Towards a generic platform for the distribution of avionics applications on manycores Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset, Jean-Luc Scharbarg IRIT -Université de Toulouse 2 rue Charles Camichel 31000 Toulouse, France {firstname.lastname}@irit.fr Abstract-The interconnection of many-cores by an avionics full duplex switched Ethernet network (AFDX) is envisioned for future avionics architecture. The principle is to distribute avionics functions on these many-cores. Many-cores are based on simple cores interconnected by a Network-on-Chip (NoC). The allocation of functions on the available cores as well as the transmission of flows on the NoC has to be performed in such a way that avionics timing constraints are never violated. Several theoretical solutions have been proposed for this distribution. However they have not been evaluated on real architectures. In this paper we introduce a framework for the prototyping of such implementations. This framework is based on the existing ProNoC tool which allows the configuration of an FPGA as a NoC. The goal is to be able to compare distribution solutions with different NoC features in terms of scheduling or routing.

Index Terms-Many-cores, NoC, task distribution, avionics

I. APPLICATION DOMAIN AND CHALLENGE

Aircrafts include numerous electronic equipments. Some of them, like flight control and guidance systems, provide flight critical functions, while others may provide assistance services that are not critical to maintain airworthiness. Current avionics architecture is based on the integration of numerous functions with different criticality levels into single computing systems (mono-core processors) [START_REF] Do-Rtca | Software considerations in airborne systems and equipment certification[END_REF]. These computing systems are interconnected by an AFDX (Avionics Full Duplex Switched Ethernet) [START_REF]Aircraft Data Network, Part 7: Avionic Full Duplex Switched Ethernet (AFDX) Network[END_REF]. As depicted in the upper part in Figure 1, the End System (ES) provides an interface between a processing unit and the network.

AFDX network Avionics Computer System

Current architecture Envisioned architecture ...

AFDX network

Fig. 1. An AFDX network.

Mono-core architectures are being replaced by multi-or many-core ones in many contexts. This move is also envisioned in aircrafts. However, multi-core architectures are based on complex hardware mechanisms whose temporal behavior is difficult to master. Conversely many-core architectures are based on simpler cores interconnected by a Network-on-Chip (NoC). These cores are more predictable [START_REF] Nélis | The Challenge of Time-Predictability in Modern Many-Core Architectures[END_REF]. Thus, many-cores are promising candidates for avionics architecture. Such an architecture integrating many-cores is illustrated in the lower part in Figure 1. A typical many-cores architecture provides Ethernet interfaces which are used for the connection with the AFDX network. Additionaly, memory controllers manage access to DDR. An an example, Tilera Tile64 has 3 Ethernet interfaces and 4 memory controllers [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF].

The envisioned avionics architecture depicted in the lower part in Figure 1 is a mixed NoC/AFDX architecture. Avionics functions are distributed on the available many-cores. Communications between two functions allocated on the same manycores (local functions) use the NoC, while the communications between two functions allocated on different many-cores (remote functions) use both the NoC and the AFDX. Main constraints on this communication are the following:

1) end-to-end transmission delay has to be upper-bounded by an application defined value, 2) frame jitter at the ingress of the AFDX network has to be smaller than a given value (typically 500 µs).

The first constraint concerns local and remote functions, while the second one only concerns remote functions. Transmission delays on the NoC have an impact on both constraints. These delays can vary for different reasons. First, a frame can be delayed by other frames crossing the same routers (router contentions). Second, in the case of a transmission between remote functions, the Ethernet controller can be busy, transmitting another frame (controller contention).

The mapping of functions on the many-cores has a major impact on this NoC delay variation. [START_REF] Abdallah | Towards a mixed NoC/AFDX architecture for avionics applications[END_REF] proposes a mapping strategy that minimizes router contention. In this strategy, each core is allocated at most one function and each avionics flow is managed by its source function. [START_REF] Ermont | Message scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture[END_REF] proposes a different strategy, based on a static scheduling of Ethernet transmissions: each transmission is assigned a periodic slot in a table. Thus there are no more controller contentions and router contentions are reduced, thanks to the mapping of functions on cores.

II. MOTIVATION

Both [START_REF] Abdallah | Towards a mixed NoC/AFDX architecture for avionics applications[END_REF] and [START_REF] Ermont | Message scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture[END_REF] consider Tilera Tile64 many-cores [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF]. However delay computation are based on a model of the manycore and no implementation is provided.

Therefore the first motivation of this study is to map avionics functions on a hardware platform. One goal is to validate results in [START_REF] Abdallah | Towards a mixed NoC/AFDX architecture for avionics applications[END_REF] and [START_REF] Ermont | Message scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture[END_REF].

The second motivation of this study is to be able to tune many-core features, mainly NoC ones. Different many-cores implement different topologies, different buffer sizes in router ports, different scheduling algorithms in routers or different routing strategies. For instance, Kalray MPPA [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF] has larger buffers than Tilera Tile64.

Therefore our goal is to map avionics functions on a generic hardware platform that can be configured, based on existing NoC features. As a first step, we consider a single many-core.

III. PROBLEM STATEMENT

The problem is to distribute a set of n applications A 0 , . . . , A n-1 on a many-core. Each application A i is composed of n i communicating tasks t i,0 , . . . , t i,ni-1 Communication between tasks are modelled by a graph. The number of cores as well as the NoC topology, buffer size and scheduling algorithm in routers, routing are configurable. The distribution assumes a mapping strategy, e.g. SHiC [START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF], Map IO [START_REF] Abdallah | Reducing the contention experienced by real-time core-to-i/o flows over a tilera-like network on chip[END_REF], strategies proposed in [START_REF] Abdallah | Towards a mixed NoC/AFDX architecture for avionics applications[END_REF] and [START_REF] Ermont | Message scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture[END_REF] or an ad hoc one.

The resulting mapping is implemented on a hardware platform, typically an FPGA, e.g. a Nexis4 card and transmission delays are measured. These measured delays are then compared with theoretically computed values.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

The proposed solution is based on a prototyping tool. In the next paragraphs we present its main features and a preliminary case study.

A. The prototyping tool ProNoC

ProNoC (Prototype NoC) has been defined in [START_REF] Monemi | Pronoc: A low latency network-on-chip based many-core system-on-chip prototyping platform[END_REF] and is a prototyping tool which allows the design of many-core system on chips (MCSoC). It proposes an interface to generate the hardware code of a complete MCSoC. As shown in Figure 2, this MCSoC is composed of processing tiles (PT) interconnected using a NoC.

A processing tile (Figure 2b) is composed of different IP (Intellectual Property) cores interconnected by a Wishbone bus, an internal shared bus defined by OpenCores [START_REF] Opencores | WISHBONE System-on-Chip (SoC) interconnection architecture for portable ip cores[END_REF]. These IP cores include memory (RAM), processor, GPIO, timer, UART jtag and NI (Network Interface). The NI core allows the transmission of the data from (to) the tile to (from) the NoC.

ProNoC allows to generate a NoC. A NoC router is shown in Figure 2c. It is composed of Input and Output ports and a crossbar switch. The route of the packet is computed in LRC. In order to support quality of service for different Two pipelined FPGA-based NoC router architectures using splitmerge technique were proposed in [60,61] . In the first pipeline stage of the split-merge NoCs, all received packets, which are stored inside each input queue buffer are split based on the routing algorithm and saved in middle channel buffers. Hence, for each input port, there is p -1 middle buffers, which make in total p × (p -1) middle channel buffers for each router, where p is the number of ports in one router. In the second pipeline stage (merge state), each output port reads one active middle channel buffer by using an arbiter. Both pipelined router designs were reported to achieve a higher maximum operating frequency (up to 4 ×) than 4-VC CONNECT NoC. However, both architectures in [60,61] did not support VC. Hence, a VC based router cannot be fairly compared with their non-VC based router. In fact, VCs are expensive components in both ASIC [68] and FPGA [23] platforms.

Kapre and Gray [24] proposed Hoplite , a low-cost NoC with an aim to outperform CONNECT [18] and Split-Merge [60,61] NoCs by offering lower area overhead. However, this goal was obtained by removing VC and input buffers (bufferless NoC). As a flit can no longer be buffered, their router deflects a flit when its desired destination link is not available. This scheme results in a packet cycling and non-minimal routing. It also introduces performance degradation by increasing the average communication latency (up to 100k clock cycles at injection ratio above 5% [69]).

Existing NoC prototypes on FPGA partially support the state-ofthe-art ASIC NoC optimizations. Designing a versatile FPGA-based NoC platform which can support most advanced up-to-date NoC features is the main goal of this work. Based on the literature review, an optimized NoC platform is recommended to support VC, VN, different routing algorithms, low pipeline latency, non-atomic VA, and combined VA and SA as in ASIC NoC implementation.

In our previous paper [70] , we presented our preliminary twocycle NoC router prototype with support on VC, non-speculative combined VA and SA, non-atomic VC reallocation and different routing algorithms. However, the previous NoC router does not support VN partitioning as VCs were added only for network throughput enhancement. The proposed router is improved by adding the following features: In this paper, we present ProNoC, our improved prototype platform that generates the RTL codes of a complete heterogeneous NoC-/WB-based MCSoC in a plug-and-play manner. We have developed several parameterizable hardware description language (HDL) codes including network interface adapter (NI), memory controller, Joint Test Action Group (JTAG) interface and general purpose input/output (GPIO) which can be connected to available opensource soft-core WB-based processors to generate a PT. PTs later can be connected to the proposed low-latency NoC to generate a heterogeneous MCSoC. ProNoC comes with several tools which automate these steps. We have also developed a NoC emulator which speeds up NoC simulation using an FPGA device.

ProNoC system overview

Fig. 1 provides a general overview of the ProNoC MCSoC. This consists of PTs (Fig. 1 (b)) connected via a low latency wormhole VC-based NoC router(Fig. 1 (c)).

Router micro-architecture

The main contribution of ProNoC that is its FPGA-optimized NoC architecture has been developed by analyzing of the two recent existing open-source VC based NoC RTL codes, namely the Stanford NoC [17] and CONNECT [18] . Stanford NoC targets ASIC implementation and is enhanced with VC support, shared buffer memory, non-atomic VC reallocation, low latency router (2-cycle), look-ahead routing and speculative combined VC and SW allocators. However, it also consumes large number of LCs when mapped to an FPGA platform [18] . As mentioned in Section 2 , CONNECT attempted to solve this problem at the cost of reducing router's maximum operating frequency. ProNoC proposes an open-source NoC platform architecture that functionally behaves like Stanford NoC and yet is more optimized than CONNECT NoC when is mapped in an FPGA device. To do this, we first investigated the Stanford NoC and discovered how its RTL code can be optimized for FPGA mapping without introducing drawback on router's pipeline stages or maximum operation frequency.

The rest of this section discusses the proposed low latency router micro-architecture. Fig. 1 (c) shows the functional block diagram of proposed router by ProNoC tool. This router consists of input/output (IO) ports, VSA, SSA, LRC, and a CS. The router's HDL code is parameterizable in terms of the number of IO ports, VC, VN and buffer size per VC. Other parameters were also added for selecting atomic or non-atomic VC reallocation, different RCs and to enable/disable the use of SSA.

IO ports

In the proposed router, all input VCs located in the same input port share one FPGA's embedded dual port BRAM. Unlike CONNECT which implements all VCs' buffers using FPGA LCs, this method significantly reduces the overall router LCU. In [72] , we showed that for implementation of 4 × 4 NoCs on Stratix IV EP4SGX230KF40C2 Altera FPGA, this method can save up to 40% LCs while only introduces approximately 5% memory utilization overhead. CONNECT targets for a single-cycle NoC router that executes ST stage directly after SA in the same clock cycle. Hence, this technique could not be adopted by CONNECT as it requires an asynchronous address/data read stage which cannot be supported by current FPGAs' BRAMs.

In our proposed router, single-cycle zero load latency can be supported only for packets traveling to the same dimension (see Section 3.1.4). To support this feature, the additional circuit (shown in gray color in Fig. 2) is required to bypass the BRAM. Fig. 3 shows how masking VSA's signals can be generated in a router with non-atomic VA. As multiple packets from different Fig. 2. Overview of an MCSoC obtained using ProNoC [START_REF] Monemi | Pronoc: A low latency network-on-chip based many-core system-on-chip prototyping platform[END_REF] t messages, the NoC can use different virtual channels (VC). The management of these virtual channels is done by the SSA and VSA parts of the router. ProNoC proposes a graphical interface in order to customize the MCSoC. It is possible to configure the definition of the PTs, i.e. what are the IP cores used for each PT. The parameterizitation of the NoC includes the number of virtual channels, the size of the buffers, the routing algorithm (XY, adaptative routing, . . .), the switch arbitration (RRA, WRRA) and the topology (2D Mesh, Torus, . . .).

The main goal of ProNoC is to provide the FPGA implementation of a fully functionnal MCSoC. Once all the MCSoC parts have been constructed, the tool generates the Verilog files that can be compiled for the FPGA. ProNoC tool provides also a NoC simulator to evaluate the performance of the NoC. Finally, ProNoC contains a NoC emulator. It provides a behavioural execution model of the MCSoc and the programming interface for processors cores.

B. A preliminary case study

We illustrate our solution based on ProNoC on a small case study. This case study is composed of 4 applications, named A 0 to A 3 . Each application A i is composed of 4 tasks t i,0 to t i,3 . The communication graph for each application is given in Figure 4. The size of all the packets is 3 flits. One flit (flow digit) is 4 bytes.

As represented in Figure 3, the NoC is a 2D-mesh network. It uses XY routing algorithm. The flits are stored in input queues of the NoC routers. The size of these queues is 4 flits. The scheduling policy is round-robin. No virtual channel is used.

Each core of the tiles executes at most one task.

The applications are allocated on the many-core using SHiC strategy [START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF]. Figure 3 shows the resulting mapping.

Using the ProNoC emulator, the tasks are executed by the processor core of the tiles. Our methodology is as follow. [START_REF] Do-Rtca | Software considerations in airborne systems and equipment certification[END_REF] The task send the packet using ni_transfert function. [START_REF]Aircraft Data Network, Part 7: Avionic Full Duplex Switched Ethernet (AFDX) Network[END_REF] This function asks the transmission to the network interface of the tile. (3) A timestamp function is started. This function gets the global clock value. (4) When the data are received by the destination tile, the NI sends an interruption to the processing core executing the reception function. [START_REF] Abdallah | Towards a mixed NoC/AFDX architecture for avionics applications[END_REF] The handler of this interruption reads the packet and gets the clock value.

Finally, the difference between the sending time and the receiving time is the global transmission delay obtained using the ProNoC tool. The results are given in Table I. We compare the results with theoretical ones obtained using the recursive calculus method described in [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF]. The results show that the delays obtained using the implementation are much larger than the ones computed using a theoretical tool. It is due the overhead in the source and destination tiles.

V. ENVISIONED SOLUTION

The theoretical computation of delays takes into account the transmission between source and destination tiles. However it ignores the delays within these tiles. Preliminary results on the small use case show that these tile delays cannot be neglected. Thus they have to be precisely characterized. Therefore a precise analysis of the delays induced by tile architecture has to be conducted.

In the case study, the ProNoC emulator is used. The case study has to be extended with an implementation on an FPGA which can then be connected to an AFDX network, in order to obtain the architecture in Figure 1. We also have to consider more complex (realistic) case studies and different NoC features.

1 .

 1 An improved flow control for fully adaptive routing which allows exchanging packet between EVCs and AVCs as well as non-atomic VC reallocation on 80% of all available VCs in NoC in [71] . 2. Support of different message classes for VN partitioning. Adding static straight allocator (SSA) which allows single cycle latency on packets traveling to the same dimension in [72] .

Fig. 1 .

 1 Fig. 1. ProNoC functional block diagram (a) MCSoC, (b) processing tile (PT), (c) NoC router.

Fig. 3 .

 3 Fig. 3. Application mapping in the many-core (A0: upper left, A1: upper right, A2: bottom left, A3: bottom right)

TABLE I TRANSMISSION

 I DELAYS OF EACH FLOW(IN µs)

	Flows	Practical delays Theoretical delays
	t 00 to t 01	27.28	0.12
	t 01 to t 02	24.22	0.12
	t 02 to t 03	24.7	0.12
	t 10 to t 13	54.06	0.12
	t 11 to t 13	25.04	0.12
	t 12 to t 13	38.02	0.12
	t 20 to t 21	16.9	1
	t 21 to t 20	8.49	1
	t 21 to t 22	24.78	1
	t 22 to t 21	24.36	1.2
	t 20 to t 22	23.02	1.2
	t 22 to t 20	38.22	1.2
	t 20 to t 23	15.76	1.2
	t 21 to t 23	17.5	1.2
	t 22 to t 23	24.68	1.2
	t 31 to t 32	24.24	0.6
	t 31 to t 33	52.02	0.6
	t 32 to t 33	23.46	0.4
	t 30 to t 33	37.68	0.4
	t 30 to t 32	38.66	0.24