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Abstract

The aim of this study is to investigate the influence of the sampling density of periodic
patterns such as checkerboards or 2D grids on the noise level observed in displacement and
strain maps extracted from such images. A spectral method named Localized Spectrum
Analysis (LSA) is used to process the images. It is shown that this parameter influences
this noise level. This influence is quantified, and a power law is proposed to model it,
with a value of the power identified with the measurements. It is also confirmed that
checkerboards give a lower noise level than 2D grids, with an improvement which is also
quantified, and which increases as the sampling density increases.
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1 Introduction

Studying the metrological performance of full-field measurement techniques is the topic of
many recent papers, in particular concerning Digital Image Correlation (DIC) thanks to the
collaborative work carried out within the framework of the DIC-Challenge [1]. Displacement
and strain maps are now widely used to reveal material heterogeneities [2, 3], to track crack
propagation in engineering materials [4, 5], or to identify material properties [6, 7], among
other applications. In this context, determining reliable maps is a chief issue. The metro-
logical performance is generally defined in terms of spatial resolution (denoted here by d),
measurement resolution (displacement resolution σu and strain resolution σε) and bias λ [8].
These quantities are thoroughly defined in Appendix A but in short: the spatial resolution
reflects the ability of the measuring technique to distinguish close features in displacement
and strain maps, the measurement resolution represents the noise level in those maps, and the
bias the systematic error impairing displacement and strain values returned by the technique.

For a given technique, users often want to estimate d, σu, σε and λ, but the problem
is that these quantities depend on various parameters, some of them being extrinsic to the
measuring technique itself. Lighting intensity and uniformity are typical examples. The user
itself also influences the value of d, σu, σε and λ since some settings impacting these values
must be fixed. For DIC, the main influencing settings are the subset size and the order of
the subset shape functions used to model the displacement within the subsets [9]. Another
influencing parameter is the quality of the pattern itself. Some recent studies investigate
this problem [10, 11, 12, 13, 14, 15] for instance. In particular, image gradient is the main
parameter influencing sensor noise propagation to the final displacement maps [16, 17]. As a
consequence, the authors of [13] claim that random patterns are not optimal in terms of sensor
noise propagation, and that regular patterns such as checkerboards should theoretically be
used instead, image gradient being the highest possible with this type of pattern if the latter
is correctly sampled. Refs. [18] and [19] confirm that checkerboards lead to lower noise level
in displacement maps than random speckles and classic 2D grids, respectively. Such a pattern
is however periodic and not random, and the problem is that DIC may converge to wrong
solutions in this case, the cost function to be minimized featuring many local minima. In [8],
it is shown that minimizing the optical residual can advantageously be switched from the
spatial to the Fourier domain in case of periodic patterns thanks to the Parseval’s theorem
and some additional calculations, see schematic view in Fig. 1.

Indeed, in addition to lower noise level, periodic patterns have some benefits compared
to random patterns:

• the minimization of the optical residual is quasi-direct since a closed-form solution is
available for the sought displacement field. The corresponding calculations can therefore
be performed by hand in this case [8]. The solution found only depends on the phase
distributions in the reference and the current images (see details below);

• the so-called pattern-induced bias which affects displacement and strain fields is lower
(if not negligible) for periodic patterns than for random ones [20, 21, 18, 22];
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Figure 1: Schematic view of the minimization of the optical residual in the spatial domain
with DIC, and in the Fourier domain with LSA, after the demonstration given in [8].

• whatever the domain which is considered to perform the minimization of the optical
residual (the spatial domain or the Fourier domain), the information contained in the
image of the current configuration must be mapped in the coordinate system of the
reference configuration. This leads interpolation of the gray level distribution to be
performed in the spatial domain, while a fixed-point algorithm written on the retrieved
phase maps can be used in the Fourier domain. An important remark is that the gray
level distribution concerned by interpolation in the spatial domain is generally much
more fluctuating throughout a speckle image than the phase distribution concerned by
the fixed-point algorithm in the Fourier domain. This leads interpolation error to occur
mainly with DIC, as modeled with the well-known S-shaped bias, see [23] for instance.
On the contrary, this error is negligible when the minimization of the optical residual
is performed in the Fourier domain.

Several techniques are available to extract the phase distributions of the reference and
current images (see the survey on spectral techniques suitable for periodic patterns in [24]).
The so-called Localized Spectrum Analysis (LSA) is one of these techniques. It will be used
in this study. Indeed, it is shown in [24] that it gives a good compromise between final
metrological performance and calculation time.

To sum up, the main errors that occur when processing periodic patterns with LSA are
the systematic error due to the attenuation of the signal for the highest spatial frequencies
involved in the displacement and strain maps, and the random error due to sensor noise
propagation. In this context, the aim of this study is to focus on a parameter, which still
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remains largely underexplored in the literature. This parameter is the sampling density of
the pattern. Examining the influence of the sampling density is relevant in a context for
which the size of camera sensors continuously increases, so users can legitimately wonder to
what extent this parameter plays a role on the quality of the results. We examine here more
specifically the influence of this parameter on the noise level in the final displacement maps.
Only a limited number of papers tackle the influence of the sampling density of the pattern
on the quality of the results. The author of [25] claims that 3 pixels per dot (in average)
should be employed in the case of random speckles. [26] partially discusses this question for
periodic patterns from a theoretical/numerical point of view, but no experimental result is
given.

Strictly speaking, the sampling density is the number of pixels per unit length, which
is used to sample a signal. For the sake of convenience, we consider here the number of
pixels per period, the patterns under consideration being periodic. This quantity is denoted
hereafter by ρ.

We focus here our attention on the checkerboard pattern since it is expected to be op-
timal in terms of sensor noise propagation. We also take this opportunity to examine the
influence of the number of pixels per period ρ on noise propagation with classic 2D grids,
such patterns being still used even though they are not optimal. Closed-form expressions are
available to estimate a priori the noise level in displacement and strain maps deduced from
periodic patterns by using LSA. These formulas were established under some assumptions, in
particular the fact that the signal (here the gray level distribution) is continuous [27], which
is not the case in real images. These formulas were only partially experimentally verified
in [28], in the sense that the effect of sampling was not investigated and that only classic 2D
grids were studied.

In this context, the objective of this paper is to examine in depth the influence of ρ, on
the noise level in displacement and strain maps retrieved from images of checkerboard and
2D grid patterns. We also study to what extent predictive formulas for noise propagation to
displacement and strain maps are valid in these cases. The noise level obtained in both cases
is also compared.

The paper is organized as follows. The fundamentals of LSA are first briefly recalled. The
experimental setup is then presented. The effect of sampling is experimentally evidenced,
discussed and modeled. The patterns considered here are a checkerboard and a classic 2D
grid, both featuring the same period. Notations used in this paper are gathered in Table 1.

2 A brief reminder on the Localized Spectrum Analysis

2.1 Localized Spectrum Analysis

When a spectral technique is used to minimize the optical residual, the displacement field
can be expressed as a function of the phase field of the reference image and its counterpart
of the current one. Strain fields are then deduced by differentiation. This link between phase
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Symbol SI Unit (non-SI Unit) Definition

α [-] (rad) Angle between the horizontal axis and the first direction
along which the WFT is calculated

εij [-] ij strain, ij = xx, xy, yy
λ [-] Bias
Φcuri [-] (rad) Phase of the current image along direction i

Φref
i [-] (rad) Phase of the reference image along direction i

ρ [-] (pixel) Number of pixels per period p′

σε [-] Standard deviation of the noise affecting the strain maps
σΦ [-] (rad) Standard deviation of the noise affecting the phase maps
σΦ′ [m−1] (rad m−1) Standard deviation of the noise affecting the phase

derivative maps
σimage [-] (gray level count) Standard deviation of the noise affecting any image
σu [m] Standard deviation of the noise affecting the

displacement maps
θ [-] (rad) Angle between the horizontal axis and any direction

along which the WFT is calculated

c [m] Side of the square zone covered by one pixel on the specimen
d [m] Spatial resolution of the technique for a bias λ
D [m] Distance between specimen and camera
f [m] Fundamental frequency of the periodic pattern
K [-] (gray level count) Modulus of ŝw
ℓ [m] Standard deviation of the Gaussian envelope used in the WFT
p [m] Period of the pattern along the direction where the WFT

is calculated
p′ [m] Period of the pattern along the x′ and y′

s [-] (gray level count) Signal or spatial gray level distribution
ŝw [-] (gray level count) Windowed Fourier Transform of s
ui [m] Displacement along direction i, i = x, y
xpx [-] (pixel) Any length x expressed in pixel after dividing x by c
w [m−2] Gaussian window used in the Windowed Fourier Transform

Table 1: Main notations used in the paper

and displacement writes as follows:

ui(x, y) = − p

2π

(
Φcur
i (x+ ux(x, y), y + uy(x, y))− Φref

i (x, y)
)

i ∈ {x, y}. (1)

In this equation, p is the period of the periodic pattern, Φref
i and Φcur

i , i ∈ {x, y}, are
the phase distributions of this periodic pattern in the reference and current configurations,
respectively. ux and uy are the displacements along x and y, respectively. It turns out that
the displacement ui, i ∈ {x, y}, is determined if the phases of the reference and current

images Φref
i and Φcur

i , i ∈ {x, y}, along x and y are known. It can be seen that the unknown
components of the displacements are involved in both parts of Eq. 1. A fixed-point algorithm
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is classically used to find this displacement, which gives





u
(0)
i (x, y) = − p

2π

(
Φcur
i (x, y)− Φref

i (x, y)
)

i ∈ {x, y}

u
(n+1)
i (x, y) = − p

2π

(
Φcur
i (x+ u

(n)
x (x, y), y + u

(n)
y (x, y))

−Φref
i (x, y)

)
i ∈ {x, y}.

(2)

The phases at non-integer coordinates are obtained by interpolation of the phases at
integer coordinates. Convergence is generally obtained in one iteration, so the procedure is
very fast. More detail on this fixed-point algorithm and on the procedure used to process
displacement greater than the period of the pattern can be found in [29].

LSA is one of the techniques available to obtain Φcur
i and Φref

i , i ∈ {x, y}. With this
technique, the first step is to calculate the windowed Fourier transform (WFT) of the signal
(here the gray level distribution) s. This quantity is denoted by ŝw(x, y, θ). The WFT is

calculated for only one spatial frequency f which is equal to the nominal frequency f =
1

p
of

the periodic pattern, and for a direction defined by an angle θ with respect to the horizontal
axis as explained below. Thus

ŝw(x, y, θ) =

∫ +∞

−∞

∫ +∞

−∞

s(η, ξ)w(x− η, y − ξ)e−2iπf(ηcosθ+ξsinθ)dηdξ (3)

In this equation, w is a window centered at the pixel of coordinates x, y where ŝw(x, y, θ)
is calculated. The Gaussian window constitutes the best tradeoff between various con-
straints [26], so it is chosen here. The function defining this Gaussian window is given
by the following equation:

w(x, y) =
1

2πℓ2
e



−

x2 + y2

2ℓ2





(4)

where ℓ is the standard deviation of the Gaussian function. Similarly to the subset size in
DIC, ℓ can be considered as a handy parameter which governs the apparent width of the
window used in LSA. The Gaussian function has no compact support, so the apparent width
is arbitrarily equal to 6ℓ according to the so-called “3 − σ rule” [30]. In Eq. 3, θ represents
the angle of the direction along which the WFT is calculated. To obtain bidimensional

displacement, this WFT shall be calculated along two directions, namely θ = α +
π

4
and

θ = α+
3π

4
for a checkerboard [19], and θ = α and θ = α+

π

2
for a classic 2D grid [29]. α is

the angle which gives the orientation of the natural axes of symmetry of the periodic pattern
with respect to the horizontal border of the images, see the definition of these axes in Fig. 2.
α 6= 0 here in order to avoid aliasing in the images, [31]. A mere change of basis finally gives
the phases in the (x, y) coordinate system. To sum up, the same image processing is applied
for 2D grid and checkerboard but:

6



Figure 2: Closeup view of the two patterns under study. Period p′ is the same in both cases.

• with a 2D grid, the directions of the lines along x′ and y′ are directly considered to
define θ instead of the lines and columns of diamonds that can be observed along x′′

and y′′ for a checkerboard;

• the consequence is that the period p used in the WFT is
√
2 times lower for a checker-

board than for a 2D grid, even though the period p′ is the same for both types of
pattern (see the difference between p and p′ in Fig. 2).

As explained in [24], LSA is a particular case of the so-called Windowed Geometric Phase
Analysis (WGPA) [32, 33], in the sense that only one frequency is considered, whereas the
whole “dot” surrounding the nominal frequency in the Fourier domain is employed with
WGPA. The benefit is that the sought phases, which eventually give the displacement ac-
cording to Eq. 1, are considered to be directly the arguments of the WFT calculated for

θ = 0 and θ =
π

2
plus a constant value denoted here by κ [27] (this constant value vanishes

when subtracting current and reference phases), while these phases are determined after per-
forming an additional inverse Fourier transform with WGPA. This simplified approach leads
the highest spatial frequencies involved in the displacement or strain maps to be attenuated
because each actual phase is not exactly equal to the argument of the corresponding WFT
plus κ, but to this argument convolved by the window w used in the WFT [27] plus κ. This
latter effect can be partially counterbalanced by using a suitable deconvolution procedure
described in [34]. An advantage of LSA is that the computing time to get the displacement
field from a pair a reference and current images is much lower than with WGPA [24]. Finally,
closed-form expressions for the systematic error and for the random error due to sensor noise
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propagation are available for LSA. This latter point is recalled specifically in the following
section.

2.2 Sensor noise propagation

Random errors which affect displacement and strain maps are mainly due to sensor noise,
which propagates when phases are extracted from noisy images. This propagation has been
studied in [27] and predictive formulas giving the standard deviation of the noise in the
phase and phase derivative maps have been given. These quantities, denoted here by σφ and
σφ′ , respectively, also represent the phase and phase derivative resolutions according to the
definition given in Appendix A. These predictive formulas write as follows [27]:





σφ =
c

2
√
2πKℓ

× σimage for phase and

σφ′ =
c

4
√
πKℓ2

× σimage for phase derivative,
(5)

where K is the modulus of the WFT defined in Eq. 3 above, c the size of the square covered
by a pixel on the surface under investigation, and σimage the standard deviation of the noise
affecting the image. This noise is assumed here to be homoscedastic. This is quite a rough
assumption since noise in real images is heteroscedastic [35] (it is indeed signal-dependent).
K is defined by [27]:

K ≃ |d1|γA
2

(6)

where d1 is the first non-zero coefficient in the Fourier expansion of the profile of the periodic
signal. In other words, this quantity is linked to the “closeness” of this function to a pure sine
profile, as demonstrated in [27]. A is the amplitude of the periodic signal, and γ the contrast
of the signal. This latter quantity generally gently changes throughout the images because
of the unavoidable non-uniformity of the lighting. This does not affect, however, the validity
of our approach which is based on window analysis. The contrast can indeed reasonably be
assumed constant within the analysis window. The propagation of the noise in displacement
and strain maps is then deduced by using Eq. 2, further iterations in the fixed-point algorithm
used to deduce ux and uy from the initial phases in Eq. 1 being assumed not to significantly
affect the results.

Bearing in mind that two phase (resp. phase derivative) maps are needed to get one
displacement (resp. strain) map and that these two phase maps are noisy, one can deduce
from Eq. 2 and 5 the standard deviation of the noise affecting displacement and strain maps.
By definition (see Appendix A), these quantities are equal to the displacement resolution σui

,
i = x, y and to the strain resolution σεij , i, j = x, y:





σux
= σuy

=
pc

4π3/2Kℓ
× σimage for displacement and

σεxx = σεyy =
pc
√
2

8π3/2Kℓ2
× σimage for normal strain.

(7)
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According to the definition of εij , i, j = x, y (εxy =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

)), it can easily be

checked that σεxy is
√
2 times lower than σεxx and σεyy . σux

and σuy
have the same unit as

the displacement (meter). However, these quantities will be given in mm in 4 below for an
easier comparison with the period of the periodic patterns studied here, which is a fraction
of a millimeter. Finally, since we focus here on the influence of ρ on the results, this quantity
is introduced by writing that the size c of the square covered by one pixel on the specimen is

equal to c =
p′

ρ
. Thus





σux
= σuy

=
pp′

4π3/2Kℓρ
× σimage for displacement and

σεxx = σεyy =
pp′

√
2

8π3/2Kℓ2ρ
× σimage for normal strain,

(8)

with p′ = p
√
2 for checkerboard, and p′ = p for grid, see Fig. 2. Again and for the same

reason as above, σεxy is
√
2 times lower than σεxx and σεyy .

Eq. 8 predict that noise is inversely proportional to ρ. At first sight, this is intuitively
logical. Indeed, noise is progressively averaged out as ρ, and thus the number of pixels
covered by the Gaussian window w used in the WFT, increases. If w covers a square zone
containing n × n pixels, each of them being affected by a homoscedastic noise of standard
deviation denoted by σimage, calculating the weighted average of the signal over this zone

gives a result affected by a noise of standard deviation σfiltered
image =

σimage

n
× S, with S =

√∑n
i=1

∑n
j=1w

2(xi, yj). S
2 is here nothing but the discrete form of integral I defined by

I =

∫ +∞

−∞

∫ +∞

−∞

w2dxdy (9)

Thus

I =

(
1

2πℓ2

)2 ∫ +∞

−∞

∫ +∞

−∞

e



−

x2 + y2

ℓ2





dxdy (10)

=
1

4πℓ2
, (11)

and

σfiltered
image =

σimage

n
×

√√√√
n∑

i=1

n∑

j=1

w2(xi, yj) (12)

≃ σimage

n
× 1

2
√
πℓ

. (13)
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So σui
, i = x, y and σεij , i, j = x, y on the one hand, and σfiltered

image on the other hand,
are all inversely proportional to ρ since n is proportional to ρ when the WFT is calculated.
The object of the following sections is to check if this theoretical prediction is experimentally
verified.

3 Experimental setup and image processing

3.1 Experimental setup

The experiments performed in this study were carried out with a SENSICAM QE CCD
camera featuring a 12-bit/1040 × 1376-pixel sensor. A Peltier cooler is embedded in this
camera, near the sensor. The advantage of this cooler is to stabilize the temperature during
the whole experiment, and thus sensor noise amplitude since temperature and noise level are
closely related. A Tokina Macro lens with a focal length equal to 100 mm was mounted on
the camera. It is worth noting that this lens is dedicated to large sensors of size 24 × 36 mm2.
Since the sensor of the camera used in this study is smaller in size, it means that the central
part of the lens, thus its best part in terms of optical distortion and vignetting, is used here.
The experimental setup is shown in Fig. 3. The camera was fixed onto a metallic frame. Only
one LED light source placed on the right-hand side of the setup was employed, but a mirror
placed on the left-hand side ensured a nearly uniform lighting of the pattern. No flickering
occurred while taking the images, thus avoiding additional processing to properly estimate
noise in the images [36].

Two specimens marked each with a different pattern were considered. The first pattern
was a checkerboard and the second a classic 2D grid. Closeup views of both patterns are
showed in Fig. 2. These patterns were deposited onto the specimens by using the procedure
described in [37]. The period p′ of both patterns was equal to p′ = 0.2 mm. It means that
both the size of the squares forming the checkerboard and the width of the lines of the 2D
grid were equal to 0.1 mm. These specimens were fixed onto a support allowed to move along
the horizontal y-direction thanks to a slide linkage. The movement was controlled by a screw,
see Fig. 3.

25 values of the distance D between camera and specimen were considered, each distance
leading to a different value of ρ. For each value of D, ρ was estimated by using the following
procedure:

1. taking the Fourier transform of the grid or checkerboard image in the reference config-
uration

2. determining the coordinates of the highest spike of the spectrogram (excluding the
origin)

3. deducing the mean frequency of the periodic pattern by calculating the distance in
pixel−1 between the origin and this spike after scaling the axes to account for possible
differences in dimensions along the two directions of the pattern image
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Figure 3: Top view of the experimental setup.

4. deducing the period in pixel by taking the inverse of this frequency.

For each value of D, 200 pairs of images (reference and after translation) were shot and
processed with LSA. This gave 200 displacement fields and 200 strain fields after differentia-
tion. This differentiation was performed by using the “gradient function” of Matlab, which
implements a central difference scheme relying on a spacing between points equal to two
pixels. Special attention was paid to being sure that fluctuations in those fields were only
due to sensor noise propagation. The procedure developed to reach this goal is described in
the following section.

3.2 Removing the effects of vibrations

3.2.1 Principle

We assume that the displacement maps are estimated from two images of a non-deformed
plane specimen. Therefore, the observed displacement (ux(x, y), uy(x, y)) comes from sensor
noise, which propagates through the estimation process, but also from a rigid body movement
(RBM) which is due to

1. the translation along the y-direction applied through the screw;
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Figure 4: Each row shows for a given pair of images the x- and y-displacement field (in pixels)
before and after removing the effect of RBM. Here, the two pairs come from a series of images
where the camera is at 50 centimeters of the specimen. The shutter time is 24 milliseconds
and the specimen is supposed to be immobile.

2. a slight rotation because joint clearance causes the linkage between specimen and metal-
lic frame not to be rigorously a slide linkage;

3. the effect of vibrations. Indeed, it has been observed that the Peltier cooler induced
slight vibrations. Even though the camera is firmly attached to the metallic frame,
these vibrations cause a slight movement of the camera to occur with respect to the
observed specimen.

Since the specimen is plane, it is known that, in the pinhole camera model, RBM gives
a homography transform H between the two images from which the displacement map is
estimated [38]. However, in our experimental setting, the focal length of the camera is large
compared to the size of the imaged specimen. Moreover, the out-of-plane rotation of the
specimen is very small, since it is only caused by vibrations or by the presence of clearance in
the slide linkage. We can thus safely simplify the pinhole camera model into the affine camera
model, for which two images of a static specimen are related by an affine transformation. This
is a common assumption in computer vision, see [39] for instance.

In order to compute statistics on the part of the displacement related to noise, we have
to cancel out the affine transformation related to RBM.

Let us denote (x, y) the pixel coordinate of a solid point in the first image, and (x′, y′)
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the corresponding pixel coordinate of the same point in the second image. The following
equation holds from the definitions and hypothesis above. On the one hand,

{
x′ = x+ ux(x, y)

y′ = y + uy(x, y)
(14)

and, on the other hand,

{
x′ = x+ a11x+ a12y + a13 + nx(x, y)

y′ = y + a21x+ a22y + a23 + ny(x, y)
(15)

under the affine transformation assumption. Here, nx and ny are random variables modeling
the random part of the estimated displacement caused by sensor noise propagation.

The parameters of the affine transformation can be estimated in the least square sense by
minimizing the two functions

∑
x,y |a11x+a12y+a13−ux(x, y)|2 and

∑
x,y |a21x+a22y+a23−

uy(x, y)|2 with respect to (a11, a12, a13) and (a21, a22, a23), respectively. In spite that nx and
ny are correlated noises, we still use the classic optimal least square estimator instead of the
generalized least square estimator which would require to estimate the covariance matrices
of nx and ny [40].

Now, n′

x and n′

y are defined for any (x, y) as:

{
n′

x(x, y) = ux(x, y)− (a11x+ a12y + a13)

n′

y(x, y) = uy(x, y)− (a21x+ a22y + a23) .
(16)

These quantities are estimators of the random parts nx and ny in the x and y components
of the displacement maps, respectively. The standard deviation of these random quantities
was determined at any pixel, and then served to determine the empirical displacement resolu-
tions σux

and σuy
along x and y, respectively. Let us now examine the effect of this correction

on the apparent noise in displacement maps.

3.2.2 Illustration of the effect of RBM removal

Fig. 4 illustrates the effect of RBM (among which vibrations) as well as the impact of the
procedure proposed above to remove it from the displacement maps. The raw estimations
of the x- and y-displacement fields are shown in columns 1 and 2 of this figure. These
displacements have large values with a gently varying distribution caused by RBM. The ux
displacement is nearly an affine function of y, and the uy displacement an affine function
of x, which means that the specimen has been subjected to a translation and a rotation.
This is presumably due to the fact that because of clearance in the sliding linkage, the
specimen slightly rotated while a translation was imposed along the x-axis. As a result, the x-
displacement is not constant and not equal to the imposed translation, and the y-displacement
is not strictly equal to 0. In addition to this slight rotation, vibrations add some small random
perturbations. This explains why the displacement fields exhibit slight fluctuations along the
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series. As explained before, the effect of RBM was removed by subtracting the affine part from
all the displacement maps retrieved from the images of the series. It can be seen in column
3 and 4 of Fig. 4 that the displacement obtained after correction is an almost uniformly
distributed random displacement field, although a slight residual effect can still be observed.
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Figure 5: Evolution of the displacement (in pixels) measured at four distant point of the
specimen surface along time. Note the spatial correlation of the raw measurement, which is
corrected in a satisfactory manner after RBM removal.

Fig. 5 is another illustration of the effect of RBM. The first row shows the evolution of
the displacement measured at four distant points on the surface of the specimen. In-phase
fluctuations can be observed. They are due to the random vibrations which affect image
acquisition. After the proposed RBM removal procedure, the measurements shown in the
second row are no longer temporally correlated, as can be expected if sensor noise is the main
phenomenon causing these fluctuations.

Finally, Fig. 6 shows the distribution of the temporal standard deviation of the displace-
ment over the surface of the specimen. The standard deviation of the raw result is larger
along the x-direction than along the y-direction. The reason is probably that because of the
sliding linkage, the amplitude of the vibrations is larger along x than along y. The standard
deviation is much smaller after removing the effect of RBM. It also has the same amplitude
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Figure 6: Distribution of the temporal standard deviation of the displacement (in pixels) over
the specimen surface, calculated without and with RBM removal.

along both directions. It is not rigorously uniform. This is certainly due to the non-uniformity
of the light, which then causes sensor noise to spatially change in amplitude, this noise being
heteroscedastic [35].

3.3 Estimating the noise parameters of the camera

Since sensor noise propagation is studied here, the noise in the images had also to be properly
estimated. As explained in [35] for instance, noise affecting images is heteroscedastic, with a
model such that the variance is an affine function of the brightness, thus

σ2
image(x, y) = as(x, y) + b (17)

where a and b are two constants which depend on the camera sensor itself. These quanti-
ties are provided by the camera supplier [41]. They were also thoroughly identified in [42]
for the camera used in this study. A sanity check was however performed here by us-
ing the following procedure. After deliberately defocusing the lens, different series of 200
images of a white background were taken with an aperture f/11 and a shutter time t ∈
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24} ms, in such a way that the widest possible range
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Figure 7: Variance of the noise at each pixel as a function of the gray level. Some fluctuations
can be seen for each value of the shutter time because the noise properties are not rigorously
uniform over the sensor field.

of gray levels was covered by the different sets of images, the illumination level being hold
constant. The images were blurred in all cases to avoid having images corrupted by the
vibrations mentioned above. Fig. 7 shows the point clouds found for each value of the shutter
time. As expected, these point clouds are properly aligned in the gray level-variance plane.
Their range also increases as the brightness increases. Such data enabled us to plot the line
modeling the affine relationship between variance and gray level given in Eq. 17. Minimizing
in the least squares sense the distance between model and experimental data, gives the value
of a and b, which are respectively the slope and the intercept of the line. The following values
were found here: a = 4.01 and b = −3536. The influence of b on σimage(x, y) is negligible.
It is worth noting that the value of a found here is about half the value reported in [42],
which is logical since the “gain low” option was used here while the “gain high” one was used
in [42], a factor of two theoretically affecting the gain when switching from “high” to “low”.

3.4 Determining the empirical values of σimage, σui
and σεij

Eq. 8 are formulas which predict the displacement and strain resolutions. They were estab-
lished in [27, 28] and experimentally verified in [28] but only partially, since only a grid (and
not a checkerboard) was used, and only a given value of ρ was considered. The question here
is to see if these equations are also verified for a checkerboard and for various values of ρ.
Two problems arose however when assessing σimage, σui

and σεij after processing the images:
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• micro-vibrations occurred during the experiments, which corrupted the characterization
of the sensor noise affecting the images;

• σimage in Eq. 11 is not a constant throughout the images since actual noise is het-
eroscedastic, while Eq.11 were obtained assuming the noise was homoscedastic.

The first problem also occurred in [28]. It was resolved by eliminating the effect of
vibrations by applying a so-called Non-Random Signal Removal (NRSR) procedure. This
procedure is however only applicable when α, which characterizes the rotation angle of the
periodic pattern (see Fig. 2), is null. This is however not the case in the present study to
avoid aliasing in the images [28]. The second problem was overcome by using a normaliza-
tion of the noise obtained after removing the effect of vibrations. This normalization was
performed by applying the so-called generalized Anscombe transform. The resulting noise
becomes approximately homoscedastic after applying this transform defined in [43] after [44].
Since NRSR cannot be applied here, a simplified approach was used. This simplified approach
is briefly explained below. First, we removed the effect of vibrations in the retrieved displace-
ment maps by using the procedure described in 3.2. Second, we predicted the noise level in
the images by using the model characterized in 3.3. Third, we consider a global value for
σimage, σui

and σεij instead of pixelwise distributions. It can be noted that, once sensor noise
parameters are known, it is possible to apply the generalized Anscombe transform (GAT) to
the acquired images so that the resulting noise is approximately homoscedastic. This would
make it possible to use the predictive formula for σui

and σεij with a value of σimage constant
and normalized over the image domain. In the present study, the two approaches (with and
without GAT) were found to show only minimal differences. This was not the case in [42]
because pixelwise distributions were considered instead of global values. For the sake of sim-
plicity, we applied here the approach based on the global value of σimage, and thus did not
applied GAT.

Determination of σimage Coefficients a and b of the noise model defined in Eq. 17 being
characterized by using the method described in 3.2, it is possible, by using this model, to get
a reasonable estimate of the sensor noise affecting a given image by applying Eq. 17. This
standard deviation of the noise changing from one pixel to another since it depends on the
brightness, a global estimation over any image of dimensions M × N can be obtained by
calculating the following quantity

σimage =

√√√√ 1

N ×M

N∑

k

M∑

l

(σimage(xk, yl))
2 (18)

Determination of σui
and σεij In the same way, a global empirical estimation of the

displacement and strain resolutions over a map of dimensions M ×N can be defined by the
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following quantities:





σui
=

√
1

N ×M

∑N
k

∑M
l (σui

(xk, yl))
2 i = x, y

σεij =

√
1

N ×M

∑N
k

∑M
l

(
σεij (xk, yl)

)2
ij = xx, yy, xy

(19)

These empirical values for σimage, σui
and σεij were used here to check the validity of the

predictive Eq. 8 from a global point of view.

4 Results

4.1 Preliminary tests: setting the aperture and shutter time of the camera

Before taking images, the first point was to choose the aperture and shutter time of the
camera. This combination of two parameters can be adjusted in such a way that the same
amount of light hits any pixel of the sensor. This phenomenon is modeled by the so-called
reciprocity law, which claims that if the aperture number (which is proportional to the inverse
of the radius of the aperture of the diaphragm) is multiplied by a constant k, the shutter
time should be multiplied by k2.

However, the reciprocity law has practical limitations: the focal length is only approxi-
mately known (it may depend on the focus point for instance), and the aperture number and
the shutter speed only take discrete pre-determined values. This is not a problem for general-
purpose photography but this prevents us from using this law to set the shutter speed as a
function of the aperture. For a given aperture, the location of the right-hand tail of the gray
level histogram was adjusted by fine-tuning the shutter time, which gave the experimental
link between shutter time and aperture to keep a constant illumination. However, the point
is that even though the same amount of light hitting the pixels can be obtained with several
combinations of aperture and shutter time, changing the aperture influences the contrast in
the images, see [45] for instance. It is shown in [45] that values which are optimal to get the
highest contrast in the images (and thus the lowest noise in the displacement and strain maps
according to Eqs. 8 and 6) are obtained for low values of the aperture. Fig. 8 illustrates this
impact of the aperture by showing the amplitude of the gray level histogram as a function
of ρ for f/4, f/5.6 and f/8. In each case, the shutter time was adjusted in such a way that
the right-hand tail of the gray level histogram of the images was as close as possible to its
maximum value, namely 216 − 1 with tif images (the gray depth of the camera sensor is
12 bits, but tif images are always encoded with 8 or 16 bits). The location of the left-hand
tail is then only governed by the sharpness of the images. The contrast reported in Fig. 8 is
the difference between its maximum value, which was the same for all images (216 − 1), and
the minimum value defined by the location of the left-hand tail, which was picked by hand
on the histograms. It is clear that the highest contrast is globally obtained with f/5.6, which
is consistent with the results given in [45]. Consequently, this aperture was chosen for all the
results presented in the remainder of the paper.
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Two additional remarks can be drawn from this figure:

• the contrast in the images is an increasing function of ρ, but the contrast in the grid
images is less influenced by ρ than the contrast in the checkerboard images;

• the contrast is always lower for the checkerboard images, but the difference with the
contrast in the grid images decreases as ρ increases.

These phenomena are presumably due to the effect of the Point Spread Function (PSF) of the
lens. Indeed, the gray level of the white pixels being always close to the maximum value, the
gray level of the dark pixels (or the intensity of the black in the images, and thus the contrast)
is found at the center of the dark squares forming the checkerboard. It is clear that the main
impact of the PSF is to change the value of the gray level in the dark squares. For a given
PSF, this phenomenon is all the more marked as ρ is small. In addition, this phenomenon
is more marked with a checkerboard since in this case, a dark square is bordered by white
pixels along its four sides while for a grid, dark squares at the crossing between black lines
are surrounded by black pixels along their four borders, white pixels bordering these dark
squares only at their four corners. The conclusion is that the PSF plays a lower role for the
grid than for the checkerboard, which explains the highest sensitivity to ρ of checkerboard
observed in Fig. 8. This assumption concerning the role of the PSF should be investigated
further by using a lens with a different resolution power than the lens used in this study,
which is however out of the scope of this paper.

In conclusion, the comparison between results obtained with checkerboard and grid is not
performed with the very same contrast in the images. This disadvantages the checkerboard
because the contrast and the modulus K are proportional according to Eq. 6 (through the
amplitude A of the signal), and the higher the value of K, the lower the noise level in the
displacement and strain maps according to Eq. 8.

4.2 Sensor noise propagation

Fig. 9-a shows the empirical displacement resolutions σux
and σuy

, and Fig. 9-b the empirical
strain resolutions σεxx , σεyy and σεxy as a function of ρ. These quantities were measured for
a standard deviation of the Gaussian window ℓ equal to the period p′ of the pattern, so that
the same spatial resolution was obtained for the two types of patterns (checkerboard and
grid), and for all the values of ρ considered here.

Several remarks can be drawn from these curves. First, the noise is lower for the checker-
board than for the grid. This point is developed further in 4.5 below. Second, the results
obtained along the x− and y−directions are nearly the same, which is logical. Third and as
expected, σεxy is lower than σεxx and σεyy (it can be checked that the ratio between σεxy and

each of the other two is
√
2). Finally, all the curves show that both the displacement and the

strain resolutions gently decrease as ρ increases, which is consistent with Eq. 8. The question
is however to know if not only the trend, but also the model described by these equations is
experimentally verified. If it is considered that all the quantities involved in these equations
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Figure 8: Influence of the aperture on the contrast in the figures.

are constant and do not depend on ρ, these resolutions should be inversely proportional to
ρ. In this case, using a logarithmic scale to plot the results shown in Fig. 9 would lead to
decreasing lines of slope -1. This logarithmic scale is used in Fig. 10 and it clearly appears
that, as expected, nearly straight lines are obtained. It means that a power law can be used
to model noise evolution as a function of ρ, so that both the displacement and the strain

resolution should be proportional to
1

ρn
. The slopes −n of the lines in Fig. 10, estimated

here with the robustfit function of Matlab, are reported in Table 2. These values change from
one case to another but it is clear that all are lower than −1, which is the value predicted
by the model. It means that the displacement and strain resolutions modeled with Eq. 8 are
not merely inversely proportional to ρ. The reason is probably that some of the quantities
involved in these equation actually depends on ρ. It is necessary to examine in detail the
different terms involved in these equations to find the cause of this phenomenon. Beyond
finding why the degree of ρ involved in the predictive formulas is not exactly -1, it is also
necessary to examine if these formulas are experimentally verified. This is the aim of the
next section.

4.3 Prediction of the displacement and strain resolutions

Determining from the experiments the empirical values of σui
and σεij defined in Eq. 19 makes

it possible to check whether their theoretical values given by Eq. 8 are in good agreement.
Let us first reexamine the ingredients that feed these latter equations in order to see which
one is potentially a function of ρ.
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Same experimental results as in Fig. 9 but with a logarithmic scale.
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Pattern Displacement resolution [m] Strain resolution [-]

Checkerboard -1.32 -1.15
Grid -1.45 -1.32

Table 2: Slope −n of the curves showing in Fig. 10 the displacement and strain resolutions
as a function of ρ with a log-log scale.

Quantities depending on ρ The quantities involved in the predictive Eq. 8 are

1. p′, which is equal here to 0.2 mm in all cases;

2. p, which is equal to p′ ×
√
2

2
= 0.2 ×

√
2

2
mm for the checkerboard specimen, and to

p′ = 0.2 mm for the grid specimen;

3. ℓ, which is equal to ℓ = p′ = 0.2 mm in this section for both types of pattern, so that the
spatial resolution is the same for both. Other values of ℓ are considered in 4.4 below;

4. σimage, which is estimated with the value given by Eq. 18;

5. K, which is considered here as equal to the mean value of the modulus of the WFT
estimated over the rectangular region of dimensions M ×N ;

6. and ρ.

p, p′ and ℓ are therefore constant for all the experimental points on the curves shown
above. The question is to see whether σimage and K, which are functions of x and y since
they both depend of the local brightness, also depend on ρ. The answer is given by Fig. 11,
which represents these two quantities as a function of ρ.

Influence of ρ on σimage Concerning σimage shown in Fig. 11-a, the first remark is that
this quantity is lower for the grid. Another point is that for both patterns, σimage gently
decreases as ρ increases. These phenomena can be explained by considering the gray level
histograms shown in Fig. 12. Indeed, it can be seen that the grid is globally darker than the
checkerboard. It can also be observed that the left-hand tail of these gray level distributions
is shifted to the left for the highest values of ρ. There are two reasons for this. First the
effect of the PSF, which can be regarded as an image filtering (and thus as a blurring),
becomes lower as ρ increases, which tends to increase the contrast in the images. Since the
maximum of the gray level is bounded by 216−1 (the aperture and shutter time were adjusted
during the experiments so that the right-hand tail just touches this maximum value) the gray
level distributions is progressively stretched to the lowest values, thus leading for both types
of pattern to a global darkening of the images as ρ increases. Again, since sensor noise is
heteroscedastic, the direct consequence is that noise affecting the images (σimage) globally
decreases as ρ increases.
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Figure 12: Typical gray level distributions for high and low values of ρ

Influence of ρ on K Concerning the modulus of the WFT K, it is clear from Fig. 11-b
that this quantity increases as ρ increases, which is especially true for the checkerboard, and
this increase is non-linear. Eq. 6 shows that K is proportional to the contrast γ in the image.
As mentioned above, this contrast increases as ρ increases because of a decreasing influence
of the PSF, which is especially true for the checkerboard pattern. The point is however that
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according to Eq. 6, K is also directly proportional to d1, which is the first non-null term in the
Fourier development of the periodic pattern profile along the direction for which the WFT
is calculated [27]. This quantity reflects the “similarity” of the periodic pattern profile to a
sine function along this direction. It is difficult to guess a priori how the product between d1
and γ, which is involved in the definition of K in Eq. 6, evolves as ρ increases, but Fig. 11-b
suggests that this product increases with ρ.

Another striking point is that K is higher with the checkerboard than for the grid. In-
terpreting this result is however not easy. Since the contrast in checkerboard images is lower
than in grid images, a higher value of K for the checkerboard means that its profile along
directions x′′ and y′′ in Fig. 2-a is globally closer to the profile of a pure sine function than
the profile of a grid along directions x′ and y′ defined in Fig. 2-b.

These evolutions of K and σimage on the noise level both lead to the same property: in-
creasing ρ helps reduce the noise level in the displacement and strain maps. This phenomenon
is the same for both the checkerboard and the grid. The main conclusion is therefore that
both K and σimage are influenced by ρ, and that this influence still leads a power law to be
a suitable model to describe the evolution of the displacement and strain resolutions as a
function of ρ, but with a power lower than -1, which was difficult to guess a priori.

Processing the images with a window sampled with a constant number of pixels
The preceding results were obtained by using in the WFT a Gaussian window featuring the
same width since the standard deviation ℓ of this Gaussian window was alway equal to the
period p′ = 0.2 mm of the periodic pattern. This choice for a constant value was justified
by the fact that the results, obtained for various numbers of pixels per period ρ, could be
compared with a spatial resolution being the same in all cases, whatever the value of ρ and
whatever the type of pattern: grid or checkerboard. The obtained results show, among
others, that the noise level decreases as ρ increases, which is not really surprising, and that
the PSF all the more negatively impacts the results as ρ is small. This last phenomenon
can also be experimentally evidenced by sampling in all cases the Gaussian window with
the same number of pixels in all cases instead of the same value of considering ℓ in meter.
The benefit is that the results obtained in this case are no longer influenced by the fact that
the measurement resolution automatically decreases (thus is improved) merely by averaging,
by considering an increasing number of pixels to sample the Gaussian window. In practice
however, it is generally not possible to decrease the measurement resolution (thus to improve
it) by increasing the number of pixels to encode a given pattern, both the field of view and
the sensor size being imposed by experimental conditions. The results above were therefore
processed again, but this time with a Gaussian window featuring the same standard deviation
in pixel for all values of ρ. The spatial resolution (in meter) is not the same from one value
of ρ to another since the pixel size c changes, but it is expected that the averaging effect no
longer influences the results here.

The influence of ρ can be predicted in this particular case by considering Eq. 7, in which
a change of variables in introduced. Indeed, switching from meters to pixels is performed
by dividing all lengths x given in meter by the pixel size c expressed in meter, which gives
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Pattern Displacement Displacement Strain
resolution[m] resolution[-] resolution [-]

Checkerboard -0.29 (ρ > 7) 0.71 (ρ > 7) 0.76 (ρ > 6)
Grid -0.18 (ρ > 7) 0.82 (ρ > 7) 0.87 (ρ > 6)

Table 3: Slope n of the linear part of the curves plotted in Fig. 13. The portion of the curves
considered to estimate the slope is given in parentheses.

a unitless number denoted by xpx. p, ℓ and c are concerned by this change of variables in
these equations. Bearing in mind that ρ is precisely the period p′ expressed in pixel, that

p′ is either equal to p (for the grid) or to

√
2

2
p (for the checkerboard), one can easily check

in Eq. 7 after this change of variables that σu is expected not to depend on ρ, while σε is
expected to be a linear function of ρ. If σu is also expressed in pixel instead of in meter, then
it is expected to be also a linear function of ρ, see details in Appendix B.

Fig. 13 shows the displacement and strain resolution estimated with a constant value of
ℓpx equal to the maximum value of ℓpx found in this study, namely 14.58 pixels. This value
enables us to respect the condition proposed in [26] on the minimum value of the standard
deviation of the Gaussian that shall be considered in the WFT, namely that it shall be equal
to the period p′ of the periodic pattern. A log–log scale is used to directly see if a power
law can be used to model the observed phenomenon, the slope directly providing the power
of this law. It can be seen that the curves obtained for σε in Fig. 13-c are in agreement
with theoretical expectation, namely that the response is linear with this scale. This is less
true when considering the lowest values of ρ. The slope is theoretically equal to 1 since σε
is expected to be a linear function of ρ. The slope estimated for these different curves is
given in Table 13. It is in fact lower than 1, which confirms the results found just above
with a constant value of ℓ instead of a constant value of ℓpx. Again the reason is that K
and σimage are both influenced by contrast, thus by the PSF of the lens, and this effect
becomes all the more less marked as ρ increases. The fact that σu should be independent of
ρ and that σupx

should linearly depend on ρ is less satisfied for the displacement resolutions
showed in Fig. 13-a and -b, in particular for the lowest values of ρ. A possible cause is the
presence of micro-vibrations, whose effect is not completely removed by using the correction
proposed in 3.2. Indeed, derivation strongly diminishes this effect, as discussed for the σε
curves. However, it is not completely eliminated, which means that another phenomenon
occurs for the lowest values of ρ, perhaps the fact that the number of pixels per period is too
low to correctly encode the sought information. As for the strain resolution and for the same
reasons, the slope of the curves estimated over the linear part of the response is lower than
1 and 0 for σu and σupx

, respectively. The corresponding values are given in Table 3.
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Figure 13: Displacement and strain resolutions as a function of ρ for ℓpx=14.58 pixels in all
cases, checkerboard and grid patterns.

4.4 Validation of the predictive formula for the displacement and strain

resolutions

The objective here is to check if the predictive formulas given in Eq. 8 are experimentally
verified when they are fed with experimental values of K and σimage estimated with Eq. 17.
Only the checkerboard pattern is considered for the sake of simplicity. Fig. 14 shows the
displacement and strain resolutions given by the predictive formulas of Eq. 8. Their empirical
counterparts deduced from the experiments through Eq. 19 are superimposed for comparison
purposes. The results discussed in the preceding section were obtained with ℓ = p′ = 0.2 mm
only. Two other values are considered here, namely ℓ = 1.5× p′ = 0.3 mm and ℓ = 2× p′ =
0.4 mm, which means that the Gaussian kernel used in the PSF progressively increases from
one case to each other.

The experimental results and the values given by the model are in good agreement.
Both the displacement and the strain resolutions decrease as ℓ increases, which is logical
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Figure 14: Comparison between predicted and measured values of the displacement resolu-
tions σux

and σuy
as a function of ρ for three values of ℓ, checkerboard pattern.

since an increasing number of pixels is taken into account when extracting the phases, thus
progressively averaging out the noise. The main difference between model and experiment
can be observed for the displacement resolution and for the lowest values of ρ. This difference
increases as ℓ increases. Since this difference mainly concerns the displacement resolution, it
is maybe due to the fact that RBM is not correctly removed for these values, and/or that
the number of pixels is too low to correctly encode the sought information.

27



4.5 Comparison between checkerboard and grid

In Fig. 9, an important remark is that both the displacement and strain resolutions are
systematically lower for the checkerboard than for the grid, which confirms and generalizes
the conclusion given in [19] since the latter was obtained for one value of ρ only. The
cause of this difference is given by Eq. 8 and by the preceding remarks on K and σimage.

Indeed, the quantities involved in the predictive Eq. 8 are inversely proportional to
K

σimage
,

which represents the signal-to-noise ratio (SNR) for the phases. Since these phases are then
multiplied (among others) by the period p of the pattern defined in Fig. 2, and since this

period is
√
2 times greater for the grid than for the checkerboard,

K

σimage
shall be multiplied

by
√
2 for the checkerboard to fairly compare the SNR between grid and checkerboard in

terms of displacement and strain.
It has been seen above that K and σimage evolve in a different way as a function of

ρ for each type of pattern, but the fact that the displacement and strain resolutions are
always lower for the checkerboard than for the grid is merely due to the fact that K and

σimage combine with each other in such a way that the SNR, namely
K

σimage
for the grid and

√
2× K

σimage
for the checkerboard, is always greater for the checkerboard than for the grid.

Fig. 15 shows the ratio between the resolution obtained for the checkerboard and its
counterpart obtained for the grid. These resolutions are obtained by fitting the experimen-
tal results with a power law and dividing the expression found for the checkerboard by its
counterpart found for the grid. This ratio is always lower than 1, thus experimentally con-
firming the fact that checkerboards are better patterns than grids in terms of sensor noise
propagation to the final displacement and strain maps. It is worth noting that the difference
in performance between the two types of patterns increases as ρ increases, with a maximum
relative difference of 20% for the displacement and 25% for the strain for the highest values
of ρ.

5 Conclusion

The influence of the sampling density of periodic patterns on sensor noise propagation to
displacement and strain maps was studied in this paper. Periodic patterns such as checker-
board and 2D grid were considered, the former being expected to be optimal for measuring
displacements and strains in terms of sensor noise propagation. The sampling density was
merely estimated by the number of pixels per period ρ. The patterns being periodic, the
minimization of the optical residual was not performed in the spatial domain with Digital
Image Correlation but in the Fourier domain, with as spectral method, namely the Localized
Spectrum Analysis. Theoretical predictions claim that the noise level in these maps, which
was estimated here through the displacement and strain resolutions calculated with a con-
stant spatial resolution from one case to another, is inversely proportional to ρ. The main
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Figure 15: Ratio between displacement and strain resolutions for the checkerboard and the
grid.

conclusion is that this is not exactly the case, some quantities such as the modulus of the
Windowed Fourier Transform and the mean value of the noise in the images themselves being
also impacted by ρ. A conclusion of this study is that the influence of ρ on the displacement
and strain resolutions can reasonably be modeled with a power law, as claimed by theoretical
predictions, but with a power lower than -1. Another conclusion is that it is confirmed that
checkerboards lead to a lower noise level in displacement and strain maps than 2D grids,
the difference between the two increasing as ρ increases. It has been observed during these
experiments that the contrast in checkerboard images was lower than the contrast in 2D grids
whatever the value of ρ. This effect is presumably due the Point Spread Function of the lens.
Other lenses featuring a better resolution power than the one of the lens used in the present
study should be considered in future studies to confirm this point, and to give even lower
noise levels in displacement and strain maps than the ones characterized in the present work.
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Appendix A: definition of the metrological parameters used in

this study

Different metrological parameters are discussed in this paper, namely the measurement res-

olution, the bias and the spatial resolution. The measurement resolution can either be the
displacement resolution or the strain resolution. All these quantities are throughly defined
in [8]. These definitions are recalled below for the sake of completeness and clarity:

Measurement resolution: in Ref. [46], the measurement resolution is defined by the small-

est change in a quantity being measured that causes a perceptible change in the corresponding

indication. More precisely, it is proposed in [47] to define it as the change in quantity being

measured that causes a change in the corresponding indication greater than one standard de-

viation of the measurement noise, which enables us to quantify the measurement resolution.
This definition is quite arbitrary, any other (reasonable) multiple of the standard deviation
being also potentially acceptable, but the idea is that the resolution quantifies the smallest
change not likely to be caused by measurement noise [47]. The measurement resolution is
here either the displacement resolution or the strain resolution, depending on the quantity
of interest.

Bias: there are several causes for the systematic error observed with full-field measurement
techniques. We consider here the so-called matching bias, which concerns both DIC and
LSA. A classic way to assess it is to consider a synthetic reference sine function with a
given amplitude, and to consider that the relative loss of amplitude quantifies this bias,
as in Ref. [48, 49, 50] for DIC or in [51, 52] for LSA. The quantity can be estimated by
considering the displacement field returned by a given technique when processing a pair of
synthetic images, the current one being the reference one deformed through a particular wave
defined in [52, 29] The bias is denoted by λ. The systematic error due to the interpolation
function used to have both the reference and the deformed images in the same coordinate
system [53, 23, 54] is not considered here because it concerns only DIC and not LSA [29].

Spatial resolution: the spatial resolution denoted by ℓ is defined here by the lowest period

of a sinusoidal deformation that the technique is able to reproduce before losing a certain

percentage of amplitude, in other words before the bias reaches a certain value, this quantity
being chosen a priori [49]. The advantage of this definition is that it is not based on an
arbitrary value for the subset size in DIC or for the window used while processing a periodic
pattern with LSA. This makes it possible to compare the spatial resolution between these
two techniques, whose principle is totally different. This definition of the spatial resolution
holds here for the phase, and consequently for the displacement. It also holds for the phase
derivatives and the strain components if no smoothing is performed before differentiating the
phases and the displacements. Otherwise the spatial resolution is all the more impaired as
the width of the filter increases.
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Appendix B: influence of ρ on the displacement and strain res-

olutions with a width of the Gaussian window constant in pixel

In the following, symbol ∼ means “proportional to”. K and σimage being assumed to be
constant, one can deduce from Equation 7:





σu[m] ∼ pc

ℓ

σε[−] ∼ pc

ℓ2

(20)

Let now give any length in pixel instead of in meter in the expressions of σu and σε above.
Denoting by xpx any length expressed in pixel, x being its counterpart expressed in meter,
we have x = xpx × c, where c is the size in meter of the square region covered by a pixel on
the specimen. We can deduce from Equation 20





σu[m] ∼ ppxc

ℓpx

σε[−] ∼ ppx
ℓ2px

(21)

Assuming now the Gaussian window used in the WFT has the same width in all cases,
ℓpx is constant. Thus, we have in this particular case





σu[m] ∼ ppxc

σε[−] ∼ ppx

(22)

We can also express σu in pixel instead of in meter. We have, as for any length, σupx
=

σu
c
.

Thus





σu[m] ∼ ppxc

σupx
[−] ∼ ppx

σε[−] ∼ ppx

(23)

Bearing in mind that ρ is the number of pixels per period p′ (see the definition of p′ in

Fig. 2 above), we have ppx =

√
2

2
ρ for the checkerboard and ppx = ρ for the grid. Hence, we

can deduce from Equation 23:
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



σu[m] ∼ ρc

σupx
[−] ∼ ρ

σε[−] ∼ ρ

(24)

c is the size of a pixel in meter, thus c =
p′

ρ
and





σu[m] does not depend on ρ

σupx
[−] ∼ ρ

σε[−] ∼ ρ

(25)
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[42] F. Sur and M. Grédiac. Sensor noise modeling by stacking pseudo-periodic grid images
affected by vibrations. IEEE Signal Processing Letters, 21(4):432–436, 2014.

[43] F. Murtagh, J-L Starck, and A. Bijaoui. Image restoration with noise suppression using
a multiresolution support. Astronomy and Astrophysics Supplement Series, 112:179–189,
1995.

[44] F.J. Anscombe. The transformation of Poisson, binomial and negative-binomial data.
Biometrika, 35(3-4):246–254, 1948.

[45] B. OShea. Diffraction and detector considerations for high resolution imaging. 2018.
SLAC Technical Note: SLAC-TN-18-001. Stanford University.

[46] International vocabulary of metrology. Basic and general concepts and associated terms,
2008. Third edition.

[47] A. Chrysochoos and Y. Surrel. Chapter 1. Basics of metrology and introduction to
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R. Rotinat, and V. Valle. Demodulation of spatial carrier images: Performance analysis
of several algorithms. Experimental Mechanics, 53(8):1357–1370, 2013.
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