SPIKE, an automatic theorem prover – revisited
Sorin Stratulat

To cite this version:

HAL Id: hal-02965319
https://hal.science/hal-02965319v2
Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SPIKE, an automatic theorem prover – revisited

Sorin Stratulat
Université de Lorraine, CNRS, LORIA
F-57000 Metz, France
Email: sorin.stratulat@loria.fr

Abstract—SPIKE, an induction-based theorem prover built to reason on conditional theories with equality, is one of the few formal tools able to perform automatically mutual and lazy induction. Designed at the beginning of 1990s, it has been successfully used in many non-trivial applications and served as a prototype for different proof experiments and extensions. The first paper introducing SPIKE is [14], published shortly after the tool was created. The goal of this paper is to highlight and bring together in one spot the major changes supported by SPIKE since then.

1) Introduction: Historically, SPIKE was built during a period when several formula-based Noetherian induction methods issued from Musser’s completion-based inductionless induction (or proof-by-consistency) technique [33] have been designed. Some of them have been implemented into theorem provers, for example, RRL [30] integrated the test-set induction method [29], and Focus [20] a generalization of the term-rewriting induction [21] for conditional theories. Inspired by the rewriting techniques previously tested with the ORME system [32], SPIKE [14] implemented a different induction method [15], [31] that combines features from explicit induction and inductive completion techniques.

As time went by, SPIKE was continuously considered among the ‘active’ automatic induction-based provers; it mainly served as a prototype for testing several extensions of conditional theories and induction-based reasoning techniques that led to many successful proof experiments on non-trivial applications. The goal of the paper is to highlight the major changes supported by SPIKE since the publication of [14], which gave rise to its current version. The source code, examples of specification files, and papers related to different applications and extensions are available online [43].

In the rest of the paper, we set the theoretical backgrounds of the reasoning by induction on equational clauses, then we introduce the inference system of SPIKE and the layout of a standard specification file. In the end, we show how to prove conjectures and interact with the tool.

2) The SPIKE Prover:

a) The ‘reasoning by induction’ setting: SPIKE implements an instance of the Noetherian induction principle applied on a Noetherian poset of equational clauses (or just clauses). Compared to other instances adapted for first-order reasoning, several clauses can be simultaneously tested to verify whether they are consequences of a given set of axioms \(Ax \) written as conditional equalities. SPIKE can reason on sorted and constructor-based specifications that should satisfy some properties, like the ground convergence and (strongly sufficient) completeness. These constraints guarantee the existence of the initial model for \(Ax \). Formally, assuming that \(M \) is the initial model of \(Ax \), we denote by \(\Phi \models_M \phi \) the fact that the clause \(\phi \) is an initial \(M \)-consequence (or just consequence) of a set of conditional equalities \(\Phi \), \(\phi \) is initially \(M \)-valid (or just valid) and is denoted by \(\models_M \phi \) if it is a consequence of \(Ax \). In general, given \((\mathcal{E}, \leq)\) a non-empty poset of formulas that is wellfounded (or Noetherian), i.e., any strictly decreasing sequence of formulas from \(\mathcal{E} \) is finite, the formula-based instance [38] of the Noetherian induction principle states that if \(\{ \gamma \mid \gamma \in \mathcal{E}, \gamma < \delta \} \models_M \delta \), for any formula \(\delta \in \mathcal{E} \), then for all \(\rho \in \mathcal{E}, \models_M \rho \). Put it in a simpler way for our logical context, during the proof of a clause, smaller clauses can be used in terms of induction hypotheses (IHs). This makes it a natural choice for reasoning on proofs requiring lazy induction, when the IHs are generated by need, and mutual induction, when different clauses need each other to cross fertilize for making the induction reasoning successful. The induction proof method used by SPIKE, called implicit induction, is an application of this principle using reductive techniques as rewriting. It was firstly suggested in [31] and formally presented in [21]. The mutual induction feature helped SPIKE to prove the Gilbreath Card trick problem [28], firstly with 5 lemmas [16] then with only 2 lemmas [17], while other provers using different proof techniques succeeded with significantly more lemmas (see [17] for a comparison).

The ground convergence and completeness properties of a specification can be checked more easily, by using syntactic criteria, if the specification is many sorted and the set of function symbols is split into constructor and defined function symbols. SPIKE was initially designed to deal with free constructors such that there is no equality relation between any two different constructor symbols. Several extensions have been introduced in SPIKE since [14] in order to deal with: i) non-free constructors [13], ii) parameterized specifications [9], [10], iii) associative-commutative theories [6], iv) observational proofs [7], [18], and v) simultaneous check of the completeness and ground convergence properties of a specification [12]. Most of them led to distinct proof systems that are no longer maintained in spite of their theoretical and practical interests.

b) The inference system: In [14], the inference rules and the proof strategy implementing the implicit induction method were built-in. Each rule is a transition between pairs \((E, H)\), where \(E \) are conjectures and \(H \) are premises consisting of previously processed conjectures that do not have minimal counterexamples, i.e., minimal ground clauses that are not valid. By applying a rule, a conjecture from the current proof state is replaced by a potentially empty set of new conjectures, and may be added as a premise in order to participate to further inference steps. Proof derivations are built by successively applying inference rules starting from an initial state. They
may finish with i) success, if they end with an empty set of conjectures, ii) error, if a counterexample is detected, and iii) failure, if none of the previous cases is encountered and no rule can be applied. A proof is a successful derivation that starts with an empty set of premises.

Later on, different proof needs led to hardcode into the system several variants of a same rule. More flexibility has been achieved with the addition of a strategy language [1] allowing to define new proof strategies by the user. It has been combined later with a methodology for building modular inference rules using contextual cover sets (CCSs) [36]. The core of the methodology is an abstract inference system made of two rules: ADDPREMISE and SIMPLIFY, defined as:

\textbf{ADDPREMISE:} \((E \cup \{\phi\}, H) \vdash_A (E \cup \Phi, H \cup \{\phi\})\),

if, for any countereample (ctx.) \(\phi\), it is a ctx. \(\psi\) in

i) \(E \cup \Phi\) such that \(\psi < \phi\), or

ii) \(H\) such that \(\psi \leq \phi\).

\textbf{SIMPLIFY:} \((E \cup \{\phi\}, H) \vdash_A (E \cup \Phi, H)\),

if, for any ctx. \(\phi\) of \(\phi\), there is a ctx. \(\psi\) in

\(E \cup \Phi \cup H\) such that \(\psi \leq \phi\).

Each inference rule replaces a conjecture \(\phi\) with a potentially empty set of new conjectures \(\Phi\). The system was extended with a third rule, DELETE, that is a particular case of SIMPLIFY when \(\Phi\) is empty.

Any SPIKE inference rule instantiates one of the abstract rules by implementing its elementary CCSs, i.e. the CCSs that are not built using composition operations, by the means of reasoning modules. A reasoning module can produce a CCS with a particular reasoning technique using in terms of IHs clauses from the context defined by the instantiated abstract rule. The main reasoning techniques are based on rewriting, case analysis and variable instantiations.

We give as example the definition of a rewriting-based inference operation implemented as an instance of SIMPLIFY:

\begin{verbatim}
rewriting_rule = simplify(id, [rewriting(rewrite, L|R|C, *)]);
\end{verbatim}

In the first step, the identity reasoning module \texttt{id} builds \(\{\phi\}\) as the intermediate CCS for \(\phi\). The application of the rule succeeds if, in the second step, the \texttt{rewriting} module succeeds to rewrite once, due to the \texttt{rewrite} argument and at any position (\texttt{*}), the only clause \(\phi\) of \(\{\phi\}\) with conditional rewrite rules from the lemmas (\texttt{L}), axioms (\texttt{R}) and current context (\texttt{C}). The resulting clause is the unique clause of \(\Phi\).

Some of the reasoning techniques have been changed since [14]. For example, the technique for instantiating variables with elements of a test-set, based on the depth of the lhs of the axioms [17], was replaced by a narrowing technique involving only the axioms defining the head symbol of some (sub)term including the variables to be instantiated [5].

New reasoning techniques have been added to deal with non-trivial applications. The implementation of a combination between a decision procedure for linear arithmetic and a congruence closure algorithm [3], [35] allowed to validate the MJRTY algorithm [19] using a lemma proposed by N. Shankar (according to [27]); also, more than 60% of the conjectures required to certify the conformity algorithm for a telecommunication protocol [34] have been automatically proved. This implementation, as well as the ‘black-box’ integration schema of the Z3 [22] SMT solver as a reasoning module, are described in [39]. SPIKE also includes several decision procedures for proving inductive theorems without induction reasoning [2]. They help to decide the inductive validity of equations involving natural numbers and lists.

The validation of the JavaCard platform [5] was the most challenging case study ever experienced by SPIKE. The inference system has been adapted to manage variables of parameterized sorts as well as existential variables. New inference rules have been designed to better handle the information from the conditional part of (conditional) conjectures, like i) the auto simplification rule in order to rewrite an equality condition other parts of the conjecture, and ii) the augmentation rule which adds new conditions issued from the conclusion of a conditional equality given as lemma if the conditions of the lemma are proved from the conditions of the conjecture. The efficiency of the implementation has been improved for dealing with specifications counting more than 400 defined function symbols and 2200 axioms, for example by recording the failure context at the conjecture level in order to avoid useless computation.

As shown in [21], the implicit induction method is based on a unique induction ordering, globally defined over the set of clauses derived during a proof. It is implemented by reductive inference systems such that, at the ground level, the new conjectures from any proof step are smaller than (and sometimes equal to) the replaced conjecture. The reductive techniques, as rewriting, introduce new ordering constraints to be satisfied by the specification as well as the conjectures from the proof derivation. The induction ordering is the multiset extension of the mpo ordering [4] over terms using a precedence over the function symbols provided by the user. The mpo ordering also serves to orient the axioms into rewrite rules. Since some reasoning techniques, like the instantiation of variables from the current conjecture, require the reduction of the instances by rewriting, SPIKE warns the user if the mpo ordering built from the input precedence cannot orient the axioms into rewrite rules. If no precedence is provided by the user, SPIKE analyses the axioms and tries to infer a successful precedence.

The inference system of SPIKE has been extended to implement for the first time reductive-free cyclic proofs [38], by keeping the best features of explicit and implicit induction reasoning. A cycle consists of a circular linked list of proof derivation chunks, called history chunks. Each link symbolises the application of an instance of the head conjecture from a
history chunk as IH in the proof of the conjecture ending the previous history chunk in the list. By following a particular proof strategy, referred to as the DRaCuLa strategy, the cycle can discharge its linking IHs by checking ordering constraints involving only instances of the conjectures starting the history chunks. Therefore, the cyclic induction reasoning allows to use non-reductive proof techniques along history chunks and axioms not orientable into rewrite rules as long as the ordering constraints are satisfied.

A useful property for an inference system is the refutational soundness which guarantees that, whenever a counterexample is detected at the current step, the initial conjectures are refuted. Very few inference rules implemented by SPIKE may add new counterexamples during the proof derivation, e.g., by the generalisation of existential into universal variables [5]. By attaching history information to each conjecture, the detected counterexamples can lead to particular ground instances of the initial conjectures that can be further checked for validity.

The refutational completeness is another useful property, satisfied by previous inference systems [11], [15]. Since the addition of a strategy language, this property is no longer guaranteed because one of the conditions to be satisfied is the fairness of the proof strategy. However, the user still can use some built-in strategies known to be refutationally complete. A classical proof strategy mainly privileges the inference rules that are instances of DELETE, then SIMPLIFY, and finally ADDPREMISE. We give as example the definition of the fullind strategy.

% instance of Delete
tautology_rule = delete(id, [tautology]);
% instance of Simplify
total_case_rewriting_rule = simplify(id, [total_case_rewriting (simplify_strat, R, *)]);
% instances of AddPremise
case_rewriting_rule = add_premise(total_case_rewriting (simplify_strat, R, *), [id]);
split_rule = add_premise(generate, [id]);
% proof strategies
stra = repeat (try (tautology_rule, rewriting_rule, total_case_rewriting_rule
print_goals, case_rewriting_rule));
fullind = (repeat (stra, split_rule),
print_goals_with_history);
start_with: fullind

The reasoning module total_case_rewriting, implementing the conditional rewriting technique, was used to build instances of both SIMPLIFY and ADDPREMISE. try and repeat take a list of rules as arguments. try visits each rule in the list until the first succeeds. repeat executes them repeatedly until no new conjecture is produced or a counterexample is found. The print_ rules print the current state of the proof. start_with points to the used strategy.

c) Layout of a specification file: The structure of a standard SPIKE specification from the file name.spike is:

specification: name
sorts: list of sorts

Acknowledgments: The author would like to thank Adel Bouhoula and Michaël Rusinowitch, as well as the people involved in supporting, developing and using SPIKE.