
HAL Id: hal-02965508
https://hal.science/hal-02965508v2

Submitted on 24 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On stability of rotational 2D binary Bose-Einstein
condensates

Rémi Carles, Van Duong Dinh, Hichem Hajaiej

To cite this version:
Rémi Carles, Van Duong Dinh, Hichem Hajaiej. On stability of rotational 2D binary Bose-Einstein
condensates. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2023, 32 (1), pp.81-124.
�10.5802/afst.1730�. �hal-02965508v2�

https://hal.science/hal-02965508v2
https://hal.archives-ouvertes.fr


ON STABILITY OF ROTATIONAL 2D BINARY BOSE-EINSTEIN

CONDENSATES

RÉMI CARLES, VAN DUONG DINH, AND HICHEM HAJAIEJ

Abstract. We consider a two-dimensional nonlinear Schrödinger equation
proposed in Physics to model rotational binary Bose-Einstein condensates.
The nonlinearity is a logarithmic modification of the usual cubic nonlinearity.
The presence of both the external confining potential and rotating frame makes
it difficult to apply standard techniques to directly construct ground states,
as we explain in an appendix. The goal of the present paper is to analyze

the orbital stability of the set of energy minimizers under mass constraint,
according to the relative strength of the confining potential compared to the
angular frequency. The main novelty concerns the critical case (lowest Landau
Level) where these two effects compensate exactly, and orbital stability is
established by using techniques related to magnetic Schrödinger operators.

1. Introduction

The formation of self-bound droplets is a well-known macroscopic phenomenon.
Recent experiments with ultracold quantum gases of bosonic atoms revealed a novel
type of quantum liquid: dilute self-bound Bose-Einstein condensate (BEC) having
orders of magnitude lower density than air (see e.g. [25, 35, 19, 20] for Bose gases of
dysprosium and [36, 12] for binary Bose gases of potassium). Since these droplets
form out of a BEC, there is good reason to assume that they have superfluid
properties. One remarkable feature of a superfluid is its response to rotation, in
particular the occurrence of quantized vortices (see [1] for a broad introduction
to these phenomena). In [37], binary BEC droplets carrying angular momentum
were considered. Using weak first-order corrections to the mean field energy, often
referred to as the Lee-Huang-Yang correction [27], a binary BEC droplet with
angular momentum is well described by the wave function ψ : R+ × R2 → C

whose evolution is governed by the Gross-Pitaevskii equation (GPE) with angular
momentum

i∂tψ +
1

2
∆ψ = V ψ + |ψ|2 ln(|ψ|2)ψ − iK3|ψ|4ψ − ΩLzψ, (1.1)

where the scaling invariances have been used to bring the equation into its dimen-
sionless form. Here the external potential V is of the form

V (x) =
γ2

2
|x|2 + V0e

−γ|x|2, (1.2)

where γ > 0 is the harmonic trap frequency and V0 > 0 is the amplitude of the
Gaussian. The parameter K3 > 0 is the rate of three-body losses. The angular
momentum operator Lz is of the form

Lz = i(x2∂x1
− x1∂x2

), x = (x1, x2) ∈ R
2 (1.3)
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and Ω > 0 is the rotational speed. The fact that the constants in the harmonic
trap and the Gaussian part of the potential are equal stems from [37], but is not
crucial in our analysis, so we consider more generally

V (x) =
γ2

2
|x|2 + V0e

−γ0|x|2, γ, γ0 > 0. (1.4)

The main purpose of this paper is to study the existence/nonexistence and or-
bital stability of mass-constraint standing waves for (1.1). We consider the Cauchy
problem for (1.1) with initial data ψ0 ∈ Σ, where

Σ :=
{

f ∈ H1(R2), x 7→ |x|f(x) ∈ L2(R2)
}

is equipped with the norm

‖f‖2Σ = ‖f‖2H1 + ‖xf‖2L2.

Due to the presence of the harmonic potential, this space is rather natural (see e.g.
[14]). In the case K3 = 0, there are three physical quantities which are formally
conserved along the flow of (1.1)

M(ψ(t)) = ‖ψ(t)‖2L2 =M(ψ0), (Mass)

L(ψ(t)) =

∫

R2

ψ̄(t, x)Lzψ(t, x)dx = L(ψ0), (Angular momentum)

EΩ(ψ(t)) =
1

2
‖∇ψ(t)‖2L2 +

∫

R2

V (x)|ψ(t, x)|2dx (Energy)

+
1

2

∫

R2

|ψ(t, x)|4 ln
( |ψ(t, x)|2√

e

)

dx − ΩL(ψ(t)) = EΩ(ψ0).

Here we note that the angular momentum is real-valued, but has no definite sign.
Similarly, the term involving the natural logarithm also has no definite sign.

In the case K3 6= 0, solutions to (1.1) formally satisfy

1

2

d

dt
‖ψ(t)‖2L2 +K3‖ψ(t)‖6L6 = 0. (1.5)

This shows that for K3 6= 0, the equation is irreversible. This is the reason why,
since K3 > 0, we consider only positive time in the present paper. In the case
K3 = 0, the equation is reversible, and ψ(−t, x) solves (1.1): considering the case
t > 0 suffices to describes the dynamics for all time.

When γ = V0 = K3 = Ω = 0, the equation (1.1) was recently studied in [16].
More precisely, the global well-posedness for H1 data, the existence and uniqueness
of positive ground state solutions for (1.1) were shown there, along with the orbital
stability of prescribed mass standing waves.

Our first result is the following global existence for (1.1).

Theorem 1.1 (Global well-posedness). Let γ, γ0 > 0, Ω > 0, V0 > 0, K3 > 0,
and ψ0 ∈ Σ. Then there exists a unique global-in-time solution to (1.1) satisfying
ψ ∈ C(R+; Σ) ∩ L3

loc(R+;L
6(R2)).

• If K3 = 0, the conservation laws of mass, angular momentum, and energy
hold.

• If K3 > 0, the solution asymptotically vanishes in the sense that

‖ψ(t)‖2L2 = O
(

t−1/4
)

as t→ ∞. (1.6)

The Cauchy problem is addressed by resuming the approach from [3]. In pass-
ing, we fix a small flaw present in this paper regarding dispersive estimates. The
asymptotic extinction (1.6) is then established like in [2], thanks to a suitable uni-
form bound which makes it possible to control the L6-norm in (1.5) from below in
terms of the L2-norm.
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Remark 1.2. The potential V in (1.4) is radially symmetric, since it is the model
given in [37]. We will see in the proof of Theorem 1.1 that the result still holds true
in the more general case of smooth potentials which are at most quadratic (and
thus need not be radial); see Remarks 2.2 and 2.3.

In the rest of the introduction, we are interested in the absence of three-body
losses, i.e. K3 = 0. In this case, (1.1) admits standing waves, i.e. solutions of the
form

ψ(t, x) = eiωtφ(x), ω ∈ R, (1.7)

where φ solves

− 1

2
∆φ+ V φ+ φ|φ|2 ln(|φ|2)− ΩLzφ+ ωφ = 0, x ∈ R

2. (1.8)

Note that in the case K3 > 0, there is no such solution in view of the asymptotic
extinction (1.6).

The existence of standing waves for (1.8) can be achieved by several ways. The
first way is to minimize the energy functional

EΩ(f) =
1

2
‖∇f‖2L2 +

∫

R2

V |f |2dx+
1

2
|f |4 ln

( |f |2√
e

)

dx− ΩL(f),

with prescribed mass constraint, i.e. ‖f‖2L2 = ρ > 0, an strategy which is often
adopted in Physics. In this case, the parameter ω in (1.8) appears as a Lagrange
multiplier associated to the minimization problem. Another way is to look for
critical points of the action functional

Sω(f) = EΩ(f) + ωM(f)

=
1

2
‖∇f‖2L2 + ω‖f‖2L2 +

∫

R2

V |f |2dx+
1

2

∫

R2

|f |4 ln
( |f |2√

e

)

dx− ΩL(f),

with ω being given and fixed. However, this approach seems difficult to apply in
the present context. More precisely, (1.8) has two features which make it difficult
to characterize the range of ω’s allowed to find a non-trivial solution to (1.8). The
presence of the external potential V and the rotation Lz introduces an x-dependence
which makes it impossible to invoke the results from [9] (the 2D counterpart of [10]),
or even adapt easily the proof. On the other hand, the fact that the nonlinearity
is not homogeneous in φ makes it impossible to reproduce the arguments from [34]
(see also [22] in the case of a harmonic potential). In an appendix, we collect some
information regarding the possible range for ω in the radial case, where the rotating
term is absent from (1.8), and explain in more details why minimizing the action
seems difficult here.

We therefore consider the following minimization problem: for ρ > 0,

IΩ(ρ) := inf
{

EΩ(f) : f ∈ Σ, ‖f‖2L2 = ρ
}

. (1.9)

Our next result concerns the existence and stability of prescribed mass standing
waves for (1.8) in the case of low rotational speed.

Theorem 1.3. Let K3 = 0, γ, γ0 > 0, V0 > 0 and 0 < Ω < γ. Then for any ρ > 0,
there exists φ ∈ Σ such that EΩ(φ) = IΩ(ρ) and ‖φ‖2L2 = ρ. Moreover, the set

GΩ(ρ) :=
{

φ ∈ Σ : EΩ(φ) = IΩ(ρ), ‖φ‖2L2 = ρ
}

is orbitally stable under the flow of (1.1) in the sense that for any ǫ > 0, there
exists δ > 0 such that for any initial data u0 ∈ Σ satisfying

inf
φ∈GΩ(ρ)

‖u0 − φ‖Σ < δ,
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the corresponding solution to (1.1) exists globally in time and satisfies

sup
t∈R

inf
φ∈GΩ(ρ)

‖u(t)− φ‖Σ < ǫ.

The proof of Theorem 1.3 is based on a standard variational argument using the
following observation (see Lemma 3.1): for 0 < Ω < γ,

‖∇f‖2L2 + 2

∫

R2

V |f |2dx− 2ΩL(f) ≃ ‖∇f‖2L2 + ‖xf‖2L2

which enables us to use the standard compact embedding Σ →֒ Lr(R2) for all
2 6 r <∞. We also make use of the log-type inequality

∣

∣

∣

∣

∫

R2

|f |4 ln
( |f |2√

e

)

dx

∣

∣

∣

∣

.ǫ ‖f‖4−ǫ
L4−ǫ + ‖f‖4+ǫ

L4+ǫ (1.10)

for any ǫ > 0. For more details, we refer to Subsection 3.1.
Next we consider the critical rotational speed Ω = γ (lowest Landau level, see

e.g. [1] and references therein), which constitutes the main novelty of this paper.
In this case, the energy functional can be rewritten as

Eγ(f) =
1

2
‖∇Af‖2L2 + V0

∫

R2

e−γ0|x|2 |f(x)|2dx+
1

2

∫

R2

|f |4 ln
( |f |2√

e

)

dx, (1.11)

where ∇A := ∇ − iA with A(x) = γ(−x2, x1). Thanks to this observation, it is
convenient to consider the above functional on the magnetic Sobolev space

H1
A(R

2) :=
{

f ∈ L2(R2) : (∂j − iAj)f ∈ L2(R2), j = 1, 2
}

(1.12)

endowed with the norm

‖f‖2H1
A
:= ‖f‖2L2 + ‖∇Af‖2L2.

Note that the energy functional (1.11) is well-defined on H1
A(R

2) by using (1.10)
and the magnetic Gagliardo-Nirenberg inequality (see e.g., [18]): for 2 < r <∞,

‖f‖rLr 6 Cr‖∇Af‖r−2
L2 ‖f‖2L2, ∀f ∈ H1

A(R
2).

We also have Σ ⊂ H1
A(R

2). Indeed, for f ∈ Σ, we have

‖f‖2H1
A
= ‖f‖2L2 + ‖∇f‖2L2 + γ2‖xf‖2L2 − γ

∫

R2

f̄Lzfdx 6 C‖f‖2Σ,

where the last inequality follows from

|L(f)| 6 ‖xf‖L2‖∇f‖L2 6
1

2γ
‖∇f‖2L2 +

γ

2
‖xf‖2L2.

To show the existence and stability of standing waves to (1.1) in the critical
rotational case, it is convenient to consider separately two cases: V0 = 0 and
V0 > 0.

When V0 = 0, we denote

I0γ (ρ) := inf
{

E0
γ(f) : f ∈ H1

A(R
2), ‖f‖2L2 = ρ

}

, (1.13)

where

E0
γ(f) :=

1

2
‖∇Af‖2L2 +

1

2

∫

R2

|f |4 ln
( |f |2√

e

)

dx, (1.14)

and the superscript 0 is here to emphasize the assumption V0 = 0. Let us first
introduce the cubic ground state, that is, the unique positive, radially symmetric
solution to

− 1

2
∆Q +Q = Q3, x ∈ R

2. (1.15)
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By making use of a variant of the celebrated concentration-compactness principle
of Lions adapted to the magnetic Sobolev space H1

A(R
2) (see Lemma 3.8), we prove

the following result.

Theorem 1.4. Let K3 = V0 = 0, 0 < γ < 1
2e3/2

and Ω = γ. Let 0 < ρ 6 ‖Q‖2L2.

Then there exists φ ∈ H1
A(R

2) such that E0
γ(φ) = I0γ(ρ) and ‖φ‖2L2 = ρ. Moreover,

the set of minimizers for I0γ(ρ) is orbitally stable under the flow of (1.1).

The assumption ρ 6 ‖Q‖2L2 is probably technical, due to our argument (see after
(3.18)). The proof also relies on the property I0γ(ρ) < 0 (see Proposition 3.5). In the
case K3 = V0 = γ = Ω = 0, the latter condition was shown in [16] for any ρ > 0. In
our setting, showing that I0γ(ρ) < 0 is more complicated since the scaling argument
used in [16] does not work because of the presence of magnetic potential. However,

by using a trial function of the form λe−b|x|2 with suitable positive constants λ
and b, we are able to show (see Lemma 3.10) that both conditions ρ 6 ‖Q‖2L2 and
I0γ(ρ) < 0 are fulfilled by some data f ∈ H1

A(R
2). This also leads to a restriction

on the validity of γ. We refer the reader to Subsection 3.2 for more details.
When V0 > 0, the above-mentioned concentration-compactness argument does

not work due to the lack of spatial translation of the term
∫

R2

e−γ0|x|2 |f(x)|2dx.

To overcome the difficulty, we restrict our consideration on H1
A,rad(R

2) the space of

radially symmetric functions of H1
A(R

2). Note that this restriction has a drawback
since we no longer see the effect of rotation to the equation as Lzf = 0 for a radial
function f . We consider

Iγ,rad(ρ) := inf
{

Eγ(f) : f ∈ H1
A,rad(R

2), ‖f‖2L2 = ρ
}

, (1.16)

where Eγ(f) is as in (1.11). We have the following result.

Theorem 1.5. Let K3 = 0, V0 > 0, γ, γ0 > 0, and Ω = γ. Then for any ρ > 0,
there exists φ ∈ H1

A,rad(R
2) such that Eγ(φ) = Iγ,rad(ρ) and ‖φ‖2L2 = ρ. Moreover,

the set of minimizers for Iγ,rad(ρ) is orbitally stable under the flow of (1.1).

Remark 1.6. As mentioned above that the rotation term vanishes for radially sym-
metric functions, the result in Theorem 1.5 holds for any Ω ≥ 0. In particular, it
gives another (radial) solution, besides the one obtained in Theorem 1.4, to (1.8).

The proof of Theorem 1.5 relies on the following compact embedding

H1
A,rad(R

2) ∋ f 7→ |f | ∈ Lr(R2) (1.17)

for all 2 6 r <∞. This compact embedding follows from the well-known compact
embedding H1

rad(R
2) →֒ Lr(R2) for all 2 6 r <∞ and the fact that

H1
A,rad(R

2) ∋ f 7→ |f | ∈ H1
rad(R

2)

is continuous due to the diamagnetic inequality (see e.g. [28])

|∇|f |(x)| 6 |∇Af(x)| a.e. x ∈ R
2.

When the rotational speed exceeds the critical value, i.e. Ω > γ, we have the
following nonexistence of minimizers for the constrained variational problem IΩ(ρ).

Theorem 1.7. Let K3 = 0, γ, γ0 > 0, V0 > 0, and Ω > γ. Then for any ρ > 0,
there is no minimizer for IΩ(ρ), i.e., IΩ(ρ) = −∞.
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The proof of Theorem 1.7 is based on an idea of Bao, Wang, and Markowich [7,
Section 3.2], using the central vortex state with winding number m, namely

fm(x) = fm(r, θ) =

√

ργm+1

πm!
rme−

γ|x|2
2 eimθ, m ∈ N,

where (r, θ) are the polar coordinates in R2. Physically, when the angular velocity
of rotation exceeds the trapping frequency, the harmonic potential cannot provide
enough necessary centripetal force that counteracts the centrifugal force caused by
the rotation, and the gas may fly apart. In the classical rotating BEC with purely
power-type nonlinearity, the nonexistence of prescribed mass standing waves was
proved by Bao, Wang, and Markowich [7].

This work is organized as follows. In Section 2, we study the local well-posedness
for (1.1) and prove the global existence given in Theorem 1.1. In Section 3, we
investigate the existence/nonexistence and the orbital stability of prescribed mass
standing waves for (1.1) given in Theorems 1.3, 1.4, 1.5, and 1.7. Finally, we give
some information on stationary solutions of (1.8) in the radial case in Appendix A,
and characterize prescribed mass minimizers in Appendix B.

2. Cauchy problem

In the case K3 = 0, Theorem 1.1 is reminiscent of the results from [3] for the
local and global well-posedness. We present an alternative proof, to show that
local solutions are actually global, which simplifies the approach, and yields better
bounds. The asymptotic extinction in the case K3 > 0 is obtained by adapting the
arguments from [4] based on the introduction of a suitable pseudo-energy (see also
[2] for generalizations).

2.1. Local well-posedness. Local well-posedness follows from a fixed point argu-
ment on Duhamel’s formula

ψ(t) = U(t)ψ0 − iλ

∫ t

0

U(t− s)f(u)(s) ds, (2.1)

where here and in the following, we denote

f(z) = z|z|2 ln(|z|2)− iK3|z|4z, z ∈ C.

The notation U(·) stands for the linear propagator, that is, U(t)ψ0 = ψlin(t) is the
solution to

i∂tψlin +
1

2
∆ψlin = V (x)ψlin − ΩLzψlin, ψlin(0, x) = ψ0. (2.2)

As noticed in [3], U(t) = e−itH(x,Dx), where

H(x, ξ) =
1

2
|ξ|2 + V (x) + Ω(x1ξ2 − x2ξ1),

enters into the general framework of [26], where the fundamental solution, that is,
the kernel associated to U(·), is constructed. However, this does not yield directly
local in time dispersive properties, since unlike in [21], the solution to1

i∂tψ +H(t, x,−i∂x)ψ = 0 ; ψ|t=0 = ϕ,

for H = H(t, x, ξ) smooth, real-valued and at most quadratic in (x, ξ) (locally in
time), is represented as

U(t)ϕ(x) =

∫

R2

eiφ(t,x,ξ)a(t, x, ξ)ϕ̂(ξ)dξ,

1We do not include here the semi-classical parameter present in [21, 26].
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that is, an oscillatory integral involving the Fourier transform of ϕ, and not ϕ
directly. Consequently, dispersive L1−L∞ estimates cannot be inferred in general,
as shown by the trivial case H = 0: it enters the framework of [26], the above
representation holds with a = constant (whose value depends on the definition of
the Fourier transform), but no Strichartz estimate is available, of course.

In the present case, local dispersive estimates are available though, as we show
by relying on the isotropy of V and Lz; this corresponds to the trick presented in
[3] in the 3D case. This alternative approach not only yields dispersive estimates,
but also makes it possible to study the Cauchy problem as if the rotation term was
absent. Define the function ϕ by

ϕ(t, x) = ψ (t, x1 cos(Ωt) + x2 sin(Ωt),−x1 sin(Ωt) + x2 cos(Ωt)) . (2.3)

We check that since V depends only on |x|2 (and is therefore invariant under rota-
tion), ψ solves (1.1) if and only if ϕ solves







i∂tϕ+
1

2
∆ϕ = V ϕ+ ϕ|ϕ|2 ln(|ϕ|2)− iK3|ϕ|4ϕ, (t, x) ∈ R+ × R

2,

ϕ(0, x) = ψ0,
(2.4)

that is, (1.1) with Ω = 0. Now for the perturbed harmonic oscillatorH = − 1
2∆+V ,

local in time dispersive estimates are available: from [21], there exists δ > 0 such
that

‖e−itHψ0‖L∞ .
1

|t| ‖ψ0‖L1 , |t| 6 δ. (2.5)

Note that δ is necessarily finite, as H possesses eigenvalues (as a consequence from
e.g., [33, Theorem XIII.67]). This implies local in time Strichartz estimates (see
e.g., [17]) and so, as long as bounded time intervals only are involved, (2.1) can
be studied like in the case where U(t) = eit∆. Note that since (2.3) preserves the
Lebesgue norms, we infer

‖e−itHΩψ0‖L∞ .
1

|t| ‖ψ0‖L1, |t| 6 δ, (2.6)

for all Ω ∈ R, with δ and an implicit multiplicative constant independent of Ω.
In the case K3 = 0, the analysis meets essentially the one presented in [16]. In

the general case K3 > 0, f ∈ C1(R2;R2) satisfies f(0) = 0,

|f(u)| . |u|3−ε + |u|4, ∀ε > 0,

as well as
|∇f(u)| . (|u|2−ε + |u|3)|∇u|.

We then obtain:

Lemma 2.1 (Local well-posedness). Let γ > 0,Ω > 0, V0 > 0,K3 > 0, and ψ0 ∈ Σ.
Then there exist T > 0 and a unique solution

ϕ ∈ C([0, T ]; Σ) ∩ L3((0, T );L6(R2)),

to (2.4). Equivalently, in view of (2.3),

ψ ∈ C([0, T ]; Σ) ∩ L3((0, T );L6(R2)),

solves (1.1). Moreover, it satisfies (1.5). Either the solution is global in time,

ϕ, ψ ∈ C(R+; Σ) ∩ L3
loc(R+;L

6(R2)),

or there exists T ∗ <∞ such that

lim
t→T∗

‖∇ϕ(t)‖L2 = lim
t→T∗

‖∇ψ(t)‖L2 = ∞.

In the case K3 = 0, we also have the conservation laws of mass, angular momentum,
and energy.
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Sketch of the proof. We present the elements of the proof which require a little
modification due to the presence of the damping term (K3 > 0).

We recall that the standard blow-up alternative involves the condition

lim
t→T∗

‖ϕ(t)‖Σ = lim
t→T∗

‖ψ(t)‖Σ = ∞.

In view of (1.5), the L2-norm of ψ remains bounded for positive time, and thus, so
does the L2-norm of ϕ. On the other hand, we compute

d

dt
‖xϕ(t)‖2L2 = − Im

∫

R2

|x|2ϕ̄∆ϕdx − 2K3

∫

R2

|x|2|ϕ|6dx

= 2 Im

∫

R2

ϕ̄x · ∇ϕdx− 2K3

∫

R2

|x|2|ϕ|6dx.

Using Cauchy–Schwarz and Young’s inequalities, we infer that

d

dt
‖xϕ(t)‖2L2 6 ‖xϕ(t)‖2L2 + ‖∇ϕ(t)‖2L2 . (2.7)

Therefore, if ∇ϕ remains bounded in L2, then so does the Σ-norm, and the blow-up
criterion can be reduced to the one stated in the lemma.

In the case K3 = 0, the proof of conservation laws follows, for instance, from
[31]. �

Remark 2.2 (Non-radial potential). The case of a non-radial potential can be
treated along essentially the same lines. Indeed, for a potential V ∈ C∞(R2;R),
which is at most quadratic in the sense of [21], that is,

∂αxV ∈ L∞(R2), ∀α ∈ N
2, |α| > 2,

the function ϕ, given by (2.3), solves

i∂tϕ+
1

2
∆ϕ = Ṽ (t, x)ϕ + ϕ|ϕ|2 ln(|ϕ|2)− iK3|ϕ|4ϕ,

with Ṽ (t, x) = V (x1 cos(Ωt) + x2 sin(Ωt),−x1 sin(Ωt) + x2 cos(Ωt)). The time

dependent potential Ṽ is smooth in (t, x), and at most quadratic in space (in
the same sense as above), uniformly in time. It follows from [21] that (2.5) re-
mains valid with e−itH replaced by the evolution group U(s + t, s) associated to

H̃(t) = − 1
2∆+ Ṽ (t, x), hence (2.6) holds in this case too. The rest of the proof of

Lemma 2.1 can be repeated exactly then.

2.2. Global well-posedness. In the case K3 = 0, the following energy is inde-
pendent of time,

E0(ϕ) :=
1

2
‖∇ϕ‖2L2 +

∫

R2

V |ϕ|2dx+
1

2

∫

R2

|ϕ|4 ln
( |ϕ|2√

e

)

dx,

as well as the mass of ϕ. The positive part of the energy satisfies

E+(ϕ(t)) : =
1

2
‖∇ϕ(t)‖2L2 +

∫

R2

V |ϕ(t)|2dx+
1

2

∫

|ϕ|2>√
e

|ϕ(t, x)|4 ln
( |ϕ(t, x)|2√

e

)

dx

= E0(ψ0) +
1

2

∫

|ϕ|2<√
e

|ϕ(t, x)|4 ln
( √

e

|ψ(t, x)|2
)

dx

6 E0(ψ0) +

√
e

2

∫

R2

|ϕ(t, x)|2dx,

where we have used the easy bound ln a 6 a for a > 1. Using the conservation of
mass, this yields

E+(ϕ(t)) . 1,
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and thus global existence (in the past as well, since for K3 = 0, the equation is
reversible), since ‖ϕ‖Σ . E+(ϕ). Note that even the L2-norm of ϕ is controlled by
E+, in view of the uncertainty principle (see e.g., [32, § 3.2])

‖f‖2L2 6 ‖∇f‖L2‖xf‖L2, f ∈ Σ. (2.8)

In particular, there exists C > 0 such that
∫

R2

|x|2|ϕ(t, x)|2dx =

∫

R2

|y|2|ψ(t, y)|2dy 6 C, ∀t > 0. (2.9)

In the case K3 > 0, following the strategy presented in [4, Section 3.1], we
introduce a pseudo-energy, for k > 0,

E(k, ϕ) = E0(ϕ) + k‖ϕ‖6L6.

Adapting slightly the computations from [2], we find:

d

dt
E(k, ϕ(t)) = K3

∫

R2

|ϕ|4 Re (ϕ̄∆ϕ) dx− 3k

∫

R2

|ϕ|4 Im (ϕ̄∆ϕ) dx

− 2K3

∫

R2

V |ϕ|6dx− 2K3

∫

R2

|ϕ|8 ln(|ϕ|2)dx − 6kK3

∫

R2

|ϕ|10dx.

Again, following the computations from [4, Section 3.1], we introduce the polar
factor related to ϕ,

θ(t, x) :=

{

ϕ(t,x)
|ϕ(t,x)| if ϕ(t, x) 6= 0,

0 if ϕ(t, x) = 0,

and the above time derivative can be rewritten as

d

dt
E(k, ϕ(t)) = −(K3 − 6k)

∫

R2

|ϕ|4|∇ϕ|2dx− 4K3

∫

R2

|ϕ|4 |∇|ϕ||2 dx

− 6k

∫

R2

|ϕ|4
∣

∣Re(θ̄∇ϕ)− Im(θ̄∇ϕ)
∣

∣

2
dx− 2K3

∫

R2

V |ϕ|6dx

− 2K3

∫

R2

|ϕ|8 ln(|ϕ|2)dx− 6kK3

∫

R2

|ϕ|10dx.

Picking 0 < k < K3/6, the above relation implies

d

dt
E (k, ϕ(t)) 6 2K3

∫

|ϕ|<1

|ϕ|8 ln 1

|ϕ|2 dx 6 2K3

∫

R2

|ϕ|6dx.

Since the change of unknown (2.3) preserves the Lebesgue norms, (1.5) yields

2K3

∫

R2

|ϕ|6 = − d

dt
‖ϕ‖2L2,

hence
d

dt

(

E (k, ϕ(t)) + ‖ϕ‖2L2

)

6 0,

and we conclude like in the case K3 = 0. In particular, (2.9) holds.

Remark 2.3 (Non-radial potential, continued). For a general potential V like in
Remark 2.2, the natural energy associated to ϕ becomes

E0(ϕ(t)) =
1

2
‖∇ϕ(t)‖2L2+

∫

R2

Ṽ (t, x)|ϕ(t, x)|2dx+1

2

∫

R2

|ϕ(t, x)|4 ln
( |ϕ(t, x)|2√

e

)

dx,

and even for K3 = 0, it is not constant in time if V is not radial (∂tṼ 6≡ 0).
However, following either the virial computation from [13] or the pseudo-energy
argument from [15], we can easily adapt the above argument and infer that the
global well-posedness in Theorem 1.1 remains valid.
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2.3. Large time extinction in the presence of loss. In view of [2, Lemma 4.1],

‖ϕ‖L2 . ‖ϕ‖3/5L6 ‖xϕ‖2/5L2 . ‖ϕ‖3/5L6 ,

where we have used (2.9). This, together with (1.5), yields

d

dt
‖ϕ(t)‖2L2 + C‖ϕ(t)‖10L2 6 0,

for some uniform C > 0. Recalling that the (nonnegative) solution of the ODE
ẏ + Cy5 = 0 with y(0) = ‖ψ0‖2L2 satisfies y(t) = O(t−1/4), this implies

‖ϕ(t)‖2L2 .
1

t1/4
,

hence the decay announced in Theorem 1.1, since ‖ϕ(t)‖L2 = ‖ψ(t)‖L2. Again, this
conclusion remains true when V satisfies the assumptions of Remark 2.2 and is not
necessarily radial.

3. Orbital stability

In this section, we study the existence/nonexistence and stability of constraint
mass standing waves associated to (1.8). Recall that K3 = 0 throughout this
section. We will consider separately three cases: low rotational speed (0 < Ω < γ),
critical rotational speed (Ω = γ), and high rotational speed (Ω > γ).

3.1. Low rotational speed. In this subsection, we consider the low rotational
speed 0 < Ω < γ. Let us start with the following observation, mimicking the proof
of [5, Proposition 2.1] (see also [8, Theorem 7.8]):

Lemma 3.1. Let γ, γ0 > 0 and V0 > 0. If 0 < Ω < γ, then for any f ∈ Σ,

‖∇f‖2L2 + 2

∫

R2

V |f |2dx− 2ΩL(f) ≃ ‖∇f‖2L2 + ‖xf‖2L2 . (3.1)

Proof. We first observe that by Cauchy-Schwarz and Young inequalities, we have
for any δ > 0,

Ω|L(f)| 6 Ω (‖x1f‖L2‖∂x2
f‖L2 + ‖x2f‖L2‖∂x1

f‖L2)

6 Ω‖xf‖L2‖∇f‖L2

6 δ‖∇f‖2L2 +
Ω2

4δ
‖xf‖2L2. (3.2)

Using (3.2) with δ = 1
2 , we have

B(f) := ‖∇f‖2L2 + 2

∫

R2

V |f |2dx− 2ΩL(f) (3.3)

6 2‖∇f‖2L2 + (γ2 +Ω2)‖xf‖2L2 + V0‖f‖2L2

6

(

2 +
V0
2

)

‖∇f‖2L2 +

(

γ2 +Ω2 +
V0
2

)

‖xf‖2L2

6 C1

(

‖∇f‖2L2 + ‖xf‖2L2

)

,

where we have used (2.8) to get the third line. On the other hand, by (3.2), we
have for any δ > 0,

B(f) > (1− 2δ)‖∇f‖2L2 +

(

γ2 − Ω2

2δ

)

‖xf‖2L2 + 2V0

∫

R2

e−γ0|x|2|f(x)|2dx.

We choose δ > 0 so that

γ2 − Ω2

2δ
=
γ2 − Ω2

2
or δ =

Ω2

γ2 +Ω2
.
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It follows that

B(f) >
γ2 − Ω2

γ2 +Ω2
‖∇f‖2L2 +

γ2 − Ω2

2
‖xf‖2L2 > C2

(

‖∇f‖2L2 + ‖xf‖2L2

)

.

The proof is complete. �

Proof of Theorem 1.3. The proof is divided into two steps.
Step 1. We show the existence of minimizers for IΩ(ρ). Let ρ > 0 and f ∈ Σ

satisfy ‖f‖2L2 = ρ.
We first show that IΩ(ρ) is well-defined. We have

EΩ(f) =
1

2
B(f) +

1

2

∫

|f |2>√
e

|f |4 ln
( |f |2√

e

)

dx− 1

2

∫

|f |2<√
e

|f |4 ln
( √

e

|f |2
)

dx

>
1

2
B(f)−

√
e

2

∫

|f |2<√
e

|f |2dx

>
1

2
B(f)−

√
e

2
ρ, (3.4)

where B(f) is as in (3.3). Here we have used the fact that ln(1/λ) < 1/λ for
0 < λ < 1. Using (3.1), we see that IΩ(ρ) > −∞.

Next let (fn)n>1 be a minimizing sequence for IΩ(ρ). By (3.4) and (3.1), we see
that (fn)n>1 is a bounded sequence in Σ. Thus there exists φ ∈ Σ such that (up to
a subsequence) fn → φ weakly in Σ and strongly in Lr(R2) for all 2 6 r < ∞ (see
e.g., [33, Theorem XIII.67] for the compactness of the embedding Σ →֒ Lr(R2)). It
follows that

‖φ‖2L2 = lim
n→∞

‖fn‖2L2 = ρ. (3.5)

By the strong convergence, Hölder’s inequality, and the fact that
∣

∣

∣

∣

|f |4 ln
( |f |2√

e

)

− |g|4 ln
( |g|2√

e

)∣

∣

∣

∣

6 C|f − g|
(

|f |2 + |f |4 + |g|2 + |g|4
)

, (3.6)

we infer that
∫

R2

|φ|4 ln
( |φ|2√

e

)

dx = lim
n→∞

∫

R2

|fn|4 ln
( |fn|2√

e

)

dx.

Moreover, by the lower semicontinuity of the weak convergence and (3.1), we have

B(φ) 6 lim inf
n→∞

B(fn).

It follows that
EΩ(φ) 6 lim inf

n→∞
EΩ(fn) = IΩ(ρ)

which together with (3.5) show that φ is a minimizer for IΩ(ρ). In view of Lemma 3.1,
we also have that (up to a subsequence) fn converges to φ strongly in Σ.

Step 2. We show the orbital stability. We argue by contradiction. Suppose that
GΩ(ρ) is not orbitally stable. There exist ǫ0 > 0 and φ0 ∈ GΩ(ρ) and a sequence
u0,n ∈ Σ satisfying

lim
n→∞

‖u0,n − φ0‖Σ = 0 (3.7)

and a sequence of time (tn)n>1 ⊂ R such that

inf
φ∈GΩ(ρ)

‖un(tn)− φ‖Σ > ǫ0, (3.8)

where un is the solution to (1.1) with initial data un(0) = u0,n.
Since φ0 ∈ GΩ(ρ), we have EΩ(φ0) = IΩ(ρ). By (3.7), (3.1) and Sobolev embed-

ding, we have

‖u0,n‖2L2 −→
n→∞

‖φ0‖2L2 = ρ, EΩ(u0,n) −→
n→∞

EΩ(φ0) = IΩ(ρ).
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By the conservation of mass and energy, we get

‖un(tn)‖2L2 −→
n→∞

ρ, EΩ(un(tn)) −→
n→∞

IΩ(ρ).

This shows that (un(tn))n>1 is a minimizing sequence for IΩ(ρ). By Step 1, we
see that up to a subsequence, un(tn) → φ strongly in Σ for some φ ∈ GΩ(ρ) which
contradicts (3.8). The proof is now complete. �

3.2. Critical rotational speed. In this subsection, we study the existence and
stability of standing waves related to (1.8) with a critical rotational speed Ω = γ
(lowest Landau level). To this end, we first collect some basic properties of the
magnetic Sobolev space H1

A(R
2) (see (1.12)) in the following lemma.

Lemma 3.2 ([18, 28]). We have:

• H1
A(R

2) is a Hilbert space.
• C∞

0 (R2) is dense in H1
A(R

2).
• H1

A(R
2) is continuously embedded in Lr(R2) for all 2 6 r <∞.

• H1
A(R

2) ⊂ H1
loc(R

2).
• Diamagnetic inequality:

|∇|f |(x)| 6 |∇Af(x)| a.e. x ∈ R
2. (3.9)

• Magnetic Gagliardo-Nirenberg inequality. For 2 6 r <∞,

‖f‖rLr 6 Cr‖∇Af‖r−2
L2 ‖f‖2L2, ∀f ∈ H1

A(R
2). (3.10)

Lemma 3.3. The best constant in (3.10) is the same as the optimal constant in
Gagliardo-Nirenberg inequality for the case A = 0. In particular, when r = 4, the
best constant in (3.10) can be taken as

C4 = ‖Q‖−2
L2 ,

where Q is the cubic (positive, radial) ground state given by (1.15). Moreover, the
equality in (3.10) cannot be attained.

Proof. We recall the standard Gagliardo-Nirenberg inequality

‖f‖rLr = ‖|f |‖rLr 6 CGN
r ‖f‖2L2‖∇|f |‖r−2

L2 , (3.11)

where CGN
r stands for the best constant in the “regular” Gagliardo-Nirenberg in-

equality. This best constant was first characterized in [38], in terms of a suitable
ground state solution of some elliptic equation. In particular, CGN

4 is given by

CGN
4 = ‖Q‖−2

L2 ,

where Q is the (only) positive, radially symmetric solution to (1.15) (recall that
unlike in [38], there is a 1

2 factor in front of the Laplacian in (1.15), hence a slightly
different formula). As a consequence of the diamagnetic inequality (3.9), we infer

‖f‖rLr 6 CGN
r ‖f‖2L2‖∇Af‖r−2

L2 .

This shows that (3.10) holds and Cr 6 CGN
r . To see CGN

r 6 Cr, we follow the
argument of [11, Proposition 3.1]. Note that the argument given [11] does not hold
in two dimensions. Denote Aσ(x) := σA(σx) with σ > 0. By (3.10), we have for
any smooth compactly supported function f ,

‖f‖rLr 6 Cr‖∇Aσf‖r−2
L2 ‖f‖2L2, ∀σ > 0.

On the other hand, by the triangle inequality, we have

‖∇Aσf‖L2 6 ‖∇f‖L2 + ‖Aσf‖L2.
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We estimate
∫

R2

|Aσ(x)f(x)|2dx 6

(

∫

|x|6R

|Aσ(x)|2dx
)

‖f‖L∞

=

(

∫

|x|6Rσ

|A(x)|2dx
)

‖f‖L∞ → 0 as σ → 0,

where R > 0 is such that supp(f) ⊂ {x ∈ R2 : |x| 6 R}. This shows that
‖f‖rLr 6 Cr‖∇f‖r−2

L2 ‖f‖2L2,

hence CGN
r 6 Cr.

Finally we show that the equality in (3.10) cannot be achieved. Assume by
contradiction that (3.10) is attained by some function φ. By (3.9) and (3.11), we
have

‖φ‖rLr = Cr‖∇Aφ‖r−2
L2 ‖φ‖2L2 > CGN

r ‖∇|φ|‖r−2
L2 ‖φ‖2L2 > ‖φ‖rLr

which implies that
‖∇Aφ‖L2 = ‖∇|φ|‖L2 .

This together with the following estimate of [28, Theorem 7.21]:

|∇|φ|| =
∣

∣

∣

∣

Re

(

∇φ φ

|φ|

)∣

∣

∣

∣

=

∣

∣

∣

∣

Re

(

(∇− iA)φ
φ

|φ|

)∣

∣

∣

∣

6 |(∇− iA)φ|

imply that

Im

(

(∇− iA)φ
φ

|φ|

)

= 0 ⇐⇒ A = Im

(∇φ
φ

)

.

In particular, B12(x) := ∂1A2(x) − ∂2A1(x) = 0, where A(x) = (A1(x), A2(x)) =
γ(−x2, x1). This is a contradiction since B12(x) = 2. The proof is complete. �

Note that in view of [23, Lemma 1] (recall again the 1
2 factor (1.15)),

π 6 ‖Q‖2L2 6 π ln 2. (3.12)

We also have the following useful remark.

Remark 3.4. Let (fn)n>1 be a bounded sequence in H1
A(R

2). Then up to a sub-
sequence, fn ⇀ φ weakly in H1

A(R
2), fn → φ a.e. in R2 and fn → φ strongly in

Lr
loc(R

2) for all 2 6 r <∞. Moreover,

‖∇Afn‖2L2 = ‖∇Aφ‖2L2 + ‖∇A(fn − φ)‖2L2 + on(1).

We have the following conditional result on the existence and stability of pre-
scribed mass standing waves to (1.1).

Proposition 3.5. Let K3 = V0 = 0, γ > 0 and Ω = γ. Let 0 < ρ 6 ‖Q‖2L2 and
assume that I0γ (ρ) < 0. Then there exists φ ∈ H1

A(R
2) such that E0

γ(φ) = I0γ(ρ) and

‖φ‖2L2 = ρ. Moreover, the set

G0
γ(ρ) :=

{

φ ∈ H1
A(R

2) : E0
γ(φ) = I0γ(ρ), ‖φ‖2L2 = ρ

}

is orbitally stable under the flow of (1.1) in the sense that for any ǫ > 0, there
exists δ > 0 such that for any initial data u0 ∈ H1

A(R
2) satisfying

inf
φ∈G0

γ(ρ)
‖u0 − φ‖H1

A
< δ,

the corresponding solution to (1.1) exists globally in time and satisfies

inf
φ∈G0

γ(ρ)
‖u(t)− φ‖H1

A
< ǫ

for all t ∈ R.
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Remark 3.6. In the case A ≡ 0 and γ = 0, it was shown in [16] that I(ρ) := I00 (ρ) <
0 for any ρ > 0. This is done by using the scaling fλ(x) := λf(λx) and taking λ > 0
sufficiently small. In our case, showing I0γ (ρ) < 0 is more complicated. The above
scaling argument does not work due to the presence of magnetic potential A.

Remark 3.7. The assumption ρ 6 ‖Q‖2L2 is probably only technical, due to our
argument (see after (3.18)).

Before giving the proof of Proposition 3.5, let us recall the following version of
concentration-compactness lemma.

Lemma 3.8 (Concentration-compactness lemma [29, 30]). Let (fn)n>1 be a bounded
sequence in H1

A(R
2) satisfying

‖fn‖2L2 = ρ

for all n > 1 with some fixed constant ρ > 0. Then there exists a subsequence –
still denoted by (fn)n>1 – satisfying one of the following three possibilities:

• Vanishing. lim
n→∞

sup
y∈R2

∫

B(y,R)

|fn(x)|2dx = 0 for all R > 0.

• Dichotomy. There exist a ∈ (0, ρ) and sequences (gn)n>1, (hn)n>1 bounded
in H1

A(R
2) such that



















‖fn − gn − hn‖Lr → 0 as n→ ∞ for all 2 6 r <∞,

‖gn‖2L2 → a, ‖hn‖2L2 → ρ− a as k → ∞,

dist(supp(gn), supp(hn)) → ∞ as n→ ∞,

lim infn→∞ ‖∇Afn‖2L2 − ‖∇Agn‖2L2 − ‖∇Ahn‖2L2 > 0.

(3.13)

• Compactness. There exists a sequence (yn)n>1 ⊂ R2 such that for all
ǫ > 0, there exists R(ǫ) > 0 such that for all k > 1,

∫

B(yn,R(ǫ))

|fn(x)|2dx > ρ− ǫ.

The proof of this result is very similar to that of [29, 30], see also [17, Proposi-
tion 1.7.6]. The only difference is the last inequality in (3.13) which is proved by
using the fact that

‖∇A(ϕRfn)‖2L2 − ‖ϕR∇Afn‖2L2 6 CMR−1,

where ϕR(x) = ϕ(x/R) with a suitable function ϕ ∈ C∞(R2) andM := supn>1 ‖fn‖2H1
A
.

Remark 3.9. • If vanishing occurs, then we infer that fn → 0 strongly in
Lr(R2) for all 2 < r <∞. Indeed, by the magnetic inequality (3.9), we see
that |fn| is a bounded sequence in H1(R2). The result follows by applying
[30, Lemma 1.1] to (|fn|)n>1.

• If compactness occurs, then (fn)n>1 is relatively compact in Lr(R2) for
all 2 6 r < ∞ up to a translation and change of gauge, i.e. there exists
(yn)n>1 ⊂ R2 such that up to subsequence

eiĀnfn(·+ yn) → φ

strongly in Lr(R2) for all 2 6 r < ∞, where Ān(x) = A(yn) · x and
φ ∈ H1

A(R
2). In fact, denote

f̃n(x) := eiA(yn)·xfn(x+ yn).

We see that

|f̃n(x)| = |fn(x+ yn)|, ‖∇Af̃n‖2L2 = ‖∇Afn‖2L2.
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It follows that (f̃n)n>1 is a bounded sequence in H1
A(R

2) satisfying for all
ǫ > 0, there exists R(ǫ) > 0 such that for all n > 1,

∫

Bc(0,R(ǫ))

|f̃n(x)|2dx =

∫

Bc(0,R(ǫ))

|fn(x+ yn)|2dx < ǫ.

By the standard diagonalization argument and the compact embedding
H1

A(R
2) →֒ Lr(B(0, R)) for all R > 0 and all 2 6 r < ∞, we show that

f̃n → φ strongly in L2(R2), hence strongly in Lr(R2) for all 2 6 r <∞ by
Sobolev embedding.

Proof of Proposition 3.5. The proof is divided into three steps.
Step 1. We first show that for each ρ > 0, I0γ(ρ) is well-defined, i.e. I

0
γ(ρ) > −∞.

Indeed, recalling (1.14) and arguing as in (3.4), we have directly

E0
γ(f) >

1

2
‖∇Af‖2L2 −

√
e

2
ρ (3.14)

for any f ∈ H1
A(R

2) satisfying ‖f‖2L2 = ρ.
Step 2. We show the existence of minimizers for I0γ (ρ), under the assumption

I0γ(ρ) < 0. It is done by using the concentration-compactness argument as in [18].

Let (fn)n>1 be a minimizing sequence for I0γ(ρ). By (3.14), we see that (fn)n>1 is

a bounded sequence in H1
A(R

2) satisfying

‖fn‖2L2 = ρ, ∀n > 1, E0
γ(fn) → I0γ(ρ) as n→ ∞.

By Lemma 3.8, there exists a subsequence still denoted by (fn)n>1 satisfying one
of the following three possibilities: vanishing, dichotomy and compactness.

No vanishing. Suppose that vanishing occurs. Passing to a subsequence, we
infer that fn → 0 strongly in Lr(R2) for all 2 < r <∞. Thanks to (1.10), we infer
that

∫

R2

|fn|4 ln
( |fn|2√

e

)

dx −→
n→∞

0,

hence

I0γ(ρ) = lim
n→∞

E0
γ(fn) = lim

n→∞
‖∇Afn‖2L2 > 0,

which contradicts the assumption I0γ(ρ) < 0.
No dichotomy. If dichotomy occurs, then there exist a ∈ (0, ρ) and sequences

(gn)n>1, (hn)n>1 bounded in H1
A(R

2) such that (3.13) holds. To rule out the
dichotomy, we first claim that there exists δ > 0 such that

lim inf
n→∞

‖fn‖4L4 > δ > 0. (3.15)

Since E0
γ(fn) → I0γ(ρ) < 0, we see that for n sufficiently large, E0

γ(fn) 6
I0
γ (ρ)

2 . It
follows that

I0γ(ρ)

2
> E0

γ(fn) =
1

2
‖∇Afn‖2L2 +

1

2

∫

|fn|2>
√
e

|fn|4 ln
( |fn|2√

e

)

dx

− 1

2

∫

|fn|2<
√
e

|fn|4 ln
( √

e

|fn|2
)

dx

which implies, since 0 < ln z .
√
z for z > 1,

‖fn‖3L3 &

∫

|fn|2<
√
e

|fn|4 ln
( √

e

|fn|2
)

dx > −
I0γ(ρ)

2
> 0,

for n sufficiently large. The claim (3.15) follows from the Hölder inequality ‖f‖3L3 6

‖f‖2L4‖f‖L2 and ‖fn‖2L2 = ρ.
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We next claim that

lim inf
n→∞

(

E0
γ(fn)− E0

γ(gn)− E0
γ(hn)

)

> 0. (3.16)

To see this, we consider K(z) = z4 ln(z2) for z > 0. Using Taylor expansion and
the fact that

|K ′(z)| .ǫ |z|3−ǫ + |z|3+ǫ

for any ǫ > 0, we infer that
∣

∣

∣

∣

∣

∣

K





N
∑

j=1

zj



−
N
∑

j=1

K(zj)

∣

∣

∣

∣

∣

∣

.ǫ,N

∑

ℓ 6=k

|zℓ|(|zk|3−ǫ + |zk|3+ǫ).

Applying the above estimate with ǫ = 1, N = 3 and en := fn− gn−hn, we see that
∣

∣

∣

∣

∫

K(fn)dx−
∫

K(gn)dx−
∫

K(hn)dx−
∫

K(en)dx

∣

∣

∣

∣

.

∫

|en|(|gn|2 + |gn|4 + |hn|2 + |hn|4)dx+

∫

(|gn|+ |hn|)(|en|2 + |en|4)dx.

Using (1.10), Hölder inequality and the fact that en → 0 strongly in Lr(R2) for all
2 6 r <∞, we have

∫

R2

|fn|4 ln(|fn|2)dx −
∫

R2

|gn|4 ln(|hn|2)dx−
∫

R2

|hn|4 ln(|hn|2)dx −→
n→∞

0.

Similarly, we can prove that

‖fn‖4L4 − ‖gn‖4L4 − ‖hn‖4L4 −→
n→∞

0.

This shows that
∫

R2

|fn|4 ln
( |fn|2√

e

)

dx−
∫

R2

|gn|4 ln
( |gn|2√

e

)

dx−
∫

R2

|hn|4 ln
( |hn|2√

e

)

dx −→
n→∞

0.

Using this and (3.13), we show (3.16).
Now, let λ > 0. We have

E0
γ(λf) =

λ2

2
‖∇Af‖2L2 +

λ4

2

∫

R2

|f |4 ln
(

λ2
|f |2√
e

)

dx

=
λ2

2
‖∇Af‖2L2 +

λ4

2

∫

R2

|f |4 ln
( |f |2√

e

)

dx+
λ4 ln(λ2)

2
‖f‖4L4

= λ4E0
γ(f)−

λ4 − λ2

2
‖∇Af‖2L2 +

λ4 ln(λ2)

2
‖f‖4L4,

which implies

E0
γ(f) = λ−4E0

γ(λf) +
1− λ−2

2
‖∇Af‖2L2 − ln(λ2)

2
‖f‖4L4.

Set λn :=
√
ρ

‖gn‖L2
and µn :=

√
ρ

‖hn‖L2
. It follows that ‖λngn‖2L2 = ‖µnhn‖2L2 = ρ,

hence E0
γ(λngn), E

0
γ(µnhn) > I0γ(ρ). We see that for n sufficiently large,

E0
γ(gn) = λ−4

n E0
γ(λngn) +

1− λ−2
n

2
‖∇Agn‖2L2 − ln(λ2n)

2
‖gn‖4L4

> λ−4
n I0γ(ρ) +

1− λ−2
n

2C4

‖gn‖4L4

‖gn‖2L2

− ln(λ2n)

2
‖gn‖4L4 .
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Here we have used the magnetic Gagliardo-Nirenberg inequality (3.10) and the fact
λn →

√

ρ
a > 1 as n→ ∞. A similar estimate goes for E0

γ(hn). Thus, we get

E0
γ(gn) + E0

γ(hn) >
(

λ−4
n + µ−4

n

)

I0γ (ρ) +
1− λ−2

n

2C4

‖gn‖4L4

‖gn‖2L2

− ln(λ2n)

2
‖gn‖4L4

+
1− µ−2

n

2C4

‖hn‖4L4

‖hn‖2L2

− ln(µ2
n)

2
‖hn‖4L4.

Passing n→ ∞ and using (3.16), we obtain

I0γ(ρ) >
a2 + (ρ− a)2

ρ2
I0γ(ρ) +

1

2

(

1

C4ρ

(ρ

a
− 1
)

− ln
(ρ

a

)

)

lim inf
n→∞

‖gn‖4L4

+
1

2

(

1

C4ρ

(

ρ

ρ− a
− 1

)

− ln

(

ρ

ρ− a

))

lim inf
n→∞

‖hn‖4L4

>
a2 + (ρ− a)2

ρ2
I0γ(ρ) +

1

2
min {K1,K2} lim inf

n→∞
‖fn‖4L4 , (3.17)

where

K1 :=
1

C4ρ

(ρ

a
− 1
)

− ln
(ρ

a

)

, K2 :=
1

C4ρ

(

ρ

ρ− a
− 1

)

− ln

(

ρ

ρ− a

)

. (3.18)

Here K1,K2 > 0 as soon as C4ρ 6 1, which follows from 0 < ρ 6 ‖Q‖2L2, see
Lemma 3.3. Using (3.15) and (3.17), we infer that I0γ(ρ) > 0 which is a contradic-
tion.

Compactness. Therefore, compactness must occur. In this case, there exist
φ ∈ H1

A(R
2) and (yn)n>1 ⊂ R2 such that up to a subsequence,

f̃n → φ

strongly in Lr(R2) for all 2 6 r <∞, where f̃n(x) := eiA(yn)·xfn(x+yn). It follows
that

‖φ‖2L2 = lim
n→∞

‖f̃n‖2L2 = lim
n→∞

‖fn(·+ yn)‖2L2 = ρ,

and by (1.10),

∫

R2

|φ|2 ln
( |φ|2√

e

)

dx = lim
n→∞

∫

R2

|f̃n|4 ln
(

|f̃n|2√
e

)

dx = lim
n→∞

∫

R2

|fn|4 ln
( |fn|2√

e

)

dx.

We also have

‖∇Aφ‖2L2 6 lim inf
n→∞

‖∇Af̃n‖2L2 = lim inf
n→∞

‖∇Afn‖2L2 .

Thus, we get

E0
γ(φ) 6 lim inf

n→∞
E0

γ(fn) = I0γ(ρ).

This shows that φ is a minimizer for I0γ (ρ). We also have that f̃n → φ strongly in

H1
A(R

2) as n→ ∞.
Step 3. The orbital stability of G0

γ(ρ) follows by the same argument as in
Theorem 1.3. We thus omit the details. The proof is now complete. �

In the following lemma, we show that the conditions 0 < ρ 6 ‖Q‖2L2 and I0γ (ρ) <

0 are satisfied for some data f ∈ H1
A(R

2).

Lemma 3.10. If 0 < γ < 1
2e3/2

, then there exists f ∈ H1
A(R

2) satisfying ‖f‖2L2 =

ρ 6 ‖Q‖2L2 and I0γ(ρ) < 0.

Proof. We look for a function f ∈ H1
A(R

2) satisfying

‖f‖2L2 = ρ 6 ‖Q‖2L2, E0
γ(f) < 0. (3.19)
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To this end, we consider fb(x) = e−b|x|2 for some b > 0 to be chosen later. A direct
computation shows

‖fb‖2L2 =

∫

R2

e−2b|x|2dx =
π

2b
.

We also have

‖∇Afb‖2L2 = (γ2 + 4b2)

∫

R2

|x|2e−2b|x|2dx = π

(

1 +
γ2

4b2

)

.

In addition, we have

‖fb‖4L4(R2) =

∫

R2

e−4b|x|2dx =
π

4b

and
∫

R2

|fb|4 ln
( |fb|2√

e

)

dx = −2b

∫

R2

|x|2e−4b|x|2dx − 1

2

∫

R2

e−4b|x|2dx = − π

4b
.

Let λ > 0 to be chosen later. We see that

‖λfb‖2L2 = λ2‖fb‖2L2 =
π

2b
λ2, E0

γ(λfb) =
π

2

(

1 +
γ2

4b2

)

λ2 − π

8b
λ4 +

π

8b
λ4 ln(λ2).

To make ‖λfb‖2L2 6 ‖Q‖2L2, we need λ2 6 2b
π ‖Q‖2L2. In view of (3.12), this is

granted by the property λ2 6 2b. Consider

F (θ) =
π

2

(

1 +
γ2

4b2

)

θ − π

8b
θ2 +

π

8b
θ2 ln(θ), for 0 < θ 6 2b.

We rewrite

F (θ) =
πθ

8b2
(

4b2 + γ2 − bθ + bθ ln(θ)
)

=:
πθ

8b2
G(θ).

The condition E0
γ(λfb) < 0 is now reduced to finding θ ∈ (0, 2b] so that G(θ) < 0.

We have

G′(θ) = b ln(θ).

If 2b > 1, we see that G attains its minimum at θ = 1, howeverG(1) = 4b2+γ2−b >
0 for 2b > 1. So, we need 2b < 1. In this case, G is strictly decreasing on (0, 2b].
To find θ ∈ (0, 2b] so that G(θ) < 0, a necessary condition is

G (2b) < 0 ⇐⇒ 4b2 + γ2 − 2b2 − 2b2 ln

(

1

2b

)

< 0.

Consider H(b) := 2b2 + γ2 + 2b2 ln(2b) for b ∈
(

0, 12
)

. We compute

H ′(b) = 2b (3 + 2 ln(2b)) .

We see that on
(

0, 12
)

, H attains its minimum at b0 = e−3/2

2 < 1
2 . A direct compu-

tation shows

H(b0) = γ2 − 1

4e3
.

Thus, if γ < 1
2e3/2

, then we have G (2b0) < 0. Therefore, by choosing λ > 0 so that

λ2 6 2b0, we show the existence of a function f ∈ H1
A(R

2) satisfying (3.19). The
proof is complete. �

Proof of Theorem 1.4. It follows directly from Proposition 3.5 and Lemma 3.10. �

In the case V0 > 0, the concentration-compactness argument presented above
does not work due to the lack of spatial translation in the new potential term

∫

R2

e−γ0|x|2 |f(x)|2dx.
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More precisely, the sequence (yn)n>1 ⊂ R2, which appeared in the compactness,
may tend to infinity, and then

∫

R2

e−γ0|x|2 |fn(x+ yn)|2dx −→
n→∞

0.

To overcome this difficulty, we restrict our consideration on H1
A,rad(R

2) the space of

radially symmetric functions ofH1
A(R

2). Note that this restriction has the drawback
that we no longer see the effect of rotation to the equation since Lzf = 0 for a radial
functions f .
Proof of Theorem 1.5. We proceed in two steps.

Step 1. We show that there exists a minimizer for Iγ,rad(ρ). Let ρ > 0 and
f ∈ H1

A,rad(R
2) satisfy ‖f‖2L2 = ρ. We have

Eγ(f) =
1

2
‖∇Af‖2L2 + V0

∫

R2

e−γ0|x|2 |f(x)|2dx+
1

2

∫

|f |2>√
e

|f |4 ln
( |f |2√

e

)

dx

−1

2

∫

|f |2<√
e

|f |4 ln
( √

e

|f |2
)

dx

>
1

2
‖∇Af‖2L2 −

√
e

2

∫

|f |2<√
e

|f |2dx

>
1

2
‖∇Af‖2L2 −

√
e

2
ρ. (3.20)

This shows that Iγ,rad(ρ) > −∞ is well-defined.
Next, let (fn)n>1 be a minimizing sequence for Iγ,rad(ρ). By (3.20), (fn)n>1 is

a bounded sequence in H1
A,rad(R

2). Since H1
A,rad(R

2) →֒ Lr(R2) is compact for all

2 6 r < ∞, there exists φ ∈ H1
A,rad(R

2) such that, up to a subsequence, fn → φ

weakly in H1
A,rad(R

2) and strongly in Lr(R2) for all 2 6 r < ∞. By the strong

convergence and (3.6), we see that

∫

R2

|φ|4 ln
( |φ|2√

e

)

dx = lim
n→∞

∫

R2

|fn|4 ln
( |fn|2√

e

)

dx.

On the other hand, by the weak continuity of the potential energy (see e.g., [28,
Theorem 11.4]), we have

∫

R2

e−γ0|x|2 |φ(x)|2dx = lim
n→∞

∫

R2

e−γ0|x|2 |fn(x)|2dx.

Moreover, the lower semicontinuity of the weak convergence implies

‖∇Aφ‖L2 6 lim inf
n→∞

‖∇Afn‖L2.

Thus we get

Eγ(φ) 6 lim inf
n→∞

Eγ(fn) = Iγ,rad(ρ),

which together with

‖φ‖2L2 = lim
n→∞

‖fn‖2L2 = ρ

implies that φ is a minimizer for Iγ,rad(ρ). In addition, we have that (up to a
subsequence), fn → φ strongly in H1

A,rad(R
2).

Step 2. The orbital stability follows from the same argument as in the proof of
Theorem 1.3. We omit the details. �
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3.3. High rotational speed. In this subsection, we show the nonexistence of
minimizers for IΩ(ρ) given in Theorem 1.7.
Proof of Theorem 1.7. The proof is inspired by the idea of [7] (see also [6]). We
consider

fm(x) = fm(r, θ) = C(m, γ)rme−
γ|x|2

2 eimθ,

where m ∈ N and C(m, γ) > 0 to be determined later. Here (r, θ) is the polar
coordinate of x = (x1, x2) ∈ R2, i.e.

x1 = r cos θ, x2 = r sin θ, r > 0, θ ∈ (0, 2π].

It is useful to recall the following formulas:
(

∂rx1 ∂θx1
∂rx2 ∂θx2

)

=

(

cos θ −r sin θ
sin θ r cos θ

)

,

and
(

∂x1
r ∂x2

r
∂x1

θ ∂x2
θ

)

=

(

cos θ sin θ
− sin θ

r
cos θ
r

)

.

We have

‖fm‖2L2(R2) =

∫

R2

|fm(x)|2dx = 2πC(m, γ)2
∫ ∞

0

r2me−γr2rdr.

Let ρ > 0. We choose C(m, γ) so that ‖fm‖2L2(R2) = ρ for all m ∈ N. Set

I(γ,m) :=

∫ ∞

0

r2me−γr2rdr,

and write

‖fm‖2L2(R2) = 2πC(m, γ)2I(γ,m).

Integrating by parts, we see that I(γ,m) = m
γ I(γ,m − 1) which, by induction,

implies I(γ,m) = m!
γm I(γ, 0), where

I(γ, 0) =

∫ ∞

0

e−γr2rdr =
1

2γ
.

Thus we get

I(γ,m) =
m!

2γm+1
. (3.21)

The condition ‖fm‖2L2(R2) = ρ is equivalent to

ρ = 2πC(m, γ)2
m!

2γm+1
⇐⇒ C(m, γ)2 =

ργm+1

πm!
(3.22)

We compute

∂x1
fm = ∂rfm∂x1

r + ∂θfm∂x1
θ

= C(m, γ)eimθe−
γr2

2 (mrm−1 − γrm+1) cos θ

−C(m, γ)eimθe−
γr2

2 imrm−1 sin θ

= C(m, γ)eimθe−
γr2

2

(

(mrm−1 − γrm+1) cos θ − imrm−1 sin θ
)

,

and

∂x2
fm = ∂rfm∂x2

r + ∂θfm∂x2
θ

= C(m, γ)eimθe−
γr2

2

(

(mrm−1 − γrm+1) sin θ + imrm−1 cos θ
)

.
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It follows that

|∇fm|2 = |∂x1
fm|2 + |∂x2

fm|2

= C(m, γ)2e−γr2
[

(

(mrm−1 − γrm+1) cos θ − imrm−1 sin θ
)2

+
(

(mrm−1 − γrm+1) sin θ + imrm−1 cos θ
)2
]

= C(m, γ)2e−γr2
(

2m2r2(m−1) − 2mγr2m + γ2r2(m+1)
)

.

Thus we have

‖∇fm‖2L2(R2) = 2π

∫ ∞

0

|∇fm|2rdr

= 2πC(m, γ)2
∫ ∞

0

(

2m2r2(m−1) − 2mγe2m + γ2r2(m+1)
)

e−γr2rdr

= 2πC(m, γ)2
(

2m2I(γ,m− 1)− 2mγI(γ,m) + γ2I(γ,m+ 1)
)

.

Thanks to (3.21) and (3.22), we have

‖∇fm‖2L2(R2) = 2π
ργm+1

πm!

(

2m2 (m− 1)!

2γm
− 2mγ

m!

2γm+1
+ γ2

(m+ 1)!

2γm+2

)

= ρ(m+ 1)γ.

We next compute
∫

R2

V |fm|2dx = C(m, γ)2
∫

R2

(

γ2

2
|x|2 + V0e

−γ0|x|2
)

|x|2me−γ|x|2dx

= 2πC(m, γ)2
∫ ∞

0

(

γ2

2
r2 + V0e

−γ0r
2

)

r2me−γr2rdr

= 2πC(m, γ)2
(

γ2

2

∫ ∞

0

r2(m+1)e−γr2rdr + V0

∫ ∞

0

r2me−(γ+γ0)r
2

rdr

)

= 2πC(m, γ)2
(

γ2

2
I(γ,m+ 1) + V0I(γ + γ0,m)

)

,

which, together with (3.21) and (3.22), implies that
∫

R2

V |fm|2dx = 2π
ργm+1

πm!

(

γ2

2

(m+ 1)!

2γm+2
+ V0

m!

2(γ + γ0)m+1

)

=
ρ

2
(m+ 1)γ +

(

γ

γ + γ0

)m+1

V0ρ.

Moreover, since the rotation operator can be rewritten as Lz = −i∂θ, we have

L(fm) =

∫

R2

fmLzfmdx = 2πC(m, γ)2
∫ ∞

0

mr2me−γr2rdr

= 2πmC(m, γ)2I(γ,m) = m‖fm‖2L2(R2) = mρ.

Next we compute

‖fm‖6L6(R2) = 2πC(m, γ)6
∫ ∞

0

r6me−3γr2rdr = 2πC(m, γ)6I (3γ, 3m)

= 2πC(m, γ)6
(3m)!

2(3γ)3m+1
= 2π

(

ργm+1

πm!

)3
(3m)!

2(3γ)3m+1

= ρ3
γ2

π2

(3m)!

(3mm!)3
,
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which tends to zero as m → ∞ for each ρ > 0 fixed. By interpolation between L2

and L6, we infer that

‖fm‖pLp(R2) −→
m→∞

0, ∀p ∈]2, 6].

This yields
∣

∣

∣

∣

∫

R2

|fm|4 ln
( |fm|2√

e

)

dx

∣

∣

∣

∣

. ‖fm‖3L3(R2) + ‖fm‖5L5(R2) −→
m→∞

0.

Finally we have

EΩ(fm) =
1

2
‖∇fm‖2L2 +

∫

R2

V |fm|2dx+
1

2

∫

R2

|fm|4 ln
( |fm|2√

e

)

dx− ΩL(fm)

= ρ(m+ 1)γ +

(

γ

γ + γ0

)m+1

V0ρ+ om(1)− Ωmρ

= −mρ(Ω− γ) + ργ +

(

γ

γ + γ0

)m+1

V0ρ+ om(1),

where om(1) → 0 as m → ∞. As Ω > γ, letting m → ∞ yields EΩ(fm) → −∞.
Therefore, for any ρ > 0, there is no minimizer for IΩ(ρ). �

Appendix A. Ground states

In this appendix, we collect some information on stationary solutions in the
radial case, where the rotation terms is absent, so (1.8) becomes

−1

2
∆φ+ ωφ+ φ|φ|2 ln(|φ|2) + V φ = 0, x ∈ R

2. (A.1)

Recall that

V (x) =
γ2

2
|x|2 + V0e

−γ0|x|2 .

We introduce the minimizing problem

ωV0
:= inf

{

1

2
‖∇f‖2L2 +

∫

R2

V |f |2dx : f ∈ Σ, ‖f‖2L2 = 1

}

. (A.2)

Denoting by

H = −1

2
∆ + V,

we see that ωV0
is simply the bottom of the spectrum of H . If V0 = 0, then it is

well-known that ω0 is attained by the Gaussian

ϕ0(x) =

√

γ

π
e−γ|x|2/2, and ω0 = γ.

Moreover, every minimizer for ω0 is of the form f(x) = eiθϕ0(x), where θ ∈ R.

Lemma A.1. Let V0 > 0. Then ωV0
is attained and γ = ω0 6 ωV0

6 γ + γ
γ+γ0

V0.

Proof. Since V0 > 0, it is obvious that ωV0
> ω0. Also,

〈Hϕ0, ϕ0〉 = γ + V0
γ

π

∫

R2

e−(γ+γ0)|x|2dx = γ +
γ

γ + γ0
V0,

hence ωV0
6 γ + γ

γ+γ0
V0. It remains to show that ωV0

is attained. Let (fn)n>1 be

a minimizing sequence for ωV0
. It follows that (fn)n>1 is a bounded sequence in Σ.

Thus, there exists ϕ ∈ Σ such that (up to a subsequence) fn → ϕ weakly in Σ and
strongly in Lr(R2) for all 2 6 r <∞. We infer that

‖ϕ‖2L2 = lim
n→∞

‖fn‖2L2 = 1.
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By the lower continuity of the weak convergence, we have

1

2
‖∇ϕ‖2L2 +

γ2

2
‖xϕ‖2L2 6 lim inf

n→∞
1

2
‖∇fn‖2L2 +

γ2

2
‖xfn‖2L2 .

We also have from the weak continuity of the potential energy (see e.g., [28, Theo-
rem 11.4]) that

∫

R2

e−γ0|x|2 |ϕ(x)|2dx = lim
n→∞

∫

R2

e−γ0|x|2 |fn(x)|2dx. (A.3)

This implies

ωV0
6

1

2
‖∇ϕ‖2L2 +

∫

R2

V |ϕ|2dx 6 lim inf
n→∞

1

2
‖∇fn‖2L2 +

∫

R2

V |fn|2dx = ωV0
,

hence ϕ is a minimizer for ωV0
. The proof is complete. �

Consider now the Pohozaev identities related to (A.1).

Lemma A.2. Let φ ∈ Σ be a solution to (A.1). Then the following identities hold

1

2
‖∇φ‖2L2 + ω‖φ‖2L2 +

∫

R2

V |φ|2dx+

∫

R2

|φ|4 ln(|φ|2)dx = 0, (A.4)

ω‖φ‖2L2 +

∫

R2

V |φ|2dx+
1

2

∫

R2

x · ∇V |φ|2dx+
1

2

∫

R2

|φ|4 ln
( |φ|2√

e

)

dx = 0, (A.5)

1

2
‖∇φ‖2L2 +

1

2
‖φ‖4L4 = ω‖φ‖2L2 +

∫

R2

V |φ|2dx+

∫

R2

x · ∇V |φ|2dx. (A.6)

In particular, since V0 > 0, if ω > 1
2
√
e
+ V0

e2 or ω + ωV0
> 1

e , then φ ≡ 0.

Proof. The identity (A.4) follows by multiplying both sides of (A.1) with φ̄ and
taking the integration over R

2. By multiplying both sides of (A.1) with x · ∇φ̄,
integrating over R2, taking the real part and using the fact that

Re

(∫

R2

∆φx · ∇φ̄dx
)

= 0,

Re

(∫

R2

V φx · ∇φ̄dx
)

= −
∫

R2

V |φ|2dx− 1

2

∫

R2

x · ∇V |φ|2dx,

Re

(∫

R2

φ|φ|2 ln(|φ|2)x · ∇φ̄dx
)

= −1

2

∫

R2

|φ|4 ln
( |φ|2√

e

)

dx,

we get (A.5). Finally, (A.6) follows directly from (A.4) and (A.5).

In view of the formula

V (x) +
1

2
x · ∇V (x) = γ2|x|2 + V0

(

1− γ0|x|2
)

e−γ0|x|2 ,

and of the straightforward estimate

sup
|x|2>1/γ0

(

γ0|x|2 − 1
)

e−γ0|x|2 = sup
r>1

(r − 1)e−r =
1

e2
,

(A.5) yields

ω‖φ‖2L2 + γ2
∫

R2

|x|2|φ|2dx+
1

2

∫

|φ|2>√
e

|φ|4 ln
( |φ|2√

e

)

6
1

2

∫

|φ|2<√
e

|φ|4 ln
( √

e

|φ|2
)

dx+
V0
e2

‖φ‖2L2.

We also compute

sup
0<z<1

z ln

(

1

z

)

=
1

e
, (A.7)
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hence

ω‖φ‖2L2 + γ2
∫

R2

|x|2|φ|2dx+
1

2

∫

|φ|2>√
e

|φ|4 ln
( |φ|2√

e

)

6

(

1

2
√
e
+
V0
e2

)

‖φ‖2L2.

It follows that

γ2
∫

R2

|x|2|φ|2dx+
1

2

∫

|φ|2>√
e

|φ|4 ln
( |φ|2√

e

)

6

(

1

2
√
e
+
V0
e2

− ω

)

‖φ‖2L2 .

Since the left hand side is the sum of non-negative terms, if ω > 1
2
√
e
+ V0

e2 , then we

must have φ ≡ 0.
Similarly, (A.4) and (A.2) yield

(ω + ωV0
) ‖φ‖2L2 +

∫

R2

|φ|4 ln(|φ|2)dx 6 0,

hence

(ω + ωV0
) ‖φ‖2L2 6

∫

|φ|2<1

|φ|4 ln
(

1

|φ|2
)

dx 6
1

e
‖φ‖2L2 ,

where we have used (A.7) again. This shows that if ω + ωV0
> 1

e , then we must
have φ ≡ 0. The proof is complete. �

Remark A.3. We infer from Lemma A.2 that non-trivial solutions exist only if

ω <
1

2
√
e
+
V0
e2

and ω + ωV0
6

1

e
. (A.8)

In particular, when V0 = 0, the above conditions become

ω <
1

2
√
e

and ω + γ 6
1

e
.

According to the value of γ, either the first condition or the second one is the more
stringent.

We now explain in more details why finding directly a solution to (A.1) (that is,
not minimizing the energy under a mass constraint, in which case ω corresponds
to the - unknown - Lagrange multiplier) seems intricate. In order to simplify the
computations, we go back to the initial case (1.2), that is, we assume γ0 = γ. To
find ground states related to (A.1), a standard way is to consider the following
minimization problem

mω := inf {Sω(f) : f ∈ Σ\{0}, Kω(f) = 0} , (A.9)

and then show that minimizers for mω are indeed solutions to (A.1), where

Sω(f) :=
1

2
‖∇f‖2L2 + ω‖f‖2L2 +

∫

R2

V |f |2dx+
1

2

∫

R2

|f |4 ln
( |f |2√

e

)

dx,

Kω(f) := ‖∇f‖2L2 + 2ω‖f‖2L2 + 2

∫

R2

V |f |2dx+ 2

∫

R2

|f |4 ln(|f |2)dx.

Note that

Sω(f) =
1

2
Kω(f)−

1

2

∫

R2

|f |4 ln
(

|f |2
)

dx− 1

4
‖f‖4L4 (A.10)

=
1

4
Kω(f) +

1

4
‖∇f‖2L2 +

ω

2
‖f‖2L2 +

1

2

∫

R2

V |f |2dx − 1

4
‖f‖4L4. (A.11)

We have the following sufficient condition that ensures the minimizing problem
(A.9) is well-defined.
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Lemma A.4. Let γ > 0 and V0 > 0. If

ω <
1

2
√
e
− γ − V0

2
, (A.12)

then the set

{f ∈ Σ\{0} : Kω(f) = 0}
is not empty.

Proof. Denote fb(x) = e−b|x|2 with b > 0. A direct computation shows

‖fb‖2L2 =
π

2b
, ‖xfb‖2L2 =

π

4b2
, ‖∇fb‖2L2 = π, ‖fb‖4L4 =

π

4b
,

∫

R2

V (x)|fb(x)|2dx =
γ2π

8b2
+

πV0
γ + 2b

,

∫

R2

|fb|4 ln(|fb|2)dx = − π

8b
.

For λ > 0 to be chosen later, we have

Kω(λfb) = λ2‖∇fb‖2L2 + 2ωλ2‖fb‖2L2 + 2λ2
∫

R2

V |fb|2dx

+2λ4 ln(λ2)‖fb‖4L4 + λ4
∫

R2

|fb|4 ln(|fb|2)dx

= λ2π
(

1 +
ω

b

)

+ 2λ2π

(

γ2

8b2
+

V0
γ + 2b

)

+
λ4π

2b
ln

(

λ2√
e

)

.

It follows that

Kω(λfb)

λ2π
= 1+

ω

b
+
γ2

4b2
+

2V0
γ + 2b

+
λ2

2b
ln

(

λ2√
e

)

.

Using (A.7), we see that the last term takes its maximal negative value at λ2 = 1√
e
.

It follows that

Kω(λfb)

λ2π

∣

∣

∣

∣

λ2= 1√
e

= π

(

1 +
ω

b
+
γ2

4b2
+

2V0
γ + 2b

− 1

2b
√
e

)

.

Optimizing the sum of the first and third terms yields b = γ
2 , hence

Kω(λfb)

λ2π

∣

∣

∣

∣

(λ2,b)=
(

1√
e
, γ
2

)

= π

(

2 +
2ω

γ
+
V0
γ

− 1

γ
√
e

)

.

This shows that if ω < 1
2
√
e
− γ − V0

2 , then

Kω(λfb)|(λ2,b)=
(

1√
e
, γ
2

) < 0.

By the continuity argument, there exists f ∈ Σ\{0} such that Kω(f) = 0. �

Remark A.5. The condition (A.12) is stronger than (A.8) since V0 > 0 and ωV0
6

γ + V0

2 .

By the above remark, from now on, we consider the following condition on ω

−ωV0
< ω <

1

2
√
e
− γ − V0

2
. (A.13)

This condition is equivalent to

0 < ω + ωV0
<

1

2
√
e
+ ωV0

− γ − V0
2
.

To make the above inequality is not empty, we need

γ +
V0
2

− ωV0
<

1

2
√
e
.
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Note that the left hand side belongs to
(

0, V0

2

)

as γ 6 ωV0
6 γ + V0

2 . So, if

V0 <
1√
e
≃ 0.6, then the above condition is satisfied. Note that only the values

V0 = 0 and V0 = 0.2 are considered in [37].
To show the existence of minimizers for mω, we need an estimate showing the

boundedness in Σ of minimizing sequences for mω. However due to the interplay
of various nonlinear terms, it is not clear to us how to prove this at the moment.
Below we collect some estimates which may be helpful for future investigation.

Remark A.6. Let ω be as in (A.13). Let f ∈ Σ\{0} be such that Kω(f) = 0. Then
there exist positive constants C1 = C1(ω) and C2 = C2(ω) such that

‖f‖2L2 +‖f‖4L4 6 C1(ω)‖f‖3L3, ‖∇f‖2L2 +‖f‖4L4 6 C1(ω)‖f‖2L2, ‖f‖L3 > C2(ω).

Indeed, since Kω(f) = 0, we have

‖∇f‖2L2 + 2ω‖f‖2L2 + 2

∫

R2

V |f |2dx+ 2

∫

R2

|f |4 ln
( |f |2√

e

)

dx+ ‖f‖4L4 = 0

hence

‖∇f‖2L2 + 2ω‖f‖2L2 + 2

∫

R2

V |f |2dx+ ‖f‖4L4 + 2

∫

|f |2>√
e

|f |4 ln
( |f |2√

e

)

dx

= 2

∫

|f |2<√
e

|f |4 ln
( √

e

|f |2
)

dx.

By the definition of ωV0
, we see that

2(ω + ωV0
)‖f‖2L2 + ‖f‖4L4 + 2

∫

|f |2>√
e

|f |4 ln
( |f |2√

e

)

dx 6 C‖f‖3L3

which implies

‖f‖2L2 + ‖f‖4L4 6 C(ω)‖f‖3L3.

Another estimate using (A.7) yields

‖∇f‖2L2 + 2

∫

R2

V |f |2dx+ ‖f‖4L4 + 2

∫

|f |2>√
e

|f |4 ln
( |f |2√

e

)

dx

6 2

(

1√
e
− ω

)

‖f‖2L2 (A.14)

which implies

‖∇f‖2L2 + ‖f‖4L4 6 C(ω)‖f‖2L2.

By the Gagliardo-Nirenberg inequality, we obtain

‖f‖6L3 6 C‖∇f‖2L2‖f‖4L2 6 C(ω)‖f‖6L2 6 C(ω)‖f‖9L3, (A.15)

hence ‖f‖3L3 >
1

C(ω) > 0.

Observation A.7. We have the following useful estimates:

‖f‖2L2 6 ‖∇f‖L2‖xf‖L2

6

√
2

γ
‖∇f‖L2

(∫

R2

V |f |2dx
)1/2

6
1

γ

(

1

2
‖∇f‖2L2 +

∫

R2

V |f |2dx
)

.

and

‖f‖4L4 6
1

‖Q‖2L2

‖∇f‖2L2‖f‖2L2,

where Q is the unique positive radial solution to (1.15) satisfying (3.12).
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In the following remark, we point out another difficulty in finding ground states
related to (A.1). More precisely, suppose that there is a minimizer φ for mω, we
are not able to show that φ is a solution to (A.1).

Remark A.8. Assume that mω is attained by a function φ. Then there exists a
Lagrange multiplier λ ∈ R such that S′

ω(φ) = λK ′
ω(φ) or

−∆φ+ 2ωφ+ 2V φ+ 2φ|φ|2 ln(|φ|2) (A.16)

= λ
(

2∆φ+ 4ωφ+ 4V φ+ 8φ|φ|2 ln(|φ|2) + 4φ|φ|2
)

.

We want to show that λ = 0 so that φ is a solution to (A.1). To see this, we first
multiply both sides of (A.16) with φ̄ and integrate over R2 to get

Kω(φ) = λ

(

2‖∇φ‖2L2 + 4ω‖φ‖2L2 + 4

∫

R2

V |φ|2dx+ 8

∫

R2

|φ|4 ln(|φ|2)dx+ 4‖φ‖4L4

)

.

Since Kω(φ) = 0, we infer that

λ

(
∫

R2

|φ|4 ln(|φ|2)dx+ ‖φ‖4L4

)

= 0.

Suppose that λ 6= 0, then we must have

∫

R2

|φ|4 ln(|φ|2)dx+ ‖φ‖4L4 = 0. (A.17)

In particular, as Kω(φ) = 0, we have

‖∇φ‖2L2 + 2ω‖φ‖2L2 + 2

∫

R2

V |φ|2dx− 2‖φ‖4L4 = 0. (A.18)

Moreover, if we multiply both sides of (A.16) with x · ∇φ̄, integrate over R2, and
take the real part, we get

2ω‖φ‖2L2 + 2

∫

R2

V |φ|2dx +

∫

R2

x · ∇V |φ|2dx+

∫

R2

|φ|4 ln(|φ|2)dx− 1

2
‖φ‖4L4

= λ

(

4ω‖φ‖2L2 + 4

∫

R2

V |φ|2dx+ 2

∫

R2

x · ∇V |φ|2dx+ 4

∫

R2

|φ|4 ln(|φ|2)dx
)

which implies

(2λ− 1)A+ (4λ− 1)B +
1

2
C = 0,

where

A : = 2ω‖φ‖2L2 + 2

∫

R2

V |φ|2dx+

∫

R2

x · ∇V |φ|2dx,

B : =

∫

R2

|φ|4 ln(|φ|2)dx, C := ‖φ‖4L4 .

From this and (A.17), we have

(2λ− 1)A+

(

3

2
− 4λ

)

C = 0.

However, it is not clear that λ = 0, and it is not possible to conclude.
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Appendix B. Characterization of prescribed mass minimizers

In this section, we will characterize the orbit of prescribed mass standing waves
obtained in Section 3, in the absence of the rotational effect, following the strategy
from [24]. Throughout this section, we assume that Ω = 0 and K3 = 0.

Denote

ΣR :=

{

f ∈ H1(R2,R) :

∫

R2

|x|2f2dx <∞
}

.

For f ∈ ΣR, we define

ER

0 (f) :=
1

2
|∇f |2L2 +

∫

R2

V f2dx+
1

2

∫

R2

f4 ln

(

f2

√
e

)

dx.

Let z = (f, g) ≃ f + ig. We observe that

z ∈ Σ ⇐⇒ f ∈ ΣR, g ∈ ΣR.

For z ∈ Σ, we consider

E0(z) :=
1

2
‖∇z‖2L2 +

∫

R2

V |z|2dx+
1

2

∫

R2

|z|4 ln
( |z|2√

e

)

dx.

Here | · |L2 and ‖ · ‖L2 denote the norms of L2(R2,R) and L2(R2,C), respectively.
For c > 0, we consider the following minimizing problems:

IR0,c : = inf
{

ER

0 (f) : f ∈ SR

c

}

,

I0,c : = inf {E0(z) : z ∈ Sc} ,

where

SR

c : =
{

f ∈ ΣR : |f |2L2 = c
}

,

Sc : =
{

z ∈ Σ : ‖z‖2L2 = c
}

.

We also denote

Wc : =
{

f ∈ SR

c : ER

c (f) = IR0,c, f > 0
}

,

Zc : = {z ∈ Sc : E0(z) = I0,c} .

Theorem B.1. We have the following properties:

(1) For any c > 0, IR0,c = I0,c.
(2) If z ∈ Zc, then |z| ∈ Wc.
(3) If z ∈ Zc with z = f + ig, then

(a) f ≡ 0 or f(x) 6= 0 for all x ∈ R2.
(b) g ≡ 0 or g(x) 6= 0 for all x ∈ R2.

(4) Zc =
{

eiσϕ : σ ∈ R, ϕ ∈ Wc

}

.

Proof. The proof is essentially given in [24]. For the reader’s convenience, we
provide some details.

(1) Let z = (f, g) ∈ Sc be such that E0(z) = I0,c and set ϕ := |z| =
√

f2 + g2.
It follows that ϕ ∈ SR

c and we have (see [24, Proposition 2.2.]) for i = 1, 2,

∂iϕ =







f∂ig + g∂if
√

f2 + g2
if f2 + g2 > 0,

0 otherwise.
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We see that

E0(z)− ER

0 (ϕ) =
1

2

(

‖∇z‖2L2 − |∇ϕ|2L2

)

=
1

2

∫

R2

(

|∇f |2 + |∇g|2 − |∇ϕ|2
)

dx

=
1

2

∫

f2+g2>0

2
∑

i=1

(f∂ig − g∂if)
2

f2 + g2
dx

> 0. (B.1)

Thus
I0,c = E0(z) > ER

0 (ϕ) > IR0,c > I0,c

which implies that

IR0,c = I0,c, ER

0 (ϕ) = I0,c. (B.2)

(2) If z ∈ Zc, then ϕ = |z| satisfies ϕ ∈ SR

c and ER

0 (ϕ) = I0,c. Using regularity
theory and maximum principle, we can deduce that ϕ ∈ C1(R2) and ϕ > 0. In
particular, |z| ∈Wc.

(3) We only prove (a) since the one for (b) is treated in a similar manner. Let
z = (f, g) ∈ Zc and ϕ = |z|. By (B.1) and (B.2), we know that

∫

f2+g2>0

(f∂ig − g∂if)
2

f2 + g2
dx = 0. (B.3)

On the other hand, as E0(z) = I0,c, there exists µ ∈ C such that for any ξ ∈ Σ,

E′
0(z)(ξ) =

µ

2

∫

R2

zξ + ξzdx.

Putting z = ξ and using regularity theory, we can deduce that f and g belong to
C1(R2).

Now suppose that f ≡ 0. Denote

δf =
{

x ∈ R
2 : f(x) = 0

}

.

The continuity of f implies that δf is closed. Let us now prove that it is also an
open set of R2. Pick a point x0 ∈ δf . Since ϕ(x0) > 0, there exists a ball B(x0, ρ)
centered at x0 with radius ρ > 0 such that g(x) 6= 0 for all x ∈ B(x0, ρ). Observe
that for each x ∈ B(x,ρ) and i = 1, 2,

(f∂ig − g∂if)
2

f2 + g2
=

(

∂i

(

f

g

))2
g4

f2 + g2
.

From this and (B.3), we have
∫

B(x0,ρ)

∣

∣

∣

∣

∇
(

f

g

)∣

∣

∣

∣

2
g4

f2 + g2
dx = 0.

Hence ∇
(

f
g

)

= 0 on B(x0, ρ). This implies that f
g = C on B(x0, ρ) for some

constant C > 0. As f(x0) = 0, we infer that C = 0. Hence f(x) = 0 for all
x ∈ B(x0, ρ) or B(x0, ρ) ⊂ δf which tells us that δf is an open set.

(4) Finally we prove that Zc =
{

eiσϕ : σ ∈ R, ϕ ∈ Wc

}

. To this end, we
consider two cases.

First case: If g = 0, then ϕ = |f | > 0 on R2. Thus z = f = eiσϕ with σ = 0 if
f > 0, σ = π if f < 0.

Second case: If g(x) 6= 0 on R2, then for i = 1, 2, we have from (B.3) that
∫

R2

(f∂ig − g∂if)
2

f2 + g2
dx =

∫

R2

∂i

(

f

g

)2
f4

f2 + g2
dx ≡ 0.
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It follows that ∇
(

f
g

)

= 0 on R2. This implies that f = kg for k ∈ R, hence

z = (k + i)g and
ϕ = |z| = |k + i||g|.

Let θ ∈ R be such that k + i = |k + i|eiθ. We also write g = |g|eiϑ with ϑ = 0 if
g > 0 and ϑ = π if g < 0. It follows that

z = (k + i)g = |k + i|eiθ|g|eiϑ = ϕeiσ, σ := θ + ϑ ∈ R.

The proof is complete. �

Remark B.2. The statement of Theorem B.1 would remain true in the presence of
the rotation and the line of attack would be identical provided that we had

‖∇Az‖L2 > |∇A|z||L2 (B.4)

and

‖∇Az‖L2 = |∇A|z||L2 =⇒ ‖∇z‖L2 = |∇|z||L2 .

However, we show that (B.4) cannot hold in general. By definition, we have

‖∇Az‖2L2 =

2
∑

j=1

∫

R2

|(∂j − iAj)z|2dx

=
2
∑

j=1

∫

R2

(

|∂jz|2 + iAjz∂jz − iAjz∂jz +A2
j |z|2

)

dx.

Applying to z = |z|, we get

|∇A|z||2L2 = |∇|z||2L2 +

∫

R2

|A|2|z|2dx.

In our case A = Ω(−x2, x1), we have |A|2 = Ω2|x|2 and

|∇A|z||2L2 = |∇|z||2L2 +Ω2‖xz‖2L2.

Let ϕ(x) = e−|x|2 and set zn(x) := eiA(yn)·xϕ(x + yn) with some (yn)n ⊂ R2 to be
chosen later. Observe that

|zn(x)| = |ϕ(x + yn)|, ‖∇Azn‖2L2 = |∇Aϕ|2L2 = π

(

1 +
Ω2

4

)

.

On the other hand, by choosing |yn| → ∞ as n→ ∞, we have

|∇A|zn||2L2 > Ω2

∫

R2

|x|2|ϕ(x + yn)|2dx = Ω2

∫

R2

|x− yn|2|ϕ(x)|2dx

>
Ω2

4
|yn|2

∫

|x|61

|ϕ(x)|2dx −→
n→∞

∞.
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MA, 1989, pp. 401–449.

[19] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of

quantum droplets in a strongly dipolar bose gas, Phys. Rev. Lett., 116 (2016), p. 215301.
[20] I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T. Pfau, Liquid quantum

droplets of ultracold magnetic atoms, Journal of Physics B: Atomic, Molecular and Optical
Physics, 49 (2016), p. 214004.

[21] D. Fujiwara, Remarks on the convergence of the Feynman path integrals, Duke Math. J.,
47 (1980), pp. 559–600.

[22] R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equa-

tion with harmonic potential, Discrete Contin. Dynam. Systems, 7 (2001), pp. 525–544.
[23] Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with

attractive interactions, Lett. Math. Phys., 104 (2014), pp. 141–156.
[24] H. Hajaiej and C. A. Stuart, On the variational approach to the stability of standing waves

for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., 4 (2004), pp. 469–501.
[25] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and

T. Pfau, Observing the rosensweig instability of a quantum ferrofluid, Nature, 530 (2016),
pp. 194–197.

[26] H. Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 27 (1980), pp. 193–226.

[27] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system

of hard spheres and its low-temperature properties, Phys. Rev., 106 (1957), pp. 1135–1145.
[28] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American

Mathematical Society, Providence, RI, second ed., 2001.
[29] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The

locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–145.
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