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Abstract11

This paper deals with the problem of finding outliers, i.e. data that differ distinctly12

from other elements of the considered dataset, when they belong to functional infinite-13

dimensional vector spaces. Functional data are widely present in the industry and may14

originate from physical measurements or numerical simulations. The automatic identi-15

fication of outliers can help to ensure the quality of a dataset (trimming), to validate16

the results of industrial simulation codes, or to detect specific phenomena or anomalies.17

This paper focuses on data originated from expensive simulation codes, such as nuclear18

thermal-hydraulic simulators, in order to take into account the realistic case where only19

a limited quantity of information about the studied process is available. A detection20

methodology based on different features, e.g. the h-mode depth or the Dynamic Time21

Warping, is proposed in order to evaluate the outlyingness both in the magnitude and22

shape senses. Theoretical examples are also used in order to identify pertinent feature23

combinations and showcase the quality of the detection method with respect to state-24

of-the-art methodologies of detection. Finally, we show the practical interest of the25

methodology in an industrial context thanks to a nuclear thermal-hydraulic use-case26

and how it can serve as a tool to perform sensitivity analysis on functional data.27
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1 Introduction30

Nowadays, the ever increasing capabilities of measurement, generation and storing of data31

have increased the interest of the scientific and industrial communities on what are known32

as functional data. In its most general form, the domain of functional data analysis deals33

with any object having the form of a function, regardless of its dimension. As an example,34

the most basic form these objects can adopt are one-dimensional real functions, which might35

represent the evolution of a physical parameter of interest over time. These data are normally36

generated through an actual empirical measure, or a simulation code.37

The great interest of the functional data analysis is that it allows to take into account the38

intrinsic nature of the data, i.e. the underlying process that generates them is supposed39

to have certain restrictions of domain, regularity, continuity and so on. As the functional40

data are infinite-dimensional by nature, functional data analysis methods always rely on41

a dimension reduction technique, whether implicitly or explicitly. More precisely, it is the42

case in the context of classification (Chamroukhi and Nguyen, 2019), clustering (Slaets et al.,43

2012), landmark research and registration (Ieva et al., 2011) of functional data. By providing44

more synthetic descriptors of functional observations, functional data analysis methods allow45

a more practical treatment of data thanks to the available multivariate tools.46

The domain of functional data analysis can be traced back to the works of Grenander,47

(Grenander, 1950), but the term itself was coined by Ramsay, (Ramsay, 1982). Some of48

the most widely regarded references for the domain include the general works of Ramsay49

and Silverman (1997) or Ferraty and Vieu (2006), focused on non-parametric methods for50

functional data. Functional data can be found in a wide variety of contexts, among which51

we can mention: environmental sciences (Besse et al., 2005; Febrero-Bande et al., 2008),52
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medical sciences (Juang et al., 2017), economy (Sen and Klüppelberg, 2019) and others. In53

the context of this paper, our work is motivated by the use of expensive simulation codes54

(Santner et al., 2003; Roustant et al., 2010) that are commonly used in the nuclear industry55

in order to complement the nuclear safety assessment reports (IAEA, 2003), and which56

require specific statistical tools. These thermal-hydraulic simulators, such as the system57

code CATHARE2 (Geffraye et al., 2011), are capable of simulating the evolution of the58

essential physical parameters during a nuclear transient, and they are expensive to evaluate59

(several hours per run) and analyze due to the complexity of the simulated phenomena60

(highly non linear interactions between its parameters).61

In general, in the context of nuclear safety, the main analyzed parameters are the scalar62

values known as Safety Parameters, which are representative of the severity of an accidental63

transient. However, the analysis of the whole evolution of the aforementioned physical pa-64

rameters is a complex domain that has been subject to considerable research effort in recent65

years, such as in the works of Nanty (2015) or Auder (2011). The analysis of outlying tran-66

sients in these sets of simulations is useful in order to detect unexpected physical phenomena,67

validate the simulations providing useful descriptors of the functional outputs of interest, or68

quantify the extreme behavior or penalizing nature of specific subsets of those transients.69

In spite of the diversity of domains, there are several common points of interests between70

all of them. As an example, in the most usual case of one-dimensional functions, a typical71

difficulty that arises in the pre-treatment phase of the data is the subject of the discretization72

of the grid on which the data are observed. Without going into too much detail on the73

subject, one dimensional curves are not normally observed in their entirety (since they are74

intrinsically infinite-dimensional). Instead, they are indexed by some variable, normally the75

time in the one-dimensional case, in a grid that can be homogeneous or not. Indeed, points76

are not necessary equally spaced, as with biological measurements such as blood pressures,77

or as with temporal data originated by a simulation code whose time step evolves accordingly78

with the convergence impositions of the numerical solver. Naturally, the representation of the79
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underlying functional process is still a matter of discussion, and does not only depend on the80

spacing of each point in the time grid, but also on other notions such as the density of data.81

This quantity can differ by several orders of magnitude in the case of numerical simulators82

depending on the restrictions imposed to time steps in order to guarantee the convergence,83

as well as the presence or not of random noise etc. For a more profound analysis on the84

importance of these subjects the reader can refer to James et al. (2000).85

In this paper we focus on a functional outlier detection technique, showing its sensitivity86

to both magnitude and shape outliers, and its ranking capabilities. The importance of this87

work is closely related to the data quality domain, since the presence of anomalous behaviors88

that might have been originated by measurement errors, non-convergence of algorithms or89

the existence of non-physical values of numerical simulators may produce spurious results90

when treating a dataset. As explained in Aggarwal (2017), when the underlying process91

that creates the data behaves unusually, it results in the creation of outliers, and therefore92

it may contain useful information about abnormal characteristics of the system. Finally, the93

particularities of functional data treatment with respect to multivariate ones require specific94

tools in order to have acceptable detection capabilities (Schmutz et al., 2020).95

The functional outlier detection domain has gained relevance in recent years, and the methods96

for detecting these outliers do not cease to improve. However, the techniques can differ97

greatly between them. A large number of them rely on the notion of statistical depth98

(Febrero-Bande et al., 2008; López-Pintado et al., 2014; Nagy et al., 2017), whereas others99

rely on other dimensionality reduction methods, clustering or hypothesis testing on the100

coefficients of some functional decomposition (Barreyre et al., 2020), as well as graphical101

tools (Arribas-Gil and Romo, 2014). Naturally, all of these techniques showcase different102

detection capabilities, and they can be more adapted to the detection of a particular type103

of outliers.104

In our study, we consider that the data correspond to independent and identically distributed105

(i.i.d.) realizations of a random process Z, taking its values in a functional space F . In106
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practice, any realization zi of the random variable Z can only be observed in a limited107

number of points in the domain, i.e., it is observed as the random vector (zi(t1), ..., zi(tp)),108

with {t1, ..., tp} ∈ T ⊂ R. This data representation is not itself appropriate to the detection109

of outlying functions. Section 2 thus presents how to define and compute a modeling of data110

dedicated to the characterization of outliers. Based on this data representation, Section111

3 presents our functional outlier detection methodology. Sections 4 and 5 provide some112

analytical and industrial application examples. The properties, capabilities and limitations113

of the methodology are discussed in section 6.114

2 Functional data representation and modeling115

As mentioned in the introduction, functional data are elements of a functional space, typically116

functions defined on a continuous interval of R. Measuring, storing and analyzing these data117

is however realized by using numerical devices and computers, and hence impose a digital118

representation of data. For this reason, the value of functions is available only on a finite-119

dimensional sub-domain of their theoretical definition domain, that is in a discretized version.120

When dealing with time dependent physical quantities, this discretization basically consists121

in a projection on a time grid which can be regular or not. To achieve an efficient detection of122

outlying functions, a transformation of the dataset is required, which brings out the features123

of the data that discriminate outlying ones from the rest of the set.124

2.1 Discussion and selected approach125

Functional outliers are commonly classified into magnitude and shape outliers. Magnitude126

outliers may be defined by functions that deviate from the bulk of curves at some point in127

the definition domain of the functions according to some distance metric defined in their128

functional space (Dai et al., 2020). There exist numerous methods to visualize and detect129

them, some of them being based on depth measures, as exposed by Sun and Genton (2011).130
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The other main kind of outliers are shape outliers. This type of functional outlier is sig-131

nificantly more difficult to detect, but several techniques able to deal with them have been132

developed in recent years. We can mention Slaets et al. (2012) or Arribas-Gil and Romo133

(2014). Some of the challenges in the use of depth measures in this case are exposed in Nagy134

et al. (2017). Most functional outlier detection methods can be classified into one of the135

three following categories (Jacques and Preda, 2014):136

• Two-stage approaches: the functional data are firstly projected into the considered137

functional space, in what is usually called the filtering step, and then a classical mul-138

tivariate clustering procedure is applied on the coefficients of the expansion. In this139

case, if Φ = {φ1, ..., φr} is the set of functions that forms a complete orthonormal140

basis of F , any function zi of the space can be reconstructed from the sampled data141

through an expansion of the type zi =
∑r

j=1 ajφj. In practice, we work with a finite142

number family of functions (a subset of F), which induces a representation error, and143

that is commonly obtained by truncating an actual basis of F . This allows to perform144

statistical hypothesis tests on the coefficients, which provides a detection criterion. An145

example of this approach can be found in (Barreyre et al., 2020).146

• Non-parametric approaches: they are based on measures of proximity and dissimilarity147

between the functions. Multivariate clustering algorithms can usually be applied on148

these features (Dai et al., 2020).149

• Probabilistic model-based approaches: they rely on the estimation of an underlying150

probability model, either on some non-parametric features applied to the curves, or151

on the coefficients of a basis expansion. An example of this approach applied to the152

coefficients of a functional Principal Components basis expansion can be found in153

the Ph.D. works of Nanty (2015), where the coefficients of the expansion are used to154

perform sensitivity analysis.155

In our work, the detection procedure is based on the use of non-parametric measures and156
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the estimation of probabilistic models in order to reconstruct the joint probability density157

function of those features.158

2.2 Features definition of outlying functions159

Depth measures (Mozharovskyi, 2016) are a set of non-parametric features that have gained160

relevance in the functional outlier detection field in recent years (Cuevas and Fraiman, 2009).161

Generally speaking, let z1, ..., zn be a set of objects observed in Rp such that a random element162

Z describing the population is fixed, then a depth function is a mapping D(·, Z) : Rp → R+
163

which provides a center-outward ordering of the data. The same definition holds for the164

case where p→∞ for the functional framework. This functions are widely used for central165

tendency estimation, outlier detection and classification.166

Some of the most widely used definitions of depth measures in the functional framework are167

developed below.168

• Band depths. Let z1, ..., zn be a sample of functional data, then the basic definition of169

the Band Depth of a specific function zi takes the form (López-Pintado et al., 2014):170

Sn,J(zi, Z) =
J∑
j=2

S(j)
n (zi|Z), J ≥ 2 (1)

such that:171

S(j)
n (zi, Z) =

(
n

j

)−1 ∑
1≤i1<...<ij≤n

1{G(zi)⊂B(zi1 ,zi2 ,...,zij )}, j ≥ 2 (2)

with 1 the indicator function. In this case, G(zi) is the graph of the function zi, i.e.172

G(zi) = {(t, zi(t)) : t ∈ T }, and B represents the band delimited by the j curves173

z1, ..., zj. The parameter J restricts the maximum number of functions that delimit174

the bands. López-Pintado and Romo (2009) recommend the use of J = 3.175
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• A more flexible definition of this depth notion is the Modified Band Depth, which176

consists in replacing the indicator function 1 by a measure of the subset where the177

analyzed function is within the limits of the band. If Aj(x) ≡
{
t ∈ T : min

r=i1,...,ij
zr(t) ≤178

z(t) ≤ max
r=i1,...,ij

zr(t)
}

is the mentioned subset, then the Lebesgue measure λ of the179

subset, normalized by the measure of T provides a measure of how much time the180

considered function remains within the bands. Taking this into account, the Modified181

Band Depth can be expressed as:182

MBD(j)
n (zi, Z) =

J∑
j=2

(
n

j

)−1 ∑
1≤i1<...<ij≤n

λr(A(zi; zi1 , zi2 , ..., zij)), 2 ≤ j ≤ n. (3)

Contrary to the basic Band Depth, the MBD is sensitive to functions that deviate from183

the center of the functions even if it is only for small subsets within the domain, which184

is naturally essential in the outlier detection domain.185

• Another widely spread definition of depth is the h-modal depth, proposed in Cuevas186

et al. (2007). It employs the notion of a kernel function in order to estimate the187

centrality of the curve by taking into account the degree of immersion of a certain188

curve with regard to the curves that lie closest to the analyzed one according to some189

distance notion defined in the considered functional space.190

The h-mode depth of a realization zi ∈ F with respect to the distribution of Z ∼ P ∈191

P(F) is defined as:192

hM(zi, Z) = E
(1

h
K
(‖zi − Z‖

h

))
, (4)
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which can be substituted by its empirical version (with a sample of n functional data):193

hM(zi;Zn) =
K∑
j=1

(1

ĥ
K
(‖zi − zj‖

ĥ

))
. (5)

In this context,‖ · ‖ is a norm defined on F , with no a priori imposed limitations.194

K is a measurable kernel function K : R → R+ with h as the bandwidth parameter.195

The practical implementation of this depth notion consists in substituting the actual196

distribution P by its empirical version P ∗ ∈ P(F).197

This definition strongly depends on the choice of the norm and the bandwidth param-198

eter. The authors give some orientations regarding this subject, proposing the L2 and199

L∞ norms, and taking h as the 15th percentile of the distribution of ‖zi− zj‖,∀zi, zj ∈200

F . For some results on the consistency of the h-modal depth, the reader can refer to201

Gijbels and Nagy (2015).202

In addition to these depth notions, some other non-parametric features can be mentioned as203

they will help us characterizing functional data. The Time Series framework is significantly204

related to the functional data analysis domain, and also provides some useful metrics that205

can help to quantify the degree of similarity between ordered sequences. This is the case206

of the Dynamic Time Warping (DTW) algorithm, whose general form is presented below207

(Bellman and Kalaba, 1959).208

Given two sequences X := (x1, x2, ..., xV ), V ∈ N and Y := (y1, y2, ..., yW ),W ∈ N, as well as209

a feature space S, and xv, yw ∈ S for v ∈ [1 : V ] and w ∈ [1 : W ], we can define a local cost210

measure (sometimes also called local distance measure), which is an application:211

c : S × S → R+. (6)

In this case, an (V,W )-warping path is a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 :212

V ]× [1 : W ],∀l ∈ [1 : L] which also satisfies the following conditions:213
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• boundary condition: p1 = (1, 1) and pL = (V,W ),214

• monotonicity condition: v1 ≤ v2 ≤ ... ≤ vL and w1 ≤ w2 ≤ ... ≤ wL,215

• step size condition: pl+1 − pl ∈
{

(1, 0), (0, 1), (1, 1)
}
for l ∈ [1 : L− 1].216

The total cost cp(X, Y ) of a given warping path is217

cp(X, Y ) :=
L∑
l=1

c(xvl , ywl
). (7)

Finally, an optimal warping path between X and Y is a warping path p∗ having minimal218

total cost among all possible warping paths. The DTW distance between X and Y is then219

simply defined as the total cost associated with the optimal warping path.220

As the DTW might be expensive to evaluate, it is worth pointing out the existence of some221

accelerated versions of the algorithm reducing this cost when the number of sampling points is222

too high. Many of them are based on the restriction imposed to the set of acceptable (V,W )-223

warping paths (so that the whole cost matrix is not needed), by introducing weight functions224

that privilege certain specific paths, or by modifying the step-size condition (Tavenard and225

Amsaleg, 2013).226

2.3 Probabilistic modeling of features227

The main objective of this work is to develop a novel functional outlier detection technique228

which is as general as possible, and sensitive to the main types of outliers that are usually229

found in the industrial domain (i.e. shape and magnitude outliers). The first problem230

that we may encounter when setting such an objective is firstly the lack of a complete231

and indisputable definition of what constitutes an outlier in a set of data. Considering the232

definition provided in Dai et al. (2020) as data that behave in an abnormal way with respect233

to the other considered objects, this approach requires the definition of what an abnormality234

is, and it is usually quantified as the extremal values of a measure that is sensitive to the235

searched outliers.236
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A more general (but more difficult to apply) definition of what constitutes an outlier is a237

subset of data that has been generated by a different process that the majority of data238

present in the considered set (Hawkins, 1980). As an example, a set of measurements could239

have a small amount of incorrect data points (measurement errors) that may not be obvious240

at first (these data are not generated the same way as the others). This can also happen241

in the simulation domain. Simply changing the compilers, computers or the version of242

simulation codes can significantly change the outcome of any physical simulation. Finding243

these abnormalities is fundamental in order to ensure the quality of any dataset.244

Let us suppose that a certain number of features are available to describe our functional data245

and are able to capture the specific characteristics of both central and abnormal observations.246

If U = {u1, ..., ur, ..., uR} represents this set of features, with no imposed a priori restrictions247

on its size, such that ∀ur ∈ U , ur : F → R, then it would be possible to quantify the248

anomalous behavior according to each measure through the extreme-value analysis theory.249

The generalization of this theory is based on the use of probabilistic models that can be250

adjusted to the data. Generally, these models are generative, i.e., they are based on the251

estimation of the probability of occurrence of a data point (multivariate features in our case)252

accordingly with an assumed underlying model. Once a parametric family has been chosen253

for the generative model, its values must be estimated through an optimization algorithm.254

The use of joint multivariate probabilistic models also has the advantage of providing a tool255

able of taking into account the interaction between the different features used to evaluate the256

dataset, in addition to providing a score of outlyingness related to a probability of occurrence.257

When the underlying process that generates the data is unknown, the use of Gaussian Mix-258

ture Models (GMM) (Reynolds, 2009) is practical due to the vast existent knowledge of259

these models. Assuming that R descriptive features are available, the form of the associated260

R-dimensional multivariate Gaussian mixture density function of the random vector u ∈ RR
261
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is262

p(u) =
K∑
k=1

ωkfk(u;µk,Σk), (8)

where fk represents each single Gaussian multivariate probability density function, µk ∈263

RR represents its vector of means, and Σk ∈ RR × RR is the corresponding covariance264

matrix. The weight of each individual density among the K components is represented by265

ω ∈ RK ,
∑K

k=1 ωk = 1 and ωk > 0 ∀k ∈ {1, ..., K} and can be interpreted as the mixing266

probabilities of the components.267

2.4 Adapting GMM for outlier detection268

The use of probabilistic models in lower-dimensional feature spaces is useful in order to269

detect anomalous points assuming that they provide a good fit for the data and are able of270

capturing the central tendency of the data. However, their basic use suffers from well-known271

spurious effects in the outlier detection domain (Aggarwal (2017)). The main problems are:272

• If the probabilistic model is adjusted taking into account the presence of outliers, they273

may bias the estimation of the underlying model. This is especially problematic if the274

outliers are assumed to be generated by a different distribution than the other data275

and are no only considered to be extreme realizations of the same underlying process276

than the others. On top of that, if the sample presents a high degree of contamination277

or the sample is small, this bias can greatly influence the detection.278

• If the multivariate sample can be classified in several different clusters but they number279

of components is not well-chosen, the possibility of overfitting the probabilistic model280

to the data becomes a real problem. In this case, some small-sized clusters may appear281

overly adjusted to the outliers, which will not be identified as such.282

These reasons motivate the modifications of the Expectation Maximization (EM) algorithm283

used in order to fit the GMM to the sample of data in the considered feature space, so that284
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these problems may be efficiently managed and the probabilistic model can be appropriate285

for outlier detection. Let {z1, ..., zn} be an i.i.d. sample of functional data, with {u1, ...,un}286

being the set of associated features for each curve, the objective is the estimation of the287

set of parameters of the GMM {ω,µk,Σk}Kk=1. This optimization problem is usually solved288

by maximum likelihood estimation via the EM algorithm (Moon, 1996). The form of the289

problem is:290

max
ω∈RK ,{µk,Σk}Kk=1

n∑
i=1

log
( K∑
k=1

fk(ui;µk,Σk)
)
. (9)

This well-known algorithm consists in maximizing the log-likelihood function of the Gaussian291

mixture when a certain amount of binary latent variables g such that gk ∈ {0, 1} and292 ∑K
k=1 gk = 1, and which allow to represent the corresponding kth gaussian component that is293

considered each time. This way, the conditional distribution of p(u|gk = 1) = fk(u|µk,Σk)294

and p(u) =
∑
g p(g)p(u|g) =

∑K
k=1 ωkfk(u|µk,Σk). The last element required for the295

estimation of the GMM parameters in each step are the conditional probabilities of g given296

u (usually called responsibility that component k takes in explaining the observation). Their297

values are:298

γ(gk) = p(gk = 1|u) =
p(gk = 1)p(u|gk = 1)∑K
j=1 p(gj = 1)p(u|gj = 1)

=
ωkfk(u|µk,Σk)∑K
j=1 ωjfk(u|µj,Σj)

. (10)

This way, the estimation of the parameters is performed in the following steps:299

1. Initialize the values of the desired parameters {ωk,µk,Σk}Kk=1,300

2. E-step: Evaluate the current responsibilities with the previous parameter values,301

3. M-step Re-estimate the parameters by using the responsibilities,302

4. Evaluate the log-likelihood function presented in Eq. (9).303

The modifications of the algorithm consist in iteratively check and reinitialize the estimated304
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parameters during the procedure in order to detect the undesired and spurious effects by305

adding two steps after the estimation of the likelihood function:306

1. Check if ui = µk for any k ∈ {1, ..., K}. The apparition of these singularities may307

maximize the log-likelihood function to infinity, since it is unbounded, and cause an308

overfitting of the data to isolated points. This phenomenon is well described in Bishop309

(2006). If this kind of anomaly is detected, the point is subtracted from the sample310

and the EM algorithm continues without it. Naturally, these points will be subject to311

close analysis since they are good candidates for potential outliers in the sample.312

2. For each iteration step, ωk can be viewed as the prior probability of gj = 1, and γ(gj)313

can be seen as the posterior probability given the observed sample. If this posterior314

probability is considered too low (in our applications we shall take a value of 0.1 as the315

minimum weight of the mixing coefficients), we will consider that the corresponding316

component is either overfitting the data, or that it has detected a small subset of317

points which is not representative of the central trend of the data. In this case, the318

other calculated parameters of the components are kept and the values of means and319

covariances of the small cluster are reinitialized to a random value in the space.320

These modifications allow for the GMM that is fitted to the sample in the feature space to321

stay general, and provide good candidates of outliers during the construction of the model,322

all of that while avoiding overfitting.323
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3 Outlier detection324

3.1 Test for outlyingness325

Thanks to these elements, we can construct a hypothesis test by making use of the compo-326

nents of the GMM adjusted model. This way, for any uj ∈ RR:327

H0 : uj has been generated by fk with probability at least,

H1 : uj is an outlier.
(11)

Under H0, p(uj|gk = 1) > pαk, where pαk = fk(uα|µk,Σk) such that P(uα|gk = 1) ≥ α. The328

set of data points less likely than uα is composed by points which verify:329

(u− µk)TΣ−1(u− µk) ≥ (uα − µk)TΣ−1(uα − µk). (12)

And therefore, P[(u − µk)TΣ−1(u − µk) ≥ (uα − µk)TΣ−1(uα − µk)] = 1 − P[L ≤ (uα −330

µk)
TΣ−1(uα − µk)], where L follows a Chi-squared distribution, L ∼ χ2(k). By performing331

this test over all of the points considered in the feature space, we have a unique criterion for332

outlier detection, such that the outlying points will be the ones presenting p-values under a333

certain threshold α, ∀fk.334

3.2 Ordering score in the Feature Space335

Once all of the parameters are fixed at their estimated values, it is possible to quantify336

the extremal behavior of any point in the considered multivariate space through the notion337

of Level Set (Ahidar-Coutrix, 2015). Formally, given an absolutely continuous probability338

measure ν with density p, the Minimum Level Set Dθ is the set of minimal volume (according339

to the Lebesgue measure) whose measure is θ:340

Dθ = argmin
D⊂RR,ν(D)≥θ

λ(D) (13)
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where λ is the Lebesgue measure in RR. Due to the concave downward nature of the GMM341

(Hosseini and Sra, 2015), the set D is unique and ν(Dθ) = θ. This way, a probabilistic score342

of outlyingness for functional data can be obtained via the probability mass retained in the343

associated Level Set of each functional datum zi:344

θ̂i =

∫
RR

p̂(u)1{p̂(u)≥p̂(ui)}d
Ru (14)

where 1 is an indicator function, and p̂ is the adjusted probability density function of the345

GMM with the estimated parameters:346

p̂(u;ω, µ̂k, Σ̂k) =
K∑
k=1

ω̂k
1

2π

√
|Σ̂k|

exp
(
− 1

2
(u− µ̂k)T Σ̂−1k (u− µ̂k)

)
. (15)

This integral must be solved by numerical methods. For R = 1, 2, there exists efficient347

software able to solve it, whereas several algorithms based on the Cholesky decomposition348

have been developed for the higher-dimensional cases (Genz, 2000). In the applications349

presented here we will limit ourselves to two components, orienting each one of them to350

magnitude or shape outlier detection.351

The above presented level set notion gives an unambiguous way of defining to what extend352

an observation is unlikely to be observed when assuming it was generated in accordance to353

the same probability law as the rest of the dataset. The GMM provides in turn the required354

underlying probabilistic model allowing this definition. With the resulting outlyingness355

scores θi, we have now available a properly constructed quantification tool for the degree of356

outlyingness of an observation. We can thus use common statistical approaches to implement357

a outlier detection procedure, such as considering the occurrence probability of a data point358

is too small when θi < α, where α is a significance level.359

Finally, let us consider the more realistic case where the availability of data is actually limited,360

and the sample of functional data is too small to generate the GMM with an acceptable361

level of reliability (the convergence of the EM algorithm is not necessarily reached). This362
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is for instance the case for expensive industrial simulation codes, such as the mechanical363

or thermal-hydraulic simulators. In this case, a natural extension of this idea for outlier364

detection can be implemented via bootstrap resampling, Efron and Tibshirani (1994). B365

groups are formed by successively drawn with replacement in the original sample. This366

way, the absence of data can be mitigated through the re-estimation of the GMM for each367

bootstrap group. If for B bootstrap groups pb(u) represents the GMM of the bth group, the368

form of the (bootstrap) estimator of outlyingness would then be:369

θ̂i =

∫
RR

1

B

B∑
b=1

p̂b(u)1{p̂b(u)≥p̂b(ui)}.d
Ru (16)

Throughout this reasoning, the hyperparameterK (the number of components of the mixture370

model) has been supposed to be fixed, but in practice, this is yet another input parameter371

of the GMM that must be provided a priori to the EM algorithm. Indeed, the actual372

form of the model is significantly different depending on the number of components that373

are considered. If that is the case, the use of an oversimplified mixture when modeling374

complex multivariate distributions can induce incorrect conclusions about the distribution375

of data, whereas an unnecessary increase in the number of components may lead to overfitting376

problems, unacceptable computational costs or imprecise conclusions.377

This question can be treated as a model-selection problem, and several metrics are available378

in order to estimate an appropriate number of components depending on the sample. Some379

examples are the Bayesian Information Criterion (BIC) (Schwarz, 1978) or the Integrated380

Completed Likelihood (Biernacki et al., 2000). In this paper, the selection of the number of381

components is performed by means of the Bayesian Information Criterion:382

BIC = 2 log(l̂)− k log(n) (17)

where l̂ represents the log-likelihood function for the GMM, k is the chosen number of383

components and n is the sample size used for the estimation. The second term introduces a384
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penalty which depends on the number of components in order to mitigate overfitting effects.385

3.3 Proposed detection algorithm386

The practical implementation of the detection algorithm is presented below, and several387

clarifications will be made. Firstly, the approach does not include a projection of the consid-388

ered functional data onto a functional expansion in order to homogenize the dataset. This389

preliminary step may be important in applications with heterogeneous time grids, if the390

data are observed with noise etc. Here, it will be supposed that the domain of the data is391

already uniform. Furthermore, this kind of projections are not necessary most times when392

estimating non-parametric features, such as L2 norms.393

Secondly, it is important to note that, in the ideal case, the estimation of the GMM should394

be made on the basis of a non-contaminated dataset, i.e., without outliers. These existent395

outliers should be separated before the estimation if the objective is to model the joint396

distribution of the desired features in order to avoid the introduction of a non-controlled bias.397

However, this knowledge is not available a priori, which justifies the trimming procedure of398

Algorithm 1. It is worth mentioning the iterative step. Even though it is not explicitly noted,399

the K components that are retained depend on the chosen sample for each bootstrap group.400

The task of reestimating the parameters for each GMM in order to optimize the number401

of components is not computationally expensive for small values of K, which is appropriate402

for datasets that do not present a high degree of multimodality and to avoid overfitting the403

data. In our simulations, Kmax = 10.404

Another important remark on the algorithm is the extraction step, where the most outlying405

functions on the set according to the θ̂i are separated from the original dataset, and the pro-406

cedure is re-applied to the remaining functions until a desired homogeneity level is reached.407

Naturally, in the case where a large number of samples is available, some extreme data re-408

alizations are bound to appear. So, regardless of the chosen value for α, these significant409
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Algorithm 1: Functional Outlier Detection
Extraction of Z = {z1, ..., zn}, zi ∈ F ;
Choose a base of features U = {u1, ..., uR} such as those from section 2.2; Set the
significance level α and the number of bootstrap groups B; while ∃θi > α do

Estimate uj(zi)|∀zi ∈ Z,∀uj ∈ U ; Estimate GMM parameters:
{ωb,µbk,Σb

k}Kk=1;∀b ∈ {1, ..., B},∀k ∈ {1, ..., Kmax};
Set K = argmax

k={1,...,Kmax}
(BIC(k));

Estimate θi,∀zi ∈ Z defined by equation (16); Extract zi ∈ Z|θi < α from the
sample;

end

data might be separated from the set even though they do not actually contaminate the set410

since, although unlikely, these data appear due to the nature of the underlying generative411

process. Separating (trimming) all of these data may introduce a bias in the estimation of412

the successive GMM. This is a known problem in the outlier detection domain. An example413

for the functional data case can be found in Febrero-Bande et al. (2008).414

4 Analytical test cases415

Following Dai et al. (2020), López-Pintado and Romo (2009) and Long and Huang (2015) the416

detection capabilities of the algorithm can be assessed via controlled simulation examples.417

Such simulations make it possible to check whether a method succeeds in recognizing different418

kinds of outliers, when these are purposefully inserted in the dataset. Thus, inserted outliers419

are constructed so as to mimic typical outlying data engineers engineers are facing in their420

daily practice. Some common notations for the analytical models are summarized in Table421

1.422

4.1 Numerical test protocol423

In all of the simulation experiments, there will be a total number of n = 50 curves, 49 of which424

are generated by a reference model, and one is the contaminating outlier. The functions are425

19



Functional outlier detection by means of h-mode depth and dynamic time warping

defined in the interval [0, 1], with a grid of 30 equally spaced points and B = 10 bootstrap426

groups. Using the previous notation for the DTW algorithm, V = W = 30 points. The427

description of the models for these control simulation tests is as follows:428

• Model 1. Z(t) = 4t+G(t) is the function generator for the reference set of curves. In429

this case the outliers follow the distribution Zo(t) = 4t+G(t) + 21{(tI<t)}.430

• Model 2. The reference model for the curve generation remains Z(t) = 4t + G(t),431

whereas the outliers are now generated from the distribution Zo(t) = 4t + G(t) +432

21{(tI<t<tI+3)}.433

• Model 3. Here the reference model becomes Z(t) = 30t(1− t)3/2 + G(t). The outliers434

are generated from Zo(t) = 30(1− t)t3/2 +G(t).435

• Model 4. For this last case, we keep the reference model as it is for Model 1 and436

Model 2, but the outliers simply consist of the sole deterministic part Zo(t) = 4t (the437

Gaussian component is removed).438

Let us remark that, compared to the latter references, the multiplicative factor of the indi-439

cator functions has been reduced in order to make the outliers less apparent. All the outliers440

considered in this simulation study constitute shape outliers, and in some cases, such as in441

the third model, magnitude outliers as well.442

In all cases, a bivariate Gaussian mixture model is adjusted to a pair of selected features443

and the outlier detection procedure is applied thereafter. Four commonly used features in444

the functional data analysis framework will be considered:445

• The h-mode depth (4).446

• The Dynamic Time Warping (DTW) (7).447

• The modified band depth (BD) (3)448
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(c) Model 3
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(d) Model 4

Figure 1: Examples of the four analytical test cases. The blue curves correspond to the
49 ones that are generated from the main model, whereas the red one corresponds to the
outlier.

• The L2 norm, which is one of the most intuitive and widely used metrics that can be449

applied to functional data. It takes the form: ||z(t)||2 =
( ∫

R |z(t)|2dt
)1/2

.450

The detection procedure is applied to N = 100 replications of each model. We shall use two451

scores in order to evaluate the quality of the detection procedure. The first one will naturally452

be the estimated θ values of the outlier in each model and replication. This parameter is453

directly linked to the probability of being more anomalous than the outliers if the model is454

correct. Therefore, the distribution of values of θi, ∀i ∈ {1, ..., n} constitutes an indicator of455

the detected outlying nature of the function.456

The second score is the average ranking of the outlier with respect to the total population457

of data. Since the θi score provides an ordering of the anomalous nature of each element458

in the set of curves, so it is possible to rank the data accordingly to said metric. In indus-459

trial applications, this ranking can be followed by the engineer to analyze particular data460

(e.g. numerical simulations) from the most suspicious (potentially interesting) datum to less461
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suspicious ones.462

The Table 2 and Figures 2 and 3 summarize the results for all the replications of the ex-463

periments for every specific couple of features, i.e., the six possible combinations of h-mode464

depth (hM ), modified band depth (BD), Dynamic Time Warping (DTW ) and the L2 metric.465

The average ranks of the outlier in each model accordingly to each chosen pair of features466

are shown in Table 2.467
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Figure 2: Boxplots of the outlyingness score for all combinations of features in each model in
the N = 100 replications. The Standard boxplot takes into account the whole distribution
of θ̂i for all the replications of each experiment.

As one can see from the Table 2 and Figure 3, the features that show the highest detection468

capabilities are the ones that include at least the h-Mode depth or the DTW as a component469

of the considered Gaussian mixture model. In the case of the first two models, it is the470

combination of both features that yields the best detection results, whereas it remains close471

to the best result for the third and fourth models.472
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(d) Model 4

Figure 3: Boxplots of the ranking score of the outlier for all models over the N = 100
replications.

This result was expected, since the L2 norm is a very general non-parametric measure which is473

probably not well suited for the direct application to the detection of anomalies in functional474

data, in spite of its usefulness for fucntional data characterization. The Modified Band Depth475

appears to be adapted for a quick detection of magnitude outliers, but not such a sensitive476

measure regarding shape outliers, which are far more complicated to define, identify and477

detect. That also explains why the scores for the third model are so high with respect to478

the others.479

The presented scores can be used in order to compare different detection methods that could480

be based on identical features (multiple testing, use of level sets, functional boxplots...) as481

well as a tool to compare the usefulness of different features for a common detection on the482
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basis of a common detection algorithm.483

In both cases (for the boxplots of the θ̂i and the rankings), it is possible to appreciate not484

only the absolute detection capabilities that were mentioned before, but also the relative485

dispersion of the data. This can also be interpreted as an indicator of robustness (which486

depends on the choice of features). When looking at figures 2 and 3, several aspects can be487

noted. The first obvious remark is that the detection capabilities for the third model are488

far superior to those of the others. This is explained by the fact that this is the only one489

that constitutes both a shape and magnitude outliers, which largely facilitates its detection,490

even for less sensitive measures such as the L2 distance. Another interesting point is that491

for the first model, which is contaminated by a shape outlier, all of the best results are492

obtained by the combinations that employ the DTW metric. This is also coherent, since it493

is the feature that best takes into account the shape differences between the curves. Finally,494

when analyzing the results of the experiments, it can be concluded that the use of a joint495

model through the h-mode depth and the DTW provide not only the highest detection rates496

in general, but also the smallest dispersion out of all the possible combinations. This is497

mostly related to the fact that the DTW is the most sensitive feature when it comes to498

analyzing shape outliers (it is specifically designed to provide a measure of correspondence499

between sequences). These two features are the ones that will be retained for the industrial500

application in the next section.501

4.2 Comparison with state-of-the-art methodologies502

The detection algorithm for the selected combination of features is performed in order to503

compare it to other detection methods. The selected methodologies are succinctly presented504

below.505
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4.2.1 Functional Boxplots506

Given a sample of functional data z defined in a time domain T indexed by the variable t,507

the 50% central region can be defined as:508

C0.5 =
{

(t, z(t)) : min
r=1,...,n/2

zr(t) ≤ z(t) ≤ max
r=1,...,n/2

zr(t)
}
. (18)

This region can be interpreted as an analogous of the inter-quartile range for functional data,509

and it effectively corresponds to it pointwise. The whiskers of the fucntional boxplot can be510

computed by extending 1.5 times the pointwise extremes of the central region, such that the511

outliers are detected if they surpass the frontiers defined by these whiskers. The in-depth512

analysis of this method can be found in Sun and Genton (2011).513

4.2.2 High-Density Regions514

Introduced by Hyndman (2009), the method consists in regrouping the values of the func-515

tional data in the considered time steps in a matrix and performing the Karhunen-Loeve516

decomposition, obtaining the corresponding coefficients in a lower-dimensional feature space517

where the density of the components is estimated via Kernel Density Estimation (KDE). This518

way, the high density regions (HDR) can be defined as the regions such that:
{
u : f(u ≥ fα

}
,519

and will correspond to the region with highest probability density function with a cumulative520

probability of 1− α, which can impose a detection criterion.521

4.2.3 Directional detector522

As described in Dai and Genton (2019), let X be a stochastic process, X : T → Rp, the523

Functional Directional Outlyingness is defined as:524

FO(X,FX)

∫
T
||O(X(t), FX(t)||2w(t)dt (19)
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where w(t) is a weight function. This magnitude can be decomposed into two components,525

the Mean Directional Outlyingness (MO) and the Variation of Directional Outlyingness526

(VO). The detection algorithm is based on these quantities and the selection of cutoff values527

for inferred Mahalanobis distances based on standard boxplots.528

4.2.4 Sequential Transformations529

This algorithm from Dai et al. (2020) relies on the transformation of a wide diversity of shape530

outliers into magnitude outliers, much easier to detect through standard procedures. Given a531

sequence of operators defined in F (the functional space that generates the considered data)532

{Gk}, k = 0, 1, 2, .. , the method consists in sorting the raw and transformed data into vectors533

of ranks for each observation. The vectors of ranks are sorted according to a one-side depth534

notion, such as the extreme rank depth for instance, and a global envelope is constructed,535

which allows the outlier identification.536

4.2.5 Results537

The results of the application of the algorithm are given for the previously used 4 models and538

different degrees of contamination. The experiments were simulated 500 times for a sample539

of curves of N = 100, and three different degrees of contamination of outlying curves: 1%, 5%540

and 10% of outliers in the sample. The detection rates are summarized in the Table 3.541

Firstly, we must note that the identification capabilities and rates are clearly reduced when542

the size of the outlying sample is increased. This reduction of the performance of any543

detection algorithm is logical, since higher degrees of contamination naturally pollute the544

functional sample, which increases the bias of the score that is used for outlier detection. In545

the same line, if the size of the outlying sample is considerable (10% of outliers for instance),546

an argument can be made to defend that this sample might not be outlying, and that it547

simply corresponds to another mode in a hypothetical multimodal functional sample. This548

kind of phenomenon, as well as masking effects, are described in detail in Aggarwal (2017).549
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Looking at the results, we can appreciate that the performance of the proposed algorithm550

is indeed competitive and on par with existent methods, even for complex sets of functional551

data, such as Model 4. In this case, we can clearly appreciate how the inclusion of a measure552

specifically dedicated to the detection of shape differences allows the consistent detection553

of the outlier. This capability is especially significant when we compare it with the other554

methods, which prove to be unable to detect this kind of shape outlier. In the case of the555

widely used Functional Boxplots, this is to be expected since they are intended to detect556

magnitude outliers. Regarding the HDRmethod, its low detection capabilities in this case are557

due to the fact that the low-dimesional representation through robust Functional Principal558

Component Analysis is not sufficiently precise to capture the outlying nature of the straight559

line. It is indeed possible that retaining a higher number of modes in this case could allow560

better detection capabilities, but this procedure greatly increases the curse of dimensionality561

problem (even if this subject is not treated in the paper by Hyndman (2009)), and it does562

not allow visualization purposes.563

It is clear that Model 3 (being the only pure magnitude outlier amongst the considered564

models) is the most simple and easy to detect and virtually any method can consistently565

detect this kind of outlier when the sample is not overly polluted. Methods which rely the566

most on the density of curves in the functional space and their trends is more vulnerable to567

the bias induced in the sample by the curves, as they tend to identify the proportion of curves568

that behave unusually as belonging to a different mode of curves instead of genuine outliers.569

In the case of the functional boxplots, this is to be expected since by construction they570

are dedicated to the detection of magnitude outliers, which is useful if the contamination571

of the sample is made by a wide variety of magnitude outliers, but not so much if those572

outliers have all been generated by a homogeneous family of curves. In the case of the HDR573

plots, the existence of a homogeneous sample of outliers generates a set of points in their574

two-dimensional feature space of principal component scores with a high density of data.575

In Models 1 and 2 the conclusions are similar (both models present a combination of slight576
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magnitude and shape outliers). Most methods do not showcase any robustness for such slight577

magnitude outliers, contrary to the presented algorithm. The main conclusion that can be578

extracted from these tests is that most methods struggle to find outliers when they are not579

apparent, as it is the case of the models presented here.580

Finally, it must be mentioned that the Directional Detector is the most robust method when581

it comes to detecting the pure magnitude outlier presented in Model 3, as it is the least582

sensitive method to more contaminated samples. The main advantage of this methodology583

is its capability of finding outliers in multivariate functional data sets.584

4.3 Ranking results585

Finally, another advantage of the methodology presented in this paper is the ability to586

provide a scalar ranking criterion (θi ∈ [0, 1], ∀i ∈ {1, ..., n}) for a sample of functional data.587

This is not only useful from a clustering or outlying detection perspective, but also from an588

exploratory analysis perspective. For instance, this kind of score can be used in order to589

perform sensitivity analysis on the functional data.590

Depth measures are widely used in this setting, but some advanced techniques that have591

developed in recent years, such as the methdod presented in 4.2.4, which provides an efficient592

ordering of the data. Naturally, as it happened in the outlier detection setting, a good order593

measure should be capable of identifying a potential multimodality in the set of data, as well594

as handling the existence of magnitude, shape, or mixed outliers.595

The ranking experiments are the same ones as the ones performed for outlier detection596

testing, with one outlier in the sample of 100 curves. The results are presented in Table 4.597

In this case, we can appreciate that more advanced ranking methods such as the one presented598

here and the one presented in Dai et al. (2020) provide a consistent ordering of the functional599

data. The results provided by these up to date methods show that for the sample of 100600

curves, the introduced outlier is always found to belong to the 5% more outlying curves of601

the sample, and is frequently found to be the most outlying in simpler cases like Model 3.602
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Usual ranking techniques for functional data such as depth definitions fail to clearly identify603

the more outlying nature of the outlier in the sample, and cannot be reliably used as order604

measures in such homogeneous packages of univariate curves.605

Finally, we can mention that the better ranking results provided by the Sequential Transfor-606

mations algorithm with respect to the method presented here can be explained due to the607

nature of the chosen transformations. In particular, the use of what they call D1 transfor-608

mation in their paper, which consists in taking the first order derivative of the functional609

data (in their notation, Dl[X(t)] = d(l)X(t)
dtl

), is obviously appropriate in the case of Model 4,610

where the pure shape outlier differs mainly by the values of derivatives. This means that611

its superior ranking capabilities for this specific model cannot be generalized for any type of612

shape outlier, and both methods provide comparable ranking results.613

5 Industrial test-case study614

5.1 Presentation615

In this section the outlier detection methodology is applied to a real industrial dataset of616

time-dependent numerical simulations. We consider a Intermediate Break Loss of Coolant617

Accident (commonly called IBLOCA or simply LOCA) in a nuclear power plant, simulated618

with the CATHARE2 code. CATHARE2 is a best estimate computer code capable of recre-619

ating the main physical phenomena that may occur in the different systems involved in620

nuclear reactors, in particular in the 900 MW French Pressurized Water Reactors (PWR). It621

embeds two-phase modeling to calculate the thermal-hydraulic behavior of the coolant fluid622

in the reactor.623

A LOCA accident is originated by a breach in the primary circuit, which is designed to624

evacuate the heat generated by the nuclear core. The sudden loss of large quantities of coolant625

implies a fast increase of the water temperature nearby the nuclear fuel rods, due to the626

residual power generated by the core during the accidental transient. This power discharge627
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and the subsequent temperature elevation must be compensated by the injection of water628

through a dedicated safety system. This is supposed to ensure that fuel rods temperature629

would remain below the fusion point at all times. Hence, the main safety criterion in LOCA630

with regard to the confinement of the fuel concerns its Peak Cladding Temperature (PCT),631

that is its maximum cladding temperature over the duration of the LOCA (here, the time-632

dependent cladding temperature is the maximum cladding temperature for all the fuel rods,633

whatever its localization in the core).634

The particular statistical model under study involves a large number of scalar input parame-635

ters (P = 97), which specify all sorts of physical phenomena whose relative influences in the636

PCT are difficult to assess a priori. These input variables can be classified into various cate-637

gories, such as i) initial conditions and limit states for the system (Primary pressure, starting638

thermal power, the primary pumps inertia...), ii) some parameters of specific physical models639

and correlations that are used (thermal exchanges between the components, friction between640

fluid phases or some geometric parameters of the installation), as well as iii) some scenario641

variables (existence of blockages in the heat exchangers, fuel use in its life-cycle or initial642

temperature of the safety water injection).643

All of these scalar inputs of the simulation code are uncertain, and are hence represented by644

the random vector X = (X1, X2, ..., X97), whereas the output of interest would be Y , which645

is normally a critical safety parameter in this case, such as the aforementioned PCT.646

The total number of simulations that can be performed is relatively limited for such a high-647

dimensional input vector, since each run of the code takes around one hour to finish. For648

this reason, the use of classical multivariate statistical techniques is not straightforward.649

This explains the widely spread use of space-filling design methods in order to maximize the650

coverage of the input space (Iooss and Marrel, 2019), as well as metamodeling techniques to651

better exploit the number of code runs available for the physical model. Briefly explained,652

space-filling designs try to optimally explore the space of input variables i.e., they establish653

criteria in order to better choose the analyzed points of this high-dimensional space (in the654
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case of nuclear transients, there can easily exist more than a hundred input variables). In655

the case of metamodels, they are mathematical approximations of more complex physical656

models that, despite showing a higher precision in their calculations, take a much higher657

computation time. The use of metamodels helps to improve (increase) the total number658

of available simulations, so that the results that are finally obtained are more statistically659

relevant.660

In this context, the consideration of the whole functional output (the evolution of the max-661

imum cladding temperature, whatever its location) is expected to provide a better insight662

on the physical phenomena that govern in the transient than the scalar value of the PCT663

alone.In our case, 1000 Monte Carlo runs of the code were launched, generating the set of664

curves that is presented in Figure 4 for the evolution of the maximum cladding temperature665

during the transient.666
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Figure 4: Examples of IBLOCA transients simulated with CATHARE2. Only 40 curves are
displayed for clarity.
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5.2 Functional outlier detection667

The previously presented outlier detection technique is applied to this set of curves. Both668

the h-mode depth and the DTW are the selected features in order to obtain the degree of669

outlyingness of each functional datum. The curves presenting a degree θ̂ of outlyingness over670

95% are shown in Figure 5.671
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Figure 5: IBLOCA transient curves presenting the highest degree of outlyingness (red) and
the least outlying curve (blue).

The first apparent result is that the main magnitude outlier is easily detected, since the672

curve that acts as the upper envelope of temperature in most points of the domain is the673

one presenting the highest value of θ (θ = 1.0 actually in this case). This curve is not only674

anomalous in the magnitude sense, but also in the shape one, much like the Model 4 that675

was presented in the previous section (these are sometimes called phase outliers).676

Two other magnitude outliers have been identified, and one of them is also a shape outlier,677

presenting an anomalous peak of temperature after about 120 seconds of simulation (physical678

time). The final main outlier is a pure shape one, remaining zones with high density of data679

during the whole domain of simulation, but presenting two peaks of temperature. Specially680

notorious is the first peak, which occurs around the 100 seconds of transient, in a time681
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interval that does not match the vast majority of curves.682

5.3 Sensitivity analysis on outliers683

In this kind of numerical simulations, the detection of outputs that present a globally anoma-684

lous behavior is of critical importance, and characterizing what are the physical phenomena685

which have an actual influence on it can have the same importance, if not more. A way686

of performing this analysis is to establish some kind of dependence measure between the687

inputs of the simulation code and the outlying score θ. However, the high dimensionality of688

the problem and the possible correlations between the input variables of the code can make689

this a difficult task. The Hilbert Schmidt Independence Criterion (Da Veiga, 2015) can be a690

useful tool in this context in order to test the dependence between the scalar input variables691

of the code and the outlying score. This is a first step in order to understand which physical692

variables are the ones that actually influence the anomalous behavior of the outputs.693

By performing statistical tests on the HSIC values of the couples (Xi, Y ) in the design of694

experiments it is possible to quantify their dependence. Without going into the technical695

details of the procedure (see De Lozzo and Marrel (2016) ), the HSIC represents a dependence696

measure between both variables, and can be used in order to build a statistical test with null697

hypothesis: H0: the variable Xi and Y are independent. The hypothesis is rejected if the698

associated p-value of the test is inferior to a significance level threshold α. If H0 is rejected,699

then the existence of a dependence structure between the input variable Xi and the output700

exists.701

In this case, we apply this measure in order to perform a Target Sensitivity Analysis, i.e.,702

sensitivity analysis but quantifying the influence of the considered parameters in a restricted703

domainM of the possible output values (M ⊂ Θ such thatM = {θ ∈ Θ|θ > 0.9}). This704

application to the set of input data and the obtained values of θ yields a number of influential705

variables that are shown in Table 5.706

All of these input variables can be considered to have an influence on the outlyingness707
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of the resulting simulated curve, which represent the evolution of the maximum cladding708

temperature during the transient. Variable X16 represents the friction between the injected709

water in the primary circuit by the accumulators and the injection line. This parameters has710

been found to be influential in other similar studies since the compensation of the lost water711

during the transient is mainly guaranteed by this system (the accumulators), and therefore712

the line connecting it to the primary is of crucial importance. If this value of friction increases,713

the water flow will be reduced, with the consequent increase in the average temperatures of714

the fuel.715

Regarding variables 38, 45 and 64, they are representative of physical phenomena occurring716

in the Reactor Pressure Vessel (RPV) during the transient. They model respectively: the717

heat transfer coefficient between the nuclear fuel and the surrounding coolant; the increase718

in pressure drop due to the deformation of the nuclear fuel due to the thermal-mechanical719

stress, prevents the coolant from ascending easily to the top of the RPV; and the friction720

between the steam and water in the core during the reflodd phase of the transient. These721

elements are relevant since their evolution greatly influences the rewetting dynamic of the722

fuel, and the heat extraction in the short-term phase of the transient.723

Finally, variables X62 and X68 are representative of phenomena which occur between the724

steam and coolant water in the downcomer (the annular part which links the injection line725

of the accumulators and the nuclear core). This element is critical during the reflood process,726

which is why increases in the friction between the ascending steam and the descending water727

in this element are penalizing from a safety point of view. This is due to the fact that if728

the friction coefficient increases, it means that the momentum of the injected water will be729

reduced, and the core will take longer to be filled. Similar conclusions can be obtained for730

the heat exchange coefficient between both phases in the downcomer, since low values for731

this variable will imply lower heat extraction rates in the vessel.732

The study of two-dimensional scatter plots between these input parameters and the outlying733

score θ could already prove to be useful in order to visualize how the inputs affect the outlying734
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nature of the functional outputs. An example that illustrates the idea is presented in Figure735

6736
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(a) Scatter plot X62 vs θ
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Figure 6: Scatter plots of two input variables of CATHARE2 and the outlyingness score θ.
The points correspond to the bivariate plot of the values of the selected variable and the
corresponding θ. The red dots correspond to the simulations that have been retained as
outliers.

As it can be seen, outlying transient concentrate around specific subsets of the domain737

of the identified influential variables. These plots are useful in order to evaluate if the738

physical values that originate outlying simulations are physically coherent with their expected739

influence. In this particular case, for instance, lower values of friction should correspond to740

less penalizing and outlying configurations when the safety criterion is the Peak cladding741

temperature of the nuclear fuel. Therefore, the observed effect of this variable is actually not742

expected, and it corresponds to an anomalous effect in the coding of this particular transient743

that was later corrected by the engineers. In other words, the methodology and the analysis744

technique was capable of capturing not only extreme effects in the analyzed physical time-745

dependent variable (the Maximum Local Cladding temperature), but it was also capable of746

finding actual outliers, in the sense that those simulations showcase non-physical events in747

the particular modelling used in this study.748
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6 Discussion and conclusions749

This paper has dealt with a fundamental branch of functional data analysis: the outlier750

detection problem. The main aspects to take into account when dealing with functional751

data or high-dimensional objects in general have also been developed, exposing its main752

challenges and advantages.753

A new time-dependent outlier detection methodology based on the use of non-parametric fea-754

tures has been proposed, assessed with synthetic data, and illustrated on thermal-hydraulic755

simulations, aiming at capturing the outlyingness of the elements of any considered functional756

dataset both in the magnitude and the shape senses. This is done via the joint utilization of757

the h-mode depth and the Dynamic Time Warping, and by defining outliers as data which do758

not belong to the minimum volume set of a chosen probability. The maximal probability for759

which a datum is not regarded as an outlier anymore is used as a score θ of its outlyingness.760

An original detection algorithm has been proposed, effectively allowing the trimming of761

functional data. This methodology, based on the use of two features, benefits from the762

notion of level set in order to treat real industrial problems based on time-dependent data763

even if the available data are scarce. Several features have been compared in this framework764

on the basis of some toy examples and two scores related to the outlyingness of functional765

data. Based on the results of these application cases, both the notions of Dynamic Time766

Warping and the h-mode depth have proven their efficiency when compared to other features767

such as the L2 norm and the Modified Band Depth.768

Finally, the analysis of simulations of the thermal-hydraulic behavior of a nuclear reactor769

during a Loss Of Coolant Accident has been carried out to illustrate the benefits of the770

method. This was achieved thanks to the use of sensitivity analysis tools capable of account-771

ing for the dependence of the input variables of the numerical simulator, Hilbert Schmidt772

Independence Criterion (HSIC).773

Regarding the perspectives of this work, a primary objective would be the in-depth quan-774

tification of the causes for the detected anomalous characteristics of certain functions in775
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real physical cases. In the case of numerical simulators, the identification of the inputs of776

the code that actually present an influence on the anomalous outputs can help engineers to777

detect possible defects of the code or finding physical phenomena of interest. This is also778

relevant in order to ensure the quality of the datasets that are used in the assessment reports779

of critical systems such as nuclear power plants.780
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7 Appendix891

Notation Description

G(t) Centered Gaussian process of covariance function Σ(t1, t2) = 0.3 exp −|t1−t2|
0.3

Z(t) Functional random variable generating the main model
Z0 Functional random variable generating the outliers
TI Random point uniformly generated in the definition domain of the function

Table 1: Description of the common parameters of the models

Pairs of features Model 1 Model 2 Model 3 Model 4
BD-DTW 48.663 41.272 49.621 42.376
BD-hM 41.342 39.067 49.833 43.643
DTW-L2 44.551 42.660 50 43.842
hM-L2 48.937 44.133 49.968 41.929
hM-DTW 49.225 45.154 49.852 42.343
BD-L2 44.254 41.418 49.944 43.672

Table 2: Average rankings of the outlier for each analytical model and combination of fea-
tures.
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N=100, p=1% Model 1 Model 2 Model 3 Model 4
Algorithm 100.00 96.94 100.00 100.00
DO 59.26 39.51 100.00 0.00
FB 2.33 0.00 100.00 0.00
HDR 89.47 69.64 100.00 0.00
N=100, p=5%
Algorithm 91.14 96.79 99.17 97.50
DO 58.23 54.40 100.00 0.00
FB 2.53 4.18 11.95 0.00
HDR 48.35 44.8 49.48 0.00
N=100, p=10%
Algorithm 81.50 75.49 86.67 92.37
DO 47.25 45.97 99.63 0.00
FB 0.75 1.71 7.41 0.00
HDR 22.25 23.41 14.07 0.00

Table 3: Performances of the different algorithms on the test models. The results are ex-
pressed as a percentage (detection rates). DO: Directional Detector; FB: Functional Box-
plots; HDR: High-Density Regions.

N=100,p=1% Model 1 Model 2 Model 3 Model 4
Algorithm 98.36 97.80 99.57 93.06
Sequential Transformations 98.14 97.34 99.97 99.88
Modified Band Depth 84.00 61.39 98.49 1
Integrated Depth 83.15 59.81 98.42 1

Table 4: Average ranking of the outlier curve across the 100 replications of the experiments
for the selected models. The Sequential transformations procedure is presented in Dai et al.
(2020). The Modified Band Depth is presented in López-Pintado and Romo (2009), and the
standard Integrated Depth appears in Cuevas and Fraiman (2009). In this case, the closer
the value of a method is to 100, the more outlying it will be according to the corresponding
ranking measure

.
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Variable Description
X16 Friction between the water and the discharge line of the accumulators
X38 Global Heat Transfer Coefficient (HTC) in reflood fuel/coolant
X45 Pressure drop to model the constrained flow due to the deformation of the fuel.
X62 Friction coefficient between steam and water in the Downcomer during reflood
X64 Friction coefficient between water and steam in core during the reflood phase
X68 HTC between steam and water in the Downcomer

Table 5: Detected influential variables for θ ∈ M. The variables are not the actual values
of the physical parameters, but multiplicative coefficients that increase of decrease their
importance in a scenario.
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