N
N

N

HAL

open science

Towards a generic platform for the distribution of
avionics applications on manycores

Ghina Abdallah, Jérome Ermont, Sandrine Mouysset, Jean-Luc Scharbarg

» To cite this version:

Ghina Abdallah, Jérome Ermont, Sandrine Mouysset, Jean-Luc Scharbarg. Towards a generic plat-
form for the distribution of avionics applications on manycores. Work-in-Progress Session of 31st

ECRTS 2019, Jul 2019, Stuttgart, Germany. pp.4-6. hal-02965528

HAL Id: hal-02965528
https://hal.science/hal-02965528
Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02965528
https://hal.archives-ouvertes.fr

Towards a generic platform for the distribution of
avionics applications on manycores

Ghina Abdallah, Jérome Ermont, Sandrine Mouysset, Jean-Luc Scharbarg
IRIT - Université de Toulouse
2 rue Charles Camichel
31000 Toulouse, France
{firstname.lastname } @irit.fr

Abstract—The interconnection of many-cores by an avionics
full duplex switched Ethernet network (AFDX) is envisioned for
future avionics architecture. The principle is to distribute avionics
functions on these many-cores. Many-cores are based on simple
cores interconnected by a Network-on-Chip (NoC). The allocation
of functions on the available cores as well as the transmission of
flows on the NoC has to be performed in such a way that avionics
timing constraints are never violated. Several theoretical solutions
have been proposed for this distribution. However they have not
been evaluated on real architectures. In this paper we introduce
a framework for the prototyping of such implementations. This
framework is based on the existing ProNoC tool which allows
the configuration of an FPGA as a NoC. The goal is to be able
to compare distribution solutions with different NoC features in
terms of scheduling or routing.

Index Terms—Many-cores, NoC, task distribution, avionics

I. APPLICATION DOMAIN AND CHALLENGE

Aircrafts include numerous electronic equipments. Some of
them, like flight control and guidance systems, provide flight
critical functions, while others may provide assistance services
that are not critical to maintain airworthiness. Current avionics
architecture is based on the integration of numerous functions
with different criticality levels into single computing systems
(mono-core processors) [1]. These computing systems are
interconnected by an AFDX (Avionics Full Duplex Switched
Ethernet) [2]. As depicted in the upper part in Figure 1, the
End System (ES) provides an interface between a processing
unit and the network.

processing
unit End &
hosting System
avionics
applications AFDX network

Avionics Computer System
Current architecture

Envisioned architecture

AFDX network

Fig. 1. An AFDX network.

Mono-core architectures are being replaced by multi- or
many-core ones in many contexts. This move is also envi-
sioned in aircrafts. However, multi-core architectures are based
on complex hardware mechanisms whose temporal behavior
is difficult to master. Conversely many-core architectures are
based on simpler cores interconnected by a Network-on-Chip
(NoC). These cores are more predictable [3]. Thus, many-cores
are promising candidates for avionics architecture. Such an
architecture integrating many-cores is illustrated in the lower
part in Figure 1. A typical many-cores architecture provides
Ethernet interfaces which are used for the connection with
the AFDX network. Additionaly, memory controllers manage
access to DDR. An an example, Tilera Tile64 has 3 Ethernet
interfaces and 4 memory controllers [4].

The envisioned avionics architecture depicted in the lower
part in Figure 1 is a mixed NoC/AFDX architecture. Avionics
functions are distributed on the available many-cores. Commu-
nications between two functions allocated on the same many-
cores (local functions) use the NoC, while the communica-
tions between two functions allocated on different many-cores
(remote functions) use both the NoC and the AFDX. Main
constraints on this communication are the following:

1) end-to-end transmission delay has to be upper-bounded
by an application defined value,

2) frame jitter at the ingress of the AFDX network has to
be smaller than a given value (typically 500 pus).

The first constraint concerns local and remote functions, while
the second one only concerns remote functions. Transmission
delays on the NoC have an impact on both constraints.
These delays can vary for different reasons. First, a frame
can be delayed by other frames crossing the same routers
(router contentions). Second, in the case of a transmission
between remote functions, the Ethernet controller can be busy,
transmitting another frame (controller contention).

The mapping of functions on the many-cores has a major
impact on this NoC delay variation. [5] proposes a mapping
strategy that minimizes router contention. In this strategy, each
core is allocated at most one function and each avionics flow is
managed by its source function. [6] proposes a different strat-
egy, based on a static scheduling of Ethernet transmissions:
each transmission is assigned a periodic slot in a table. Thus
there are no more controller contentions and router contentions

are reduced, thanks to the mapping of functions on cores.

II. MOTIVATION

Both [5] and [6] consider Tilera Tile64 many-cores [4].
However delay computation are based on a model of the many-
core and no implementation is provided.

Therefore the first motivation of this study is to map
avionics functions on a hardware platform. One goal is to
validate results in [5] and [6].

The second motivation of this study is to be able to tune
many-core features, mainly NoC ones. Different many-cores
implement different topologies, different buffer sizes in router
ports, different scheduling algorithms in routers or different
routing strategies. For instance, Kalray MPPA [7] has larger
buffers than Tilera Tile64.

Therefore our goal is to map avionics functions on a generic
hardware platform that can be configured, based on existing
NoC features. As a first step, we consider a single many-core.

III. PROBLEM STATEMENT

The problem is to distribute a set of n applications
Agp, ..., Ap_1 on a many-core. Each application A; is com-
posed of n; communicating tasks t; o, ...,%;,,—1 Communi-
cation between tasks are modelled by a graph. The number of
cores as well as the NoC topology, buffer size and scheduling
algorithm in routers, routing are configurable. The distribu-
tion assumes a mapping strategy, e.g. SHiC [8], Mapio [9],
strategies proposed in [5] and [6] or an ad hoc one.

The resulting mapping is implemented on a hardware plat-
form, typically an FPGA, e.g. a Nexis4 card and transmission
delays are measured. These measured delays are then com-
pared with theoretically computed values.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

The proposed solution is based on a prototyping tool. In the
next paragraphs we present its main features and a preliminary
case study.

A. The prototyping tool ProNoC

ProNoC (Prototype NoC) has been defined in [10] and
is a prototyping tool which allows the design of many-core
system on chips (MCSoC). It proposes an interface to generate
the hardware code of a complete MCSoC. As shown in
Figure 2, this MCSoC is composed of processing tiles (PT)
interconnected using a NoC.

A processing tile (Figure 2b) is composed of different IP
(Intellectual Property) cores interconnected by a Wishbone
bus, an internal shared bus defined by OpenCores [11]. These
IP cores include memory (RAM), processor, GPIO, timer,
UART jtag and NI (Network Interface). The NI core allows
the transmission of the data from (to) the tile to (from) the
NoC.

ProNoC allows to generate a NoC. A NoC router is shown
in Figure 2c. It is composed of Input and Output ports and
a crossbar switch. The route of the packet is computed in
LRC. In order to support quality of service for different

Wishbone Bus]

NS
O
1T

~N
l RAM ‘ llnterrupt‘ l NI ‘
controller

Flit Out
—

Ll Output
ports Creditin

Fig. 2. Overview of an MCSoC obtained using ProNoC [10]

o] (o] [o] [
o] oo] e
]| o] [[
| [[

Fig. 3. Application mapping in the many-core (AO: upper left, Al: upper
right, A2: bottom left, A3: bottom right)

messages, the NoC can use different virtual channels (VC).
The management of these virtual channels is done by the SSA
and VSA parts of the router.

ProNoC proposes a graphical interface in order to customize
the MCSoC. It is possible to configure the definition of
the PTs, i.e. what are the IP cores used for each PT. The
parameterizitation of the NoC includes the number of virtual
channels, the size of the buffers, the routing algorithm (XY,
adaptative routing, ...), the switch arbitration (RRA, WRRA)
and the topology (2D Mesh, Torus, ...).

The main goal of ProNoC is to provide the FPGA im-
plementation of a fully functionnal MCSoC. Once all the
MCSoC parts have been constructed, the tool generates the
Verilog files that can be compiled for the FPGA. ProNoC tool
provides also a NoC simulator to evaluate the performance
of the NoC. Finally, ProNoC contains a NoC emulator. It
provides a behavioural execution model of the MCSoc and
the programming interface for processors cores.

B. A preliminary case study

We illustrate our solution based on ProNoC on a small case
study. This case study is composed of 4 applications, named
A to As. Each application A; is composed of 4 tasks t; ¢ to
t; 3. The communication graph for each application is given
in Figure 4. The size of all the packets is 3 flits. One flit (flow
digit) is 4 bytes.

As represented in Figure 3, the NoC is a 2D-mesh network.
It uses XY routing algorithm. The flits are stored in input
queues of the NoC routers. The size of these queues is 4 flits.

Application 0

Application 1

Application 2 Application 3

@%@ @‘:;@

Fig. 4. Communication task graph for each application

The scheduling policy is round-robin. No virtual channel is
used.

Each core of the tiles executes at most one task.

The applications are allocated on the many-core using SHiC
strategy [8]. Figure 3 shows the resulting mapping.

Using the ProNoC emulator, the tasks are executed by the
processor core of the tiles. Our methodology is as follow. (1)
The task send the packet using ni_transfert function. (2)
This function asks the transmission to the network interface of
the tile. (3) A timestamp function is started. This function gets
the global clock value. (4) When the data are received by the
destination tile, the NI sends an interruption to the processing
core executing the reception function. (5) The handler of this
interruption reads the packet and gets the clock value.

Finally, the difference between the sending time and the
receiving time is the global transmission delay obtained using
the ProNoC tool. The results are given in Table I. We compare
the results with theoretical ones obtained using the recursive
calculus method described in [12]. The results show that the
delays obtained using the implementation are much larger
than the ones computed using a theoretical tool. It is due the
overhead in the source and destination tiles.

V. ENVISIONED SOLUTION

The theoretical computation of delays takes into account the
transmission between source and destination tiles. However it
ignores the delays within these tiles. Preliminary results on the
small use case show that these tile delays cannot be neglected.
Thus they have to be precisely characterized. Therefore a
precise analysis of the delays induced by tile architecture has
to be conducted.

In the case study, the ProNoC emulator is used. The case
study has to be extended with an implementation on an
FPGA which can then be connected to an AFDX network,
in order to obtain the architecture in Figure 1. We also have
to consider more complex (realistic) case studies and different
NoC features.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

TABLE I
TRANSMISSION DELAYS OF EACH FLOW (IN 1s)

Flows Practical delays | Theoretical delays
too to to1 27.28 0.12
to1 to to2 24.22 0.12
to2 to to3 24.7 0.12
tio to t13 54.06 0.12
t11 to ti13 25.04 0.12
t12 to t13 38.02 0.12
tog to to1 16.9 1
ta1 to too 8.49 1
ta1 to too 24.78 1
too toO toq 24.36 1.2
top to too 23.02 1.2
tao to tog 38.22 1.2
tap to t23 15.76 1.2
to1 to tog 17.5 1.2
too to tog 24.68 1.2
t31 to t3o 24.24 0.6
t31 to t33 52.02 0.6
t3o to t33 23.46 0.4
t3p to t33 37.68 0.4
t3p to t3a 38.66 0.24

REFERENCES

DO-RTCA, “178c,” Software considerations in airborne systems and
equipment certification, 2011.

Aeronautical Radio Inc. ARINC 664, Aircraft Data Network, Part 7:
Avionic Full Duplex Switched Ethernet (AFDX) Network, 2005.

V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quifiones, R. Vargas, and A. Marongiu, “The Challenge of Time-
Predictability in Modern Many-Core Architectures,” in /4th Intl. Work-
shop on Worst-Case Execution Time Analysis, Madrid, Spain, 2014, pp.
63-72.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15-31, 2007.

L. Abdallah, J. Ermont, J. Scharbarg, and C. Fraboul, “Towards a
mixed NoC/AFDX architecture for avionics applications,” in /[EEE 13th
International Workshop on Factory Communication Systems, WFCS,
2017, pp. 1-10.

J. Ermont, S. Mouysset, J. Scharbarg, and C. Fraboul, “Message
scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture,”
in Proceedings of the 26th International Conference on Real-Time
Networks and Systems, RTNS, 2018, pp. 234-242.

B. D. de Dinechin, D. van Amstel, M. Poulhi¢s, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. of the Conf. on Design, Automation & Test in Europe (DATE’14),
2014, pp. 97:1-97:6.

M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in Proc.
of the 50th Annual Design Automation Conference, 2013, p. 39.

L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Reducing the con-
tention experienced by real-time core-to-i/o flows over a tilera-like
network on chip,” in Real-Time Systems (ECRTS), 2016 28th Euromicro
Conference on. 1EEE, 2016, pp. 86-96.

A. Monemi, J. Wei Tang, M. Palesi, and M. N. Marsono, “Pronoc: A
low latency network-on-chip based many-core system-on-chip prototyp-
ing platform,” Microprocessors and Microsystems, vol. 54, pp. 60-74,
October 2017.

OpenCores, “WISHBONE System-on-Chip (SoC) interconnection
architecture for portable ip cores.” [Online]. Available:
https://opencores.org/howto/wishbone

L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks
properties and their use for optimizing worst case delay analysis of
many-cores,” in [0th IEEE International Symposium on Industrial
Embedded Systems (SIES), Siegen, Germany, June 2015, pp. 59-68.

