Tom Ranger
email: tom.ranger@univ-reims.fr

Algebraic Synthesis and Logical Filter Approach for the Control of Cyber-Physical Manufacturing Systems

RESEARCH PROBLEM

Within the framework of the development of Industry 4.0, the control of automated production systems is being rethought. Industry 4.0 proposes a distributed vision, leading to the concept of cyber-physical systems, where the control system is highly connected and communicating. In order for this new vision of the industry to succeed, more flexible and reliable systems are needed. Currently the controller is carried out by direct implementation of programs controller obtained by interpreting informal specifications provided by the specification. This way of designing the control requires a long time before implementation, without any guarantee of operation. Moreover, the lack of method limits the reuse of the knowledge acquired during the design process. It is therefore difficult to capitalize on the work done. It is therefore necessary to rethink the methods and tools used.

Many works deal with the synthesis of controllers by formal methods. However, these approaches focus mainly on the use of SCT (Supervisory Control Theory) definied by [START_REF] Ramadge | Control of discrete event systems[END_REF], 30 years ago. A large body of theoretical results has appeared since then, but there is still a gap between the theoretical development and the limited number of applications of SCT in the industry using PLC [START_REF] Fabian | Plc-based implementation of supervisory control for discrete event systems[END_REF], [START_REF] Cantarelli | Reactive control system design using the Supervisory Control Theory: evaluation of possibilities and limits[END_REF], [START_REF] Zaytoon | Synthesis and implementation of logic controllers -a review[END_REF]. Indeed, the main problems are the difficulty of modeling complex systems, the combinatorial explosion and the asynchronism hypothesis which is unsuitable for implementation on Programmable Logic Controllers (PLCs) operating synchronously. Other formal approaches that can be found in the literature concern code verification and validation, mainly by model-checking or theorem proving. Among the existing formal approaches, two have caught our attention. The first is algebraic synthesis [START_REF] Roussel | Design of Logic Controllers Thanks to Symbolic Computation of Simultaneously Asserted Boolean Equations[END_REF], a tool for solving a system of equations of Boolean algebra. The second is the notion of logical filter (Pichard, a https://orcid.org/0000-0003-3091-2337 2019), this method is based on adding filters to existing codes to ensure user and system security.

It is in this context that our research work takes place. Based mainly on algebraic synthesis and logical filters, we wish to address the following issues :

• Which formal tools will allow us to synthesize controllers suitable for PLC implementation?

• How to ensure optimal use of these formal tools when designing control laws?

• How can the effectiveness of the methods used and the validity of the control laws obtained be evaluated?

OUTLINE OF OBJECTIVES

In this section we will present the objectives we have set ourselves in order to respond to the issues raised.

For each problematic we will define the objectives necessary to solve them.

Develop Formal Tools for the Synthesis of Controllers Suitable for Implementation on PLCs

We have decided to base ourselves on algebraic synthesis. This tool can already be used to obtain parametric solutions to a problem. However, in order to make better use of this tool, we must be able to guarantee the conformity of the results generated in relation to the specifications. In order to facilitate the implementation of the command laws generated by the algebraic synthesis, we wish to use a Structure Text (ST), definied by (IEC 61131-3, 2013), code generation tool. The objective is to automate the generation of the code parts for which the designer does not need to provide knowledge. This will save time and avoid errors that can be caused by human processing of information.

Propose a Methodology Based on Formal Tools to Synthesize Control Laws

Despite the fact that automation engineers do not use formal tools or specific methods to generate their control laws, they rely on a set of good practices derived from field experience. It is therefore interesting to be able to formalize the use of these good practices.

If we wish to develop the most effective methodology possible it is necessary to ensure that each action is carried out using the right tool. Indeed, all the steps involved in the design of a control law do not have the same modelling needs or the same approaches. It would therefore be illusory to imagine being able to design a complete control law using a single tool. Our goal is therefore to use modeling tools other than algebraic synthesis for cases where it would be more efficient. For this it is necessary to identify the most suitable tools for the realization of each task. In addition, it is necessary to be able to define a method for using these tools to ensure that they are always used to their maximum potential.

In order to obtain a more modular control, we decided to detach ourselves from the sensor/actuator vision at the design stage. We prefer to use a taskdistributed control vision, where the system is divided into elementary tasks that it is capable of performing. The control problem then becomes the definition of the task synchronization in order to meet the specifications. To make this method effective, it is first necessary to determine the optimal granularity to which the system should be subdivided. In addition, we must be able to translate a precise functional constraint into a constraint on the tasks synchronization. In addition to this task-based vision we aim to use logical filters to manage security constraints. In addition, we would like to extend the use of these filters to functional constraints.

Develop Methods and Criteria for Evaluating the Methods Developed and Validating Control Laws

In order to be able to correct design errors as well as possible and to be able to identify their source we would like to be able to check the validity of our formalized problem before proceeding to the resolution. Indeed, the earlier a defect is identified, the easier it is to correct it. It is therefore necessary to be able to analyze the system of Boolean equations. To do this we want to represent its structure in the form of a discrete event systems model and to analyze it. It is therefore necessary to define which criteria we want to check and how to evaluate them.

While this verification at the level of the formalization of the problem makes it possible to detect and correct possible errors, it is not sufficient. It is necessary to validate the final controller, whether in terms of functional properties or safety.

Finally, in our method development process we must be able to quantify the effectiveness of a method in the face of a given problem. This will allow us to compare different methodologies in order to obtain the most efficient method as possible.

STATE OF THE ART

In this section we will focus on the two approaches that we have chosen for the conduct of our research.

Algebraic Synthesis

Algebraic synthesis is used in the case of sequential discrete event systems as represented in figure 1. Such system controllers are equipped with p Boolean inputs (u i), q Boolean outputs (y i) and r Boolean state variables (x l). The algebraic modeling of control laws requires the generation of (q + r) switching functions of (p + q) variables. The generation of those functions has to be automatised due to combinatorial explosion. As a matter of fact the Figure 1 controller can send 2 q outputs combinations and can express (2 2 (p+r)) (q+r) sequential behaviours. This automation, defined by [START_REF] Hietter | Synthèse algébrique de la loi de commande d'un système à évènement discrets logique[END_REF]) is achievable thanks to results on Boolean algebra presented by [START_REF] Brown | Boolean Reasoning[END_REF].

Initially, algebraic method has been used to synthesize the full control law [START_REF] Roussel | Algebraic synthesis of logical controllers despite inconsistencies in specifications[END_REF]. It follows a methodology, starting from functional and safety requirements formalization to finish with the choice of one solution to implement in the PLC, based on optimization criteria, However, this approach is not suitable for large systems and it is difficult to formalize and to validate all requirements. Moreover, the obtained solution is often difficult to read. The proposed approach is quite different. We intend to use algebraic synthesis not to synthesize the full control law, but only parts of it, where it seems very efficient. Indeed, it exists for instance very efficient tools to specify simple sequences like GRAFCET (IEC 60848, 2012). It is frequently used in the industry to model independent task sequences.

The latest work related to algebraic synthesis [START_REF] Roussel | Design of Logic Controllers Thanks to Symbolic Computation of Simultaneously Asserted Boolean Equations[END_REF] present the whole method applied to an example in order to enhance the benefits and limitations of the approach. The main advantage emphasised in this paper is the independence between the synthesized control law and the requirement interpretation. However, this means that the method is highly dependant on the relevance and correctness of the requirements. The solver used is a software tool developed in Python. The inputs of this tool are a set of known and unknown variables and a set of requirements, defined as combination of those variables. It can provide two kinds of outputs. If the requirements set is consistent, a parametric solution of each unknown variable will be given. On the other case, the inconsistency conditions will be given. With this tool we can also prioritise the relations in order to rise inconsistency. Expression to maximise or minimise can be declared in this software to reduce the parametric solution to a unique one thanks to the works of (Leroux and Roussel, 2012).

Logical Filter

A logical filter takes place after the program execution as shown in Figure 2. This notion first appeared in the works of [START_REF] Marangé | Synthèse et filtrage robuste de la commande pour des systèmes manufacturiers sûrs de fonctionnement[END_REF], then was extended by those of [START_REF] Coupat | Méthodologie pour les études d'automatisation et la génération automatique de programmes Automates Programmables Industriels sûrs de fonctionnement[END_REF]. Two kinds of modifications can occur to the command law. In the case of a blocking filter, a constraint violation will lead the system to a predetermined and stable state. In the case of a corrective filter, a constraint violation will lead to an output adjustment to fit with the filter constraint set. A corrective filter generation depend on the functional program and, more precisely, if it has been created with the knowledge of the logical filter.

The contribution of Pichard [START_REF] Pichard | Contribution à la commande des systèmes à événements discrets par filtre logique[END_REF] to logical filter brings a formalism to the definition of logical constraints which enable him formal verification for logical filter consistency. Nevertheless, this formalism is accompanied by strong restrictions for the constraints redaction. This results to a lower power of expression than our algebraic synthesis approach.

METHODOLOGY

One of the constraints we have set ourselves is to generate control laws that can be used in the industrial environment and therefore on PLCs. It is therefore necessary for us to be able to go as far as the implementation phase. In a first step, we will use an operating parts simulator. We will use Factory I/O (Figure 3) for this. This software allows us to create our own scenes and integrates a physics engine as well as the possibility to simulate defects in sensors and actuators. In addition to allowing us to test our control laws the passage through simulation will allow us to retrieve operating data for a large simulation time. The analysis of this data could enable us to obtain control strategies, particularly in terms of tasks synchronisation.

Concerning the stages of verification and validation of the controller, we intend to go through the model checking. However, we cannot directly analyze our system of Boolean equations or our ST code with a model checking tool. It is first necessary to model our control by state machines. This type of modeling should allow us to check properties on our control at the implementation level. As for checking the conformity of the problem formalization to the specifications, we are considering another method. In the case of dealing with a task synchronization problem, we can represent the task scheduling in the form of a Petri net. This will allow us to use the analysis tools specific to this type of model.

Evaluating the effectiveness of a design method in terms of usability and speed seems difficult to quantify internally. This is why we intend to test our methods in concrete cases with different types of population. Initially we intend to solicit other researchers in our laboratory in order to obtain feedback from a scientific point of view. However, as the methods we wish to develop are intended to be used by industry, it is essential to go beyond the academic framework for our tests. This is why we are also going to solicit industrial players to evaluate our methods. Finally, as we are also in contact with students through teaching Finally we will have to use a mathematical approach to be able to demonstrate formal properties on the results obtained in algebraic synthesis.

EXPECTED OUTCOME

First of all, let's take a look at the tools we want to develop. At the level of algebraic synthesis, the goal is to bring formal proofs at the level of optimization criteria. Indeed, we want to be able to guarantee the reduction of a solution space to a single solution in a precise number of criteria. In this way it will be possible to define a methodology based on the algebraic synthesis ensuring the achievement of unique solutions. Concerning the automatic code generation tool, we want to be able to obtain a code that can be implemented in a PLC by providing only our formalized constraints.

In a second step, let's focus on the methodology. The goal is to obtain an efficient method based on a task-based vision and the use of control filters to guide the design of a control law. For this it is also necessary to establish a catalogue of practical cases, in order to provide a method adapted to each situation. Finally, we need to know how to define our system of equations in order to translate properties and behaviors expected for the system. Finally, let's look at the methods of verification and validation. We want to be able to determine the accuracy of the formalized problem and to provide elements of solutions if necessary. In addition, it is necessary to be able to certify the respect of the specifications at the time of implementation as well as to guarantee the security of the users and the system.

STAGE OF THE RESEARCH

Regarding our tools, we have developed software in C for automatic code generation. It will retrieve the inputs/outputs of a Factory I/O scene as well as command specifications in order to generate ST code. The specifications can only be integrated as GRAFCET for the moment but we would like to add the possibility of integrating a Boolean equation system later on. The output file can be generated in order to be usable by the UNITY and CODESYS software.

Concerning the methods, we first wanted to test the capacity of the algebraic synthesis to solve various control problems. In particular, we succeeded in implementing blocking and corrective filters. Then, thanks to these security filters we were able to implement a manual mode. As for the task-based approach, we were able to ensure task synchronization by algebraic synthesis for simple cases. However, with the increasing complexity of the systems to be studied this synchronization proved to be difficult to achieve. Therefore, we need to progress on design methods with a task-based vision, especially at the level of task anteriority definition.

Figure 1 :

 1 Figure 1: A sequential discrete event system.

Figure 2 :

 2 Figure 2: Principle of implementation of the logic filter in a PLC.

Figure 3 :

 3 Figure 3: Software Factory I/O

ACKNOWLEDGEMENTS

I would like to thank Bernard Riera and Alexandre Philippot for their contributions to this line of work.