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This paper presents an experimental approach aimed at analyzing and validating a two-scale nonlinear Finite Element (FE 2 ) simulation of a 3D composite structure. The studied composite material consists of polyamide thermoplastic matrix, exhibiting viscoelastic-viscoplastic behavior with ductile damage, reinforced by woven glass fabric whereby inelastic and anisotropic damage behavior is considered. The multiscale parallel computation is founded on the periodic homogenization at the microscopic scale, which considers the geometric description of the reinforcement's architecture and accounts for time-dependent and non-linear local behavior of each constitutive phase. For the numerical implementation at microscopic and macroscopic scales, an advanced UMAT subroutine is developed and combined with a parallelization technique in the commercial software Abaqus/Standard. The multilevel computation is achieved simultaneously at both scales (microscopic and macroscopic) through an incremental scheme.

Numerical results of the FE multiscale simulation are analyzed and compared with the experimental results obtained for different stacking sequence configurations of a 3D woven composite holed plate subjected to tension. Besides the good agreement between the experimental and the predicted load-displacement global responses, the numerical simulation of the macroscopic strain fields reasonably agrees with those measured experimentally through the Digital Image Correlation (DIC) technique. Furthermore, the performance and the capabilities of the multiscale

Introduction

Structural simulations and design of large components for industrial composite applications are computationally costly and assumed that the constituve materials are often macroscopically homogeneous, obeying phenomenological constitutive laws. Nonetheles, the real materials are heterogeneous on a lower local scale, where it is necessary to capure the main mechanisms governing the behavior and failure. This is more evident in the case of composites whereby predicting the non-linear macro-structural response should necessarily intergrate the material microstructural features. These composites are typical heterogeneous materials consisting of reinforced fiber and matrix, that exhibits anisotropic properties as a whole. In a highly competitive industrial context underpinned by considerations of high strength, ductility and durability with light weight, the use of these composites is considered an added-value technological solution for transport applications. The main advantage of these materials is their great flexibility in order to obtain a large spectrum of mechanical properties by modifying the architecture of the microstructure during the design step [START_REF] Boufaida | Analyse des propriétés mécaniques de composites taffetas verre/matrice acrylique en relation avec les propriétés d'adhésion des fibres sur la matrice[END_REF].

Polyamide (PA6,6)-based woven fabric composites are known to have a complex behavior caused by the coupling between the periodic microstructure effects of the reinforcement and the rheological time-dependent properties of the thermoplastic matrix. In addition, these materials are extremely sensitive to environmental conditions, namely relative humidity and temperature.

This dependence leads to a combination of rheology and complex degradation processes of the various constituents. The prediction of the material response of these materials at present is mainly dependent on experimental testing [START_REF] Soden | The design and fabrication of 3d multi-layer woven t-section reinforcements[END_REF]; [START_REF] Behera | Mechanical behavior of 3d woven composites[END_REF]; [START_REF] Dai | Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3d woven composites[END_REF], because of the lack of advanced predictive computing tools and numerical simulations adapted to the weave architectures, which restricts the intensive use of these materials for structural applications in the industries. For this reason, several authors have developed several numerical modeling methods in order to understand the behavior of these materials. For example, one can describe the overall behavior of the woven composite in a purely phenomenological aspect [START_REF] Ladeveze | Damage modelling of the elementary ply for laminated composites[END_REF]; [START_REF] Hochard | Modelling of the mechanical behaviour of woven-fabric CFRP laminates up to failure[END_REF]; [START_REF] Puck | Failure analysis of FRP laminates by means of physically based phenomenological models[END_REF]; [START_REF] Hochard | A progressive first ply failure model for woven ply CFRP laminates under static and fatigue loads[END_REF]; [START_REF] Ruijter | Analysis of mechanical properties of woven textile composites as a function of textile geometry[END_REF]; [START_REF] Hochard | A generalized damage model for woven ply laminates under static and fatigue loading conditions[END_REF]; [START_REF] Krasnobrizha | Modelling of the hysteretic behavior of woven composite using a collaborative elastoplastic damaged model with fractional derivatives[END_REF]; [START_REF] Krasnobrizha | Modélisation des mécanismes d'hystérésis des composites tissés à l'aide d'un modèle collaboratif élasto-plastique endommageable à dérivées fractionnaires[END_REF]; [START_REF] Mahboob | Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates[END_REF]; [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF]. Indeed, the effective properties of the material are calculated by modeling the overall structure, considering the material as a homogeneous without the microstructure effect. These models require a large number of parameters that have to be identified for each new material microstructure. Indeed, once the phenomenological model's parameters are identified, they are valid only for a specific configuration of the microstructure. This is a real limitation of these models, thereby disabling a structural design and microstructure optimization.

To deal with this issue, the material response of these composites can be also predicted with the use of multi-scale modelling approaches by considering the microstructure as a Representative Volume Element (RVE). These approaches describe the overall response of composite structures with taking into account the effects induced by the behavior of the various constituents of the microstructure. The modeling of these materials behavior accounting directly for the microstructural characteristics is most of the times computationally prohibited. Thus alternative techniques have been proposed based on the definition of an equivalent homogeneous medium.

Among the existing theories, the periodic homogenization which is particularly adopted for composites with periodic microstructure, such as woven composites. In these theories, the heterogeneous material is replaced by an equivalent homogenized medium with an equivalent macroscopic response, in an average sense [START_REF] Bensoussan | Asymptotic methods for periodic structures[END_REF]; [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF]; [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics[END_REF]; [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]; [START_REF] Murat | Topics in the mathematical modelling of composite materials[END_REF]; [START_REF] Chatzigeorgiou | Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials[END_REF]. The equivalent medium plays the role of the link between the microscopic effects, induced by the different material constituents and their geometric characteristics in the microstructure, and the overall behavior of the heterogeneous material at the macroscopic scale [START_REF] Chatzigeorgiou | Computational micro to macro transitions for shape memory alloy composites using periodic homogenization[END_REF]; [START_REF] Charalambakis | Mathematical homogenization of inelastic dissipative materials: a survey and recent progress[END_REF]. In general, the resolution of such problem needs the use of numerical approaches, mostly the Finite Element (FE) method [START_REF] Chatzigeorgiou | Thermomechanical Behavior of Dissipative Composite Materials[END_REF]. Moreover, most publications in the literature on multi-scales approach using periodic homogenization concerning woven composites, describe the overall response of the RVE Carvelli and Poggi (2001); [START_REF] Tang | Progressive Failure Behaviors of 2D Woven Composites[END_REF]; [START_REF] Angioni | A comparison of homogenization methods for 2-D woven composites[END_REF]; [START_REF] Bednarcyk | Meso-and micro-scale modeling of damage in plain weave composites[END_REF]; [START_REF] Zhou | Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites[END_REF]; [START_REF] Wang | Progressive failure analysis of 2d woven composites at the meso-micro scale[END_REF]; [START_REF] Zhou | A multi-scale stochastic fracture model for characterizing the tensile behavior of 2d woven composites[END_REF]. However, The majority of the studies that predict the macroscopic response of composite structures with considering the microstructure effect through the FE 2 scheme focus on composite reinforced with short fibers, long fibers or inclusions.

Besides the macroscopic discretization, a multiscale (FE 2 ) analysis of such composite structures requires a discretisation at the local scale (microscopic) of the microstructure [START_REF] Feyel | Multiscale FE2 elastoviscoplastic analysis of composite structures[END_REF] ;[START_REF] Feyel | Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials[END_REF]; [START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF]; [START_REF] Asada | Fully implicit formulation of elastoplastic homogenization problem for two-scale analysis[END_REF]; [START_REF] Nezamabadi | A multilevel computational strategy for handling microscopic and macroscopic instabilities[END_REF][START_REF] Nezamabadi | A multiscale finite element approach for buckling analysis of elastoplastic long fiber composites[END_REF]; [START_REF] Tchalla | An abaqus toolbox for multiscale finite element computation[END_REF]; [START_REF] Papadopoulos | The impact of interfacial properties on the macroscopic performance of carbon nanotube composites. a fe2-based multiscale study[END_REF]; [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF]. A recent work by [START_REF] He | A hierarchical multiscale model for the elastic-plastic damage behavior of 3d braided composites at high temperature[END_REF] presents a hierarchical multiscale (FE 2 ) analysis of the elasticplastic damage behavior and the failure mechanism in (3D) braided composite structures at high temperature. [START_REF] Xu | Data-driven multiscale finite element method: From concurrence to separation[END_REF] have proposed a novel data-driven multiscale finite element method for composite materials and structures. Applications of multiphysics FE 2 schemes, based on the homogenization theory, concerning the same reinforcement have been developed in [START_REF] Sengupta | A multiscale finite element method for modeling fully coupled thermomechanical problems in solids[END_REF]; [START_REF] Javili | Computational homogenization in magnetomechanics[END_REF]; [START_REF] Schröder | Algorithmic two-scale transition for magneto-electromechanically coupled problems: Fe2-scheme: Localization and homogenization[END_REF]; [START_REF] Berthelsen | Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings[END_REF]; [START_REF] Berthelsen | Computational homogenisation of thermo-viscoplastic composites: Large strain formulation and weak micro-periodicity[END_REF]; [START_REF] Tikarrouchine | Fully coupled thermoviscoplastic analysis of composite structures by means of multi-scale three-dimensional finite element computations[END_REF], and for the textile composite in [START_REF] Rique | Constitutive modeling for time-and temperaturedependent behavior of composites[END_REF]. Furthermore, a new FE 2 strategy has been proposed recently for concurrent modelling. By combining the equations governing both levels of FE analyses, the strategy incorporates the two levels of simulations into one step. The latter results in a unique single system of equations [START_REF] Tan | Direct fe2 for concurrent multilevel modelling of heterogeneous structures[END_REF]. Moreover, [START_REF] Rouf | Multiscale structural analysis of textile composites using mechanics of structure genome[END_REF] proposed a new multiscale structural analysis using mechanics of structure genome in order to predict the properties of textile composites.

In addition, most of the works carried regarding the comparison between the numerical and experimental results for the woven composite have considered a single macroscopic material point [START_REF] Scida | A micromechanics model for 3d elasticity and failure of woven-fibre composite materials[END_REF]; [START_REF] Tabiei | Comparative study of predictive methods for woven fabric composite elastic properties[END_REF]; [START_REF] Anzelotti | Mesomechanic strain analysis of twill-weave composite lamina under unidirectional in-plane tension[END_REF]; [START_REF] Saleh | Micro-mechanics based damage mechanics for 3d orthogonal woven composites: Experiment and numerical modelling[END_REF].

The novelty of the present work resides in the multilevel FE analysis and its experimental validation for viscoelastic-viscoplastic damage response of thermoplastic reinforced woven composites, taking into account the effects induced by the microstructure. In this framework, the multi-scale FE 2 approach proposed in [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF] is applied for a structural computation on a 3D polyamide reinforced by 2-2 twill weave glass woven fabric. The multilevel approach is able to i) predict the macroscopic response of the composite at any material point in the structure, taking into account the effects of the microstructure, and ii) provide the spatiotemporal evolution of damage and the strain at the micro-macro scales.

An experimental procedure was achieved in order to establish the validity and to demonstrate the performances of fully integrated multi-scale modelling approach (FE 2 ) in the case of a structural computation on woven composites. The studied material consists of a polyamide 6-6 (PA66) matrix and a E-glass balanced woven reinforcement with a 2-2 twill weave pattern. The microstructure consists of a PA66 matrix represented by a viscoelastic-viscoplastic behavior with ductile damage and yarns represented by a non-linear behavior with anisotropic damage. A comparison between the experimental and numerical results was performed on a 3D holed plate subjected to a displacement-controlled monotonic tension loading at four different displacement rates. Three stacking sequence configurations of the holed composite plate have been tested, It should be pointed out that this validation process of FE 2 approach with experimental data has never been considered in the literature for the case of 3D woven fabric reinforced polyamide composite structures.

The layout of the present paper is as follows: in Section 2, the theoretical formulation of the homogenization theory is described as well as the principle of the scale transition between the microscopic and the macroscopic fields. The section also presents the multi-scale computational framework. In section 3, details of the geometrical characteristics of the woven composite microstructure are presented as well as the nonlinear constitutive laws of the phases (PA66 matrix and yarns). The section 4 presents the experimental procedure and the testing configurations as well as the kinematic full-field measurement technique adopted for the validation of the FE 2 approach. The section 5 is devoted to the comparison of the experimental and numerical results in terms of overall responses and macroscopic strain fields for the three studied stacking orientations. Finally in the section 6, the capabilities of the developed multiscale FE 2 strategy are discussed and demonstrated through the prediction of the spatiotemporal distribution of the damage in the matrix and the yarns, the microscopic strains and the local stresses computed at the local scale.

Theoretical background: scale transition principles in composites under mechanical processes

This section presents briefly the general concepts of the periodic homogenization and its implementation into the FE 2 computational framework. The full description of the methodology and the computational details are provided in [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF].

Let's consider a structure, made by a composite material, under prescribed mechanical loading. The objective of the periodic homogenization is to define a behavior model for an equivalent homogeneous medium which, on average, behaves the same way with the composite (Fig. 1). The substitution is performed based on scale transition principles between the microscale (the unit cell) and the macroscopic structure. The equivalent medium properties are defined through a proper investigation at the microstructure level.

The periodic homogenization framework utilized in this work considers two scales: i) the macroscopic scale, representing the scale of the composite structure, whose coordinates are defined by the vector x, and ii) the microscopic scale, representing the microstructure, whose coordinates are described with the vector x.

Variables and equations at the two scales

At the macroscopic level, the heterogeneous medium occupies the volume V and is bounded by the surface ∂V with the outward unit vector n. Each point of the macro-structure is assigned with a position vector x in V. At the microscopic level, the unit cell contains information of different constituents observed at micro-scale and their geometry. Each macroscopic point x is Figure 1: Schematic representation of a composite structure and substitution of the composite with an equivalent medium. The definition of the equivalent medium by periodic homogenization is valid as long as the separation between the scales (i.e. V >> V) holds [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF]. assigned with a representative periodic unit cell, which occupies the volume V and is bounded by the surface ∂V with the outward unit vector n.

Ignoring inertia effects,the motions of any macroscopic material point M (x) and microscopic material point M (x, x) are governed by the macroscopic and the microscopic equations (kin- ematics, equilibrium, constitutive law), respectively, which are presented in Table 1. A bar above a symbol denotes macroscopic quantity. At the two scales, the displacement vectors are u and u, the strain tensors are defined as ε and ε and the stress tensors are denoted by σ and σ.

The macroscopic body forces are denoted as ρb. The connection between the scales is achieved Table 1: Macroscopic and microscopic scale governing equations [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics[END_REF].

Equations

Macro-scale Micro-scale

∀ x ∈ V ∀ x ∈ V, ∀ x ∈ V Equilibrium div (σ) + ρb = 0 div(σ) = 0 Kinematics ε = grad sym (u) ε = grad sym (u) Constitutive law σ ≡ σ (x, ε) σ ≡ σ (x, x, ε) Strain energy rate Ẇε = σ : ε Ẇε = σ : ε
through the usual averaging procedure of micromechanics methods. At the macroscopic position

x:

ε(x) = 1 V V ε(x, x)dV, σ(x) = 1 V V σ(x, x)dV, Ẇε (x) = 1 V V Ẇε (x, x)dV. (1) 
The last relation is the well known as Hill-Mandel energy principle.

Concerning the loading conditions: i) the macroscopic scale is subjected to the external (i.e.

structural) displacement and/or traction boundary conditions (Fig. 1), and ii) the microscopic scale (unit cell) is subjected the the so-called periodicity conditions, which are described by the expression

u i -u j = ε • x i -x j ∀x ∈ ∂V, ( 2 
)
where i, j denote a pair of opposite parallel material points at the unit cell boundary, x i , x j denote their position and u i , u j are their displacement vectors. At every macroscopic position, the macroscopic strain tensor ε corresponds to the attached unit cell.

For nonlinear materials, the total stress σ is expressed in terms of the total strain ε and various internal state variables, which are described by the general vector V k . The constitutive relations in such materials very seldom can be determined explicitly. For this reason incremental procedures are adopted, in which the relationship between the microscopic stress and strain is provided by the linearized expression:

∆σ(x) = D ε (x) : ∆ε (x) ∀x ∈ V, (3) 
where D ε is the local tangent operator tensor defined as the numerical differentiation of the stress with respect to the total strain. This tensor is obtained for each material phase from its constitutive law using appropriate techniques (for instance, a return mapping algorithm). For the macroscopic scale, the same incremental methodology based on implicit resolution scheme is used. Proper linearization permits to write the macroscopic constitutive law in the analogous incremental form:

∆σ (x) = D ε (x) : ∆ε (x) ∀x ∈ V, (4) 
where D ε denotes the macroscopic tangent operator tensor. Computational details on obtaining this tensor can be found in [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF][START_REF] Tikarrouchine | Fully coupled thermoviscoplastic analysis of composite structures by means of multi-scale three-dimensional finite element computations[END_REF].

Multi-scale computational framework: FE 2 approach

The previously discussed homogenization theory can be adopted for structural computations through the so-called FE 2 framework. The FE 2 methodology requires three main ingredients, according to Feyel (1999):

(i) A geometrical description and a FE model of the unit cell, allowing to model the behavior at the microscopic scale.

(ii) The local constitutive laws of constituents that serve to define the response of each material of the microstructure.

(iii) Scale transition relationships that connect the microscopic and the macroscopic fields (stress and strain).

As detailed in [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF], this approach is based on simultaneous treatment of the equations in both scales, the macroscopic scale and the unit cell. At the macroscopic scale, each material point is assigned with a unit cell. At each step of the analysis, the macroscopic structure is solved using finite element (FE) analysis for the prescribed boundary conditions. The obtained information, namely the macroscopic strain, is transmitted from every macroscopic Gauss point to the corresponding unit cell. The latter is solved under the periodicity conditions, accounting for the non-linear behavior of the material constituents of the microstructure. The transfer of the macroscopic strain to the unit cell is achieved with the help of the constraint drivers technique, which introduces six additional degrees of freedom that represent the macroscopic state of the corresponding unit cell (further details on this technique are provided in [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF][START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF][START_REF] Tikarrouchine | Fully coupled thermoviscoplastic analysis of composite structures by means of multi-scale three-dimensional finite element computations[END_REF].

The solution of the non-linear problems in any unit cell is performed through another finite element analysis, using an implicit resolution scheme based on the Newton-Raphson algorithm.

Once the microscopic fields are obtained, proper averaging provides the macroscopic stress and the macroscopic tangent modulus of the corresponding macroscopic Gauss point. This information is important for the macroscopic analysis.

The adopted numerical algorithm is schematically illustrated in Fig. 2. This algorithm has been developed for the study of 3D composite structures, as the one related with this work (woven composite structure). The finite element computations have been performed using the finite element commercial software Abaqus. The connection between the unit cells and the macroscopic Gauss points is achieved through proper Meta-UMAT fortran subroutines and python scripts.

Figure 2: Algorithm of FE 2 methodology adopted for the studied woven composite structures. The algorithm has been adopted to the FE commercial software Abaqus with the help of specially designed fortran subroutines and python scripts. V k represents the set of internal variables and t denotes the total time.

Microstructure of woven composite and local constitutive laws

Geometrical characteristics of the microstructure

The studied composite in this work consists of glass fibers in woven formation embedded in a thermoplastic PA66 matrix material. The architecture of the woven reinforcement follows a 2-2 twill weave pattern (Fig. 3). The geometric representation of the microstructure is adopted for FE computations through the TexGen software [START_REF] Sherburn | Geometric and mechanical modelling of textiles[END_REF][START_REF] Lin | Modelling and simulating textile structures using texgen[END_REF]. This microstructure is defined through geometric parameters a, b, e, L and δ (Fig. 3-b), obtained by X-ray microtomography (Fig. 4 and Table 2, [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF]. a and b are the cross-sections dimensions of the yarns (which are assumed of elliptic shape), e represents the thickness of the microstructure, L is the distance in the plane between the centers of the two consecutive parallel yarns and δ is the space between two perpendicular yarns. In reality, the yarns are composed of numerous unidirectional fibers embedded in a matrix. In this work, the yarns constitutive law has been obtained via a hybrid micromechanics-phenomenological scheme, accounting for non-linear behavior and anisotropic damage (discussed later in this section).

! " ! # # The volume fraction of the yarns in the unit cell is about 59%. The microtomography analyses have shown that the fibers volume fraction in the yarns is about 85%. These analyses allow to obtain the volume fraction of the fibers in the composite, which is about 50%. The X-ray microtomography analyses provide also the dimensions of the studied unit cell, which are about 15 mm × 15 mm × 0.5 mm. It is worth noticing that in such type of composites, the periodicity of the microstructure is well respected in the plane of the yarns, but it is not always satisfied in the thickness direction. In this paper, it is assumed that microstructural periodicity is satisfied in all directions.

The macro-structure under investigation is a perforated plate (plate with a hole at its center).

Fig. 5-a illustrates the FE discretization of the macro-structure. The analysis is limited to the mechanically important zone and is performed on the 1/4 of the perforated plate. The FE mesh consists on 162 nodes and 64 elements of type C3D8 (8 nodes with 8 integration points, 3D solid elements for static analysis). Figs. 5-b and 5-c demonstrate the FE discretization of the unit cells attached to each macroscopic integration point of the macro-model. This FE mesh consists on 8522 nodes and 40060 elements of type C3D4 (tetrahedral element with 4 node and one integration point, 3D solid element for a static analysis). To facilitate the application of the periodic boundary conditions, he mesh of the unit cell is designed to be periodic.

Constitutive laws

Apart from the geometrical characteristics of the unit cell, the knowledge of the behavior of each constituent is important for the accurate analysis of the studied composite. The two material constituents in this study are the PA66 matrix and the glass yarns (Fig. 6). The behavior of the PA66 matrix is described by a viscoelastic-viscoplastic behavior with ductile damage (Praud et al., 2017a), while the yarns are modeled considering inelastic behavior coupled with anisotropic damage (Praud et al., 2017b). For the reader's convenience, the essential points of the two constitutive laws are briefly discussed in the following subsections. The numerical implementation details of the two models are not discussed here and the reader is referred to the previously published works (Praud et al., 2017a,b). 

Local constitutive model for the matrix

The constitutive law of the polymer matrix of the studied composite was developed in Praud et al. (2017a) using an appropriate thermodynamic framework. Semi-crystalline polymers, such as PA66, are known for their complex dissipative behavior, which depends on the time and the environmental conditions, namely the relative humidity (RH)and the temperature [START_REF] Arruda | Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers[END_REF][START_REF] Launay | Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide[END_REF][START_REF] Arif | In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity[END_REF][START_REF] Malpot | Effect of relative humidity on mechanical properties of a woven thermoplastic composite for automotive application[END_REF]Praud et al., 2017a). These materials are also subjected to stiffness reduction during loading caused by the damage mechanisms which are linked to the initiation, the growth and the coalescence of micro-cracks [START_REF] Nouri | Modélisation et identification de lois de comportement avec endommagement en fatigue polycyclique de matériaux composites à matrice thermoplastique[END_REF][START_REF] Nouri | Fatigue damage model for injection-molded short glass fibre reinforced thermoplastics[END_REF][START_REF] Detrez | Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification[END_REF][START_REF] Margueres | Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmission[END_REF].

The adopted model takes into account viscoelasticity, viscoplasticity and ductile damage in the PA66 matrix. The viscoelasticity is described through a series of Kelvin-Voigt branches, considering a differential representation. The damage is introduced via the continuous damage mechanics ("CDM") based on the well known principle of effective stress [START_REF] Lemaitre | Coupled elasto-plasticity and damage constitutive equations[END_REF][START_REF] Lemaitre | Mechanics of solid materials[END_REF][START_REF] Lemaitre | Engineering damage mechanics : ductile, creep, fatigue and brittle failure[END_REF].

The rheological scheme of the constitutive law is illustrated in Fig. 7. It is composed of a linear elastic spring, N viscoelastic branches of Kelvin-Voigt positioned in series, and a viscoplastic branch consisting of a non-linear spring and a non-linear dash-pot assembled in parallel. The model is formulated within the framework of thermodynamics of irreversible processes [START_REF] Germain | Cours de mécanique des milieux continus, Tome I[END_REF][START_REF] Germain | Sur certaines définitions liées à l'énergie en mécanique des solides[END_REF]. The thermodynamic framework postulates the existence of a thermodynamic potential, as a function of state variables: the total strain ε, the viscoelastic strains of the branches ε v i , the viscoplastic strain ε p , the viscoplastic scalar p and the damage D. In this study, the thermodynamic potential is given as the Helmholtz free energy of the form:

ψ ε, ε v i , ε p , p, D = 1 2 ε - N ∑ i=1 ε v i -ε p : (1 -D) C e : ε - N ∑ i=1 ε v i -ε p + N ∑ i=1 1 2 ε v i : (1 -D) C v i : ε v i + p 0 R(ξ) dξ.
(5)

In the above expression, C e and C v i are the initial stiffness tensors of the linear spring and the spring of the i th Kelvin-Voigt branch, respectively, and R is the hardening function. The thermodynamic associated variables are obtained from the derivation of the potential with respect to the state variables. The corresponding equations are given in Table 3.

From the Clausius-Duhem inequality (i.e. second principle of thermodynamics), the mechanical dissipation is always positive or null [START_REF] Grmela | Hamiltonian extended thermodynamics[END_REF][START_REF] Jou | Extended irreversible thermodynamics revisited (1988-98)[END_REF]. Consequently, under isothermal conditions, the dissipated energy rate is equal to the difference between the rate of the strain energy Ẇε and the rate of the stored energy ρ ψ:

Φ = Ẇε -ρ ψ = N ∑ i=1 σ v i : εv i + σ : εp -R ṗ + Y Ḋ ≥ 0.
From the dissipated energy rate, evolution laws and activation criteria of the inelastic mechanisms can be designed. (Praud et al., 2017a;[START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF].

Observable state variable

Associated variable

ε σ = ρ ∂ψ ∂ε = (1 -D) C e : ε - N ∑ i=1 ε v i -ε p

Internal state variables

Associated variables Evolution laws

σ v i σ v i = -ρ ∂ψ ∂ε v i = -(1 -D) C v i : ε v i + σ εv i = ∂φ * ∂σ v i = V -1 v i 1 -D : σ v i p R = ρ ∂ψ ∂p = R (p) ṗ = - ∂F ∂R λ = λ ε p -σ = ρ ∂ψ ∂ε p εp = ∂F ∂σ λ = 3 2 Dev(σ) eq(σ) ṗ 1 -D D -Y = ρ ∂ψ ∂D = Y e + N ∑ i=1 Y v i Ḋ = ∂F ∂Y λ = Y S β ṗ 1 -D Criterion Activation VP ( λ > 0 if f ≥ 0) f (σ, R; D) = eq(σ) 1 -D -R(p) -R 0 f + = Q ( ṗ)
single spring and each Kelvin-Voigt branch, Y e and Y v i respectively. The hardening function R is chosen here in the form of a power law. Finally, S and β are material parameters related to the damage. It is noted that the model considers visco-damage mechanism, thus the damage is activated simultaneously with the viscoplasticity (Praud et al., 2017a;[START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF].

The material parameters of the matrix constitutive laws have been identified in the work of [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF] from experiments directly performed on the unfilled polyamide 6-6 for a humdity rate of RH50 % . These parameters are summarized in Table 4.

Local constitutive model for the yarns

Concerning the constitutive law of the yarns, an anisotropic damage model coupled with inelastic behavior has been chosen (Praud et al., 2017b). The yarns are composed of numerous unidirectionally oriented fibers embedded in the matrix material. Their overall response can be considered as equivalent to that of a unidirectional composite. The utilized constitutive law is based on a hybrid micromechanical-phenomenological formulation [START_REF] Guillaume | Multiscale modeling of the mechanical behavior of woven composite materials[END_REF]; [START_REF] Zhu | A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects[END_REF][START_REF] Qi | A numerical damage model for initially anisotropic materials[END_REF]. This model takes into account the anisotropic damage in unidirectional composites, as well as the permanent inelastic strains imposed by non-closure of the micro-cracks.

The damage is introduced through a micromechanical description of a representative volume element (RVE) which contains micro-cracks. The stiffness reduction induced by the presence of these cracks is obtained through the Mori-Tanaka approach [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF], by introducing a micro-cracks density γ c in the RVE of the yarns. This stiffness reduction is represented by a fourth-order tensor D(γ c ) that gradually reduces the initial transverse isotropic stiffness tensor C 0 of the undamaged unidirectional composite material, as shown in Fig. 8. In these materials, the anisotropic damage is often accompanied by permanent inelastic strains (here denoted as ε ir ), caused by non-closure effect of the micro-cracks [START_REF] Ladeveze | Damage modelling of the elementary ply for laminated composites[END_REF][START_REF] Boubakar | A meso-macro finite element modelling of laminate structures -Part I : Time-independent behaviour[END_REF][START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF]Praud et al., 2017b). As a consequence, the total strain in the yarns phase is expressed as the sum of the elastic strain, ε e , and the inelastic strain, ε ir ,

ε = ε e + ε ir . (6)
The overall behavior of the yarns is described by the following Helmholtz free energy potential:

ρψ (ε, ε ir , γ c ) = 1 2 (ε -ε ir ) : (C 0 -D(γ c )) : (ε -ε ir ) . (7) 
The associated variables related to the yarn phase are given by

σ = ρ ∂ψ ∂ε , -σ = ρ ∂ψ ∂ε ir , Y c = -ρ ∂ψ ∂γ c , ( 8 
)
where σ denotes the total stress and Y c is the energy density release. Similarly to the case of the matrix constitutive law, the second principle of thermodynamics inforces the mechanical dissipation to be always positive or null. This dissipation is given by the difference between the rate of the strain energy Ẇε and the rate of the stored energy ρ ψ,

Φ = Ẇε -ρ ψ = σ : ε -ρ ∂ψ ∂ε : ε + ∂ψ ∂ε ir : εir + ∂ψ ∂γ c γc = σ : εir + Y c γc ≥ 0. ( 9 
)
The evolution laws are obtained from the above dissipation via an appropriate potential. Further details about this model can be found in Praud et al. (2017b). A summary of the thermodynamically implicated variables, the evolution laws, the micro-mechanically related fields and the damage activation criterion are provided in Table 5. In this Table, ε 0 and σ 0 are the local strain and stress respectively in the virgin, i.e. undamaged, part of the material, connected with the relation σ 0 = C 0 : ε 0 . Moreover, A 0 (γ c ) is the strain localization tensor in the virgin part of the material, calculated through the Mori-Tanaka scheme [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]. H c is the anisotropic quadratic interaction criterion, in which the fourth order tensor H is structured in a way that H c stays sensitive only to the components 22 and 12 of σ 0 .

It is important to be noted that in this constitutive law, the viscoelastic response of the matrix inside the yarns is ignored. This simplification is motivated by the fact that the volume fraction of the fibers in the yarns is very high (about 85%), reducing significantly the time dependent effects of the matrix in the yarns.

Since it is impossible to separate the yarns from the matrix and perform mechanical tests directly on them, the material properties of the former can be identified only with inverse engineering from tests in composite specimens. [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF] has performed an experimental campaign using quasi-static tests and the obtained parameters for the yarns are summarized in Table 6.

Table 5: Summary of constitutive equations of the yarns (Praud et al., 2017b).

Observable state variable

Associated variable

ε σ = ρ ∂ψ ∂ε = [C 0 -D(γ c )] : (ε -ε ir )
Internal state variables

Associated variables

Evolution laws

ε ir -σ = ρ ∂ψ ∂ε ir εir = ∂F ∂σ λ = Λ(σ)γ c γ c -Y c = ρ ∂ψ ∂γ c γc = ∂F ∂Y c λ = λ

Micro-mechanical variables

Local mean strain and stress in the virgin part of the material

ε 0 ε 0 = A 0 (γ c ) : (ε -ε ir ) σ 0 σ 0 = C 0 : A 0 (γ c ) : (ε -ε ir ) Criterion Activation ( λ > 0 if H c = sup (H c )) H c = √ σ 0 : H : σ 0 γ c = g (sup (H c ))

Experimental approach

Test specimens

The experiments were carried out using plates of PA66-based woven composites. Five test specimens were cut from these plates using a water jet cutting machine with suitable size and shape for the clamping jaws of the loading machine. The dimensions of the machined specimens are schematically presented in Fig. 9. The gage part contains 9 RVEs in-length and 4 RVEs in-width, with a RVE size of about 15 mm 2 .

After manufacturing, the samples were conditioned in a climatic chamber under an air containing 50% of relative humidity at 65 o C. The conditioning process was continued until the water concentration was relatively homogeneous throughout the specimen (∼ 2.8%). All specimens were sealed prior to testing to maintain a controlled uniform humidity.

Laminated perforated plates having symmetric and balanced stacking sequences were investigated in the current work. The thickness of a single layer was about 0.5 mm, making a total thickness of 2.0 mm for the whole laminated specimens. Three stacking sequence configurations were considered: samples oriented at 30˚, 45˚and 90˚from the warp direction (Fig. 10). 

Experimental setup and data processing

Monotonic tensile tests at different rates ( uy = 0.024 mm.s -1 , uy = 0.033 mm.s -1 , uy = 0.24 mm.s -1 and uy = 0.33 mm.s -1 ) have been performed at 23˚C room temperature using a MTS 647 hydraulic testing machine (Fig. 11). The kinematic images were recorded using a visible charge-coupled device (CCD) camera. This camera is equipped with a 2400 x 2000 pixel CCD sensor with an acquisition rate of approximately 30 images per second. Random pattern was achieved by spraying the specimen surface with a painted speckle pattern. A cold light source was used to obtain well-illuminated and high-contrast images.

In the current work, two images per seconds were recorded for the high-rate tests ( uy = 0.24 mm.s -1 and uy = 0.33 mm.s -1 ). For the low-rate tests ( uy = 0.024 mm.s -1 and uy = 0.033 mm.s -1 ), the acquisition frequency was set at 1 image per second. Displacement fields were thus determined using the VIC2D image correlation software [START_REF] Meraghni | Parameters identification of fatigue damage model for short glass fiber reinforced polyamide (PA6-GF30) using digital image correlation[END_REF][START_REF] Chemisky | Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests[END_REF]. Since the experimental data were inherently noisy, appropriate spatial smoothing methods were employed to reduce the effect of noise on the strain estimate. 

Experimental results and comparison with the FE 2 approach

In the following, the overall and local responses of the investigated woven composite under the three studied configurations are compared with the numerical results computed using the FE 2 approach.

Overall mechanical response

±90 woven composite

The ±90 woven composite was first subjected to 0.024 and 0.24 mm.s -1 monotonic tensile test till macroscopic fracture. Fig. 12 presents the experimental and numerical macroscopic response (force in kN versus displacement in mm) of the composite. Generally speaking, the results show good correlation between both responses. The corresponding error at t 1 , t 2 and t 3 is given in Table 7 for both loading rates. The response of the composite is quasi-elastic till 7.5 kN without significant rate effect. This can be attributed to the direction of the loading; the load is mainly carried by the weft yarns in their longitudinal direction, which behave elastically with an important stiffness.

Figure 12: Macroscopic responses of the studied composite for the ±90 staking sequence under both loading rates 0.024 and 0.24 mm.s -1 . Comparison between DIC and FE 2 approaches.

Table 7: Error estimate between both DIC and FE 2 responses for the ±90 configuration.

uy (mm.s -1 ) t 1 = 0.5 s t 2 = 1.1 s t 3 = 1.8 s 0.24 0.8% 3% 8% uy (mm.s -1 ) t 1 = 5 s t 2 = 11 s t 3 = 18 s 0.024 0.6% 3.8% 11%

It is worth mentioning that due to the balanced nature of the woven structure, 90 degrees configuration (equivalent to 0 degrees configuration) presents weak nonlinear response and becomes quite insensitive to the loading rate. The choice of low rates for this configuration is motivated by the need to avoid rapid brittle failure compared to the responses exhibited by 45 and 30 degrees configurations.

±45 woven composite

The ±45 woven composite was subjected to 0.033 and 0.33 mm.s -1 monotonic tensile test until the macroscopic fracture. Fig. 13 presents the experimental and numerical macroscopic response of the composite for both displacement rates. As illustrated in this figure, the mechanical response computed through the proposed multi-scale approach is over-estimated. The associated error between DIC and FE 2 results is given in Table 8. The mechanical response of the ±45 composite shows a more pronounced nonlinear behaviour compared to that of the ±90 configuration. This non-linearity can be attributed to i) the rheology of the thermoplastic matrix, ii) its ductile damage and/or iii) the degradation in the yarns (transverse cracks).

Figure 13: Macroscopic responses of the studied composite for the ±45 staking sequence under both loading rates 0.033 and 0.33 mm.s -1 . Comparison between DIC and FE 2 approaches. uy (mm.s -1 ) t 1 = 0.3 s t 2 = 2.1 s t 3 = 4.5 s 0.33 0.65% 6.4% 7.3% uy (mm.s -1 ) t 1 = 3 s t 2 = 21 s t 3 = 45 s 0.033 5% 12% 13.4%

±30 woven composite

Fig. 14 shows the experimental versus FE 2 macroscopic responses of the ±30 woven composite subjected to both 0.033 and 0.33 mm.s -1 loading rates. It can be seen from the figure that the multi-scale model captures well the macroscopic experimental responses till t 1 and starts to over-estimate the structure's behaviour when reaching t 2 with an estimated error of 18% at t 3 , as reported in Table 9.

The global behaviour of the ±30 composite presents also a non-linear response. This response can be attributed to either the rheology of the PA66 matrix and/or the degradation in the yarns caused by the presence of the micro-cracks. It is pointed out that at lower loading rates, the 30 and 45 degrees configurations have more pronounced nonlinearity due to the high viscoelasticviscoplastic effects. For increased loading rates the composite's behavior becomes more rigid.

Since the FE homogenization results present always stiffer response than the experimental findings, one can expect that the error will decrease when the loading rate increases, as shown in Tables 8 and9. The difference in the overall responses of all composite configurations highlights the strong anisotropy of the studied material induced by the architecture of the woven microstructure.

Figure 14: Macroscopic responses of the studied composite for the ±30 staking sequence under both loading rates 0.033 and 0.33 mm.s -1 . Comparison between DIC and FE 2 approaches. uy (mm.s -1 ) t 1 = 0.6 s t 2 = 2.2 s t 3 = 3.2 s 0.33 0.59% 12% 16% uy (mm.s -1 ) t 1 = 6 s t 2 = 22 s t 3 = 32 s 0.033 5.6% 15.6% 18.3%

Local mechanical response

±90 woven composite

The kinematic assessments are analyzed in terms of engineering strain components. Three strain fields regularly captured throughout the test for three strain components (ε 22 , ε 11 and ε 12 in the comparison is restrained in the quarter of the discretized perforated plate for the shear component. Fig. 17 demonstrates a good correlation between the shear strain, ε 12 , measured by both DIC and the FE 2 approach at the three considered analysis times (t 1 , t 2 and t 3 ). These results clearly illustrate that the proposed FE 2 approach, based upon microstructural effects, describes well the response of the composite material in the specific structural calculations. It is pointed out that, for sake of manuscript conciseness, the microstructure responses are presented only for the larger loading rates.

Figure 15: Longitudinal strain fields of the ±90 composite assessed at t 1 , t 2 and t 3 showing both DIC and FE 2 results for uy = 0.24 mm.s -1 .

Figure 16: Transverse strain fields of the ±90 composite assessed at t 1 , t 2 and t 3 showing both DIC and FE 2 results for uy = 0.24 mm.s -1 .

Figure 17: Shear strain fields of the ±90 composite assessed at t 1 , t 2 and t 3 showing both DIC and FE 2 results for uy = 0.24 mm.s -1 .

±45 woven composite

Fig. 18 presents both DIC and FE 2 longitudinal strain fields, ε 22 , for the ±45 composite at the three selected times t 1 , t 2 and t 3 . Figs. 19 and 20 present the transverse, ε 11 , and shear, ε 12 , strain components at t 3 for both DIC and FE 2 under the loading rate of 0.33 mm.s -1 .

Figure 18: Longitudinal strain fields of the ±45 composite assessed at t 1 , t 2 and t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

It can be seen from Fig. 18 that the FE 2 results are close to those of the DIC approach with hotspots well captured by the multi-scale model. However, clear differences in the spatiotemporal distribution and the order of magnitude are observed for both transverse and shear strain components (Figs. 19 and20). These differences can be explained by: i) the macroscopic boundary conditions applied to the structure as well as the assumed symmetry conditions on the FE model of the macro-structure, ii) the periodicity condition of the microstructure that is not "scrupulously" taken into account in the width direction of the perforate plate, iii) the non-inclusion of damage mechanisms in the yarns, such as decohesion in the yarns/matrix interface, inter-yarns friction and yarns rotation when the composite is loaded in its shear plane. Figure 20: Shear strain fields of the ±45 composite assessed at t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

±30 woven composite

Fig. 21 presents a comparison of the spatio-temporal distribution of both DIC and FE 2 longitudinal strain components results captured at t 1 , t 2 and t 3 for a loading rate 0.33 mm.s -1 .

Figs. 22 and 23 present the spatial distribution of the transverse and shear components at t 3 . For the longitudinal strain component, the multi-scale approach results are quite similar to those of the experimental approach (Fig. 21). However, a significant difference is observed for the normal transverse and shear components (Fig. 22 and Fig. 23). The reasons for these discrepancies are the same as those reported in the previous subsection. Indeed, off-axis loading causes significant rotations between the yarns in the microstructure, which in turn causes decohesion in the yarns/matrix interfaces. These aspects are not taken into account in the numerical approach. Overall, the developed FE 2 strategy gives quite reliable predictions on different stacking sequence configurations. These results are very satisfactory for such complex structural analysis.

Nevertheless, the integration of other complex mechanisms in the constitutive laws (rotation of the yarns, interfacial damage, etc.) is important for capturing more accurately the structure's response during the off-axes loading.

Macro-micro analysis of the mechanical response of the woven composite

In this section, the capacities of the FE 2 approach to describe and capture the mechanical response and the dissipative behaviour of the studied composite at different scales are discussed.

To do so, the macroscopic and microscopic numerical results extracted from the monotonic tensile tests are presented and investigated for both ±90 and ±30 composite configurations.

6.1. FE 2 approach for the ±90 composite 6.1.1. Macroscopic fields Fig. 24 presents the spatial distribution of the macroscopic stress fields computed using the FE 2 approach, as well as the microscopic stress distribution at unit cells of selected macroscopic points. It can be seen that the maximum longitudinal stress is located at the frontiers of the hole (point A as indicated in Fig. 24-b). On the other hand, the most stressed point on compression in direction 1 is in point B (Fig. 24-a). The latter finding is also observed experimentally.

Figure 24: Spatial distribution of the macroscopic stress fields ( σ 11 , σ 22 and σ 12 ) in the perforated plate computed through the FE 2 approach for the ±90 configuration.

Fig. 25 illustrates the macroscopic stress-strain curves at the point A of the longitudinal, transverse and shear strain components for the strain rates 0.24 and 0.024 mm.s -1 . The maximum stress is observed in the loading direction, σ 22 . Fig. 26 illustrates the stress-strain curves at the point B for the same loading rates. These figures clearly show that the most important stress is in the compression direction, σ 11 . The out of plane stress σ 33 is very small for both rates. This is expected due to the low thickness of the composite holed plate.

Figure 25: Macroscopic mechanical responses of the ±90 composite configuration at point A of the structure computed used the FE 2 approach for the components 11, 22, 33 and 12 under both loading rates 0.24 and 0.024 mm.s -1 .

Figure 26: Macroscopic mechanical responses of the ±90 composite configuration at point B of the structure computed used the FE 2 approach for the components 11, 22, 33 and 12 under both loading rates 0.24 and 0.024 mm.s -1 .

Microscopic fields

Figs. 27 and 28 present the local stress fields in the microstructure at points A and B of the macro-structure during the last stages of the loading. Fig. 27-b demonstrates that, when the composite is mainly loaded in the weft direction, most of the load is carried by the weft yarns in their transverse direction. Meanwhile, a small part of this load is also carried by the warp yarns in their longitudinal direction (Fig. 27-d). This causes micro-cracks concentration in the yarns-crossing areas, as can be seen in Fig. 27-h. The same observation holds for the in-plane shear 12 component (Fig. 27-f). For the matrix, most of the stress concentration is observed in the yarns-crossing areas, as can be seen in Figs. 27-a, -c and -e. This may lead to softening within the matrix and/or fracture in the yarns. Such aspect is not taken into account in the proposed constitutive models used in the FE 2 approach. In addition, it is worth noting that extremely high stress magnitudes in some specific zones of yarns-crossing are indeed computational artifact and cannot be avoided since the proposed constitutive models do not account for fracture or localization effects. 6.2. FE 2 approach for the ±30 composite

Macroscopic fields

Figure 29 illustrates the spatial distribution of the macroscopic normal stresses in the directions 1 and 2 and the macroscopic shear stress 12. Fig. 30 presents the stress-strain curves at the point A of the components σ 11 , σ 22 , σ 33 and σ 12 for both loading rates 0.033 and 0.33 mm.s -1 .

A quasi-linear mechanical response with negligible rate effect is observed in the direction of the warp and weft yarns. On the other hand, a significant non-linearity appears in the shear response with a rate effect becoming more important, as demonstrated in Fig. 30. This result is due to the off-axis loading conditions of the composite, which involves a significant non-linearity in the shear direction caused by the rheology of the matrix, its damage and the micro-cracks in the yarns.

Figure 29: Macroscopic stress fields distribution associated with the components σ 11 , σ 22 and σ 12 in the macrostructure for the ±30 configuration, estimated through the proposed FE 2 approach.

Figure 30: Macroscopic mechanical responses of the ±30 composite configuration at the point A of the structure estimated through the FE 2 approach for the components 11, 22, 33 and 12. The loading rates were set at 0.033 and 0.33 mm.s -1 .

Microscopic fields

Fig. 31 shows the microscopic stress fields distribution in the matrix and in the yarns, while Fig. 32 illustrates the progressive spatio-temporal evolution of the damage within the two phases, as well as the micro-cracks density evolution in the yarns. It can be seen that the microstructure undergoes both tensile stress in the weft yarns direction and compression in the warp yarns direction (Fig. 31-b). The microstructure is also subjected to 12 shear stress (Fig. 31-d), where the local stresses in the warp and weft yarns are reversed.

This causes stress concentrations in the crossing zones of the yarns which can lead to a fast micro-cracks evolution in the warp and weft yarns (Fig. 32-f). In addition, the overall load is progressively transferred to the matrix where the stresses are mainly concentrated in the inter-yarns areas (Fig. 31-a) and the damage within the matrix develops progressively, as shown in Fig. 32-e. These damage mechanisms have a significant effect on the macroscopic response of the composite especially in the 12 shear behaviour.

The progressive spatio-temporal evolution of the damage within the matrix (Fig. 32) is mainly located in the yarns-crossing areas. It can be seen form the figure that the degradation is developed progressively within the warp, weft yarns direction and essentially between the yarns. Indeed, when the matrix is locally damaged, a part of the load is progressively transferred to the yarns. This is due to the microstructure interactions which are accompanied by an increase in the intra-yarns micro-cracks density. (e) Local damage, D, in the matrix at (t = 4.2 s).

(f) Local micro-crack density, γ c , in the yarns at (t = 4.2 s).

(g) Local damage, D, evolution in the yarns for the element 5173 marked above in Fig. 32-e.

(h) Local micro-crack density, γ c , evolution in the yarns for the element 6756 marked above in Fig. 32-f.

Figure 32: Spatio-temporal evolution of the damage, D, in the matrix and the micro-cracks density, γ c , in the yarns at the three selected analysis times: t = 1.8 s, t = 3.4 s and t = 4.2 s for the ±30 composite configuration.

Conclusions and further work

This work presents an experimental validation of the multi-scale three-dimensional modelling strategy for thermoplastic-based woven composites structures, using the FE 2 framework developed in [START_REF] Tikarrouchine | Three-dimensional fe2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF]. The approach is fully integrated in the finite element commercial code Abaqus/Standard, using parallel computations. The main advantage of the approach is their modularity and capacity to integrate any type of composites with periodic microstructure.

The numerical results obtained by the FE 2 calculation on a perforated plate are compared with the experimental results for three stacking sequences configurations ([0 0 ], [±30 0 ] and [±45 0 ]).

Strongly nonlinear local constitutive models integrating the rheology (VE-VP) in the PA66 matrix and its ductile damage as well as the degradation in the yarns (transverse damage) are used and assembled through the multi-scale FE 2 approach, to predict the macroscopic behavior of the studied composite, taking into account the effects of the microstructure observed in each constituent of the unit cell.

The periodic unit cell that represents the microstructure at each macroscopic integration point of the studied composite was generated using microstructural data obtained by X-ray microtomography. The parameters of the two behavior models were identified in the work of [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF] at RH50 % for the thermoplastic matrix as well as for the yarns. The performances and the capacities of the proposed approach were highlighted through comparisons between the numerical predictions and the experimental results obtained for three configurations of stacking sequence.

The experimental results obtained by DIC show an acceptably good agreement with the numerical simulations using (FE 2 calculation). Indeed, despite the challenge to capture the microstructural effects through multiscale FE computations, the obtained results exhibit a relative quantitative and qualitative consistency in the trends. These results highlight the performances and the capabilities of the proposed approach to predict the spatio-temporal evolution of the various phenomena observed on the microstructure level, namely rheology and the damage initiation and propagation in the matrix as well as micro-cracks accumulation in the yarns, etc. The results also show the ability of the approach to capture the anisotropic response of the composite material induced by the microstructure effects, time dependency and the strain rate effects of the thermoplastic matrix. In a future work, the use of infrared thermography for the full-field temperature measurement will be combined with the DIC technique towards the experimental validation of the computationally efficient multiscale (FE 2 ) method that has been already extended to the fully coupled thermomechanical framework Tikarrouchine et al.

(2019); [START_REF] Berthelsen | Computational homogenisation of thermo-viscoplastic composites: Large strain formulation and weak micro-periodicity[END_REF]. Besides the kinematic fields, the combination will allow capturing the local thermomechanical responses as well as the coupling of the damage with the local dissipations and its influence on the temperature variations during a thermomechanical loading. Moreover, further investigations on the sensitivity analysis for material parameters and geometric uncertainties can be considered in order to improve the accuracy of the approach 

  namely [0 0 ], [±30 0 ] and [±45 0 ]. The global response in terms of force vs. displacement and macroscopic local kinematic fields are measured experimentally using Digital Images Correlation (DIC) technique. Experimental load-displacement responses and the local macroscopic strain fields are then compared with those computed numerically through the multiscale FE simulation.

Figure 3 :

 3 Figure 3: Geometric definition of the woven microstructure constructed via TexGen. The grey domain represents the matrix phase, while the pink and green domains are the warp and weft yarns, respectively.

Figure 4 :

 4 Figure 4: Microstructure of the studied composite obtained through X-ray microtomography.

Figure 5 :

 5 Figure 5: Spatial discretization of dedicated macroscopic and microscopic models for multi-scale analysis. The macroscopic FE model represents 1/4 of the Zone Of Interest (ZOI) of the plate, whereas (e) stands for the thickness of the plate.

Figure 6

 6 Figure 6: 2-D weaving pattern representation. The grey domain represents the matrix phase, while the pink and green domains are the warp and weft yarns, respectively.

Figure 7 :

 7 Figure 7: Rheological scheme of the PA66 thermoplastic constitutive law.

Figure 8 :

 8 Figure 8: Damage assessment using mean field homogenization approach for the yarns constitutive law: (a) Initial state of the transverse isotropic unidirectional material. (b) Introduction of micro-cracks density γ c in the RVE . (c) Evaluation of the stiffness reduction induced by γ c by homogenization[START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF].

Figure 9 :

 9 Figure 9: Geometry of the specimens used for the experiments showing the relative position of the interested part as well as the modeled part.

Figure 10 :

 10 Figure 10: Sketch of composite sample configurations used for the experiments.

Figure 11 :

 11 Figure 11: Experimental setup showing the CCD camera used for recording displacement surface fields.

Figs. 15 ,

 15 Figs. 15, 16 and 17, respectively) are compared with those obtained by the FE 2 calculation at the area of interest in the perforated plate. The values of the featured strain components are depicted and graduated on a colorbar. Generally speaking, the kinematic patterns indicate a gradual development of strain localization zones. These are clearly visible for all strain components. The spatio-temporal distributions for both longitudinal and transverse fields (Figs. 15, 16) are very comparative for both DIC and FE 2 simulation. Due to the anti-symmetry in the 12 direction,

Figure 19 :

 19 Figure 19: Transverse strain fields of the ±45 composite assessed at t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

Figure 21 :

 21 Figure 21: Longitudinal strain fields of the ±30 composite assessed at t 1 , t 2 and t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

Figure 22 :

 22 Figure 22: Transverse strain fields of the ±30 composite assessed at t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

Figure 23 :

 23 Figure 23: Shear strain fields of the ±30 composite assessed at t 3 showing both DIC and FE 2 results for uy = 0.33 mm.s -1 .

  (a) Local longitudinal stress, σ 11 , in the matrix. (b) Local longitudinal stress, σ 11 , in the yarns. (c) Local transverse stress, σ 22 , in the matrix. (d) Local transverse stress, σ 22 , in the yarns. (e) Local in-plane shear stress, σ 12 , in the matrix. (f) Local in-plane shear stress (σ 12 ) in the yarns (g) Local damage (D) in the matrix. (h) Local micro-crack density (γ c ) in the yarns.

Figure 27 :

 27 Figure 27: Local stress fields at the point A of the ±90 composite structure assessed at the end of the 0.24 mm.s -1 monotonic tensile test. Note that the local stresses in the yarns are expressed in the local coordinate system of each yarn material point.

Figure 28 :

 28 Figure 28: Local stress fields at the point A of the ±90 composite structure assessed at the end of the 0.24 mm.s -1 monotonic tensile test.

  (a) Local equivalent Von Mises stress, eq(σ), in the matrix. (b) Local longitudinal stress, σ 11 , in the yarns. (c) Local transverse stress, σ 22 , in the yarns. (d) Local in-plane shear stress, σ 12 , in the yarns.

Figure 31 :

 31 Figure 31: Local stress fields at the point A of the ±30 composite structure assessed at the end of the 0.33 mm.s -1 monotonic tensile test.

  (a) Local damage, D, in the matrix at (t = 1.8 s). (b) Local micro-crack density, γ c , in the yarns at (t = 1.8 s). (c) Local damage, D, in the matrix at (t = 3.4 s).(d) Local micro-crack density, γ c , in the yarns at (t = 3.4 s).

  [START_REF] Naouar | Meso-scale fe analyses of textile composite reinforcement deformation based on x-ray computed tomography[END_REF];[START_REF] Green | Mechanical modelling of 3d woven composites considering realistic unit cell geometry[END_REF];Huang et al. (2020a,b).

Table 3 :

 3 State and evolution laws of the VE-VPD model of the PA66 matrix

Table 4 :

 4 Material parameters for PA66 matrix at RH50 %[START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF].

	Mechanisms

Table 6 :

 6 Material parameters of the yarns[START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and timedependent behaviour[END_REF].

		Parameters	value unit
	Transversely isotropic stiffness	C 0 1111			65822 MPa
	tensor (non-null components)	C 0 1122 = C 0 1133	7041 MPa
		C 0 2222 = C 0 3333	23947 MPa
		C 0 2233			6971 MPa
		C 0 1212 = C 0 1313	8661 MPa
		C 0 2323 =	1 2	(C 0 2222 -C 0 2233 ) 8488 MPa
	Pure transverse tension threshold R 22			20.0	MPa
	Pure in-plane shear threshold	R 12			7.5	MPa
	1 st Weibull law parameter	S			12.3	-
	2 nd Weibull law parameter	β			2.75	-
	Micro-cracks saturation	γ ∞ c			0.025 -
	Inelasticity in transverse tension	a 22			3.6	-
	Inelasticity for shear 12	a 12			2.15	-

Table 8 :

 8 Error estimate between both DIC and FE 2 responses for the ±45 configuration.

Table 9 :

 9 Error estimate between both DIC and FE 2 responses for the ±30 configuration.