
HAL Id: hal-02965528
https://hal.science/hal-02965528v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a generic platform for the distribution of
avionics applications on manycores

Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset, Jean-Luc Scharbarg

To cite this version:
Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset, Jean-Luc Scharbarg. Towards a generic plat-
form for the distribution of avionics applications on manycores. Work-in-Progress Session of 31st
ECRTS 2019, Jul 2019, Stuttgart, Germany. pp.4-6. �hal-02965528�

https://hal.science/hal-02965528v1
https://hal.archives-ouvertes.fr

Towards a generic platform for the distribution of
avionics applications on manycores

Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset, Jean-Luc Scharbarg
IRIT - Université de Toulouse

2 rue Charles Camichel
31000 Toulouse, France

{firstname.lastname}@irit.fr

Abstract—The interconnection of many-cores by an avionics
full duplex switched Ethernet network (AFDX) is envisioned for
future avionics architecture. The principle is to distribute avionics
functions on these many-cores. Many-cores are based on simple
cores interconnected by a Network-on-Chip (NoC). The allocation
of functions on the available cores as well as the transmission of
flows on the NoC has to be performed in such a way that avionics
timing constraints are never violated. Several theoretical solutions
have been proposed for this distribution. However they have not
been evaluated on real architectures. In this paper we introduce
a framework for the prototyping of such implementations. This
framework is based on the existing ProNoC tool which allows
the configuration of an FPGA as a NoC. The goal is to be able
to compare distribution solutions with different NoC features in
terms of scheduling or routing.

Index Terms—Many-cores, NoC, task distribution, avionics

I. APPLICATION DOMAIN AND CHALLENGE

Aircrafts include numerous electronic equipments. Some of
them, like flight control and guidance systems, provide flight
critical functions, while others may provide assistance services
that are not critical to maintain airworthiness. Current avionics
architecture is based on the integration of numerous functions
with different criticality levels into single computing systems
(mono-core processors) [1]. These computing systems are
interconnected by an AFDX (Avionics Full Duplex Switched
Ethernet) [2]. As depicted in the upper part in Figure 1, the
End System (ES) provides an interface between a processing
unit and the network.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

processing
unit

hosting
avionics

applications

End
System

...

...

...

...

...

...

eth

eth

eth

ddr memory

ddr memory

...

...

...

...

...

...

...

AFDX network

Avionics Computer System

Current architecture

Envisioned architecture

...

AFDX network

Fig. 1. An AFDX network.

Mono-core architectures are being replaced by multi- or
many-core ones in many contexts. This move is also envi-
sioned in aircrafts. However, multi-core architectures are based
on complex hardware mechanisms whose temporal behavior
is difficult to master. Conversely many-core architectures are
based on simpler cores interconnected by a Network-on-Chip
(NoC). These cores are more predictable [3]. Thus, many-cores
are promising candidates for avionics architecture. Such an
architecture integrating many-cores is illustrated in the lower
part in Figure 1. A typical many-cores architecture provides
Ethernet interfaces which are used for the connection with
the AFDX network. Additionaly, memory controllers manage
access to DDR. An an example, Tilera Tile64 has 3 Ethernet
interfaces and 4 memory controllers [4].

The envisioned avionics architecture depicted in the lower
part in Figure 1 is a mixed NoC/AFDX architecture. Avionics
functions are distributed on the available many-cores. Commu-
nications between two functions allocated on the same many-
cores (local functions) use the NoC, while the communica-
tions between two functions allocated on different many-cores
(remote functions) use both the NoC and the AFDX. Main
constraints on this communication are the following:

1) end-to-end transmission delay has to be upper-bounded
by an application defined value,

2) frame jitter at the ingress of the AFDX network has to
be smaller than a given value (typically 500 µs).

The first constraint concerns local and remote functions, while
the second one only concerns remote functions. Transmission
delays on the NoC have an impact on both constraints.
These delays can vary for different reasons. First, a frame
can be delayed by other frames crossing the same routers
(router contentions). Second, in the case of a transmission
between remote functions, the Ethernet controller can be busy,
transmitting another frame (controller contention).

The mapping of functions on the many-cores has a major
impact on this NoC delay variation. [5] proposes a mapping
strategy that minimizes router contention. In this strategy, each
core is allocated at most one function and each avionics flow is
managed by its source function. [6] proposes a different strat-
egy, based on a static scheduling of Ethernet transmissions:
each transmission is assigned a periodic slot in a table. Thus
there are no more controller contentions and router contentions

are reduced, thanks to the mapping of functions on cores.

II. MOTIVATION

Both [5] and [6] consider Tilera Tile64 many-cores [4].
However delay computation are based on a model of the many-
core and no implementation is provided.

Therefore the first motivation of this study is to map
avionics functions on a hardware platform. One goal is to
validate results in [5] and [6].

The second motivation of this study is to be able to tune
many-core features, mainly NoC ones. Different many-cores
implement different topologies, different buffer sizes in router
ports, different scheduling algorithms in routers or different
routing strategies. For instance, Kalray MPPA [7] has larger
buffers than Tilera Tile64.

Therefore our goal is to map avionics functions on a generic
hardware platform that can be configured, based on existing
NoC features. As a first step, we consider a single many-core.

III. PROBLEM STATEMENT

The problem is to distribute a set of n applications
A0, . . . , An−1 on a many-core. Each application Ai is com-
posed of ni communicating tasks ti,0, . . . , ti,ni−1 Communi-
cation between tasks are modelled by a graph. The number of
cores as well as the NoC topology, buffer size and scheduling
algorithm in routers, routing are configurable. The distribu-
tion assumes a mapping strategy, e.g. SHiC [8], MapIO [9],
strategies proposed in [5] and [6] or an ad hoc one.

The resulting mapping is implemented on a hardware plat-
form, typically an FPGA, e.g. a Nexis4 card and transmission
delays are measured. These measured delays are then com-
pared with theoretically computed values.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

The proposed solution is based on a prototyping tool. In the
next paragraphs we present its main features and a preliminary
case study.

A. The prototyping tool ProNoC

ProNoC (Prototype NoC) has been defined in [10] and
is a prototyping tool which allows the design of many-core
system on chips (MCSoC). It proposes an interface to generate
the hardware code of a complete MCSoC. As shown in
Figure 2, this MCSoC is composed of processing tiles (PT)
interconnected using a NoC.

A processing tile (Figure 2b) is composed of different IP
(Intellectual Property) cores interconnected by a Wishbone
bus, an internal shared bus defined by OpenCores [11]. These
IP cores include memory (RAM), processor, GPIO, timer,
UART jtag and NI (Network Interface). The NI core allows
the transmission of the data from (to) the tile to (from) the
NoC.

ProNoC allows to generate a NoC. A NoC router is shown
in Figure 2c. It is composed of Input and Output ports and
a crossbar switch. The route of the packet is computed in
LRC. In order to support quality of service for different

A. Monemi et al. / Microprocessors and Microsystems 54 (2017) 60–74 63
Two pipelined FPGA-based NoC router architectures using split-

merge technique were proposed in [60,61] . In the first pipeline
stage of the split-merge NoCs, all received packets, which are
stored inside each input queue buffer are split based on the rout-
ing algorithm and saved in middle channel buffers. Hence, for
each input port, there is p − 1 middle buffers, which make in total
p × (p − 1) middle channel buffers for each router, where p is the
number of ports in one router. In the second pipeline stage (merge
state), each output port reads one active middle channel buffer by
using an arbiter. Both pipelined router designs were reported to
achieve a higher maximum operating frequency (up to 4 ×) than
4-VC CONNECT NoC. However, both architectures in [60,61] did not
support VC. Hence, a VC based router cannot be fairly compared
with their non-VC based router. In fact, VCs are expensive compo-
nents in both ASIC [68] and FPGA [23] platforms.

Kapre and Gray [24] proposed Hoplite , a low-cost NoC with an
aim to outperform CONNECT [18] and Split-Merge [60,61] NoCs by
offering lower area overhead. However, this goal was obtained by
removing VC and input buffers (bufferless NoC). As a flit can no
longer be buffered, their router deflects a flit when its desired
destination link is not available. This scheme results in a packet
cycling and non-minimal routing. It also introduces performance
degradation by increasing the average communication latency (up
to 100k clock cycles at injection ratio above 5% [69]).

Existing NoC prototypes on FPGA partially support the state-of-
the-art ASIC NoC optimizations. Designing a versatile FPGA-based
NoC platform which can support most advanced up-to-date NoC
features is the main goal of this work. Based on the literature re-
view, an optimized NoC platform is recommended to support VC,
VN, different routing algorithms, low pipeline latency, non-atomic
VA, and combined VA and SA as in ASIC NoC implementation.

In our previous paper [70] , we presented our preliminary two-
cycle NoC router prototype with support on VC, non-speculative
combined VA and SA, non-atomic VC reallocation and different
routing algorithms. However, the previous NoC router does not
support VN partitioning as VCs were added only for network
throughput enhancement. The proposed router is improved by
adding the following features:
1. An improved flow control for fully adaptive routing which al-

lows exchanging packet between EVCs and AVCs as well as
non-atomic VC reallocation on 80% of all available VCs in NoC
in [71] .

2. Support of different message classes for VN partitioning. Adding
static straight allocator (SSA) which allows single cycle latency
on packets traveling to the same dimension in [72] .
In this paper, we present ProNoC, our improved prototype plat-

form that generates the RTL codes of a complete heterogeneous
NoC-/WB-based MCSoC in a plug-and-play manner. We have devel-
oped several parameterizable hardware description language (HDL)
codes including network interface adapter (NI), memory controller,
Joint Test Action Group (JTAG) interface and general purpose in-
put/output (GPIO) which can be connected to available open-
source soft-core WB-based processors to generate a PT. PTs later
can be connected to the proposed low-latency NoC to generate a
heterogeneous MCSoC. ProNoC comes with several tools which au-
tomate these steps. We have also developed a NoC emulator which
speeds up NoC simulation using an FPGA device.
3. ProNoC system overview

Fig. 1 provides a general overview of the ProNoC MCSoC. This
consists of PTs (Fig. 1 (b)) connected via a low latency wormhole
VC-based NoC router(Fig. 1 (c)).

Fig. 1. ProNoC functional block diagram (a) MCSoC, (b) processing tile (PT), (c) NoC
router.
3.1. Router micro-architecture

The main contribution of ProNoC that is its FPGA-optimized
NoC architecture has been developed by analyzing of the two re-
cent existing open-source VC based NoC RTL codes, namely the
Stanford NoC [17] and CONNECT [18] . Stanford NoC targets ASIC
implementation and is enhanced with VC support, shared buffer
memory, non-atomic VC reallocation, low latency router (2-cycle),
look-ahead routing and speculative combined VC and SW alloca-
tors. However, it also consumes large number of LCs when mapped
to an FPGA platform [18] . As mentioned in Section 2 , CONNECT at-
tempted to solve this problem at the cost of reducing router’s max-
imum operating frequency. ProNoC proposes an open-source NoC
platform architecture that functionally behaves like Stanford NoC
and yet is more optimized than CONNECT NoC when is mapped in
an FPGA device. To do this, we first investigated the Stanford NoC
and discovered how its RTL code can be optimized for FPGA map-
ping without introducing drawback on router’s pipeline stages or
maximum operation frequency.

The rest of this section discusses the proposed low latency
router micro-architecture. Fig. 1 (c) shows the functional block di-
agram of proposed router by ProNoC tool. This router consists of
input/output (IO) ports, VSA, SSA, LRC, and a CS. The router’s HDL
code is parameterizable in terms of the number of IO ports, VC,
VN and buffer size per VC. Other parameters were also added for
selecting atomic or non-atomic VC reallocation, different RCs and
to enable/disable the use of SSA.
3.1.1. IO ports

In the proposed router, all input VCs located in the same in-
put port share one FPGA’s embedded dual port BRAM. Unlike
CONNECT which implements all VCs’ buffers using FPGA LCs, this
method significantly reduces the overall router LCU. In [72] , we
showed that for implementation of 4 × 4 NoCs on Stratix IV
EP4SGX230KF40C2 Altera FPGA, this method can save up to 40%
LCs while only introduces approximately 5% memory utilization
overhead. CONNECT targets for a single-cycle NoC router that ex-
ecutes ST stage directly after SA in the same clock cycle. Hence,
this technique could not be adopted by CONNECT as it requires an
asynchronous address/data read stage which cannot be supported
by current FPGAs’ BRAMs.

In our proposed router, single-cycle zero load latency can be
supported only for packets traveling to the same dimension (see
Section 3.1.4). To support this feature, the additional circuit (shown
in gray color in Fig. 2) is required to bypass the BRAM.

Fig. 3 shows how masking VSA’s signals can be generated in
a router with non-atomic VA. As multiple packets from different

Fig. 2. Overview of an MCSoC obtained using ProNoC [10]

t00 t01

t02t03

t10t11

t12t13

t30

t31t32

t33

t20t21

t22 t23

Fig. 3. Application mapping in the many-core (A0: upper left, A1: upper
right, A2: bottom left, A3: bottom right)

messages, the NoC can use different virtual channels (VC).
The management of these virtual channels is done by the SSA
and VSA parts of the router.

ProNoC proposes a graphical interface in order to customize
the MCSoC. It is possible to configure the definition of
the PTs, i.e. what are the IP cores used for each PT. The
parameterizitation of the NoC includes the number of virtual
channels, the size of the buffers, the routing algorithm (XY,
adaptative routing, . . .), the switch arbitration (RRA, WRRA)
and the topology (2D Mesh, Torus, . . .).

The main goal of ProNoC is to provide the FPGA im-
plementation of a fully functionnal MCSoC. Once all the
MCSoC parts have been constructed, the tool generates the
Verilog files that can be compiled for the FPGA. ProNoC tool
provides also a NoC simulator to evaluate the performance
of the NoC. Finally, ProNoC contains a NoC emulator. It
provides a behavioural execution model of the MCSoc and
the programming interface for processors cores.

B. A preliminary case study

We illustrate our solution based on ProNoC on a small case
study. This case study is composed of 4 applications, named
A0 to A3. Each application Ai is composed of 4 tasks ti,0 to
ti,3. The communication graph for each application is given
in Figure 4. The size of all the packets is 3 flits. One flit (flow
digit) is 4 bytes.

As represented in Figure 3, the NoC is a 2D-mesh network.
It uses XY routing algorithm. The flits are stored in input
queues of the NoC routers. The size of these queues is 4 flits.

Application 1

t13

t11 t10 t12

Application 0

t03

t01t00

t02

Application 2

t23

t21

t20

t22

Application 3

t33

t31

t30

t32

Fig. 4. Communication task graph for each application

The scheduling policy is round-robin. No virtual channel is
used.

Each core of the tiles executes at most one task.
The applications are allocated on the many-core using SHiC

strategy [8]. Figure 3 shows the resulting mapping.
Using the ProNoC emulator, the tasks are executed by the

processor core of the tiles. Our methodology is as follow. (1)
The task send the packet using ni_transfert function. (2)
This function asks the transmission to the network interface of
the tile. (3) A timestamp function is started. This function gets
the global clock value. (4) When the data are received by the
destination tile, the NI sends an interruption to the processing
core executing the reception function. (5) The handler of this
interruption reads the packet and gets the clock value.

Finally, the difference between the sending time and the
receiving time is the global transmission delay obtained using
the ProNoC tool. The results are given in Table I. We compare
the results with theoretical ones obtained using the recursive
calculus method described in [12]. The results show that the
delays obtained using the implementation are much larger
than the ones computed using a theoretical tool. It is due the
overhead in the source and destination tiles.

V. ENVISIONED SOLUTION

The theoretical computation of delays takes into account the
transmission between source and destination tiles. However it
ignores the delays within these tiles. Preliminary results on the
small use case show that these tile delays cannot be neglected.
Thus they have to be precisely characterized. Therefore a
precise analysis of the delays induced by tile architecture has
to be conducted.

In the case study, the ProNoC emulator is used. The case
study has to be extended with an implementation on an
FPGA which can then be connected to an AFDX network,
in order to obtain the architecture in Figure 1. We also have
to consider more complex (realistic) case studies and different
NoC features.

TABLE I
TRANSMISSION DELAYS OF EACH FLOW (IN µs)

Flows Practical delays Theoretical delays
t00 to t01 27.28 0.12
t01 to t02 24.22 0.12
t02 to t03 24.7 0.12
t10 to t13 54.06 0.12
t11 to t13 25.04 0.12
t12 to t13 38.02 0.12
t20 to t21 16.9 1
t21 to t20 8.49 1
t21 to t22 24.78 1
t22 to t21 24.36 1.2
t20 to t22 23.02 1.2
t22 to t20 38.22 1.2
t20 to t23 15.76 1.2
t21 to t23 17.5 1.2
t22 to t23 24.68 1.2
t31 to t32 24.24 0.6
t31 to t33 52.02 0.6
t32 to t33 23.46 0.4
t30 to t33 37.68 0.4
t30 to t32 38.66 0.24

REFERENCES

[1] DO-RTCA, “178c,” Software considerations in airborne systems and
equipment certification, 2011.

[2] Aeronautical Radio Inc. ARINC 664, Aircraft Data Network, Part 7:
Avionic Full Duplex Switched Ethernet (AFDX) Network, 2005.

[3] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quiñones, R. Vargas, and A. Marongiu, “The Challenge of Time-
Predictability in Modern Many-Core Architectures,” in 14th Intl. Work-
shop on Worst-Case Execution Time Analysis, Madrid, Spain, 2014, pp.
63–72.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

[5] L. Abdallah, J. Ermont, J. Scharbarg, and C. Fraboul, “Towards a
mixed NoC/AFDX architecture for avionics applications,” in IEEE 13th
International Workshop on Factory Communication Systems, WFCS,
2017, pp. 1–10.

[6] J. Ermont, S. Mouysset, J. Scharbarg, and C. Fraboul, “Message
scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture,”
in Proceedings of the 26th International Conference on Real-Time
Networks and Systems, RTNS, 2018, pp. 234–242.

[7] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. of the Conf. on Design, Automation & Test in Europe (DATE’14),
2014, pp. 97:1–97:6.

[8] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in Proc.
of the 50th Annual Design Automation Conference, 2013, p. 39.

[9] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Reducing the con-
tention experienced by real-time core-to-i/o flows over a tilera-like
network on chip,” in Real-Time Systems (ECRTS), 2016 28th Euromicro
Conference on. IEEE, 2016, pp. 86–96.

[10] A. Monemi, J. Wei Tang, M. Palesi, and M. N. Marsono, “Pronoc: A
low latency network-on-chip based many-core system-on-chip prototyp-
ing platform,” Microprocessors and Microsystems, vol. 54, pp. 60–74,
October 2017.

[11] OpenCores, “WISHBONE System-on-Chip (SoC) interconnection
architecture for portable ip cores.” [Online]. Available:
https://opencores.org/howto/wishbone

[12] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks
properties and their use for optimizing worst case delay analysis of
many-cores,” in 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), Siegen, Germany, June 2015, pp. 59–68.

