 µs to 950 µs for C3) and the benefit more

than compensate for the increased scheduler latency induced
by the additional critical classes. In general, the impact of
deadline variation within classes is much higher that the cost
of scheduler latency. This is the case for FD3 and the same
trend has been observed in all conducted experiments.

Based on this observation, we propose the following heuris-
tic to efficiently distribute these flows in different classes so
that their bandwidth requirement is reduced and the residual
bandwidth for non-critical class is increased. The principle is
to group the flows with similar delay constraints in the same
class so that they can be assigned a quantum which allows
them to be served in a delay not far from their deadlines.
• Critical flows are sorted by increasing deadlines,
• We assume that the maximal number of classes is known.

This is a reasonable assumption, since each output port
of the QoS aware AFDX switch implementing DRR will
have a fixed number of queues, thus classes.

• Based on the number n − 1 of critical classes, the n −
2 most significant increments in the flow deadlines are
identified as the boundaries of the classes.

The process is implemented by Algorithm 3.

Algorithm 3: Flow distribution
input : Maximum number of classes : n
output: List of critical class boundaries : res
Data: Critical Flows : VL (list), Qunatum distribution

QL (list), Critical class boundaries : BList (list)
1 SORTFLOWS(VL);
2 BList ← GETSIGNIFICANTINCREMENTS(VL);
3 previousQL ← empty;
4 i← 0;
5 while size(res) < n-2 and i < size(BList) do
6 i← i+ 1;
7 res.append(BList[i]);
8 DISTRIBUTEFLOWS(res, VL);
9 QL ← COMPUTEQUANTUMDISTRIBUTION();

10 if ISIMPROVED(QL, previousQL) then
11 previousQL ← QL
12 else
13 res.remove(BList[i]);

Let us illustrate this algorithm on the network example in
Figure 1, assuming four classes (n = 4). Critical flows (v1 to
v21) are sorted by increasing deadlines (actually the order in
Table I). The n − 2 most significant increment in deadlines
(i.e. potential class boundaries) are determined by decreasing
values and corresponding potential class boundaries are stored
in BList (line 2): in the example, between v12 and v13 (890−
660 = 230 µs), then between v4 and v5 (590−390 = 200 µs).
Then each potential boundary is considered (line 5–13). In the
first iteration, the boundary between v12 and v13 is considered.
It distributes flows in two classes: C1 gets v1 to v12 and C2

gets v13 to v21 (line 8). Quanta for the classes are computed by
our improved quantum assignment algorithm (line 9). It gives

a first solution with two critical classes. In the next iteration,
the same process is applied with the boundary between v4 and
v5 leading to three classes (C1 gets v1 to v4, C2 gets v5 to v12
and C3 gets v13 to v21). It leads to a second solution with three
critical classes, which, in the example, gives more bandwidth
for non-critical flows than the first solution. Therefore, this
second solution is kept (line 10–13). The process stops, since
we assume no more than three critical classes in our example.

The resulting flow distribution FD4 is shown in Table V.
It clearly outperforms previous flow distributions FD1, FD2

and FD3 with more than 56% of bandwidth for non-critical
flows. For instance we have 32% of this bandwidth when there
is a single critical class (FD1).

V. EVALUATION

In this section, the two solutions proposed above are eval-
uated on an Airbus A380 aircraft ”like” industrial network
configuration. The gain introduced by Algorithm 2 is also
compared to the existing solution of [3].

The given network configuration includes 96 end-systems
interconnected by 8 switches forwarding 984 flows on 6276
paths (multi-cast VL). Frame lengths are between 84 and 1535
bytes and BAGs are between 2 and 128 ms.

These flows are distributed in 3 critical classes (C1–C3),
based on the solution proposed in Section IV, as shown
in Table VI. Ten additional flows are arbitrarily introduced,
characterised by non-critical class CBE , which share the path
with each critical flow on at least one switch output port.

TABLE VI
FLOW DISTRIBUTION AND QUANTUM ASSIGNMENT

C1 C2 C3 CBE

Flows
(paths)

280
(1681)

229
(1488)

475
(3107)

10
(501)

BAG 2–16 32 64–128 -
Frame
lengths 84–1497 84–1371 84–1535 84–934

Deadline 13000 39000 52000 -
Quantum distribution (in bytes)

Initial 6057 1640 1535 1012
(9.87%)

Algo 2 8130 1943 1535 5190
(30.89%)

Units: BAG in msec. Frame lengths in bytes. Deadline in µsec.

The quanta computed by Algorithm 2 as well as the algo-
rithm in [3])) are shown in Table VI, where Initial corresponds
to [3]. These quanta are then used to compute the worst-case
end-to-end delays based on optimised NC approach of [7]. For
comparison, the results are plotted in increasing delay order
(per class) in Figure 4. It can be observed from Figure 4 that
the improved quanta (by Algorithm 2) bring the delay bounds
in all the critical classes closer to their respective deadlines,
which allows the residual quantum share for non-critical class
to increase to 30.89% as compared to the initial value of 9.87%
(Table VI).

VI. CONCLUSION

In this paper, a QoS-aware AFDX network is considered
where each output port is managed by a DRR scheduler. This

Delays with improved Q

C1 Deadline: 13ms 2 3 Deadline: 52ms

Delays with initial Q

0

2

4

6

8

10

12

14

0 425 850 1275 1700
0
5

10
15
20
25
30
35
40
45

0 400 800 1200 1600
Flow paths

0

10

20

30

40

50

60

0 450 900 1350 1800

D
el

ay
 (

m
se

c)

Deadline: 39msC C

Fig. 4. Results on industrial AFDX configuration

network is shared between critical (avionic) and non-critical
(additional) flows. We address the problem of distributing
flows among traffic classes (n−1 critical classes, 1 non-critical
one) and compute the quanta which ensure the delays less than
the deadlines in critical flows and maximise the bandwidth for
the non-critical flow. The approach of [3] is improved in two
ways. First, the quantum assignment algorithm is redesigned to
exploit the optimised WCTT analysis of [7] ([3] uses the basic
WCTT analysis of [5], since it makes assumptions which do
not hold with the WCTT analysis of [7]). Second, a heuristic
is proposed for the distribution of critical flows in classes.

The solution presented in this paper outperforms the one in
[3]. On a realistic case study, the bandwidth for non-critical
flows guaranteed by [3] is less than 10% and it is more than
30% with the new approach.

For future work, other policies are envisioned for AFDX,
e.g. WRR [11], that also requires a configuration solution.

REFERENCES

[1] “Aircraft Data Network, Parts 1,2,7 Aeronotical Radio Inc.” ARINC
Specification 664, Tech. Rep., 2002 - 2005.

[2] T. Hamza, J.-L. Scharbarg, and C. Fraboul, “Priority assignment on an
avionics switched Ethernet Network (QoS AFDX),” in IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS), 05 2014.

[3] A. Soni, J.-L. Scharbarg, and J. Ermont, “Quantum assignment for QoS-
aware AFDX network with deficit round robin,” in 27th International
Conference on Real-Time Networks and Systems (RTNS), 2019, p. 70–79.

[4] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” in IEEE/ACM Transactions on Networking, vol. 4, no. 3,
1996, pp. 375–385.

[5] M. Boyer, G. Stea, and W. M. Sofack, “Deficit Round Robin with Net-
work Calculus,” in IEEE 6th International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS), 10 2012, p. 10.

[6] S. S. Kanhere and H. Sethu, “On the latency bound of deficit round
robin,” in 11th International Conference on Computer Communications
and Networks (ICCCN), 10 2002.

[7] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “Optimizing Network
Calculus for Switched Ethernet Network with Deficit Round Robin,” in
IEEE Real-Time Systems Symposium (RTSS), 12 2018, pp. 300–311.

[8] S. Noda and K. Yamaoka, “Approach to optimal wrr weight assignment
method in delay-limited environment,” in 13th IEEE Annual Consumer
Communications Networking Conference (CCNC), 01 2016.

[9] M. Katevenis, S. Sidiropoulos, and C. A. Courcoubetis, “Weighted
round-robin cell multiplexing in a general-purpose ATM switch chip,”
in IEEE Journal on Selected Areas in Communications, vol. 9, no. 8,
10 1991, pp. 1265–1279.

[10] J.-Y. L. Boudec and P. Thiran, Network Calculus: a theory of determin-
istic queuing systems for the internet (Book). LNCS, 04 2012.

[11] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “WCTT analysis of
avionics switched Ethernet network with WRR scheduling,” in 26th
International Conference on Real-Time Networks and Systems (RTNS),
2018.

