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 
Abstract— Recently, UAVs or Unnamed Aerial Vehicles have 

been proposed as flexible aerial support to assist ground vehicles 
for different applications such as rescue and traffic surveillance 
missions. UAVs can collect different data information about the 
road/traffic state usually as aerial photography and videos. The 
processing of this kind of data consists usually on pattern 
recognition and video processing which are complex tasks that 
necessitate powerful computing and energy resources. 
Unfortunately, the moderate UAV’s computational and energy 
capabilities restrict local data processing. Fortunately, UAVs can 
leverage the computation resources of the surrounding edge 
network entities to enhance their computational capabilities. In 
this paper, we aim to achieve efficient data processing for the 
data collected by UAVs in the context of UAVs-aided vehicular 
networks for traffic monitoring missions. For this purpose, we 
proposed a new system model where UAVs can offload and/or 
share intensive computation tasks with other nearby network 
nodes. Then, we used the computation response time, the energy 
consumed for the computation, the cost of cellular 
communication and the computation cost as the main system 
metrics to make any computation offloading/sharing decisions 
that optimize the system performance. We then modeled the 
offloading/sharing decision-making problem as a sequential 
game, where we provide complete proof of the existence of the 
Nash equilibrium and proposed an algorithm to reach such an 
equilibrium. The simulation results showed that the proposed 
game-based model outperforms other approaches by delivering 
better performance in terms of overall system utility with a data 
processing efficiency that varies between 43% and 97% 
depending on the computation approach, and provides a more 
efficient computation time and energy average. 

Index Terms— Unnamed Arial Vehicles, Vehicular Networks, 
Computation Offloading/Sharing, Game theory. 

I. INTRODUCTION

ehicular networks are expected to play an important role 
in emerging smart cities for enhancing road safety and 

traffic efficiency. 
Recently, the use of Unmanned Aerial Vehicles (UAVs) 

commonly known as drones have been democratized in 

diverse civil applications and their number is significantly 
increasing in modern cities. This is principally propelled by 
their cheap price, easy deployment, low maintenance cost, and 
high-mobility [1]. In the last few years, UAVs are proposed as 
a suitable aerial support solution to facilitate many vehicular 
applications such as rescue missions and traffic surveillance. 
Thanks to the maturity of their underlying technology and 
with their three-dimensional-aerial mobility, UAVs offer 
additional degrees of freedom in aerial traffic surveillance, 
road safety improvement, and incident reporting compared to 
fixed roadside units (RSUs) [3], [2]. Henceforth, UAVs can 
aerially cover large areas without any restriction related to the 
road ground network and congested traffic. For instance, in 
road traffic surveillance missions, UAVs are expected to 
detect, classify and identify objects or incidents/infractions on 
the road. UAVs collect diverse data information usually aerial 
photography such as image and video, compute and transmit 
the collected data to the nearby ground vehicular network in 
real-time, as it can store onboard these data for future use [4], 
[5]. 

Generally, this kind of data in such an application needs to 
be processed rapidly to get relevant information about the 
traffic state and detect traffic infractions. For that, drones are 
often executing intensive computation tasks related to 
complex algorithms such as pattern recognition, video 
processing, and feature extraction. This type of task requires 
heavy calculations, powerful computing and energy resources. 
Moreover, the size of the collected data can rapidly increase 
especially for a long sequence of high definition videos [5]. 
Unfortunately, the calculation of such heavy and intensive 
computation tasks by limited-resource devices such as UAVs 
can result in slow processing response time, long transmission 
delay and high energy consumption. Nonetheless, recently 
cloud-based solutions were adopted to address issues caused 
by the limited resources of UAVs [6], [7]. This kind of 
solution, thanks to their powerful capabilities, can largely 
enhance the computation delay. However, they still suffering 
from high latency delay due to the far distance of their servers. 
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Hence, fog computing with its edge servers is proposed as a 
more efficient computation solution [2], [6]. Fortunately, 
UAVs can collaborate with its surrounding more powerful fog 
devices such as edge servers and ground vehicles by 
offloading heavy computation tasks in order to achieve more 
efficient data processing with an optimal balance between 
energy consumption and delay computation. 

In the last few years, several studies have proposed 
solutions for the integration of UAVs to assist vehicular 
networks for different vehicular applications such as packet 
delivery [8-11], congestion detection [12] and road traffic 
monitoring [13]. However, none of these works have explored 
the manner how the UAV can collaborate with its surrounding 
edge node to optimize the processing of the collected data. In 
our previous works, we have addressed the problem of data 
processing in an infrastructure-less UAV-assisted software-
defined vehicular network [5] and that of intensive-tasks 
computing in a UAV network [6]. 

In the same context, as an extension of our previous work 
[5], we address throughout this study the problem of how to 
achieve an efficient computation of intensive-computation 
tasks. These heavy tasks are related to the processing of the 
data collected by UAVs in the context of a UAV-aided road 
traffic surveillance scenario. We also formulate the data 
processing issue as a computation offloading/sharing decision-
making problem using a game-theoretical based approach. 
Compared to [5], this work considers conjointly the 
computation response time, the UAV’s energy consumed for 
the computation, the cost of using cellular communication and 
remote computation as the main system metrics used to make 
any computation offloading/sharing decision, wherein [5] only 
computation delay and energy are considered in the 
offloading\sharing decision. It should be noticed that we are 
the first who proposed a system utility based on these 
innovative metrics. Also, we consider a multi-UAVs traffic 
monitoring scenario with more advanced computation 
strategies in the context of a vehicular system, counter to [5], 
that only considers a limited scenario with one UAV for a road 
accident rescue mission in the context of uncovered vehicular 
networks areas. The main contributions of this paper are 
summarized below. 

- We propose a novel computation offloading/sharing policy 
for data processing in a UAV-aided road traffic monitoring 
scenario. 

- We formulate the offloading/sharing computation 
decision-making problem as a three-player sequential 
game and design an algorithm to solve the problem. 

- We conjointly consider a set of innovative system metrics: 
delay, energy, quality of the link, as well as 
communication and computation cost, to make any 
computation offloading\sharing decision. We evaluate the 
performances of the proposed game-based data processing 
policy for different system parameters. 

The rest of the paper is organized as follows: we first briefly 
survey the related works on UAV-aided vehicular networks in 
Section II. After, we present the problem formulation in 
Section III and we detail the computation model in Section VI. 

In Section V, we detail the sequential computation-
offloading/sharing game, prove the existence of Nash 
equilibrium and propose a distributed algorithm to reach this 
equilibrium. The simulation results are discussed in 
Section VI. Finally, Section VII concludes the paper. 

II.  RELATED WORK 
? 

In the last few years, UAVs are proposed as a suitable aerial 
support solution to facilitate many vehicular applications such 
as search\rescue missions and road traffic monitoring. Almost 
all of the available works use small UAVs without embedded 
cameras to enhance packet delivery and data transmission in 
an uncovered vehicular environment without fixed 
infrastructure or with poor network coverage. For instance, 
Seliem et al. in [8] proposed a routing protocol that uses 
drones as a communication infrastructure to improve vehicular 
communications in order to achieve a minimum vehicle-to-
UAV packet delivery time. UAVs are used in [9-11] as an 
innovative routing solution to assist ground vehicles for 
efficiently enhance data delivery in vehicular urban areas. 
Shafiq et al. in [13] investigated a random-access transmission 
protocol for traffic monitoring applications in a high-way 
scenario, where a UAV is used to assist an RSU in order to 
enhance the system throughput. Authors in [14] proposed 
CTS-DP, an enhanced UAV-aided data dissemination protocol 
that employs drones as flying relays with data caching 
capability. CTS-DP aims to optimize trajectories of UAVs and 
achieve efficient coordination with RSUs, UAVs and ground 
vehicles for data dissemination. Oubbati et al. in [15] used a 
fleet of communicating UAVs to monitor traffic, detect, and 
localize road incidents. A backhaul based routing protocol that 
considers the high mobility and the restricted energy resources 
of UAV is proposed to help ground rescue teams to enhance 
the intervention time and efficiency. In [16], a drone solution 
combining RaptorQ-based content dissemination mechanisms 
is proposed in order to enhance content delivery in vehicular 
networks. Authors in [17] used UAVs to enhance the data 
communication performance of vehicular networks. For that, a 
UAV mobility model is presented and stochastic analysis of 
the end-to-end connectivity and data delivery delay is 
proposed in the presence of these UAVs. Sedjelmaci et al. in 
[18] proposed UVE, a new framework that used small UAVs 
as mobile infrastructure to enhance the connectivity between 
ground vehicles. A game-theoretical model is proposed to 
predict the road disconnection segments and mitigate the UAV 
energy of the draining effects. A novel simulation framework 
based on results retrieved from real testbed is proposed in [19] 
to measure the performance of UAV-to-ground vehicle 
communications. 

Some other works use more advanced UAVs with 
embedded cameras to assist ground vehicles in traffic 
monitoring and road surveillance. Jian et al. [12] proposed to 
combine UAVs with artificial neural networks to detect traffic 
congestion and alert the authorities to improve road traffic. As 
well as [12], Khan et al. [20] proposed to use UAVs for road 
traffic monitoring, particularly for analyzing traffic flows at 
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urban roundabouts. For this purpose, an analytical 
methodology has been presented for analyzing traffic flow 
conditions at signalized intersections. Zhu et al. [21] propose a 
drone-based method to detect and simulate pedestrian 
movements at intersections with frequent collisions. Using in-
depth learning methods and high-resolution extraction of 
pedestrian, bicycle and vehicle movements, they were able to 
calibrate a model to extract pedestrian trajectories and study 
them to protect pedestrian lives. Authors in [22] propose two 
algorithms to optimize the placement of UAVs charging 
docks, minimize the UAVs energy consumption and maximize 
the UAVs coverage area for a better road incident exploration. 
Kyrkou et al. [23] propose a solution based on artificial 
intelligence to obtain the best strategy that ensures the rapid 
deployment of UAVs in traffic monitoring missions. In [24], 
authors used a fleet of UAVs to monitor, collect and send road 
traffic information to a traffic processing center for traffic 
regulation purposes. Unfortunately, all the above-cited works 
consider limited baseline data processing mechanisms for the 
data collected by UAVs, where they are either performed by 
the UAV or by a ground server. These works present a 
flagrant lack of intelligent mechanisms adapted for delay-
sensitive scenarios, which can enhance the data processing 
processes in terms of computation delay and save UAV’s 
energy.  

Recently, Messous et al. [2], [6] and [25] have used game 
theoretical models to tackle the problem of offloading heavy 
computation tasks of UAVs while achieving the best possible 
tradeoff between energy consumption, computation delay and 
communication cost. In [26], the authors proposed a 
computation offloading framework for a UAV system in order 
to achieve an optimal computation delay and energy tradeoff. 
In the proposed framework, intensive tasks are offloaded to 
edge servers based on computation load parameters and the 
state in real-time of the network’s devices. Moreover, in our 
previous work [5], we have addressed the challenge of 
processing the collected data by UAV in the context of a road 
safety scenario for vehicular areas without fixed infrastructure 
coverage. We have formulated the problem as a decision-
making problem in terms of computation offloading/sharing 
while trying to find the best tradeoff between computation 
delay and energy. A two-player sequential game based on 
SDN (Software-Defined Networking) paradigm was used to 
model the computation offloading/sharing problem. 
Nevertheless, in [5] we have proposed a partial solution with 
one UAV and few computation possibilities that only work in 
specific vehicular areas without fixed infrastructure coverage. 

This work is an extension of our previous work in [5], 
where we use a fleet of UAVs to assist authority vehicles in 
the surveillance of road traffic. Unlike other related works, we 
focus on how to achieve an efficient data processing of the 
data information collected by UAVs. Moreover, we extend our 
game-theoretical model in [5] to use a multi-UAVs based 
computation offloading/sharing strategy with more advanced 
offloading/sharing possibilities based on a combination of new 
innovative system metrics (i.e., the delay, the energy, the 
communication and computation cost). 

To the best of our knowledge, we are the first to use a 
multi-players sequential game to investigate the problem of 
offloading/sharing computation related to data processing in 
the context of a multi UAVs-aided road traffic monitoring 
mission. Our game-theoretical model proposes a novel system 
utility-based not only on the commonly used system metrics 
such as the computation delay and energy but also on new 
innovative metrics such as computation cost and 
communication cost. As well as, we consider more advanced 
computation strategies to enhance the data processing process. 

III. PROBLEM FORMULATION 
Nowadays, with a considerable increase in the number of 

vehicles, road traffic monitoring and management is becoming 
a major challenge for the authority. To overcome this problem, 
some works [8-11, 13-24] propose to equip authority vehicles, 
such as police and emergency vehicles, with UAVs to assist 
them in traffic monitoring operations. UAVs can detect 
vehicles that have committed traffic offenses such as speeding 
or crossing a continuous line [27]. In addition, UAVs can act 
as aerial road monitoring devices and help road surveillance 
authority to improve traffic fluidity by detecting and signaling 
congested road segments [24], as well as enhance road safety. 
The UAVs role consists of collecting different data 
information on the road state through their various sensors 
such as aerial images and videos. The collected data must be 
processed as soon as possible to extract relevant information 
on the road state. This information allows the road 
surveillance authority to make the appropriate decisions at the 
right time to preserve the safety and fluidity of road traffic. 
The processing of this kind of data is usually pattern 
recognition and video processing which well known that they 
are complex tasks with intensive computation tasks that 
necessitate powerful computing and energy resources. 

In this section, we discuss the problem of offloading 
computation decision-making related to the UAV’s data 
processing optimization in the context of UAV-aided road 
traffic monitoring missions. We use a fleet of UAVs to 
provide aerial assistance to ground road authority vehicles. 
Thus, we start by presenting the system model before 
describing the proposed data processing policy. 

A. System model  
The proposed system model is based on a scenario where a 

fleet of UAVs assists road authority vehicles during a traffic 
monitoring mission on a highway. Thanks to their flexibility, 
fluidity and embedded cameras, UAVs can be rapidly 
deployed at any point on the highway to detect vehicles that 
commit offenses. In addition to their ability to fly at altitude, 
UAVs are much less detectable than a static monitoring 
camera or speed radar. The information captured by the UAVs 
must be processed in a short time to allow the road 
surveillance authority to detect road offenses an then intervene 
quickly. 

To model our approach, we consider an authority traffic 
monitoring vehicle (AV) equipped with a fleet of UAVs noted 𝐷 =  {1, 2, . . . , 𝑚}. In our model, both of vehicles and UAVs 
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can communicate with an edge server using cellular link 
trough LTE-A/5G technology. UAVs are connected to each 
other’s and communicate using the cellular vehicle to 
everything technology (C-V2X PC5, we simplify as C-V2X) 
[33] and with the road authority vehicle on the ground using a 
radio link. All vehicles use C-V2X to communicate via V2V 
(Vehicle to Vehicle) connection to each other’s and use an 
LTE-A/5G interface to communicate with the infrastructure, 
see Fig. 1. 

We assume that at any time at least the road authority 
vehicle is reachable by a UAV directly in one hop or in multi-
hop mode, passing through other intermediate nodes. Since we 
focus our efforts on how to optimize the UAV’s data 
processing, we neglect the UAV’s energy of moving. Hence, 
we consider in our study only the computation and 
communication energy consumptions. We suppose also that 
every node detains and manages a table of its nearby nodes. 
This table contains the list of the nearby nodes and the quality 
of the link with these nodes. The nearby nodes table is 
periodically updated through exchanging beacon messages.   

B. Data processing policy 
The role of the UAVs, in addition to road traffic monitoring 

and data collection, is to detect possible traffic offenses or 
road accidents. UAVs collect diverse data information usually 
aerial photography such as image and video, process these 
data and transmit the resulted information to the road authority 
vehicles on the ground. Indeed, drones are often executing 
intensive computing tasks related to the processing of the 
collected data such as pattern recognition, video processing, 
and feature extraction. In addition, they are expected to rapidly 
process these collected data using the lowest possible energy 
consumption. This latter represents a very valuable resource 
for the success of the aerial monitoring operation. In fact, two 
types of UAVs are defined according to their role in the data 
processing operation: the primary UAV (PU) which is the 
node that collects the data and aims to optimize the 
corresponding computation tasks, and nearby secondary 
UAVs (NU) that can cooperate with the primary UAV to 
perform the computation. 

To this purpose, we propose a varied set of computation 
strategies to efficiently process the UAVs data information. 
Effectively, the primary UAV can: 

1) Perform the computation tasks locally using its own 
resources. 

2) Share a part of the computation tasks with one or more of 
its nearby secondary UAVs. Drones can cooperate to 
reduce the computation cost in terms of delay and energy. 

3) Offload the computation tasks to an edge server to 
enhance it computational capability, since this latter has 
more powerful computational resources, in addition to the 
advantage of edge deployment which reduces the small 
transmission delay. 

4) Offload the computation tasks to the road authority 
vehicle. Because the ground vehicles are supposed to 
have higher computational capability than UAVs and can 
lead to better computation performance in some cases. 

The road authority vehicle has the following computational 
possibilities when it receives an offloaded task from a UAV: 
1) Perform the computation tasks locally. 
2) Share the computation tasks with other nearby vehicles 

(NV). Here, authority vehicle can cooperate with it nearby 
vehicles to enhance the task computation. 

3) Offload the computation tasks to an edge server. Because 
the computational capability of the edge server is more 
powerful than that of the authority vehicle. 

The nearby vehicle has the following computational 
possibilities when it has to process a data computation task 
shared by the road authority vehicle: 
1) Accept to process the data shared by the road authority 

vehicle, if it is idle. 
2) Refuse to process the data shared by the authority vehicle, 

when its resources are busy by calculating its own tasks. 

A example of the effectiveness of these proposed 
computation strategies, in some cases to save the energy of the 
UAVs and decrease the computing response delay, it will be 
better to take advantage from the powerfull computation 
resource of the edge server by offloading high intensive tasks 
with small data (extracting some features from a picture) to be 
computed by the edge server and resend only small results 
than computing this kind of task using the limited resource of 
UAV. However in some other cases, when going to process 
and compute less intensive tasks with heavy data size (simple 
processing of a high-quality video), the local computation on 
the drone can result in better system performance in terms of 
computation delay and energy. Here offloading\sharing 
computation can result in high transmission energy and delay. 
Moreover, sharing computation between nearby UAVs can 
give good performances for medium intensive tasks with 
medium data size, taking benefit from the collaborative 
distributed computation and the near distance of drones in 
addition of the free of charge of wireless communication used 
between UAVs. 

In our data processing policy, the primary UAV initially 
collects different types of data (usually aerial photography 
such as photos and videos) on the road segment that it is 
supposed to monitor. Then, it makes a computation 

 
Fig. 1.  UAV-aided HetVNet for a road traffic monitoring scenario. 
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offloading/sharing decision when it starts to process a data 
computational task i (𝑑𝑖𝑢 = {0, 1, 2, 3}): where, (𝑑𝑖𝑢 = 0) if it
chooses to execute the computational task locally, (𝑑𝑖𝑢 = 1) if
it chooses to offload the computational task to the edge server 
using LTE-A/5G, (𝑑𝑖𝑢 = 2) if it chooses to share the
computational task with other nearby UAVs using C-V2X 
interface, and (𝑑𝑖𝑢 = 3) if it chooses to offload the
computational task to the road authority vehicle using the C-
V2X interface. Once the road authority vehicle receives a 
computational task, it must decide whether to perform the 
calculation locally (𝑑𝑖𝑎𝑣 = 0), offloads the computation to an
edge server (𝑑𝑖𝑎𝑣 = 1), or share the computation with a nearby
vehicle (𝑑𝑖𝑎𝑣 = 2). The nearby vehicle when it receives a
shared computational task from the road authority vehicle, it 
has to choose between two possibilities, either it accepts to 
compute the task (𝑑𝑖𝑛𝑣 = 0) or deny the computation request(𝑑𝑖𝑛𝑣 = 1). The data processing policy is illustrated in Fig. 2.

IV. COMPUTATION MODEL

For the computation model, we consider that the collected 
data can be divided into a set of intensive computation tasks. 
Similar to existing related works in [2], [5], [6], [25], [38], and 
[39], we assume that the computational tasks can be 
partitioned into inter-dependent sub-tasks with arbitrary 
granularity using dynamic partial partitioning technique [37]. 
We model the task i by (Ci, Dsi, Rsi, Si, Rvi), i ∈ N, this 
representation is slightly inspired of that proposed by Liwang 
et al. in [28]. Where Ci represents the total number of 
processor computation cycles required to complete task i, Dsi 
represents the total size of the task’s data, the data includes the 
input parameters necessary for the computation and the 
program code to be executed, Rsi represents the size of the 
computation results to be sent back to the road authority 

vehicle, and Si represents the level of sensitivity to delay of 
task i, where 𝑆𝑖 ∈ {0, 1}: 0 indicates that task i is not delay-
sensitive, 1 indicates that task i is delay-sensitive. Rvi 

represents the relevance degree of the obtained results of task i 
regarding the initial waited computation goal. Where 𝑅𝑣𝑖 ∈{0, 1}, 0 indicates that the obtained results from the 
computation of task i are not relevant and 1 indicates that 
results are relevant. Initially, we suppose that the analysis 
results are relevant (𝑅𝑣𝑖 = 1) and after the end of the
computation and the reception of the analysis results by the 
authority vehicle, a road traffic monitoring agent, can decide if 
the results are relevant or not by modifying the value of Rvi. 

Without loss of generality and similar to many previous 
similar studies dealing with computation offloading problem 
in mobile cloud/edge computing and in UAV networks (see 
[2], [5], [6], [25], [38], and [39], we make the common 
assumption that the network runs based on a time-slotted 
manner to enable tractable analysis. Where the time is 
partitioned into equal small intervals or slots. Each interval 
represents one decision slot within it only one task is 
processed and all network parameters (e.g., the number and 
position of UAVs\vehicles, as well as the quality of wireless 
channels) remain unchanged, during a decision time slot, 
while they may move throughout different periods. [40]. For 
this reason, we omit the UAV hovering energy in our 
computational model. 

During the road monitoring mission, the collected data must 
be processed quickly in order to allow the road authority 
vehicle to intervene at the right time. Furthermore, optimizing 
UAVs energy is essential for the success of the monitoring 
mission. In addition, sending data via the LTE-A/5G interface 
requires to pay a cost for using cellular technology, which 
imposes a rationalization of communication cost. Similarly, 
requesting an edge server or a ground vehicle for computation 
services requires additional service charges. As a result, the 
computation response time, the energy consumed for the 
computation, the cost of cellular communication and the 
computation cost are the main metrics that we consider in our 
computation approach to make any computation 
offloading/sharing decision. It should be noticed that we are 
the first who proposed a system utility based on these 
innovative metrics. 

In the following, we will detail the computation model of 
the system based on similar models proposed in [2], [5], [6], 
[25], [28], and [34]. 

A. Primary UAV’s computation model
Based on the delay and energy required to compute the

tasks, as well as the communication cost and remote 
computing cost, the UAV aims to make the best decision when 
it has to process the collected data. Indeed, the UAV can 
perform the computation locally, share the computation with 
nearby UAVs or offload the computation to a more powerful 
node, either to the road authority vehicle or even to a 
computation edge server. 

Fig. 2. Data processing policy flow chart. 
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1) Local computation 
The total execution time (𝑇𝑖,𝑙𝑝𝑢) of local computation of task 

i by the primary UAV, is equal to the sum of the local 
execution time by the primary UAV (𝑇𝑖𝑙−𝑝𝑢) plus the time for 
sending the results to the road authority vehicle (𝑇𝑖,𝑙−𝑟𝑠𝑝𝑢 ). The 
computation results are sent to the road authority vehicle 
either in one-hop if the road authority vehicle is within the 
coverage area of the primary controller or in multi-hop via 
other intermediate vehicles using the C-V2X interface [5]. 𝑇𝑖,𝑙𝑝𝑢 
is given by: 𝑇𝑖,𝑙𝑝𝑢 = 𝑇𝑖,𝑙𝑙−𝑝𝑢 + 𝑇𝑖,𝑙−𝑟𝑠𝑝𝑢 = ( 𝐶𝑖𝐹𝐶𝑃𝑈𝑃𝑢 ) + (∑ 𝑅𝑠𝑖𝑅𝐶−𝑉2𝑋ℎ

𝑘=1 ) (1) 

Here 𝐹𝐶𝑃𝑈𝑝𝑢  represents the computation frequency of the 
primary UAV in processor cycles per second and 𝑅𝐶−𝑉2𝑋 
represents the data transmission rate through the C-V2X 
interface. h is the number of V2V hops required to reach the 
road authority vehicle. 

The total energy of the local computation by the primary 
UAV (𝐸𝑖,𝑙𝑝𝑢) is equal to the sum of the local computation 
energy (𝐸𝑖𝑙−𝑝𝑢) plus the energy it consumes to send the results 
to road authority vehicle (𝐸𝑖,𝑙−𝑟𝑠𝑝𝑢 ). We assume that vehicles do 
not have energy constraints; therefore, we neglect the energy 
consumption of vehicles to perform the computation task and 
send the results. 𝐸𝑖,𝑙𝑝𝑢 is given by: 𝐸𝑖,𝑙𝑝𝑢 = 𝐸𝑖𝑙−𝑝𝑢 + 𝐸𝑖,𝑙−𝑟𝑠𝑝𝑢 = (𝐶𝑖 × 𝑒𝐶𝑃𝑈𝑝𝑢 )  + (𝑅𝑆𝑖 × 𝑒C−V2X 

𝑝𝑢 ) (2) 
Here, 𝑒𝐶𝑃𝑈𝑝𝑢  represents the energy consumed per processor 

computation cycle of the primary UAV, and 𝑒𝐶−𝑉2𝑋 𝑝𝑢 represents 
the energy consumed by the C-V2X interface to send one data 
unit to the road authority vehicle. 
2) Offloading computation to the edge server 

The total time of offloading computation to the edge server 
(𝑇𝑖,𝑜−𝒆𝒔𝑝𝑢 ) is equal to the sum of the time required to send the 
data task i (𝐷𝑠i) to the edge server (𝑇𝑖,𝑡−𝑒𝑠𝑝𝑢 ) plus the local 
computation time on the edge server (𝑇𝑖𝑙−𝑒𝑠) plus the time for 
sending the results to the road authority vehicle (𝑇𝑖,𝑜−𝑟𝑠𝑝𝑢 ). 𝑇𝑖,𝑜−𝑒𝑠𝑝𝑢  is given by: 𝑇𝑖,𝑜−𝑒𝑠𝑝𝑢 = 𝑇𝑖,𝑡−𝑒𝑠𝑝𝑢 + 𝑇𝑖𝑙−𝑒𝑠 + 𝑇𝑖,𝑜−𝑟𝑠𝑝𝑢

= ( 𝐷𝑠𝑖𝑅𝐿𝑇𝐸−𝐴/5𝐺𝑝𝑢 ) + ( 𝐶𝑖𝐹𝐶𝑃𝑈𝑒𝑠 )
+ ( 𝑅𝑠𝑖𝑅𝐿𝑇𝐸−𝐴/5𝐺 

𝑒𝑠 +∑ 𝑅𝑠𝑖𝑅𝐿𝑇𝐸−𝐴/5𝐺 

𝑒𝑠ℎ
𝑘=1 ) 

(3) 

Here 𝐹𝐶𝑃𝑈𝑒𝑠  represents the computation frequency of the edge 
server in processor cycles per second, (𝑅𝐿𝑇𝐸−𝐴/5𝐺𝑝𝑢 ) and (𝑅𝐿𝑇𝐸−𝐴/5𝐺𝑒𝑠 ) represent the data transmission rate through the 
LTE-A/5G interface of the primary UAV and edge server, 
respectively. 

The total energy consumption of the offloading computation 
by the edge server (𝐸𝑖,𝑜−𝑒𝑠𝑝𝑢 ) is equal to the energy for sending 
the data of task i (𝐷𝑠𝑖) to the edge server (𝐸𝑖,𝑡−𝑒𝑠𝑝𝑢 ) plus the 
energy for sending the results to the road authority vehicle 

(𝐸𝑖,𝑜−𝑟𝑠𝑝𝑢 ). We assume that the edge server has no energy 
constraint; therefore, we neglect the energy consumption of 
the edge server to perform the computation and send back the 
results to the UAV. 𝐸𝑖,𝑜−𝑒𝑠𝑝𝑢  is given by: 𝐸𝑖,𝑜−𝑒𝑠𝑝𝑢 = 𝐸𝑖,𝑡−𝑒𝑠𝑝𝑢 + 𝐸𝑖𝑅𝑠= (𝐷𝑠𝑖 × 𝑒𝐿𝑇𝐸−𝐴/5𝐺𝑝𝑢 ) + (𝑅𝑠𝑖 × 𝑒C−V2X 

𝑝𝑢 ) 
(4) 

Here, 𝑒𝐿𝑇𝐸−𝐴/5𝐺𝑃𝑢  represents the energy consumed by the 
LTE-A/5G interface of the UAV to send one data unit to the 
road authority vehicle. 

Using cellular communication through the LTE-A/5G 
interface requires to pay a communication cost depending on 
the size of the data sent, unlike communications using the C-
V2X interface which are free [29]. Therefore, we calculate 
here the cost of sending the data of task i via LTE-A/5G to the 
edge server (Π𝑖,𝑝𝑢𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠). This cost is generally a monetary 
charge. Similarly, we assume that the edge server uses LTE-
A/5G technology for free to send the data. (Π𝑖,𝑝𝑢𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠) is given 
by: 
 Π𝑖,𝑝𝑢𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠 = 𝐷𝑠𝑖 × 𝜋𝐿𝑇𝐸−𝐴𝑐𝑒𝑙𝑙  (5) 

Here, 𝜋𝐿𝑇𝐸−𝐴𝑐𝑒𝑙𝑙  refers to the communication price of sending 
one data unit via the LTE-A/5G interface. 

The computation of a task offloaded by the primary UAV to 
the edge server also inflicts a service computation cost related 
to the complexity of the task to be computed. Therefore, we 
calculate the cost of computing a task 𝑖 by the edge server (Π𝑖,𝑝𝑢𝑐𝑝𝑡,𝑜−𝑒𝑠) using the following equation: 
 Π𝑖,𝑝𝑢𝑐𝑝𝑡,𝑜−𝑒𝑠 = 𝐶𝑖 × 𝜋𝑒𝑠𝑐𝑝𝑡 (6) 

Here, 𝜋𝑒𝑠𝑐𝑝𝑡 refers to the computation price of one processor 
cycle of an offloaded task by the edge server. 
3) Sharing computation with nearby UAVs 

The primary UAV can share the computation of data tasks 
with its nearby UAVs in order to better optimize the system’s 
metrics. To do this, the primary UAV first negotiates with 
nearby UAVs on the percentage of task computation cycles 
that it can share calculation with them. As a result, the total 
time required for shared computation with nearby UAVs 
(𝑇𝑖,𝑠−𝑛𝑢𝑝𝑢 ) is equal to the sum of the negotiation time with the 
nearby UAVs on the portion of computational cycles to be 
shared (𝑇𝑖𝑛𝑔) plus the transmitting time of the partial task’s 
data to be shared with the nearby UAVs (𝑇𝑖,𝑡−𝑛𝑢𝑝𝑢 ), plus the 
time of the local computation of the primary UAV (𝑇𝑖𝑙−𝑝𝑢), 
plus the average local computation time of nearby UAVs (𝑇𝑖𝑎−𝑛𝑢) plus the time needed to send back the results to the 
primary UAV by the nearby UAVs and then to the road 
authority vehicle (𝑇𝑖,𝑠−𝑟𝑠𝑝𝑢 ). For a fleet of UAVs composed of n 
UAVs, we note the ratio ∑ 𝛾𝑗𝑛−1𝑗=1  which represents the sum of 
the computation ratios to be shared with the nearby UAVs, 
where (n-1) represents the number of nearby UAVs, and γj 
represents the computation ratio supported by a nearby UAV j, 
such that 0 < ∑ 𝛾𝑗𝑛−1𝑗=1 < 1. 𝑇𝑖,𝑠−𝑠𝑢𝑝𝑢  is given by: 
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𝑇𝑖,𝑠−𝑠𝑢𝑝𝑢 = 𝑇𝑖𝑛𝑔 + 𝑇𝑖,𝑡−𝑛𝑢𝑝𝑢 + 𝑇𝑖𝑙−𝑝𝑢 + 𝑇𝑖𝑎−𝑛𝑢 + 𝑇𝑖,𝑠−𝑟𝑠𝑝𝑢
= (∑𝛾𝑗 × 𝐷𝑠𝑖𝑅𝐶−𝑉2𝑋𝑛−1

𝑗=1 )
+ ((1 −∑𝛾𝑗𝑛−1

𝑗=1 ) × 𝐶𝑖𝐹𝐶𝑃𝑈𝑝𝑢 )+ (𝑇𝑖𝑙−𝑛𝑢𝑛 − 1)+ (∑𝛾𝑗𝑛−1
𝑗=1 × 𝑅𝑠𝑖𝑅𝐶−𝑉2𝑋 +∑ 𝑅𝑠𝑖𝑅𝐶−𝑉2𝑋ℎ

𝑘=1 ) 

(7) 

Where, 𝐹𝐶𝑃𝑈𝑗,𝑛𝑢 represents the computation frequency of a 
nearby UAV j in processor cycles per second. We suppose that 
UAVs can have different computational capabilities. 

Total energy consumption of sharing computation with the 
secondary UAV (𝐸𝑖,𝑠−𝑛𝑢𝑝𝑢 ) is equal to the sum of the energy 
consumed for local computation of the portion of task i by the 
primary UAV (𝐸𝑖𝑙−𝑝𝑢) plus the energy of sending the shared 
part of the task data to the nearby UAVs (𝐸𝑖,𝑡−𝑛𝑢𝑝𝑢 ), plus the 
energy of the local computation on nearby UAVs (𝐸𝑖𝑙−𝑛𝑢), 
plus the energy consumed to send the results to the primary 
UAV by the nearby UAVs and then to the road authority 
vehicle (𝐸𝑖,𝑠−𝑟𝑠𝑝𝑢 ). 𝐸𝑖,𝑠−𝑛𝑢𝑝𝑢  is given by: 𝐸𝑖,𝑠−𝑛𝑢𝑝𝑢 = 𝐸𝑖𝑙−𝑝𝑢 + 𝐸𝑖,𝑡−𝑛𝑢𝑝𝑢 + 𝐸𝑖𝑙−𝑛𝑢 + 𝐸𝑖,𝑠−𝑟𝑠𝑝𝑢

= ((1 −∑𝛾𝑗𝑛−1
𝑗=1 ) × 𝐶𝑖 × 𝑒𝐶𝑃𝑈𝑝𝑢 )

+ (∑𝛾𝑗𝑛−1
𝑗=1 × 𝐷𝑠𝑖 × 𝑒𝐶−𝑉2𝑋𝑝𝑢 )

+ (∑(𝛾𝑗 × 𝑒𝐶𝑃𝑈𝑗,𝑛𝑢)𝑛−1
𝑗=1 × 𝐶𝑖)

+ ((∑𝑒C−V2X 

𝑗,𝑛𝑢 × 𝑅𝑠𝑖𝑛−1
𝑗=1 )+ 𝑅𝑠𝑖

× 𝑒C−V2X 

𝑝𝑢 ) 

(8) 

 

Here, 𝑒𝐶𝑃𝑈𝑗,𝑛𝑢 represents the energy consumed by one 
processor computation cycle of a nearby UAV j, and 𝑒𝑃𝐶5 𝑗,𝑛𝑢 
represents the energy consumed by the C-V2X interface to 
send one data unit from a nearby UAV j to the primary UAV. 
4) Offloading computation to the road authority vehicle 

The time required to offload a data task to be computed by 
the road authority vehicle (𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 ) is the time required to send 
data to the road authority vehicle which is defined by: 
 𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 =∑ 𝐷𝑠𝑖𝑅C−V2X 

ℎ
𝑘=1  (9) 

The total energy consumed to offload the task’s data to be 
computed by the road authority vehicle (𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢 ) is 
represented by the energy consumed by the UAV to send the 
task’s data i (𝐷𝑠𝑖) to the road authority vehicle. 𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢   is 
given by: 
 𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢 = 𝐷𝑠𝑖 × 𝑒C−V2X 

𝑝𝑢  (10) 

B. Road authority vehicle computation model 
When the road authority vehicle receives a computation 

task i offloaded by the primary UAV it chooses: either to 
compute the task locally, offload it to an edge server using the 
LTE-A/5G interface, or share the computation with one of its 
nearby vehicles using the C-V2X interface. 
1) Local computation 

The total time for the local computation (𝑇𝑖,𝑙𝑎𝑣) of task i is 
represented by the computation time of task i by the road 
authority vehicle which is defined by: 
 𝑇𝑖,𝑙𝑎𝑣 = 𝐶𝑖𝐹𝐶𝑃𝑈𝑎𝑣  (11) 

Where 𝐹𝐶𝑃𝑈𝑎𝑣  represents the computation frequency of the 
road authority vehicle in processor cycles per second. 

In our system, we assume that some vehicles on the road 
may have an electric or hybrid engine (a gasoline engine 
combined with an electric engine). The latter supplies their 
electric engines with on-board batteries, so energy 
optimization in electric and hybrid vehicles is becoming an 
important issue to maximize their autonomy on the road. For 
this purpose, we consider the computation energy 
consumption for electric or hybrid nearby vehicle and we 
neglect it for a gasoline vehicle. We note 𝜗 the type of vehicle, 
such as 𝜗=0 if the vehicle is gasoline, and 𝜗 = 1 if the vehicle 
is electric or hybrid. The energy consumed by the road 
authority vehicle during the local computation (𝐸𝑖,𝑙𝑎𝑣) is given 
by: 
 𝐸𝑖,𝑙𝑎𝑣 = 𝜗 × (𝐶𝑖 × 𝑒𝐶𝑃𝑈𝑎𝑣 ) (12) 

Where 𝑒𝐶𝑃𝑈𝑎𝑣  represents the energy consumed by the road 
authority vehicle for one processor computation cycle. 
2) Offloading computation to the edge server 

The total time of offloading computation of task i to the 
edge server (𝑇𝑖,𝑜−𝑒𝑠𝑎𝑣 ) is equal to the sum of the time required to 
transmit the data of task i (𝐷𝑠𝑖) to the edge server (𝑇𝑖,𝑡−𝑒𝑠𝑎𝑣 ), 
plus the local computing time of the edge server (𝑇𝑖𝑙−𝑒𝑠) plus 
the time for sending back the results to the road authority 
vehicle (𝑇𝑖,𝑜−𝑟𝑠𝑎𝑣 ). 𝑇𝑖,𝑜−𝑒𝑠 𝑎𝑣 is defined by: 

 𝑇𝑖,𝑜−𝑒𝑠𝑎𝑣 = 𝑇𝑖,𝑡−𝑒𝑠𝑎𝑣 + 𝑇𝑖𝑙−𝑒𝑠 + 𝑇𝑖,𝑜−𝑟𝑠𝑎𝑣= ( 𝐷𝑠𝑖𝑅𝐿𝑇𝐸−𝐴/5𝐺𝑎𝑣 ) + ( 𝐶𝑖𝐹𝐶𝑃𝑈𝑒𝑠 )+ ( 𝑅𝑠𝑖𝑅LTE−A/5𝐺 

𝑒𝑠 ) 

(13) 

Here (𝑅𝐿𝑇𝐸−𝐴/5𝐺𝑎𝑣 ) represents the data transmission rate 
through the LTE-A/5G interface of the road authority vehicle. 

The cost of sending data to the edge server (Π𝑖,𝑎𝑣𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠) is 
given by: 
 Π𝑖,𝑎𝑣𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠 = 𝐷𝑠𝑖 × 𝜋𝐿𝑇𝐸−𝐴𝑐𝑒𝑙𝑙  (14) 
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The computation cost of the edge server (Π𝑖,𝑝𝑣𝑐𝑝𝑡,𝑜−𝑒𝑠) is given 
by: 
 Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑜−𝑒𝑠 = 𝐶𝑖 × 𝜋𝑒𝑠𝑐𝑝𝑡 (15) 

The energy consumed by the road authority vehicle to 
offload the data of task i to the edge server (𝐸𝑖,𝑜−𝑒𝑠𝑎𝑣 ) is given 
by: 
 𝐸𝑖,𝑜−𝑒𝑠𝑎𝑣 = 𝜗 × (𝐷𝑠𝑖 × 𝑒𝐿𝑇𝐸−𝐴/5𝐺𝑎𝑣 ) (16) 

Where 𝑒𝐿𝑇𝐸−𝐴/5𝐺𝑎𝑣  represents the energy consumed by the 
LTE-A/5G interface to send one data unit to the Edge server. 
3) Sharing the computation with a nearby vehicle 

The total time to share the computation with a nearby 
vehicle (𝑇𝑖,𝑠−𝑛𝑣𝑎𝑣 ) is equal to the sum of the local computation 
time of a percentage of task i by the road authority 
vehicle (𝑇𝑖𝑙−𝑎𝑣) plus the time required to transmit the task’s 
data to the nearby vehicle (𝑇𝑖,𝑡−𝑛𝑣𝑎𝑣 ). We note 𝛿 the 
computation cycle ratio to be shared with the nearby vehicle 
of task i, such as 𝛿 = [0, 1]. This ratio is defined locally by the 
road authority vehicle according to it computational 
requirement. 𝑇𝑖,𝑠−𝑛𝑣𝑎𝑣  is given by: 

 𝑇𝑖,𝑠−𝑛𝑣𝑎𝑣 = 𝑇𝑖𝑙−𝑎𝑣 + 𝑇𝑖,𝑡−𝑛𝑣𝑎𝑣= ((1 − 𝛿) × 𝐶𝑖𝐹𝐶𝑃𝑈𝑎𝑣 ) + (𝛿 × 𝐷𝑠𝑖𝑅𝐶−𝑉2𝑋) 
(17) 

The total energy consumption of sharing the computation 
with a nearby vehicle (𝐸𝑖,𝑠−𝑛𝑣𝑎𝑣 ) is equal to the sum of the 
energy of the local computation of a percentage of task i by 
the road authority vehicle (𝐸𝑖𝑙−𝑎𝑣) plus the energy consumed 
to transmit the task’s data to the nearby vehicle (𝐸𝑖,𝑡−𝑛𝑣𝑎𝑣 ). We 
note by 𝜗 the type of road authority vehicle. 𝐸𝑖,𝑠−𝑛𝑣𝑎𝑣  is given 
by: 𝐸𝑖,𝑠−𝑛𝑣𝑎𝑣 =  𝜗 × (((1 − 𝛿) × 𝐶𝑖 × 𝑒𝐶𝑃𝑈𝑎𝑣 )+ (𝛿 × 𝐷𝑠𝑖 × 𝑒𝐶−𝑉2𝑋𝑎𝑣 )) (18) 

 

The shared computation of the task 𝑖 by the nearby vehicle 
requires the payment of a computation cost (Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑠−𝑛𝑣), 
usually a monetary charge, by the road authority vehicle in the 
function of the calculation time, calculated using the number 
of processor cycles. Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑠−𝑛𝑣 is given by: 
 Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑠−𝑛𝑣 = 𝛾 × 𝐶𝑖 × 𝜋𝑛𝑣𝑐𝑝𝑡 (19) 

Here, 𝜋𝑛𝑣𝑐𝑝𝑡 refers to the remote computation cost of 
computing one task unit by the nearby vehicle. 

C. Nearby vehicle computation model 
When the nearby vehicle receives the shared task i from the 

road authority vehicle it can either accept or deny to compute 
the shared task based on the availability of its resources.  
1) Accept the computation 

The total time to compute the shared task i (𝑇𝑖,𝑎𝑛𝑣) is equal to 
the sum of the local computation time by the nearby vehicle 
(𝑇𝑖𝑙−𝑛𝑣) plus the sending time of results to the road authority 
vehicle (𝑇𝑖,𝑠−𝑟𝑠𝑛𝑣 ). 𝑇𝑖,𝑎𝑛𝑣 is given by: 𝑇𝑖,𝑎𝑛𝑣 = 𝑇𝑖𝑙−𝑛𝑣 + 𝑇𝑖𝑅𝑠 = (𝛿 × 𝐶𝑖𝐹𝐶𝑃𝑈𝑛𝑣 ) + (𝛿 × 𝑅𝑠𝑖𝑅𝐶−𝑉2𝑋) (20) 

Here, 𝐹𝐶𝑃𝑈𝑛𝑣  represents the computation frequency of the 
nearby vehicle in processor cycles per second. 

The total energy consumption to compute the shared task i (𝐸𝑖,𝑎𝑛𝑣) is equal to the sum of the energy for local computation 
of task i by the nearby vehicle (𝐸𝑖𝑙−𝑛𝑣) plus the energy 
consumed to send the results to the road authority vehicle 
(𝐸𝑖,𝑠−𝑟𝑠𝑛𝑣 ). 𝐸𝑖,𝑎n𝑣  is given by: 𝐸𝑖,𝑎n𝑣 = 𝜗 × (𝐸𝑖𝑙−𝑛𝑣 + 𝐸𝑖,𝑠−𝑟𝑠𝑛𝑣 )= 𝜗× (( 𝛿 × 𝐶𝑖 × 𝑒𝐶𝑃𝑈𝑛𝑣 ) + (𝛿 × 𝑅𝑠𝑖 × 𝑒C−V2X 

𝑛𝑣 )) 
(21) 

Here, 𝑒𝐶𝑃𝑈𝑛𝑣  represents the energy consumed by the nearby 
vehicle for one processor computation cycle, and 𝑒𝐶−𝑉2𝑋𝑛𝑣  
represents the energy consumed by the C-V2X interface to 
send one data unit from the nearby vehicle to the road 
authority vehicle. 
2) Deny the computation 

If the nearby vehicle denies sharing the task computation 
with the road authority vehicle, the time and energy of the 
shared computation will be zero, because the computation is 
performed entirely by the road authority vehicle. 

D. Calculation of the link quality 
We model the link quality between two nodes k and l with 

the probability (𝜙𝑘,𝑙𝑠𝑟 ). 𝜙𝑘,𝑙 represents the probability that the 
packets will be successfully transmitted and received between 
these two nodes. 𝜙𝑘,𝑙𝑠𝑟  is defined as [35]: 
 𝜙𝑘,𝑙𝑠𝑟(𝜏) = 𝑁𝑘,𝑙𝑟 (𝜏)𝑁𝑘,𝑙𝑇 (𝜏) (22) 

Where 𝑁𝑘,𝑙𝑟 (𝜏) represents the number of packets successfully 
received during a communication interval 𝜏, and 𝑁𝑘,𝑙𝑇 (𝜏) 
represents the total number of packets transmitted during the 
same communication interval. 𝜙𝑘,𝑙𝑠𝑟  represents the probability that a sent packet will be 
successfully received between nodes k and l. 𝜙𝑘,𝑙𝑠𝑟  is defined as 
[35]: 
 𝜙𝑘,𝑙𝑚𝑟 = 𝑁𝑘,𝑙𝑟 (𝜏)𝑁𝑘,𝑙𝑚(𝜏) (23) 

Where 𝑁𝑘,𝑙𝑟  represents the number of packets received during a 
communication interval 𝜏, and 𝑁𝑘,𝑙𝑚  is the number of packets 
that must be received during the same communication interval. 
From (22) and (23), the link quality 𝜙𝑘,𝑙  between the node k 
and l is defined as [35]: 
 𝜙𝑘,𝑙 = 𝜙𝑘,𝑙𝑠𝑟(𝜏) × 𝜙𝑘,𝑙𝑚𝑟  (24) 

V.   SEQUENTIAL GAME FOR COMPUTATION 
OFFLOADING/SHARING FOR UAV-AIDED TRAFFIC 

MONITORING 
To solve the offloading/sharing computation decision-

making problem described in sub-section III.B, we adopt in 
this section an approach based on a dynamic sequential game. 
The main objective is to achieve the best balance between the 
computation delay, energy consumption, and 
communication/computation cost. We describe first the game 
formulation before investigating the existence of the Nash 
equilibrium (NE). 
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A. Game Formulation
Game theory is considered as a powerful mathematical tool

for studying decision-making problems when rational entities 
interact so that each of them can satisfy their own interests. In 
addition, several studies refer to game theory to study 
decision-making related to the computation offloading 
problem [2], [5], [6], [25], [28]. This led us to choose game 
theory as an enabling tool to model our decision-making 
problem, because of the decentralized nature of the decision-
making process performed by network nodes in our system 
model and the complexity of designing a centralized decision-
making algorithm. 

We formulate our computational decision-making problem 
as a finite sequential game with perfect information, consisting 
of three players, namely: (i) the primary UAV, (ii) the road 
authority vehicle, and (iii) the nearby vehicle. In perfect 
information sequential game, players act sequentially, where 
each player makes strategic choices by observing the actions 
of the other players acting before it [28]. In our case, data is 
first collected by the primary UAV, the road authority vehicle 
only acts if the primary UAV decides to offload the 
computation tasks to it, and the nearby vehicle only acts if the 
road authority vehicle decides to share the computation tasks 
with it. The number of computation tasks is finite and is equal 
to the number of computation tasks necessary to proceed with 
the collected data. The game ends when the equilibrium is 
reached (all the system parameters are optimized for each 
collected data), or when the energy level of the drone becomes 
critical, i.e., the minimum needed energy for the drone to 
return to the authority vehicle. 

The sequential game is defined by SG (N, S, U); where: 
 𝑁 =  {𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑈𝐴𝑉, 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝑁𝑒𝑎𝑟𝑏𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒}

represents the finite set of players;
 𝑆 =  {𝑆𝑃𝑈 , 𝑆𝐴𝑉 , 𝑆𝑁𝑉}, represents the set of strategies for

each player, respectively;
 𝑈𝑖, represents the overall utility function of the system.

The values of the global utility function are
determined by the decisions made by the players and
their respective utilities.

Fig. 3. shows a synoptic representation of the entire system. 

 

The strategies and utilities of each player are detailed in the 
following. 

B. Player’s Strategies
In our non-cooperative sequential game, each player is

rational and aims to optimize its own utility. In the following, 
we describe the three players’ strategies. 

i. Primary UAV Strategies

The primary UAV has three strategies (see Fig. 3): 
1) Local computation (𝑆𝐿𝑜𝑐𝑎𝑙𝑃𝑈 ): in this strategy, all computation 
tasks are performed locally by the primary UAV. 
2) Sharing computation with secondary UAVs (𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑆𝑈𝑃𝑈 ): 
in this case, the drone shares the computation tasks with one 
or several UAVs of its nearby UAVs. 
3) Offloading computation to edge server (𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝑃𝑈 ): in 
this strategy, the primary UAV offloads the computation tasks 
to be performed locally at the edge server. 
4) Offloading computation to the road authority vehicle
(𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐴𝑉𝑃𝑈 ): in this strategy, the primary UAV offloads
the computation tasks to be performed by the road authority
vehicle.

ii. Road authority vehicle strategies

The road authority vehicle has three strategies (see Fig. 3): 
1) Local computation (𝑆𝐿𝑜𝑐𝑎𝑙𝐴𝑉 ): in this strategy, the road 
authority vehicle performs all computation tasks locally. 
2) Offloading computation to an Edge server (𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝐴𝑉 ): 
in this case, the road authority vehicle offloads the 
computation tasks to be performed by an edge server. 
3) Sharing computation with a nearby vehicle (𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑁𝑉𝐴𝑉 ):
in this strategy, the road authority vehicle shares its 
computation tasks with a nearby vehicle. 

iii. Nearby vehicle strategies

The nearby vehicle has two strategies (see Fig. 3): 
1) Accept the computation (𝑆𝐴𝑐𝑐𝑒𝑝𝑡𝑁𝑉 ): in this strategy, the 
nearby vehicle accepts to share the computation with the road 
authority vehicle. 
2) Deny the computation (𝑆𝐷𝑒𝑛𝑦𝑁𝑉 ): in this strategy, the nearby
vehicle denies to share the computation with the road authority
vehicle.

C. Partial utilities
The player’s utility function implements a correlation

between a set of innovative system metrics: delay, energy, 
communication and computation cost. The partial system 
utility functions can be easily formulated to represent all the 
player’s strategies involved in the computation decision-
making process, see Fig. 4. 

Fig. 3 Synoptic representation of the utility and the strategies for each player. 
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As shown in Fig. 4 and table I, seven possible strategic 

profiles can be listed reflecting the different possible 
computation scenarios, which are presented below: 𝑆1 = {𝑆𝐿𝑜𝑐𝑎𝑙𝑃𝑈 ,∗,∗} 

(25) 

𝑆2 = {𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝑃𝑈 ,∗,∗} 𝑆3 = {𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑆𝑈𝑃𝑈 ,∗,∗} 𝑆4 = {𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐴𝑉𝑃𝑈 , 𝑆𝐿𝑜𝑐𝑎𝑙𝐴𝑉 ,∗} 𝑆5 = {𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐴𝑉𝑃𝑈 , 𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝐴𝑉 ,∗}  𝑆6 = {𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐴𝑉𝑃𝑈 , 𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑁𝑉𝐴𝑉 , 𝑆𝐴𝑐𝑐𝑒𝑝𝑡𝑁𝑉 }  𝑆7 = {𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐴𝑉𝑃𝑈 , 𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑁𝑉𝑃𝑉 , 𝑆𝐷𝑒𝑛𝑦𝑁𝑉 }  
The corresponding partial utility functions for each strategy 

profile are detailed in Fig. 4 and Table I. For example, 𝑈1 
represent the partial utility of primary UAV corresponding to 
local computation strategy. For that, only computation delay 
and energy are considered. The computation and 
communication costs are omitted because the UAV calculates 
itself at local all tasks and uses only free communication 
technology (i.e., C-V2X). The detailed utilities are given as 
follows: 

 𝑈1 = {𝛼(𝑇𝑖,𝑙𝑝𝑢)𝛽(𝐸𝑖,𝑙𝑝𝑢) 
(26) 

 

𝑈2 =
{   
   𝛼(𝑇𝑖𝑝𝑢,𝑜−𝑒𝑠)𝛽(𝐸𝑖𝑝𝑢,𝑜−𝑒𝑠)𝛾(Π𝑖,𝑝𝑢𝑐𝑒𝑙𝑙,𝑜−𝑒𝑠)𝜆(Π𝑖,𝑝𝑢𝑐𝑝𝑡,𝑜−𝑒𝑠)𝛿(𝜙𝑝𝑢,𝑒𝑠)

 

 

𝑈3 =
{   
   𝛼(𝑇𝑖,𝑠−𝑠𝑢𝑝𝑢 )𝛽(𝐸𝑖,𝑠−𝑠𝑢𝑝𝑢 )𝛾(Π𝑖,𝑝𝑢𝑐𝑒𝑙𝑙,𝑠−𝑠𝑢)𝜆(Π𝑖,𝑝𝑢𝑐𝑝𝑡,𝑠−𝑒𝑠)𝛿(𝜙𝑝𝑢,𝑠𝑢)

 

 𝑈4 = {𝛼(𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝑇𝑖,𝑙𝑎𝑣)𝛽(𝐸𝑖,𝑜−𝑝𝑣𝑝𝑢 + 𝐸𝑖,𝑙𝑎𝑣) 
 

𝑈5 =
{   
   𝛼(𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝑇𝑖,𝑜−𝑒𝑠𝑎𝑣 )𝛽(𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝐸𝑖,𝑜−𝑒𝑠𝑎𝑣 )𝛾(Π𝑖,𝑎𝑣𝑐𝑒𝑙𝑙,𝑠−𝑒𝑠)𝜆(Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑜−𝑒𝑣)𝛿(𝜙𝑝𝑢,𝑎𝑣 × 𝜙𝑎𝑣,𝑒𝑠)

 

 𝑈6 = {  
  𝛼(𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝑇𝑖,𝑠−𝑛𝑣𝑎𝑣 + 𝑇𝑎,𝑖𝑛𝑣)𝛽(𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝐸𝑖,𝑠−𝑛𝑣𝑎𝑣 + 𝐸𝑎,𝑖𝑛𝑣)𝜆(Π𝑖,𝑎𝑣𝑐𝑝𝑡,𝑠−𝑛𝑣)𝛿(𝜙𝑝𝑢,𝑎𝑣 ×𝜙𝑎𝑣,𝑛𝑣)  

 𝑈7 = 𝑈4 = {𝛼(𝑇𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝑇𝑖,𝑙𝑎𝑣)𝛽(𝐸𝑖,𝑜−𝑎𝑣𝑝𝑢 + 𝐸𝑖,𝑙𝑎𝑣) 
D. Global utility function 

The context of our study is related to a road traffic 
monitoring scenario where a fleet of UAVs provides aerial 
assistance to road authority vehicles. The data collected by the 
UAVs must be processed as soon as possible in order to 
extract relevant information about the traffic condition. The 
road authority vehicles use this information to make an 
efficient intervention at the right time, particularly for the 
dangerous and urgent situation on the road. All these reasons, 
make the computation of the corresponding tasks, a delay-
sensitive operation regarding the computation time response. 
In addition, UAVs have limited energy capabilities, so 
optimizing the computation energy consumption is essential to 
save the UAV’s battery life-time and extend the monitoring 
mission. Moreover, the transmission of task data using cellular 
networks often requires to pay a transmission cost related to 
the size of the transmitted data [2]. Furthermore, 
computational services provided by the edge server and 
nearby vehicles also inflicts to pay a computation cost [28]. 
Moreover, the energy and the delay of transmitting a task’s 
data through a wireless link can be seriously affected by the 
quality of this link. The wireless communications are 
intermittent and unreliable by nature, and they more 
challenging in scenarios involving drones because of the 
weather perturbators (e.g., rain, wind, temperature, etc.) and 
the drone's own features (e.g., altitude, velocity, etc). In fact, 
using a link with poor quality consumes extra energy and 
requires more time for data transmission. The link quality is 
usually expressed by the probability of successful packet 
transmission in a small time interval [30]. 

Taking in consideration all these system metrics, we 
propose a new system utility function for the computation 
decision-making of task i in the form of a joint equation of a 
set of innovative metrics: the computation delay, the energy 
consumption, the cellular communication cost, the remote 

TABLE I 
STRATEGIC REPRESENTATION OF PARTIAL UTILITIES. 

 

Authority Vehicle 
 

𝑆𝐿𝑜𝑐𝑎𝑙𝐴𝑉  𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝐴𝑉  𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑁𝑉𝐴𝑉  

Nearby Vehicle 𝑆𝐴𝑐𝑐𝑒𝑝𝑡𝑁𝑉  𝑆𝑅𝑒𝑓𝑢𝑠𝑒𝑁𝑉  𝑆𝐴𝑐𝑐𝑒𝑝𝑡𝑁𝑉  𝑆𝑅𝑒𝑓𝑢𝑠𝑒𝑁𝑉  𝑆𝐴𝑐𝑐𝑒𝑝𝑡𝑁𝑉  𝑆𝑅𝑒𝑓𝑢𝑠𝑒𝑁𝑉  
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 𝑆𝐿𝑜𝑐𝑎𝑙𝑃𝑈  U1 𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝐸𝑆𝑃𝑈  U2 𝑆𝑆ℎ𝑎𝑟𝑖𝑛𝑔−𝑆𝐷𝑃𝑈  U3 𝑆𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔−𝑃𝑉𝑃𝑈  U4 U5 U6 U7 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Extensive representation of partial utilities. 
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computation cost, and the link quality. The system utility 
function is given as: 
 𝑈𝑖 = 𝛼 × 𝑇𝑖 + 𝛽 × 𝐸𝑖1 + 𝛿 × 𝜙𝑖,𝑗  + 𝛾 × Π𝑖𝑐𝑒𝑙𝑙 +  𝜆 × Π𝑖𝐶𝑝𝑡 (27) 

Where for each task i, 𝑇𝑖  represents the computation time, 𝐸𝑖 represents the computing energy consumption, Π𝑖𝑐𝑒𝑙𝑙  
represents the cost of cellular communication, Π𝑖𝐶𝑝𝑡 represents 
the cost of remote computation, and 𝜙𝑖,𝑗 represents the quality 
of the link between vehicle i and j. α, β, γ, λ and δ represent 
the weight parameters for the computation time, energy, 
cellular communication cost, remote computation cost, and 
link quality, respectively. We consider α, β, γ, δ, λ ∈[0,1] and α + β + γ + δ + λ = 1. These weighting factors 
offer much greater flexibility in modeling a wide range of 
vehicular realistic situations with different specific 
requirements. Therefore, depending on the intended scenario 
or even the current status of the system, different tasks may 
have different weighting parameters. 

Since we aim to minimize the system utility, the proposed 
utility function is defined as a monotonic function that exactly 
follows the rise or the decline of the system metrics: delay, 
energy and the communication/computation. Moreover, as we 
aim to maximize the link quality and minimize the system 
utility, the utility function increases for a bad link quality and 
decreases when the link quality is good. 

The utility function (27) is composed of disjointed variables 
that are delay, energy, cellular communication cost, and 
computation cost. Therefore, to calculate this function, these 
variables must be normalized as follows: 𝑇𝑖 = 𝑇𝑖−𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑇−𝑚𝑖𝑛𝑇 ; 𝐸𝑖 = 𝐸𝑖−𝑚𝑖𝑛𝐸𝑚𝑎𝑥𝐸−𝑚𝑖𝑛𝐸 ; Π𝑖𝑐𝑒𝑙𝑙  = Π𝑖𝑐𝑒𝑙𝑙−𝑚𝑖𝑛Π𝑐𝑒𝑙𝑙𝑚𝑎𝑥Π𝑖𝑐𝑒𝑙𝑙−𝑚𝑖𝑛Π𝑐𝑒𝑙𝑙 ; Π𝑖𝐶𝑝𝑡 = Π𝑖𝐶𝑝𝑡−𝑚𝑖𝑛Π𝐶𝑝𝑡𝑚𝑎𝑥Π𝐶𝑝𝑡−𝑚𝑖𝑛Π𝐶𝑝𝑡 

Where, maxT, maxE, 𝑚𝑎𝑥Π𝑖𝑐𝑒𝑙𝑙  and 𝑚𝑎𝑥Π𝐶𝑝𝑡represent the 
maximum values of delay, energy, cellular communication 
cost, and remote computation cost, respectively. minT, minE, 𝑚𝑖𝑛Π𝑖𝑐𝑒𝑙𝑙  and 𝑚𝑖𝑛Π𝐶𝑝𝑡  represent the minimum values of 
delay, energy, cellular communication cost, and remote 
computation cost, respectively. This normalization makes all 
variables in the interval [0.1]. The reason we have not 
standardized the link quality is that this variable is a 
probability that is already between 0 and 1. 

E. Nash Equilibrium 
In this sub-section, we investigate the existence of the Nash 

equilibrium (NE) for the proposed sequential game. A strategy 
profile is a Nash equilibrium if each strategy taken by a player 
represents the best response to the strategies of other players. 
In other words, a Nash equilibrium is a combination of 
strategies such that no player can achieve better utility by 
unilaterally changing its decision [31]. This optimal and 
satisfactory solution would finally be achieved in order to 
obtain the best possible performances. 

In the proposed three-player sequential game, NE represents 
a satisfactory decision profile while for each computation task 

correspond the best decision strategy that optimizes conjointly 
all the system metrics (delay, energy, and cost). 
Theorem 1. “ Every finite extensive-form game with perfect 
information has a pure-strategy Nash equilibrium ” [28]. 

Proof: The proof of theorem 1 is given in [32]. 
Lemma 1: SG (N, S, U) is a finite sequential game with 

perfect information. 
Proof: see the previous sub-section VI.A. 

Theorem 1 implies that the proposed finite sequential game 
with perfect information (see subsection VI.A) has at least one 
Nash equilibrium that can be derived following a finite 
number of iterations. 

Nash equilibrium is achieved when players find the decision 
profile that ensures a minimum value for the global utility of 
the system. The optimal decision profile 𝑑𝑖∗ which admits a 
Nash equilibrium for a task i is defined as: 
 𝑑𝑖∗ = arg𝑚𝑖𝑛𝑇,𝐸,Π𝑐𝑒𝑙𝑙,Π𝑐𝑝𝑡,𝜙𝑈𝑖 (28) 

To compute and define the system metrics optimal value 
(the optimal value of the computation delay, energy, and cost) 
in NE for each computation task, we propose a decentralized 
algorithm that is based on the algorithm in our previous work 
[5]. 

As described in Fig. 5, the basic idea of our algorithm 
consists that in each computation decision iteration 
corresponding to the computation of task i, the players start by 
initializing the decision strategy to local computation before 
evaluating their respective system metrics in the real-time 
networks state. Then, each player proceeds by selecting and 
comparing its current initial strategy with the other possible 
computation strategies to define the best strategy that 
optimizes the system metrics. If it finds a better strategy that 
minimizes its utility, the player will choose this new strategy 
as the best decision strategy, otherwise, it maintains the 
current strategy as the best decision strategy. Therefore, the 
players continue testing the possible strategy until reaching the 
NE state where the archived decision strategies cannot be 
more enhanced. Hence, when an equilibrium state is reached, 
each player will execute its corresponding optimal strategy 𝑆∗ = {S𝑃𝑈∗, S𝐴𝑉∗, S𝑁𝑉∗}. In addition, according to theorem 1 
presented above, our algorithm would achieve equilibrium in a 
finite number of iterations. Although the algorithm would be 
executed simultaneously by all players, the decision-making 
process follows a sequential order. To implement our 
proposed algorithm, we assumed that the players exchange 
short messages to inform each others of the decision made by 
each player. 
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VI.  NUMERICAL RESULTS 
In this section, we present the simulation scenarios to 

evaluate the performance of our proposed game theoretical 
model and discuss the numerical results. 

For the various experimentations, we consider that the 
processor capability of the road authority vehicle (𝐹𝐶𝑃𝑈𝑎𝑣 ) is five 
times faster than that of the UAV (𝐹𝐶𝑃𝑈𝑝𝑢 ), and 1.6 times faster 
than that of nearby vehicles (𝐹𝐶𝑃𝑈𝑛𝑣 ). The processor capability 
of the edge server (𝐹𝐶𝑃𝑈𝑒𝑠 ) is ten times faster than that of 
authority vehicles [2], [5], [25]. We consider the computation 
capabilities of a Skydio 2 drone such as an example of 
nowadays existing drone that mount Jetson TX2 GPU 
(Graphical Processing Unit) with a capacity up to 12 GHZ. As 
assumed in [2], [5], [25], and [36], we also consider that the 
energy consumed by UAV to send a data unit via the LTE-A 
interface (𝑒LTE−A𝑝𝑢 ) and the C-V2X interface (𝑒C−V2X𝑝𝑢 ) is 800 - 
1000 times more than the energy consumed for local 
computation (𝑒𝐶𝑃𝑈𝑝𝑢 ) of the same data unit by the UAV. The 
energy consumed by the local computation of a data unit on an 
electric vehicle (𝑒𝐶𝑃𝑈𝑒𝑣 ) is three times more than the energy 
consumed by the local computation (𝑒𝐶𝑃𝑈𝑝𝑢 ,) of the same data 
unit on the UAV since electric vehicles are three times more 
powerful than the drone. Without loss of generality and for 
simplicity concern, in our experimentation, we consider only 
gasoline vehicles except in the experimentation in Fig.8.b. It 
should be noted that our algorithm still accepting any other 
scenario including electric vehicles by setting the variable 𝜗=0. We set the transmission rate of the LTE-A interface 
(𝑅𝐿𝑇𝐸−𝐴) and the C-V2X Interface (𝑅𝐶−𝑉2𝑋) to 50.4 MB/s [7]. 
Besides, we consider that sending data via the LTE-A 
interface (𝜋𝐿𝑇𝐸−𝐴𝑐𝑒𝑙𝑙 ) consumes 1x10-6 units [3], whereas sending 

data via the C-V2X interface is free of charge. Furthermore, 
we assume that the calculation performed in the edge server 
(𝜋𝑒𝑠𝑐𝑝𝑡) consume 1x10-6 units, and the calculations performed in 
a nearby vehicle (𝜋𝑛𝑣𝑐𝑝𝑡) consume 5x10-7 units. Finally, as in 
similar existing works in [2], [5] and [25], we assigned 
initially equal importance to system metrics. Therefore, we set 
an equal value to the weighting factors (α=β=γ=δ=λ=1/5). 
Afterward, we evaluate the impact of the variation of these 
weighting factor values on the system performance. The 
source code used in the experiments is available as open-
source in GitHub [41]. 

The main simulation parameters are summarized in Table II. 

 
In the rest of this section, we provide a comparative study 

between the proposed three-player sequential game approach 
and five basic computation strategies, namely: (i) local 
computing by the UAV, (ii) offloading computation to edge 
server, (iii) sharing computation with UAVs, (iv) offloading 
computation to the road authority vehicle, and (v) sharing 
computation with nearby vehicles. In the previous 
computation scenarios, the players choose a computation 
strategy without any intelligence. In addition, the seven 
strategies listed in the previous section are taken into account. 
In the first model S1, the computation tasks are performed by 
the primary UAV. Whereas, in the third strategy S3, the 
computation tasks are shared with secondary UAVs. 
Furthermore, in the second and fifth strategies (S2 and S5), the 
edge server performs the computation tasks. In the fourth and 
seventh strategies (S4 and S7), road authority vehicle executes 
the computation tasks locally. Whereas in the sixth strategy S6, 
the computation tasks are shared with the nearby vehicle. 

In the evaluation in Fig. 6, we study the average system 
utility for different data processing scenarios. We compare our 
strategic system utility of our game theoretical 
offloading/sharing computation (GT) with that of basic system 
utilities described in sub-section IV.C, where the system’s 
nodes adopt one of the previously detailed computation 
strategies without any intelligence. 

TABLE II 
SIMULATION PARAMETERS. 

Parameters Values 
# UAV 3 

Tasks 
Ci [10,…, 100] (x106) 
Di [10,…, 200] (x103) 
Rsi [5,…, 15] 

(𝛼, 𝛽, 𝛾, 𝛿, 𝜆) (1/5, 1/5, 1/5, 1/5, 1/5) 𝐹𝐶𝑃𝑈𝑝𝑢  12 GHZ (𝑒𝐶𝑃𝑈𝑝𝑢 , 𝑒𝐶𝑃𝑈𝑒𝑠 , 𝑒𝐶𝑃𝑈𝑒𝑣 ) (1,0, 3) units (𝑅𝐿𝑇𝐸−𝐴, 𝑅𝐶−𝑉2𝑋 ) 50,4 MB/s 𝜋𝐿𝑇𝐸−𝐴𝑐𝑒𝑙𝑙  1x10-6 units  𝜋𝑒𝑠𝑐𝑝𝑡 1x10-6 units 𝜋𝑛𝑣𝑐𝑝𝑡 5x10-7 units 𝑒LTE−A𝑝𝑢 = 𝑒C−V2X 

𝑝𝑢  800 units 
 

 
Fig. 5.  Computation Offloading/Sharing Algorithm flowchart. 
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From the results in Fig. 6, we can remark clearly the 
effectiveness of our proposed sequential game model (GT) 
compared to the other seven computation strategies in terms of 
average system utility. Indeed, our computation strategy based 
on the sequential game-theoretical approach is the most 
efficient and offers the optimal system utility. This is because, 
at each task computation, our proposed offloading/sharing 
computation approach uses the decision profile obtained in NE 
to make strategic decisions. Effectively, GT balances between 
different computation strategies to determine the most 
efficient strategy that optimizes the system utility and ensures 
the best tradeoff between energy efficiency, computation 
delay, communication cost, and computation cost. 

In Fig. 7, we investigate the impact of the calculation 
complexity and data size of the computational task on the 
average system utility. We start in Fig. 7.(a) by studying the 
impact of the task’s computation complexity on the average 

system utility. In this evaluation, we fix the size of the data 
(Di) and we vary each time the task complexity (Ci). Then, we 
study in Fig. 7.(b), the impact of the size of the task’s data on 
the system average utility. In this evaluation, we fix the task 
complexity (Ci) and vary each time the task’s data size (Di). 

We remark from the results in Fig. 7.(a) and Fig. 7.(b) that 
local computation on the primary UAV is the most efficient 
strategy for less complex computational tasks with heavy data 
size. This is because sending big data via the costly cellular 
communication needs more delay, consumes plus energy and 
requires more communication cost. Inversely, we remark that 
sharing and offloading computation strategies are more 
appropriate for medium and very complex tasks with small or 
medium data sizes, respectively. The main justification is due 
to the powerful capabilities that offer the edge server and the 
advantage of distributed collaborative computation. The 
communication/computation cost is generally compensated by 
the rapid computation and energy economization. We observe 
from Fig. 7.(b) that the average system utility for all 
computation scenarios increases as the task’s data size 
increases. This augmentation is principally due to the energy 
and delay overhead caused by the primary UAV for sending 
the data using a wireless interface. We also note that the data 
size has no impact on the average system utility when 
calculating the task locally on primary UAV. Because in this 
kind of scenario, primary UAV will only send the calculation 
results to the authority vehicle. The size of the computation 
results is generally small and needs only small energy and 
delay to be sent back. We remark as well, the effectiveness of 
our sequential game approach (GT), which always converges 
to the most effiecient computation strategy thanks to the 

 

Fig. 6.  Average System Utility. 
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(a) Impact of task’s complexity on the average system utility. 

 
(b) Impact of task’s data size on the average system utility. 

Fig. 7.  Impact of the variation of the task characteristics (complexity and data size) on the average system utility. 
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computation profile achieved in NE that gives the optimal 
average system utility, regardless of the task’s complexity and 
data size. 

 
 

In Fig. 8, we assess the flexibility of our utility function in 
regard to the characteristics of the computational task through 
the variation in the weighting parameter values. In this 
evaluation, we focused on studying the variation of delay and 
energy weighting factors noted α and β respectively, since the 
main concern of our work is principally optimizing 
computation delay and energy consumption that represent the 
most critical metrics of our system. In this experimentation, 
we fix the communication and computation cost weighting 
factor values and we vary that of delay and energy. We 
consider also when studying the impact of energy 
consumption, two scenarios including the case of an electric 
vehicle and that of a gasoline vehicle. 

From Fig. 8.(a), we can remark that when the delay 
weighting factor is equal to 0.2, the proposed sequential game 
approach does not have the best delay average, because delay 
does not carry much weight in the computation decision 
regarding the others system metrics. By increasing the delay 
weighting factor to 0.5 or more, we remark that the proposed 
sequential game approach provides the best delay average. 
Indeed, our game-theoretical model always chooses the best 
strategy that gives the smallest system utility that corresponds 
to the optimal delay with a high weighting factor. Similarly, 
we remark from in Fig. 8.(b) that by increasing the energy 
weighting factor, our game theoretical approach obtains a 
better energy average. As a conclusion from this 
experimentation, we confirm our initial assertion which 
stipulates varying the system weighting factors allow our 

proposed model to flexibly support various characteristics of 
different computation tasks and therefore different user’s 
applications. 

 
 

In Fig. 9, we perform a comparative study between our 
proposed computation algorithm based on the sequential game 
and the related computation algorithm DOSC (Distributed 
Offloading Sharing Computation) proposed in [5] based on the 
average energy consumption in Fig. 9.(a) and the average 
delay in Fig. 9.(b). For the comparison scenario, we run the 
two algorithms under the same parameters for different 
simulation scenarios. In each scenario, we fix the task’s 
complexity and we vary each time the size of the task’s data. 
Then, we compare the performance of our algorithm and that 
of DOSC algorithm with respect to the average energy 
consumption in Fig. 9.(a) and also with respect of average 
delay in Fig. 9.(b). 

 

From Fig. 9, we can see that our computation algorithm 
based on the sequential game approach (GT) is more efficient 
than the DOSC algorithm both in terms of average energy 
consumption as we can clearly see in Fig. 9.(a) and also in 
terms of average delay as shown in Fig. 9.(b). This is because 
our proposed computation algorithm based on the sequential 
game considers more advanced computation possibilities 
while DOSC considers only two computation strategies, i.e., 
offload intensive tasks to be performed by the authority 
vehicle and this latter can share the computation with one of it 
nearby vehicles. In addition to the above-cited strategies, our 
algorithm offers more advanced computation strategies to 
better improve the system utility and optimize the system 
metrics, i.e., the possibility to offload the computation to a 
more powerful edge server and the possibility of sharing the 

 
(a) Impact of the variation in the delay weighting factor on the average delay. 

 
(b) Impact of the variation in the energy weighting factor on the average energy. 

Fig. 8.  Impact of the variation in the system main weighting factors (delay and energy) on system metrics. 
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computation with nearby UAVs. By combining these 
innovative computation strategies and considering plus of 
system metrics, i.e., computation and communication cost in 
addition of the quality of link. This innovative system utility is 
used to achieve the best balance betwwen the different system 
metrics. Whereas the DOSC algorithm considers a more 
simple system utility composed from only the energy and 
delay as main parameters to make strategic decisions. 

VII. CONCLUSION 
In this paper, we consider the problem of implementing an 

effective approach for processing the data collected by UAV 
in a multi UAV-aided road traffic monitoring scenario, which 
involves computation offloading/sharing decision-making 
problems. The main purpose is to decrease computation delay 
while optimizing the energy overhead as well as 
computation/communication costs. We first start by proposing 
a novel system architecture that enables computation 
offloading and sharing. Then, we define a novel system utility 
function that combines computation delay, energy overhead, 
quality of the link, as well as communication and computation 
cost. Furthermore, we formulate the offloading/sharing 
decision-making problem through a theoretical game approach 
as a three-player sequential game and then we study the 
existence of Nash equilibrium. After that, we design a 
computation algorithm to reach such an equilibrium. The 
simulation results showed that our model, based on the 
sequential game, outperforms other baseline computation 
approaches by offering better performance in terms of overall 
system utility with an efficiency that varies between 43% and 
97% depending on the computation approach, and allows a 

better average computation time and energy consumption. 
As future perspectives to our work, we intend to improve the 

system model by offering new alternatives for 
offloading/sharing computation and take into consideration 
more advanced network parameters such as the drone 
hovering and reception energy. We hope also performing more 
advanced experimentation to evaluate the impact of the 
economic cost of communication and computation on the 
performance of the system utility. 
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