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Introduction

The system of 3D primitive equations (PEs) of meteorology and oceanology is an important model of geophysical fluid dynamics. Today, most numerical weather prediction and climate simulation models are based on them. This system is derived, using hydrostatic approximation, from the 3D Navier-Stokes equations with Coriolis force coupled with the thermodynamic equation (see the book by Zeitlin [START_REF] Zeitlin | Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models[END_REF]). The mathematical study of these equations has attracted a lot of attention in the last two decades. Following the framework introduced by Lions, Temam, and Wang [START_REF] Lions | New formulations of the primitive equations of atmosphere and applications[END_REF][START_REF] Lions | On the equations of the large-scale ocean[END_REF], we consider in this paper the PEs written in the form:

∂ t v + L 1 v + v, ∇ v + w ∂ z v + f v ⊥ + ∇p = h 1 , (0.1) 
∂ z p + θ = 0, (0.2) div v + ∂ z w = 0, (0.3)

∂ t θ + L 2 θ + v, ∇ θ + w ∂ z θ = h 2 + η. (0.4)
The unknowns are the 3D velocity field of the fluid (v 1 , v 2 , w), where1 v = (v 1 , v 2 ) and w are the horizontal and vertical velocity components, the temperature θ, and the pressure p. The number f is the Coriolis rotation frequency, the functions h 1 and h 2 are given source terms, and η is an external perturbation-a control or a random noise. The operators

L 1 = -ν 1 ∆ -µ 1 ∂ zz , L 2 = -ν 2 ∆ -µ 2 ∂ zz
are the viscosity and heat diffusions, where the numbers ν 1 , µ 1 > 0 are the horizontal and vertical viscosities, while ν 2 , µ 2 > 0 are the horizontal and vertical heat diffusivity coefficients. We denote by ∆, ∇, div the 2D (horizontal) Laplacian, gradient, divergence operators:

∆ = ∂ xx + ∂ yy , ∇ = (∂ x , ∂ y ) , div = ∇, • , and v, ∇ = v 1 ∂ x + v 2 ∂ y .
The space variable (x, y, z) is assumed to belong to the torus T 3 = R 3 /2πZ 3 , i.e., all the above functions are 2π-periodic in x, y, and z. Furthermore, we assume that the functions v, p, h 1 are even and the functions w, θ, h 2 , η are odd in z. As a consequence, w, θ, h 2 , η vanish at z = 0.

The unknown functions in system (0.1)-(0.4) can be divided into two types: the prognostic unknowns v and θ, which are determined through an initial boundary value problem, and diagnostic ones w and p, which can be expressed as functions of v and θ. Indeed, from the conservation of mass equation (0.3) and the boundary condition w| z=0 = 0 it follows that w(t, x, y, z) = -z 0 div v(t, x, y, z) dz, (0.5) and from the hydrostatic balance (0.2) that p(t, x, y, z) = p s (t, x, y) -z 0 θ(t, x, y, z) dz. (0.6)

Using equalities (0.5) and (0.6), the following equivalent formulation is obtained for the PEs:

∂ t v + L 1 v + v, ∇ v - z 0 div v(t, x, y, z) dz ∂ z v + f v ⊥
+∇p s (t, x, y) -z 0 ∇θ(t, x, y, z) dz = h 1 , (0.7)

∂ t θ + L 2 θ + v, ∇ θ - z 0 div v(t, x, y, z) dz ∂ z θ = h 2 + η. (0.8)
The well-posedness of these equations has been studied by many authors. The existence of weak solutions is known from the works of Lions, Temam, and Wang [START_REF] Lions | New formulations of the primitive equations of atmosphere and applications[END_REF][START_REF] Lions | On the equations of the large-scale ocean[END_REF], but the uniqueness is still an open problem. In this paper, we deal with strong solutions whose global existence and uniqueness is established by Cao and Titi [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF] in the case of Neumann boundary conditions; see also the paper by Kobelkov [Kob07] for a different proof. In the case of periodic boundary conditions, the global existence of strong solutions is considered by Petcu [START_REF] Petcu | On the three-dimensional primitive equations[END_REF] and in the case of Dirichlet boundary conditions, by Kukavica and Ziane [START_REF] Kukavica | On the regularity of the primitive equations of the ocean[END_REF]. The existence of a global attractor is obtained by Ju [START_REF] Ju | The global attractor for the solutions to the 3D viscous primitive equations[END_REF] and Chueshov [START_REF] Chueshov | A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations[END_REF]. We refer the reader to the reviews [START_REF] Temam | Some mathematical problems in geophysical fluid dynamics[END_REF][START_REF] Petcu | Some mathematical problems in geophysical fluid dynamics[END_REF] for more details and references.

In the periodic setting, the PEs (0.7), (0.8) are considered in the function spaces H and V recalled in Section 1. To formulate the first main result of this paper, we assume that the couple of source terms (h 1 , h 2 ) is a smooth element of H, and η is a control taking values in the space H = span{φ i : i = 1, . . . , 10}, where φ i are the following eigenfunctions of the heat diffusion operator L 2 : cos jx sin z, sin jx sin z, cos jy sin z, sin jy sin z, sin jz, j = 1, 2.

Theorem A. Problem (0.7), (0.8) is approximately controllable by H valued controls. More precisely, for any ε > 0, any time T > 0, any initial condition (v 0 , θ 0 ) ∈ V , and any target (v 1 , θ 1 ) ∈ H, there is a control η ∈ L ∞ ([0, T ], H) such that the unique strong solution (v, θ) of problem (0.7), (0.8) satisfies (v(0), θ(0)) = (v 0 , θ 0 ), (0.9) (v(T ), θ(T )) -(v 1 , θ 1 ) L 2 (T 3 ,R 3 ) < ε. (0.10) Note that the space H of admissible values for the control η is independent of the physical parameters h 1 , h 2 , f, ν i , µ i , i = 1, 2. A more general version of this result is formulated in Theorem 2.3, where a saturation property is specified that ensures the approximate controllability of the system. We also show that if some controlled Fourier modes are added in the velocity equation (0.7), then approximate controllability holds with respect to the stronger norm of the space H 1 (T 3 , R 3 ).

Approximate controllability of PDEs by additive finite-dimensional forces has been studied by many authors in the recent years. The first results are obtained by Agrachev and Sarychev [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF], who considered the Navier-Stokes (NS) and Euler systems on the 2D torus (see also the review [START_REF] Agrachev | Solid controllability in fluid dynamics[END_REF]). Their approach has been generalised by Shirikyan [Shi06,[START_REF] Shirikyan | Exact controllability in projections for threedimensional Navier-Stokes equations[END_REF] to the case of the 3D NS system; see also the papers [START_REF] Shirikyan | Approximate controllability of the viscous Burgers equation on the real line[END_REF][START_REF] Shirikyan | Control theory for the Burgers equation: Agrachev-Sarychev approach[END_REF] by Shirikyan, where the Burgers equation is considered on the real line and on a bounded interval with Dirichlet boundary conditions. Rodrigues and Phan [START_REF] Rodrigues | Navier-Stokes equation on the rectangle: Controllability by means of low mode forcing[END_REF][START_REF] Phan | Approximate controllability for Navier-Stokes equations in 3D rectangles under Lions boundary conditions[END_REF] established approximate controllability of the NS system on 2D and 3D rectangles with Lions boundary conditions. In the periodic setting, Nersisyan [START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF][START_REF] Nersisyan | Controllability of the 3D compressible Euler system[END_REF] considered 3D Euler systems for perfect compressible and incompressible fluids, Sarychev [START_REF] Sarychev | Controllability of the cubic Schrödinger equation via a low-dimensional source term[END_REF] studied the 2D cubic Schrödinger equation, and Nersesyan [START_REF] Nersesyan | Approximate controllability of Lagrangian trajectories of the 3D Navier-Stokes system by a finite-dimensional force[END_REF] considered the Lagrangian trajectories of the 3D NS system.

The proof of Theorem A is based on a technique of applying large controls on short time intervals. Previously, such ideas have been used mainly in the study of finite-dimensional control systems; e.g., see the works of Jurdjevic and Kupka [START_REF] Jurdjevic | Polynomial control systems[END_REF][START_REF] Jurdjevic | Geometric control theory[END_REF] and the references therein. Infinite-dimensional extensions of this technique appear in the above-cited papers of Agrachev and Sarychev. More recently, this approach has been used in the paper of Glatt-Holtz, Herzog, and Mattingly [START_REF] Glatt-Holtz | Scaling and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations[END_REF], where, in particular, a 1D parabolic PDE is considered with polynomial nonlinearity of odd degree, and in the paper of Nersesyan [START_REF] Nersesyan | Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension[END_REF], where the nonlinearity is a smooth function that grows polynomially without any restriction on the degree and on the space dimension.

The main difficulty of the problem considered in this paper comes from the highly degenerate nature of the control system. The form of the saturation property and the argument for its verification are more complicated than in the previously studied situations. When the control acts directly only on the temperature equation, we are able to check the saturation with respect to the L 2 -norm. The latter is known to be poorly adapted for the stability properties of the 3D PEs and is a source of many difficulties in different parts of the proof.

To formulate our second result, let us assume that η is a Haar coloured noise taking values in the same space H as above. This means that η has the form

η(t) = 10 i=1 η i (t)φ i , (0.11) 
where {η i } are independent copies of a random process η defined by

η(t) = ∞ k=0 ξ k h 0 (t -k) + ∞ j=1 j -q ∞ l=0
ξ jl h jl (t). (0.12)

Here q > 1, {h 0 , h jl } is the Haar basis, and {ξ k , ξ jl } are independent identically distributed (i.i.d.) scalar random variables with Lipschitz-continuous density ρ (see Section 5.2 in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF]). Let (ṽ, θ) be a trajectory of problem (0.7), (0.8) with process η defined by (0.11).

Theorem B. Under the above conditions, the linearisation of problem (0.7), (0.8) around the trajectory (ṽ, θ) (see system (1.8)) is almost surely approximately controllable by H valued controls.

See Theorem 3.3 for a more precise formulation of the result. It is proved by showing that the kernel of the random Gramian operator is almost surely non-trivial. The latter is derived from the observability property of the Haar noise. Let us emphasise that on a non-empty, but zero-probability event (depending on the reference trajectory (ṽ, θ)), the linearised problem is non-controllable. Indeed, assume that the source terms h 1 and h 2 , the noise η, as well as the trajectory (ṽ, θ), are identically zero. Then the space H is invariant for the linearised problem, so the attainable set from the origin cannot be dense in H.

Controllability properties of nonlinear and linearised equations have applications to the study of randomly perturbed problems. Indeed, it is well known that the approximate controllability implies, for example, irreducibility of the associated Markov process when the support of the law of the noise is the whole space L ∞ ([0, T ], H) (see Section 6.3 in [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] for more details). As it is shown in the recent papers by Kuksin, Nersesyan, and Shirikyan [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF][START_REF] Kuksin | Mixing via controllability for randomly forced nonlinear dissipative PDEs[END_REF], the controllability of the linearised system can be used in the analysis of the ergodicity problem when the system is perturbed by a bounded degenerate noise. In these papers the NS system, complex Ginzburg-Landau equations, and parabolic PDEs with polynomial nonlinearities are studied. See also the papers [START_REF] Kuksin | Exponential mixing for dissipative PDEs with bounded non-degenerate noise[END_REF] and [START_REF] Nersesyan | Ergodicity for the randomly forced navier-stokes system in a two-dimensional unbounded domain[END_REF] for some related situations where the noise is nondegenerate. In our third result, we show that the approach of these papers can be extended to the more degenerate case of PEs. To formulate the result, let ((v k , θ k ), P (v,θ) ) be the Markov family obtained by restricting the trajectories of system (0.7), (0.8), (0.11) to integer times. Recall that ρ is the density of the random variables {ξ k , ξ jl } in (0.12).

Theorem C. In addition to the above conditions, assume that (h 1 , h 2 ) = 0, the support of the density ρ is bounded, and ρ(0) > 0. Then the family ((v k , θ k ), P (v,θ) ) has a unique stationary measure on V which is exponentially mixing in the dual-Lipschitz metric.

See Section 4 for more details. In the case of 3D primitive equations with spatially regular white noise, existence of stationary measure is established by Glatt-Holtz, Kukavica, Vicol, and Ziane [START_REF] Glatt-Holtz | Existence and regularity of invariant measures for the three dimensional stochastic primitive equations[END_REF]. As far as we know, uniqueness of stationary measure for that situation is still an open problem due to rather weak tail estimates for solutions. In the case of non-degenerate bounded kick force, uniqueness and exponential mixing are proved by Chueshov [START_REF] Chueshov | A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations[END_REF]. Let us also recall some previous results considering the problem of ergodicity for PDEs driven by a degenerate noise. Hairer and Mattingly [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF][START_REF] Hairer | A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs[END_REF] used Malliavin calculus to study the ergodicity for the NS system with a white noise which is degenerate in the Fourier space. Földes, Glatt-Holtz, Richards, and Thomann [FGRT15] considered a similar problem for the Boussinesq system. Using controllability methods, Shirikyan [START_REF] Shirikyan | Control and mixing for 2D Navier-Stokes equations with space-time localised noise[END_REF][START_REF] Shirikyan | Controllability implies mixing II. Convergence in the dual-Lipschitz metric[END_REF] studied the NS system with a noise that is localised in the physical space (distributed in a subdomain or on the boundary). For more results and references, we refer the reader to the book [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF].

This paper is organised as follows. In Section 1, we recall the functional setting for the PEs and formulate perturbative results with respect to the initial condition and control. In Sections 2 and 3, we discuss the problems of controllability of nonlinear and linearised PEs and prove Theorems A and B. In Section 4, we consider the randomly forced PEs and prove Theorem C. Examples of saturating spaces are provided in Section 5. Finally, in Section 6, we establish a perturbative result formulated in Section 1.
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Notation

Throughout this paper, we use the following notation. 

Z d , d ≥ 1 is the integer lattice in R d , and T d is the torus R d /2πZ d . L p (T d , R n ), p ≥ 1, n ≥ 1 and H k (T d , R n ), k ≥ 0
• ∞ instead of • L ∞ . C ∞ (T d , R n ) is the space of infinitely differentiable functions g : T d → R n .
Let X be a Banach space endowed with the norm • X . B X (a, r) denotes the closed ball of radius r > 0 centred at a ∈ X. B(X) is the Borel σ-algebra on X, and P(X) is the set of Borel probability measures on X.

L p (J T , X), 1 ≤ p < ∞ is the space of measurable functions u : J T → X endowed with the norm

u L p (J T ,X) = T 0 u(t) p X dt 1/p , J T = [0, T ]. C(J T , X) (resp. L ∞ (J T , X))
is the space of continuous (resp. bounded measurable) functions u : J T → X endowed with the norm

u C(J T ,X) (resp. u L ∞ (J T ,X) ) = sup t∈J T u(t) X .

Preliminaries on primitive equations

We consider the system of PEs in the spaces H k , k ≥ 0 defined by

H k = H k 1 × H k 2 = closure of V in H k (T 3 , R 3 )
and endowed with the Sobolev norms

• k (with L 2 -norm • if k = 0), where V = V 1 × V 2 and V 1 and V 2 are the spaces given by V 1 = v ∈ C ∞ (T 3 , R 2 ) : v is even in z, T div v dz = 0, T 3 v dx dy dz = 0 , V 2 = θ ∈ C ∞ (T 3 , R) : θ is odd in z, T 3
θ dx dy dz = 0 .

The condition T div v dz = 0 in the definition of V 1 comes from equality (0.5) at z = 2π, the fact that w is 2π-periodic, and the boundary value w| z=0 = 0; see [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF][START_REF] Petcu | Some mathematical problems in geophysical fluid dynamics[END_REF] for more details. We will mainly consider the spaces

H = H 1 × H 2 = H 0 , V = V 1 × V 2 = H 1 , and U = U 1 × U 2 = H 6 . For any T > 0, we set X T = C(J T , V ) ∩ L 2 (J T , H 2 )
and endow this space with the norm

u X T = u C(J T ,V ) + u L 2 (J T ,H 2 ) .
The Leray-type orthogonal projection onto H 1 in L 2 (T 3 , R 2 ) is denoted by Π. Applying this projection to Eq. (0.7), we eliminate the pressure term and transform problem (0.7), (0.8) into an evolution system which can be written in the following dimensionless form:

u + Lu + B(u) + Qu = h + η, (1.1)
where the unknown is the couple u = (v, θ), and the linear terms L and Q and the nonlinear term B are defined by

Lu = (L 1 v, L 2 θ), B(u) = (B 1 (v), B 2 (u)), Qu = (Q 1 u, 0), B 1 (v) = Π v, ∇ v - z 0 div v(t, x, y, z) dz ∂ z v , B 2 (u) = v, ∇ θ - z 0 div v(t, x, y, z) dz ∂ z θ, (1.2) Q 1 u = Π f v ⊥ - z 0 ∇θ(t, x, y, z) dz . (1.3)
Eq. (1.1) is supplemented with the initial condition u(0) = u 0 .

(1.4) Proposition 1.1. For any T > 0, u 0 ∈ V , η ∈ L ∞ (J T , H), and h ∈ H, there is a unique solution u of problem (1.1), (1.4) belonging to X T . Let S be the mapping taking the couple2 (u 0 , η) to the solution u. For any r > 0, there is a constant C = C(r, T ) > 0 such that

S(u 0,1 , η 1 ) -S(u 0,2 , η 2 ) X T ≤ C u 0,1 -u 0,2 1 + η 1 -η 2 L ∞ (J T ,H) , provided that u 0,i ∈ V , η i ∈ L ∞ (J T , H), and h ∈ H satisfy u 0,i 1 + η i L ∞ (J T ,H) + h ≤ r, i = 1, 2.
Existence and uniqueness of solution is established in [CT07, Pet06, KZ07], and the local Lipschitz property in [START_REF] Ju | The global attractor for the solutions to the 3D viscous primitive equations[END_REF].

Inspired by ideas from [AS05, AS06, Shi06], together with Eq. (1.1), we will consider a more general equation with additional control ζ:

u + L(u + ζ) + B(u + ζ) + Q(u + ζ) = h + η.
(1.5)

The well-posedness of problem (1.5), (1.4) with ζ ∈ V follows from that of problem (1.1), (1.4) using a change of unknown u = u + ζ. We denote by S(u 0 , ζ, η) the corresponding solution and by S t (u 0 , ζ, η) its restriction at time t ∈ J T . The following result is proved in Section 6.

Proposition 1.2. For any u 0 ∈ H 4 and ζ, η, ξ ∈ H 5 with π 2 ζ = 0 and π 1 ξ = 0, the following limits hold in V as δ → 0 + :

S δ (u 0 , δ -1 2 ζ, δ -1 η) → u 0 + η -B(ζ), (1.6) 
S δ (u 0 , δ -1 ξ, 0) → u 0 -Lξ -(0, Ψ(u 0 , ξ)) -Qξ, (1.7)

where 3 Ψ(u 0 , ξ) = B 2 (π 1 u 0 -1 2 Q 1 ξ, π 2 
ξ) and π 1 : H → H 1 and π 2 : H → H 2 are the projections (v, θ) → v and (v, θ) → θ. Now, let ũ = (ṽ, θ) = S(u 0 , η) be a trajectory of Eq. (1.1) corresponding to initial condition u 0 ∈ V and control η ∈ L ∞ (J T , H). The linearisation of Eq. (1.1) around ũ is given by

ẇ + Lw + b(ũ, w) + Qw = g, (1.8) 
where w = (v, θ) and the term b(ũ, w)

= (b 1 (ṽ, v), b 2 (ũ, w)) is defined by b 1 (ṽ, v) = Π ṽ, ∇ v + v, ∇ ṽ - z 0 div ṽ(t, x, y, z) dz ∂ z v - z 0 div v(t, x, y, z) dz ∂ z ṽ , b 2 (ũ, w) = ṽ, ∇ θ + v, ∇ θ - z 0 div ṽ(t, x, y, z) dz ∂ z θ - z 0 div v(t, x, y, z) dz ∂ z θ.
For any w 0 ∈ V and g ∈ L 2 (J T , H), Eq. (1.8) has a unique solution w ∈ X T issued from w 0 .

2 Controllability of nonlinear system 2.1 Saturation property and the result

In this section, we formulate a controllability result for Eq. (1.1) that is a generalisation of Theorem A given in the Introduction. We start by introducing some definitions and notation.

Definition 2.1. Let H be a finite-dimensional subspace of U . Eq. (1.1) is said to be approximately controllable in H by H-valued controls if for any ε > 0, any time T > 0, any initial point u 0 ∈ V , and any target

u 1 ∈ H, there is a control η ∈ L ∞ (J T , H) such that S T (u 0 , η) -u 1 < ε. (2.1)
In a similar way, Eq. (1.1) is said to be approximately controllable in V if inequality (2.1) holds with respect to the H 1 -norm • 1 and the target u 1 is arbitrary in V .

Let us assume that H = H 1 × H 2 , where H i ⊂ U i , i = 1, 2 are finitedimensional subspaces. We denote by F 1 (H) the largest subspace of U 1 whose elements can be approximated, within any accuracy with respect to the H 1 -norm, by elements of the form (cf. [AS05, AS06, Shi06])

Q 1 (0, ζ 0 ) + ζ 1 - m i=2 B 1 (ζ i ), (2.2)
where m ≥ 2, ζ 0 ∈ H 2 , and ζ 1 , . . . , ζ m ∈ H 1 . As H is finite-dimensional, Q 1 is linear, and B 1 is bilinear, it is easy to see that F 1 (H) is well defined and finite-dimensional. Let F 2 (H) be the subspace spanned by all the vectors of the form

ξ 0 + b 2 (ξ 1 , ξ 2 ), (2.3) where b 2 (ξ 1 , ξ 2 ) = B 2 (Q 1 (0, ξ 1 ), ξ 2 ) -B 2 (Q 1 (0, ξ 2 ), ξ 1 ) (2.4) and ξ 0 , ξ 1 , ξ 2 ∈ H 2 are such that b 2 (ξ 1 , ξ 2 ) ∈ U 2 . We denote by F(H) the product F 1 (H) × F 2 (H)
, and define a non-decreasing sequence {H(j)} of finitedimensional subspaces of U by

H(0) = H, H(j) = F(H(j -1)), j ≥ 1. (2.5) Let us set H(∞) = ∞ j=1 H(j). (2.6) Definition 2.2. A subspace H ⊂ U is H-saturating (resp. V -saturating) if the following two conditions hold: (a) H = H 1 × H 2 , where H i ⊂ U i , i = 1, 2 are finite-dimensional subspaces; (b) the vector space H(∞) is dense in 4 H 1 × V 2 (resp. in V ).
We are now ready to formulate the main result of this section.

Theorem 2.3. If H ⊂ U is an H-saturating (resp. V -saturating) subspace, then Eq. (1.1) is approximately controllable in H (resp. in V ) by H-valued controls.
Examples of H and V -saturating subspaces are given in Section 5. When the control acts directly only on the temperature component (i.e., H 1 = {0} in (a) in Definition 2.2), we provide an H-saturating subspace-the ten-dimensional space considered in the Introduction. In particular, Theorem A is obtained as an immediate consequence of Theorems 2.3 and 5.1. When the control is less degenerate, in the sense that it acts directly on both velocity and temperature components, we give an example of V -saturating subspace (see Theorem 5.5).

Proof of Theorem 2.3

The proof of Theorem 2.3 is divided into three steps. We first show that the temperature and velocity components can be separately controlled in small time. Then we derive simultaneous controllability of both components in arbitrary fixed time.

Controllability of θ-component

Let us set H i (j) = π i H(j) for j ≥ 0 and i = 1, 2. In this subsection, we prove the following proposition.

Proposition 2.4. Let H i ⊂ U i , i = 1, 2 be arbitrary finite-dimensional subspaces and H = H 1 × H 2 . For any u 0 ∈ V and η ∈ H 2 (∞), there is a family of controls {ζ τ } τ >0 ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ζ τ ) → u 0 + η in V as τ → 0 + , (2.7) 
where η = (0, η) ∈ H.

Proof. We first prove the result in the case u 0 ∈ U . It suffices to show that for any N ≥ 0 and η ∈ H 2 (N ), there are controls {ζ τ } ⊂ L ∞ (J 1 , H) such that limit (2.7) holds. We argue by induction on N ≥ 0.

Step 1. Base case: N = 0. Let us check that limit (2.7) holds in the case N = 0, i.e., for any η ∈ H 2 . Indeed, by limit (1.6) with ζ = 0 and η = η, we have

S δ (u 0 , 0, δ -1 η) → u 0 + η in V as δ → 0 + .
Taking δ = τ , we obtain the required limit with controls ζ τ = τ -1 η.

Step 2. Inductive step. We assume that the limit is proved for N -1, and take any η ∈ H 2 (N ) of the form

η = ξ 0 + b 2 (ξ 1 , ξ 2 ) (2.8)
with some ξ 0 , ξ 1 , ξ 2 ∈ H 2 (N -1). Let us set ξi = (0, ξ i ) ∈ H, i = 1, 2, 3. Using limit (1.7) with ξ = ξ1 , we get

S δ (u 0 , δ -1 ξ1 , 0) → u 0 -L ξ1 -(0, Ψ(u 0 , ξ1 )) -Q ξ1 .
(2.9)

By the uniqueness of the solution of the Cauchy problem, the following equality holds for any t ≥ 0:

S t (u 0 + δ -1 ξ1 , 0, 0) = S t (u 0 , δ -1 ξ1 , 0) + δ -1 ξ1 .
(2.10)

Taking here t = δ and using (2.9), we obtain the limit

S δ (u 0 + δ -1 2 ξ1 , 0, 0) -u 0 + L ξ1 + (0, Ψ(u 0 , ξ1 )) + Q ξ1 -δ -1 ξ1 1 → 0 as δ → 0 + .
Combining this with the fact that ξ 1 ∈ H 2 (N -1), the induction hypothesis, and Proposition 1.1, we find a family of controls

{ζ 1 τ } ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ζ 1 τ ) → u 0 -L ξ1 -(0, Ψ(u 0 , ξ1 )) -Q ξ1 in V as τ → 0 + . (2.11)
Now let us denote

F ξ1 (u 0 ) = u 0 -L ξ1 -(0, Ψ(u 0 , ξ1 )) -Q ξ1 .
Direct verification shows that

F -ξ2 (F -ξ1 (F ξ2 (F ξ1 (u 0 )))) = u 0 + (0, b 2 (ξ 1 , ξ 2 )).
Iterating four times the argument of the construction of the family {ζ 1 τ }, we find a family

{ζ 2 τ } ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ζ 2 τ ) → u 0 + (0, b 2 (ξ 1 , ξ 2 )) in V as τ → 0 + .
As ξ 0 ∈ H 2 (N -1), using again the induction hypothesis, we find controls

{ζ 3 τ } ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ζ 3 τ ) → u 0 + (0, ξ 0 + b 2 (ξ 1 , ξ 2 )) in V as τ → 0 + .
Iterating this argument, we show that the system can be controlled in small time to any target of the form u 0 + η (in the sense of limit (2.7)), where η is now a linear combination of vectors of the form (2.8). This completes the proof of the proposition in the case of a regular initial condition u 0 . In the case u 0 ∈ V , it suffices to take control equal to zero on a small time interval, to use the regularising property of the PEs (e.g., see Theorem 3.1 in [START_REF] Petcu | On the three-dimensional primitive equations[END_REF]), and apply the already proved result for regular initial condition.

Controllability of v-component

Here we prove the following version of Proposition 2.4 for the v-component.

Proposition 2.5.

Let H i ⊂ U i , i = 1, 2 be finite-dimensional subspaces, let H = H 1 × H 2 , and assume that H 2 (∞) is dense in V 2 . For any u 0 ∈ V and η ∈ H 1 (∞), there is a family of controls {ξ τ } τ >0 ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ξ τ ) → u 0 + η in V as τ → 0 + , (2.12)
where η = (η, 0) ∈ H.

Proof. The argument is close to the one used in Proposition 2.4. Again, without loss of generality, we can assume that u 0 ∈ U . We prove limit (2.12) for any η ∈ H 1 (N ), arguing by induction on N ≥ 0. The base case N = 0 follows from limit (1.6) with ζ = 0 and η = η:

S δ (u 0 , 0, δ -1 η) → u 0 + η in V as δ → 0 + .
Taking δ = τ , we obtain the required limit with ξ τ = τ -1 η.

Assume that the limit is proved in the case N -1, and let η ∈ H 1 (N ). By approximation, we can suppose that η is of the form

η = Q 1 ζ0 + ζ 1 - m i=2 B 1 (ζ i ) for some m ≥ 2, ζ0 = (0, ζ 0 ), ζ 0 ∈ H 2 (N -1), and ζ 1 , . . . , ζ m ∈ H 1 (N -1).
Step 1. Direction

ζ 1 - m i=2 B 1 (ζ i ). Limit (1.6) with ζ = ζ2 = (ζ 2 , 0) and η = 0 implies that S δ (u 0 , δ -1 2 ζ2 , 0) → u 0 -B( ζ2 ) in V as δ → 0 + . (2.13)
The equality

S δ (u 0 + δ -1 2 ζ2 , 0, 0) = S δ (u 0 , δ -1 2 ζ2 , 0) + δ -1 2 ζ2
and limit (2.13) show that

S δ (u 0 + δ -1 2 ζ2 , 0, 0) -u 0 + B( ζ2 ) -δ -1 2 ζ2 1 → 0 as δ → 0 + .
Combining this with the induction hypothesis, the fact that ζ 1 , ζ 2 ∈ H 1 (N -1), and Proposition 1.1, we find a family of controls

{ξ 1 τ } ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ξ 1 τ ) -u 0 -(ζ 1 -B 1 (ζ 2 ), 0) 1 → 0 as τ → 0 + . Iterating this argument with ζ 3 , . . . , ζ m , we construct a family {ξ m τ } ⊂ L ∞ (J 1 , H) such that S τ (u 0 , ξ m τ ) -u 0 -(ζ 1 - m i=2 B 1 (ζ i ), 0) 1 → 0 as τ → 0 + . (2.14)
Step 2. Direction Q 1 ζ0 . Let û0 ∈ H 4 . By limit (1.7) with ξ = ζ0 and η = 0, we have

S δ (û 0 , δ -1 ζ0 , 0) → û0 -L ζ0 -(0, Ψ(û 0 , ζ 0 )) -Q ζ0 = û0 -(Q 1 ζ0 , L 2 ζ 0 + Ψ(û 0 , ζ 0 )).
The equality

S δ (û 0 + δ -1 ζ0 , 0, 0) = S δ (û 0 , δ -1 ζ0 , 0) + δ -1 ζ0 implies that S δ (û 0 + δ -1 ζ0 , 0, 0) -û0 + (Q 1 ζ0 , L 2 ζ 0 + Ψ(û 0 , ζ 0 )) -δ -1 ζ0 1 → 0 as δ → 0 + .
Combining this with the assumption that H 2 (∞) is dense in V 2 and Propositions 1.1 and 2.4, we construct a family of controls

{ξ m+1 τ } ⊂ L ∞ (J 1 , H) such that S τ (û 0 , ξ m+1 τ ) → û0 -(Q 1 ζ0 , 0) in V as τ → 0 + . Taking û0 = u 0 + (ζ 1 - m i=2 B 1 (ζ i ), 0)
and using (2.14), we find a family of controls {ξ τ } ⊂ L ∞ (J 1 , H) such that limit (2.12) holds.

Completion of the proof

Assume that H ⊂ U is an H-saturating (resp. V -saturating) subspace, and let ε > 0, T > 0, u 0 ∈ V , and u 1 ∈ H (resp. u 1 ∈ V ) be arbitrary. Then there

is η = (η 1 , η 2 ) ∈ H(∞) such that S T (u 0 , 0) + η -u 1 < ε 2 resp. S T (u 0 , 0) + η -u 1 1 < ε 2 . (2.15)
Let us denote û0 = S T (u 0 , 0) + η and take t 0 > 0 and r > 0 so small that

S t (u, 0) -û0 1 < ε 2 for t ∈ [0, t 0 ] and u ∈ B V (û 0 , r). (2.16)
This is possible by Proposition 1.1. Choosing, if necessary, t 0 smaller, we will also have

S T -t (u 0 , 0) -S T (u 0 , 0) 1 < r 2 for t ∈ [0, t 0 ].
(2.17) Now applying Propositions 2.4 and 2.5 with initial condition S T -t0 (u 0 , 0), we find a time τ ∈ (0, t 0 ) and a control ξ

∈ L ∞ ([0, τ ], H) such that S τ (S T -t0 (u 0 , 0), ξ) -S T -t0 (u 0 , 0) -(η 1 , η 2 ) 1 < r 2 .
In view of (2.17), this implies that S τ (S T -t0 (u 0 , 0), ξ) ∈ B V (û 0 , r). Finally, using (2.15) and (2.16), we conclude that

S T (u 0 , ζ) -u 1 < ε (resp. S T (u 0 , ζ) -u 1 1 < ε) ,
where 3 Controllability of linearised system 3.1 Saturation for linearised system and the result Before formulating the main result of this section, let us define a saturation property for linearised system (1.8), which is different from the one used in the nonlinear case (cf. Definition 2.2), and recall the concept of observable measures introduced in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF].

ζ(t) = I [T -t0,T -t0+τ ] ξ(t -T + t 0 ), t ∈ J T .
In this section, we assume that H = {0} × H 2 and H 2 ⊂ U 2 is a finitedimensional subspace. We define a non-decreasing sequence of finite-dimensional subspaces of H as follows: G(0) = H and G(j), j ≥ 1 is the space spanned by all the vectors of the form

ξ 0 + b(ξ 1 , ξ 2 ), (3.1)
where ξ 0 ∈ G(j -1) + Q({0} × π 2 G(j -1)), ξ 1 ∈ H + Q(H), and ξ 2 ∈ G(j -1). We set

G(∞) = ∞ j=1 G(j). (3.2)
Definition 3.1. A finite-dimensional space H as above is said to be saturating

for linearised system (1.8) if G(∞) is dense in H.
We will see in Section 5 that the ten-dimensional subspace defined in the Introduction is saturating in the sense of Definition 3.1. Let us take any T > 0, denote E = L ∞ (J T , H), and let {ϕ i } d i=1 be a basis in H. Definition 3.2. A function ζ ∈ E is said to be observable if for any continuously differentiable functions a i :

J T → R, i ∈ [[1, d]] and any continuous function a 0 : J T → R the equality d i=1 a i (t) ζ(t), ϕ i -a 0 (t) = 0 in E implies that a i (t) = 0 for any t ∈ J T and i ∈ [[0, d]]. A measure ∈ P(E) is said to be observable if -almost every trajectory η ∈ E is observable.
It is easy to see that the observability does not depend on the choice of the basis {ϕ i } in H. See Section 5 in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF] for examples of observable measures. In particular, it is shown there that the law of the Haar noise defined by (0.11), (0.12) is observable.

Let u ∈ U , and let D η S T (u, η) be the derivative of S T (u, η) with respect to η ∈ E. Then the linear mapping

D η S T (u, η) : E → U, g → w(T )
is the resolving operator for Eq. (1.8), where ũ(t) = S T (u, η), (u, η) ∈ U × E, and t ∈ J T . Let K u be a Borel set in E defined by

K u = {η ∈ E : the image of D η S T (u, η) is dense in U }.
(3.3) Theorem 3.3. Let ∈ P(E), and let H be a saturating subspace in the sense of Definition 3.1. If there is τ ∈ (0, T ) such that the restriction5 of to the interval J τ is observable, then (K u ) = 1 for any u ∈ U .

In other words, the conclusion of this theorem is that Eq. (1.8) is approximately controllable in V by H-valued control g for any u ∈ U and -a.e. η ∈ E.

Proof of Theorem 3.3

We follow the scheme used in the case of the complex Ginzburg-Landau equation considered in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF]. Let w(t; w 0 , g) be the solution of Eq. (1.8) corresponding to initial condition w 0 ∈ H, control g ∈ E, and reference trajectory ũ(t) = S t (u, η), t ∈ J T . Our goal is to prove that the vector space E = {w(T ; 0, g), g ∈ E} is dense in U for any u ∈ U and -a.e. η ∈ E.

A well-known property of approximate controllability by initial condition,6 applied to Eq. (1.8) with g ≡ 0, shows that the vector space {w(s; w 0 , 0), w 0 ∈ H} is dense in U for any s ∈ [0, T ]. Let us apply this result for the interval [τ, T ], where τ is as in Theorem 3.3. Furthermore, the resolving operator for Eq. (1.8) on the interval [τ, T ] with g ≡ 0 is continuous from H to U . Hence, to show that E is dense in U , it suffices to prove the density of the vector space {w(τ ; 0, g), g ∈ E} in H.

For any 0 ≤ s ≤ t ≤ τ , we denote by R ũ(t, s) : H → H the two-parameter resolving operator for the homogeneous problem ẇ + Lw + b(ũ, w) + Qw = 0, w(s) = w 0 .

(3.4) Let G ũ be the controllability Gramian for Eq. (1.8) (see Chapter 1 in [START_REF] Coron | Control and Nonlinearity[END_REF]):

G ũ = τ 0 R ũ(τ, t)P H R ũ(τ, t) * dt,
where R ũ(τ, t) * : H → H is the adjoint of R ũ(τ, t), and P H is the orthogonal projection onto H in H. It is easy to see that the required assertion will be established if we show that Ker G ũ is trivial for -a.e. η ∈ E.

It is easily seen that p(t) = R ũ(τ, t) * w 0 is the solution of the dual of problem (3.4) given by

ṗ -Lp -b(ũ) * p -Q * p = 0, p(τ ) = w 0 , (3.5) 
where b(ũ) * and Q * are the adjoints of b(ũ, •) and Q in H.

Let us fix any observable η ∈ E. For any w 0 ∈ Ker(G ũ), we have

G ũw 0 , w 0 = τ 0 P H R ũ(τ, t) * w 0 2 dt = τ 0 P H p(t) 2 dt = 0,
which implies that P H p(t) = 0 for t ∈ J τ . Thus,

ζ, p(t) = 0, t ∈ J τ (3.6)
for any ζ ∈ H. Taking t = τ , we see that w 0 is orthogonal to H. The required density property will be established if we show that (3.6) holds for any ζ ∈ G(∞). Indeed, taking t = τ, this would imply that w 0 is orthogonal to G(∞) which is dense in H, hence w 0 = 0. In what follows, we show that w 0 is orthogonal to all subspaces G(j). We proceed by induction on j ≥ 0. The case j = 0 is already considered above. Assuming that equality (3.6) holds for any ζ ∈ G(j -1), let us prove it for any ζ ∈ G(j). Differentiating (3.6) in time and using (3.5), we obtain

Lζ + b(ũ(t), ζ) + Qζ, p(t) = 0, t ∈ J τ .
(3.7)

Setting

y(t) = ũ(t) - t 0 η(s) ds = ũ(t) - d i=1 ϕ i t 0 η i (s) ds, (3.8) 
where η i (t) = η(t), ϕ i , we rewrite (3.7) as

Lζ + b(y(t), ζ) + Qζ, p(t) + d i=1 b(ϕ i , ζ), p(t) t 0 η i (s) ds = 0.
Taking the derivative in time in this equality and setting

a i (t) = b(ϕ i , ζ), p(t) , i ∈ [[1, d]], a 0 (t) = d dt Lζ + b(y(t), ζ) + Qζ, p(t) + d i=1 b(ϕ i , ζ), ṗ(t) t 0 η i (s) ds,
we obtain

a 0 (t) + d i=1 a i (t)η i (t) = 0.
The functions {a i } d i=1 are continuously differentiable and a 0 is continuous. The observability of η implies that a i (t) = 0 for t ∈ J τ and i ∈ [[0, d]]. Thus (3.6) holds for any ζ of the form b(ξ 1 , ξ 2 ), where ξ 1 ∈ H and ξ 2 ∈ G(j -1).

On the other hand, taking ζ ∈ {0} × π 2 G(j -1) in (3.7) and observing that π 1 b(ũ(t), ζ) = 0 for t ∈ J τ , we get Qζ, p(t) = 0 for t ∈ J τ . Taking t = τ and using the induction hypothesis, we see that equality (3.6) holds for any

ζ ∈ G(j -1) + Q({0} × π 2 G(j -1)).
It remains to prove (3.6) for ζ of the form b(ξ 1 , ξ 2 ), where ξ 1 ∈ Q(H) and ξ 2 ∈ G(j -1). By equality (3.7), we have7 

L 1 ξ + b 1 (ṽ(t), ζ) + Q 1 ζ, p 1 (t) = 0, t ∈ J τ ,
where ξ = π 1 ζ, ṽ = π 1 ũ, and p 1 = π 1 p. Taking the derivative in time, we obtain

b 1 ( v(t), ζ), p 1 (t) + L 1 ξ + b 1 (ṽ(t), ζ) + Q 1 ζ, ṗ1 (t) = 0, t ∈ J τ .
From (3.8) and the equations for ṽ and p 1 it follows that

b 1 (L 1 ṽ(t)+B 1 (ṽ(t))+Q 1 y(t)-h 1 , ζ), p 1 (t) + d i=1 b 1 (Q 1 ϕ i , ζ), p 1 (t) t 0 η i (s) ds -L 1 q(t) + b 1 (ṽ(t), q(t)) + Q 1 q(t), p 1 (t) = 0, t ∈ J τ ,
where q(t) = L 1 ξ +b 1 (ṽ(t), ζ)+Q 1 ζ. Taking the derivative in time in this equality and denoting

ãi (t) = b 1 (Q 1 ϕ i , ζ), p 1 (t) , i ∈ [[1, d]], ã0 (t) = d dt b 1 (L 1 ṽ(t) + B 1 (ṽ(t)) + Q 1 y(t) -h 1 , ζ), p 1 (t) -L 1 q(t) + b 1 (ṽ(t), q(t)) + Q 1 q(t), p 1 (t) + d i=1 b 1 (Q 1 ϕ i , ζ), ṗ1 (t) t 0 η i (s) ds, we obtain ã0 (t) + d i=1 ãi (t)η i (t) = 0.
Again the functions {ã i } d i=1 are continuously differentiable and ã0 is continuous, so the observability of η implies that a i (t) = 0 for t ∈ J τ and i ∈ [[0, d]]. Thus (3.6) holds for any ζ of the form b(ξ 1 , ξ 2 ), where ξ 1 ∈ QH and ξ 2 ∈ G(j -1). This completes the proof of Theorem 3.3.

Ergodicity of primitive equations 4.1 Abstract result

Here we formulate an abstract sufficient condition for exponential mixing which is applied in the next section to the randomly forced primitive equations. It is derived from Theorem 1.1 in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF].

Let H and E be separable Hilbert spaces, let E be a dense Banach subspace of E, and let X and K ⊂ E be compact sets in H and E, respectively. Assume that S : X × K → X is a continuous mapping, {η k } is a sequence of i.i.d. random variables in E with common law and K = supp , and consider a random sequence defined by

u k = S(u k-1 , η k ), k ≥ 1, u 0 = u ∈ X.
Then (u k , P u ), u ∈ X is a Markov family in X, let P k and P * k be the associated Markov operators. A measure µ ∈ P(X) is said to be stationary for (u k , P u ) if P * 1 µ = µ. Recall that the dual-Lipschitz metric on P(X) is defined by

µ 1 -µ 2 * L = sup f ∈L(X), f L ≤1 |(f, µ 1 ) -(f, µ 2 )| , where (f, µ) = X f (u) µ(du) and L(X) is the space of functions f : X → R such that f L = sup u∈X |f (u)| + sup 0< u-v H ≤1 |f (u) -f (v)| u -v H < ∞.
Theorem 4.1. Assume that the following conditions hold.

(H 1 ) There is a Banach space V compactly embedded into the space H such that X ⊂ V . (H 2 ) There are a ∈ (0, 1), η ∈ K, and û ∈ X such that

S(u, η) -û H ≤ a u -û H for any u ∈ X.
(H 3 ) For any u ∈ X and -a.e. η ∈ E, the image of the linear mapping

(D η S)(u, η) : E → H is dense in H.
(H 4 ) The random variables η k are of the form η k = ∞ j=1 b j ξ jk e j , where {e j } is an orthonormal basis in E such that e j ∈ E and sup j≥1 e j E < ∞, {b j } are non-zero numbers satisfying ∞ j=1 b j < ∞, and {ξ jk } are independent scalar random variables with Lipschitz-continuous density ρ j such that supp ρ j ⊂ [-1, 1].

Then the family (u k , P u ), u ∈ X is exponentially mixing, i.e. it has a unique stationary measure µ ∈ P(X), and there are numbers C > 0 and c > 0 such that

P * k λ -µ * L ≤ Ce -ck , k ≥ 0 (4.1)
for any initial measure λ ∈ P(X).

Proof. Truncating the mapping S, we easily obtain an extension Ŝ :

H × E → V of S satisfying (H 1 ) with O = H × E.
Note that the family (u k , P u ), u ∈ X does not change if we replace S by its extension Ŝ. In view of Conditions (H 1 )-(H 4 ), the hypotheses of Theorem 1.1 in [START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF] are satisfied for the random dynamical system u k = Ŝ(u k-1 , η k ). Applying that theorem, we prove the mixing (4.1) for (u k , P u ), u ∈ X.

Application

In this section, we combine Theorems 3.3 and 4.1 to prove the exponential mixing for the randomly forced 3D primitive equations. More precisely, we consider Eq. (1.1) with h = 0 and random process η of the form

η(t) = ∞ k=1 I [k-1,k) (t)η k (t -k + 1), t ≥ 0,
where

I [k-1,k) is the indicator function of the interval [k -1, k), {η k } is a sequence of i.i.d. random variables in the space E = L ∞ (J, H), J = [0, 1], and H ⊂ U is a finite-dimensional subspace.
In what follows, we denote by the law of the random variable η k and assume that K = supp is compact in E. The restriction to integer times of the solution of Eq. (1.1) satisfies the relation u k = S 1 (u k-1 , η k ), k ≥ 1 and defines a family of Markov processes (u k , P u ) parametrised by the initial condition u 0 = u ∈ V . The following lemma is proved by using standard arguments based on dissipative and regularising properties of PEs.

Lemma 4.2. The family (u k , P u ) admits a closed invariant absorbing set X in U in the sense that, for any R > 0, there is an integer

k 0 = k 0 (R) ≥ 0 such that P u {u k ∈ X, k ≥ k 0 } = 1 for u ∈ B V (0, R), P u {u k ∈ X, k ≥ 0} = 1 for u ∈ X.
The following theorem is a more detailed version of Theorem C formulated in the Introduction.

Theorem 4.3. Let a finite-dimensional subspace H ⊂ U be saturating in the sense of Definition 3.1, and assume that the following two conditions are fulfilled.

Decomposability. The random variables η k are of the form η k = ∞ j=1 b j ξ jk e j , where {e j } is an orthonormal basis in the Hilbert space E = L 2 (J, H) such that sup j≥1 e j L ∞ (J,H) < ∞, {b j } are non-zero numbers satisfying ∞ j=1 b j < ∞, and {ξ jk } are independent scalar random variables with Lipschitz-continuous density ρ j such that supp ρ j ⊂ [-1, 1] and ρ j (0) > 0.

Observability. There is τ ∈ (0, 1) such that the law of the restriction of the random variable η k to the interval J τ is observable.

Then the family (u k , P u ), u ∈ X is exponentially mixing.

Proof. By Theorem 3 in [START_REF] Boulvard | Mixing for the primitive equations under bounded non-degenerate noise[END_REF], there is an open set O E in E containing K and an extension S : 

H 2 × O E → H 3 of
H = H 2 , V = H 3 , and O = H 2 × O E .
Next, for any δ > 0, we define a norm on

H 2 by |u| δ = u 2 + δ u 2 2 1/2 .
Then for any bounded set B ⊂ H 2 , there are numbers δ > 0 and a ∈ (0, 1) such that

|S 1 (u)| δ ≤ a|u| δ for u ∈ B, (4.2) 
where S 1 (u) = S 1 (u, 0). This inequality with B = X shows that Condition (H 2 ) is verified with û = 0, η = 0, and the norm | • | δ . To prove (4.2), we use the following inequalities (see [CT07, Ju07, Pet06, Bou20]):

S 1 (u) ≤ q u for u ∈ H, S 1 (u) 2 ≤ C B u for u ∈ B,
where q ∈ (0, 1) and C B > 0. These inequalities imply that

|S 1 (u)| 2 δ = S 1 (u) 2 + δ S 1 (u) 2 2 ≤ q 2 u 2 + δ C 2 B u 2 ≤ q 2 + δC 2 B |u| 2 δ .
Choosing δ > 0 so small that a 2 = q 2 + δC 2 B < 1, we obtain (4.2). Finally, Condition (H 3 ) is established in Theorem 3.3, and Condition (H 4 ) is verified by the decomposability hypothesis. Applying Theorem 4.1, we complete the proof. Theorem 4.3 is formulated for initial measures λ supported by X. As a consequence of Lemma 4.2 and Theorem 4.3, we obtain the following result.

Corollary 4.4. Under the conditions of Theorem 4.3, the measure µ is the unique stationary measure for the family (u k , P u ) in P(V ). Moreover, inequality (4.1) holds for any R > 0, λ ∈ P(V ) with supp λ ⊂ B V (0, R), and k ≥ k 0 .

Saturating subspaces

In this section, we show that the ten-dimensional subspace defined in the Introduction is saturating in the sense of both Definitions 2.2 and 3.1. We also give an example of V -saturating subspace.

H-saturating subspace

Let us consider the subspace

H = span {(0, φ i ) : i ∈ [[1, 10]]} ⊂ H, (5.1) 
where φ i are the eigenfunctions of the operator L 2 given by φ 1 = cos x sin z, φ 2 = sin x sin z, φ 3 = cos y sin z, φ 4 = sin y sin z, φ 5 = sin z, φ 6 = cos 2x sin z, φ 7 = sin 2x sin z, φ 8 = cos 2y sin z, φ 9 = sin 2y sin z, φ 10 = sin 2z.

Theorem 5.1. The subspace H is H-saturating in the sense of Definition 2.2.

To prove this theorem, we introduce the following two orthogonal bases:

• in H 1 , composed of eigenfunctions of the operator L 1 :

m c m (x, y) cos pz, m s m (x, y) cos pz, m ⊥ c m (x, y) cos pz, m ⊥ s m (x, y) cos pz, m ⊥ c m (x, y), m ⊥ s m (x, y), ı cos pz,  cos pz m ∈ Z 2 * , p ≥ 1;
• in H 2 , composed of eigenfunctions of the operator L 2 :

c m (x, y) sin pz, s m (x, y) sin pz, sin pz m ∈ Z 2 * , p ≥ 1,
where we denote m ⊥ = (-m 2 , m 1 ), ı = (1, 0),  = (0, 1) ∈ R 2 , and c m (x, y) = cos(m 1 x + m 2 y), s m (x, y) = sin(m 1 x + m 2 y).

The following two propositions are established in the next two subsections.

Proposition 5.2. Any vector of the basis in H 1 belongs8 to H 1 (∞).

H1

Proposition 5.3. Any vector of the basis in H 2 belongs to H 2 (∞).

These propositions readily imply that H(∞) is dense in H 1 × V 2 and prove Theorem 5.1.

Saturation in θ-component

In this subsection, we give a proof of Proposition 5.3.

Proof of Proposition 5.3. Step 1. We first show that sin x sin pz ∈ H 2 (∞) for any p ≥ 1. Indeed, as φ 2 , φ 5 ∈ H 2 , we have b 2 (φ 2 , φ 5 ) ∈ H 2 (1). The equalities

Q 1 (0, φ 2 ) = ı cos x cos z, Q 1 (0, φ 5 ) = 0, b 2 (φ 2 , φ 5 ) = B 2 (Q 1 (0, φ 2 ), φ 5 ) = 1 2 sin x sin 2z
imply that sin x sin 2z ∈ H 2 (1). A simple computation shows that

Q 1 (0, sin x sin 2z) = 1 2 ı cos x cos 2z, b 2 (sin x sin 2z, φ 5 ) = B 2 (Q 1 (0, sin x sin 2z), φ 5 ) = 1 4 sin x sin 2z cos z = 1 8 (sin x sin z + sin x sin 3z) ∈ H 2 (2).
This implies that sin x sin 3z ∈ H 2 (2). Iterating this argument, we see that sin x sin pz ∈ H 2 (∞) for any p ≥ 1. In a similar way, we can prove that cos x sin pz, cos y sin pz, sin y sin pz ∈ H 2 (∞) for any p ≥ 1.

Repeating the above arguments and using the fact that sin 2x sin z, cos 2x sin z, sin 2y sin z, cos 2y sin z ∈ H 2 , we can obtain also that sin 2x sin pz, cos 2x sin pz, sin 2y sin pz, cos 2y sin pz ∈ H 2 (∞) for any p ≥ 1.

Step 2. Let us show that sin pz ∈ H 2 (∞) for any p ≥ 1. The equalities

ı cos x cos nz = Q 1 (0, n sin x sin nz), ı sin x cos nz = Q 1 (0, -n cos x sin nz)
and the fact that cos x sin nz, sin x sin nz ∈ H 2 (∞) imply that b 2 (n cos x sin nz,φ 1 ) + b 2 (n sin x sin nz, φ 2 )

= n 2 -1 2n ((n -1) sin(n -1)z -(n + 1) sin(n + 1)z) ∈ H 2 (∞).
Thus n sin nz -p sin pz ∈ H 2 (∞) for any integers n > p ≥ 1 that are both even or both odd. As sin z, sin 2z ∈ H 2 , we obtain sin pz ∈ H 2 (∞) for any p ≥ 1.

Step 3. Now we prove the following property P (m) for any m ≥ 1: P (m) : for any p ≥ 1 and q ∈ [[1, m]], we have sin qx sin pz ∈ H 2 (∞).

We argue by induction on m. The cases m = 1, 2 are considered in Step 1.

Assuming that P (m) is true for m ≥ 2, we prove it for m + 1. Note that

ı cos mx cos nz = n m Q 1 (0, sin mx sin nz), b 2 n m sin mx sin nz, φ 1 = (m -n)(m + n 2 ) 4mn sin(m + 1)x sin(n + 1)z + (m + n)(m + n 2 ) 4mn sin(m + 1)x sin(n -1)z + (m + n)(m -n 2 ) 4mn sin(m -1)x sin(n + 1)z + (m -n)(m -n 2 ) 4mn sin(m -1)x sin(n -1)z ∈ H 2 (∞) (5.2)
for any n ≥ 1. By the induction hypothesis, we have sin(m -1)x sin(n + 1)z, sin(m -1)x sin(n -1)z ∈ H 2 (∞). Thus (5.2) implies that (m-n) sin(m+1)x sin(n+1)z +(m+n) sin(m+1)x sin(n-1)z ∈ H 2 (∞) (5.3)

Taking here n = 1, we obtain sin(m + 1)x sin 2z ∈ H 2 (∞). It follows that b 2 2 m + 1 sin(m + 1)x sin 2z, φ 5 = (m + 1) 4 sin(m + 1)x(sin 3z + sin z) ∈ H 2 (∞).

Thus sin(m + 1)x sin 3z + sin(m + 1)x sin z ∈ H 2 (∞).

(5.4)

Taking n = 2 in (5.3), we get (m -2) sin(m + 1)x sin 3z + (m + 2) sin(m + 1)x sin z ∈ H 2 (∞).

This and (5.4) imply that sin(m + 1)x sin z ∈ H 2 (∞). Repeating the argument of Step 1, we show that sin(m + 1)x sin pz ∈ H 2 (∞) for any p ≥ 1. Thus P (m) is true for any m ≥ 1 In a similar way, cos mx sin pz, cos my sin pz, sin my sin pz belong to H 2 (∞) for any m, p ≥ 1.

Step 4. In this step, we show that s m (x, y) sin pz ∈ H 2 (∞) for any p ≥ 1 and m = (m 1 , m 2 ) ∈ Z 2 * . We confine ourselves to the case m 2 ≥ 0, the case m 2 < 0 being similar. Arguing by induction on m 2 , we prove the following property: P (m 2 ) : for any p ≥ 1, m 1 ∈ Z, and q ∈ [[0, m 2 ]], we have s m (x, y) sin pz ∈ H 2 (∞), where m = (m 1 , q).

The case m 2 = 0 is considered in Step 3. Assuming that P (m 2 ) is true for m 2 ≥ 0, let us prove it for m 2 + 1. We first consider the case m 1 = ±1. Let

θ 1 = -n cos(m 1 x + m 2 y) sin nz, θ 2 = n sin(m 1 x + m 2 y) sin nz.
Using the equalities

Q 1 (0, θ 1 ) = ms m (x, y) cos nz, Q 1 (0, θ 2 ) = mc m (x, y) cos nz, we get b 2 (θ 1 , sin y sin z) -b 2 (θ 2 , cos y sin z) = a 1 sin(m 1 x + (m 2 + 1)y) sin(n + 1)z + a 2 sin(m 1 x + (m 2 + 1)y) sin(n -1)z ∈ H 2 (∞), (5.5)
where

a 1 = 1 2n n 3 -n(n -1)m 2 -m 2 1 -m 2 2 , a 2 = - 1 2n n 3 + n(n + 1)m 2 + m 2 1 + m 2 2 .
Taking n = 1 in (5.5), we obtain

(1 -m 2 1 -m 2 2 ) sin(m 1 x + (m 2 + 1)y) sin 2z ∈ H 2 (∞).
As

m 1 = ±1, we have 1 -m 2 1 -m 2 2 = 0, so sin(m 1 x + (m 2 + 1)y) sin 2z ∈ H 2 (∞). The latter implies that b 2 (2 sin(m 1 x + (m 2 + 1)y) sin 2z, φ 5 ) = m 2 1 + (m 2 + 1) 2 4 sin(m 1 x + (m 2 + 1)y) × (sin 3z + sin z) ∈ H 2 (∞).
(5.6)

On the other hand, taking n = 2 in (5.5), we get

a 1 sin(m 1 x + (m 2 + 1)y) sin 3z + a 2 sin(m 1 x + (m 2 + 1)y) sin z ∈ H 2 (∞). (5.7)
When n = 2, we have a 1 -a 2 = 4 + m 2 = 0, since m 2 ≥ 0. Combining (5.6) and (5.7), we see that sin(m 1 x + (m 2 + 1)y) sin z ∈ H 2 (∞). Now applying the argument of Step 1, we infer that sin(m 1 x + (m 2 + 1)y) sin pz ∈ H 2 (∞) for any p ≥ 1 and m 1 = ±1. Finally, computing the term b 2 (sin(±2x + (m 2 + 1)y) sin nz, φ 1 ), one easily shows that sin(±x + (m 2 + 1)y) sin pz ∈ H 2 (∞) for any p ≥ 1. Thus P (m 2 ) holds for any m 2 ≥ 0, and we conclude that that s m (x, y)

sin pz ∈ H 2 (∞) for any p ≥ 1. The proof of c m (x, y) sin pz ∈ H 2 (∞) is similar.
Thus all the vectors of the basis in H 2 belong to H 2 (∞). This completes the proof of Proposition 5.3.

Saturation in v-component

Here we prove Proposition 5.2. We first establish the following lemma. 

ψ c m,p,i = b 1 (m c m (x, y) cos pz, ψ i ), ψ s m,p,i = b 1 (m s m (x, y) cos pz, ψ i ) belong to H 1 (∞),
where

ψ 1 = ι cos x cos z, ψ 2 = ι sin x cos z, ψ 3 =  cos y cos z, ψ 4 =  sin y cos z.
Proof. By Proposition 5.3, we know that s m (x, y) sin pz, c m (x, y)

sin pz ∈ H 2 (∞). Recall that Q 1 (0, θ) ∈ H 1 (∞) for any θ ∈ H 2 (∞). So property (a) follows from the equalities m c m (x, y) cos pz = Q 1 (0, ps m (x, y) sin pz), m s m (x, y) cos pz = Q 1 (0, -pc m (x, y) sin pz), m ∈ Z 2 * , p ≥ 1.
To prove (b), we take any ε > 0 and a ∈ R and note that

B 1 (ε m c m (x, y) cos pz + aε -1 ψ i ) = ε -2 B 1 (aψ i ) + ε 2 B 1 (m c m (x, y) cos pz) + b 1 (m c m (x, y) cos pz, aψ i ).
Using the fact that B 1 (ψ i ) = 0, we obtain the following limit in V 1 as ε → 0 + :

B 1 (εm c m (x, y) cos pz + aε -1 ψ i ) → b 1 (m c m (x, y) cos pz, aψ i ) = aψ c m,i . As a ∈ R is arbitrary, this shows that ψ c m,p,i ∈ H 1 (∞).
Repeating these arguments with s m (x, y) instead of c m (x, y), we prove that ψ s m,p,i ∈ H 1 (∞).

Proof of Proposition 5.2.

Step 1. Let us show that ı cos pz ∈ H 1 (∞) H1 for any p ≥ 1. To this end, we take any n ≥ 2 and compute the term

b 1 (ı cos x cos nz, ψ 2 ) = 1 2 ı cos 2x (cos(n + 1)z + cos(n -1)z) + 1 + n 2 2n ı cos 2x (cos(n -1)z -cos(n + 1)z) + n 2 -1 2n ı (cos(n -1)z -cos(n + 1)z) .
By property (a) in Lemma 5.4, we have ı cos 2x cos(n ± 1)z ∈ H 1 (∞), and by

property (b), that b 1 (ı cos x cos nz, ψ 2 ) ∈ H 1 (∞). It follows that ı (cos(n -1)z -cos(n + 1)z) ∈ H 1 (∞) for any n ≥ 2, so ı (cos pz -cos qz) ∈ H 1 (∞), (5.8) 
provided that p, q ≥ 1 are both odd or both even. Passing to the limit as q → ∞, we see that, for any p ≥ 1, the function ı cos pz is in the L 2 -weak closure of H 1 (∞), hence in H 1 (∞)

H1

, since H 1 (∞) is a vector space. Computing the term b 1 ( cos y cos pz, ψ 4 ) and repeating the above arguments, we infer that  cos pz ∈ H 1 (∞).

H1

Step 2. In this step, we show that m ⊥ s m (x, y) cos pz belongs to H 1 (∞)

H1

for any m ∈ Z 2 * and p ≥ 0. Let us take any m = (m 1 , m 2 ) ∈ Z 2 * and n ≥ 1, and use the equality

b 1 (s m+ (x, y) cos nz, ψ 4 ) + b 1 (c m+ (x, y) cos nz, ψ 3 ) = -(m 2 + 1)Π (s m (x, y) cos nz cos z) + Π (A  (m, n) sin(m 1 x + m 2 y) sin nz sin z) , (5.9) 
where

A  (m, n) = n -1 (m 1 n 2 , (m 2 + 1)n 2 -m 2 1 -(m 2 + 1) 2 )
. By Lemma 5.4, we have that the functions Π (s m (x, y) cos nz cos z), b 1 (s m+ (x, y) cos nz, ψ 4 ), and b 1 (c m+ (x, y) cos nz, ψ 3 ) belong to H 1 (∞). Hence,

Π (A  (m, n) sin(m 1 x + m 2 y) sin nz sin z) ∈ H 1 (∞).
(5.10)

The vector A  (m, n) is parallel to m if and only if one of the following two conditions hold:

• m 1 = 0 and m 2 = 0;

• m 1 = 0 and n 2 = m 2 1 + (m 2 + 1) 2 .
Let us denote by A  the set of couples (m, n) such that A  (m, n) is non-parallel to m. From (5.10) we derive that

m ⊥ s m (x, y)(cos(n + 1)z -cos(n -1)z) ∈ H 1 (∞) (5.11)
for any (m, n) ∈ A  . In a similar way, we compute the sum

b 1 (s m+ι (x, y) cos nz, ψ 2 ) + b 1 (c m+ι (x, y) cos nz, ψ 1 ) = -(m 1 + 1)Π (s m (x, y) cos nz cos z) + Π (A ι (m, n) sin(m 1 x + m 2 y) sin nz sin z) , (5.12) 
where

A ι (m, n) = n -1 ((m 1 + 1)n 2 -m 2 2 -(m 1 + 1) 2 , m 2 n 2 ). As above, A ι (m, n) is parallel to m if

and only if one of the following conditions hold:

• m 2 = 0 and m 1 = 0;

• m 2 = 0 and n 2 = (m 1 + 1) 2 + m 2 2 .
Let A ι be the set of (m, n) such that A ι (m, n) is non-parallel to m. From (5.12) it follows that (5.11) holds for any (m, n) ∈ A ι . Let us go back to (5.9), and replace m by -m. We see that

Π (A  (-m, n) sin(m 1 x + m 2 y) sin nz sin z) ∈ H 1 (∞),
and A  (-m, n) is parallel to m if one of the following conditions hold:

• m 1 = 0 and m 2 = 0;

• m 1 = 0 and n 2 = m 2 1 + (m 2 -1) 2 .
We denote by A -  the set of (m, n) such that A  (m, n) is non-parallel to m. Again (5.11) holds for any (m, n) ∈ A -  . The set A - ι is defined in a similar way, by replacing m by -m in (5.12). Then (5.11) holds for any (m, n) ∈ A - ι . It is easy to see that the union of the sets A ±  , A ± ι is Z 2 * × N * , so (5.11) holds for any m ∈ Z 2 * and n ≥ 1. Iterating (5.11), we obtain

m ⊥ s m (x, y)(cos pz -cos qz) ∈ H 1 (∞), (5.13) 
provided that the integers p, q ≥ 0 are both even or odd. Passing to the limit as q → ∞, we conclude that m ⊥ s m (x, y) cos pz belongs to the L 2 -weak closure of H 1 (∞), hence to H 1 (∞)

H1

for any m ∈ Z 2 * and p ≥ 0. A similar argument shows that m ⊥ c m (x, y) cos pz ∈ H 1 (∞)

H1

for any m ∈ Z 2 * and p ≥ 0. This completes the proof of Proposition 5.2.

V -saturating subspace

Here we give an example of V -saturating subspace. To make the control strong enough, we also use some Fourier modes in the v-component. More precisely, we define the space H = span{( φi , 0), (0, φ j ) : i = 1, . . . , 6, j = 1, . . . , 10} ⊂ H, where the functions φ j are as in Section 5.1 and

φ1 =  cos z, φ2 =  cos 2z, φ3 = ı cos z, φ4 = ı cos 2z, φ5 =  cos x, φ6 =  sin x.
Theorem 5.5. The subspace H is V -saturating in the sense of Definition 2.2.

Proof. Let H(j) be the subspaces defined by (2.5) and (2.6) with H = H, and let Hi (j) = π i H(j), i = 1, 2. From Proposition 5.3 it follows that H2 (∞) is dense in V 2 . Let us show that any vector of the basis in H 1 belongs to H1 (∞). Indeed, by Lemma 5.4, we have m c m (x, y) cos pz, m s m (x, y) cos pz ∈ H1 (∞) for any m ∈ Z 2 * and p ≥ 1. Combining (5.8), the version of (5.8) with  instead of ι, and the assumption that ( φi , 0) ∈ H, i = 1, . . . , 4, we obtain that ı cos pz,  cos pz ∈ H1 (∞) for any p ≥ 1. For any m ∈ Z 2 * and p ≥ 1, the following equality holds:

b 1 (s m+ι (x, y) cos pz, φ6 ) + b 1 (c m+ι (x, y) cos pz, φ5 ) = Π (A(m) sin(m 1 x + m 2 y) cos pz) , (5.14) 
where

A(m) = (-(m 1 +1)m 2 , m 1 +1-m 2 
2 ). Note that the vector A(m) is parallel to m if and only if A(m) = 0, i.e., m = (-1, 0). Assume that m = (-1, 0). Since B 1 ( φ5 ) = B 1 ( φ6 ) = 0, as in the proof of (b) in Lemma 5.4, we show that b 1 (s m+ι (x, y) cos pz, φ6 ), b 1 (c m+ι (x, y) cos pz, φ5 ) ∈ H1 (∞). As A(m) is non-parallel to m, from (5.14) we derive that m ⊥ s m (x, y) cos pz ∈ H1 (∞) for any p ≥ 1. From (5.13) it follows also that m ⊥ s m (x, y) ∈ H1 (∞). Finally, if m = (-1, 0), then m ⊥ s m (x, y) = φ6 (x) ∈ H, and (cf. (b) in Lemma 5.4)

b 1 ((1, 1) cos pz, φ5 (x)) = -m ⊥ s m (x, y) cos pz ∈ H1 (∞), p ≥ 1.
With similar arguments one proves also that m ⊥ c m (x, y) cos pz ∈ H1 (∞) for any m ∈ Z 2 * and p ≥ 0. Thus any vector of the basis in H 1 belongs to H1 (∞). We conclude that H1 (∞) is dense in V 1 and H(∞) is dense in V .

Saturation for linearised system

Now we turn to the saturation property for the linearised system.

Theorem 5.6. The subspace H defined by (5.1) is saturating for linearised system (1.8) in the sense of Definition 3.1.

Proof. This theorem follows from the proof of Theorem 5.1. Indeed, let G(∞) be the vector space defined in the beginning of Section 3.1. The computations in Section 5.1.1 remain true if the term b 2 is replaced by b 2 ; there is only a change of unessential constants due to the change of a sign when switching to b 2 from b 2 . Thus any vector of the basis in H 2 belongs to π 2 G(∞). The computations in Section 5.1.2 show that any vector of the basis in H 1 belongs to π 1 G(∞).

H1

We conclude that G(∞) is dense in H, so H is saturating in the sense of Definition 3.1.

Proof of Proposition 1.2

We confine ourselves to the proof of limit (1.7), which is relatively more complicated; see Remark 6.1. Let us take any u 0 = (v 0 , θ 0 ) ∈ H 4 and ξ ∈ H 5 such that π 1 ξ = 0 and consider the function w(t) = u(δt) -q(t), where u(t) = S t (u 0 , δ -1 ξ, 0), q(t) = (q 1 (t), q 2 (t)), q 1 (t) = v 0 -tQ 1 ξ, (6.1)

q 2 (t) = θ 0 -t (L 2 ζ + B 2 (v 0 , ζ)) + t 2 2 B 2 (Q 1 ξ, ζ), (6.2) 
and ζ = π 2 ξ. For any r > 0, we show that w(1) → 0 in V as δ → 0 + uniformly with respect to u 0 and ζ satisfying u 0 4 + ζ 5 ≤ r. (6.3)

Note that v = π 1 w is a solution of the following equation:

∂ t v + δL 1 (v + q 1 ) + δ v + q 1 , ∇ (v + q 1 ) -δ z 0 div(v + q 1 ) dz ∂ z (v + q 1 ) +δf (v + q 1 ) ⊥ + δ∇p s -δ z 0 ∇(θ + q 2 + δ -1 ζ) dz + ∂ t q 1 = δh 1 .
Using (6.1) and (1.3), we see that this equation is equivalent to

∂ t v + δL 1 (v + q 1 ) + δ v + q 1 , ∇ (v + q 1 ) -δ z 0 div(v + q 1 ) dz ∂ z (v + q 1 ) +δf (v + q 1 ) ⊥ + δ∇p s -δ z 0 ∇(θ + q 2 ) dz = δh 1 . (6.4)
In a similar way, θ = π 2 w is a solution of the equation

∂ t θ + δL 2 (θ + q 2 + δ -1 ζ) + δ v + q 1 , ∇ (θ + q 2 + δ -1 ζ) -δ z 0 div(v + q 1 ) dz ∂ z (θ + q 2 + δ -1 ζ) + ∂ t q 2 = δh 2 ,
which, in view of (6.2) and (1.2), can be rewritten as follows:

∂ t θ + δL 2 (θ + q 2 ) + δ v + q 1 , ∇ (θ + q 2 ) -δ z 0 div(v + q 1 ) dz ∂ z (θ + q 2 ) + v, ∇ ζ - z 0 div v dz ∂ z ζ = δh 2 . (6.5)
The initial conditions are v(0) = 0 and θ(0) = 0. Using Eqs. (6.4) and (6.5), we estimate the norms of v and θ.

Step 1. L 2 -estimate for v. The goal of the first two steps is to show the limit v(1) + θ(1) → 0 as δ → 0 + . We start by taking the scalar product in L 2 of Eq. (6.4) with v and integrating by parts:

1 2 d dt v 2 +δν 1 ∇v 2 + δµ 1 ∂ z v 2 = -δ L 1 q 1 , v -δ v + q 1 , ∇ (v + q 1 ), v + δ z 0 div(v + q 1 ) dz ∂ z (v + q 1 ), v -δ f (v + q 1 ) ⊥ , v -δ ∇p s , v + δ z 0 ∇(θ + q 2 ) dz, v + δ h 1 , v = 7 i=1 I i . (6.6)
To estimate the terms I 1 , I 4 , I 6 , I 7 , we integrate by parts and use9 the Cauchy-Schwarz and Young inequalities and the assumption that u 0 and ζ satisfy (6.3) and t ∈ [0, 1] :

|I 1 | ≤ δ L 1 q 1 v ≤ Cδ v , |I 4 | = δ| f q ⊥ 1 , v | ≤ δ f q 1 v ≤ Cδ v , |I 6 | ≤ Cδ θ + q 2 ∇v ≤ Cδ θ 2 + 1 + δν 1 4 ∇v 2 , |I 7 | ≤ δ h 1 v ≤ Cδ v .
Integrating by parts and using the condition T div v dz = 0, we get

I 5 = -δ T 2 ∇p s (x, y) T v(x, y, z) dz dx dy = δ T 2 p s (x, y)
T div v(x, y, z) dz dx dy = 0.

To estimate I 2 and I 3 , we note that

z 0 div(v + q 1 ) dz ∂ z v, v = 1 2 T 3 z 0 div(v + q 1 ) dz ∂ z |v| 2 dx dy dz = - 1 2 T 3 div(v + q 1 ) |v| 2 dx dy dz = (v + q 1 ), ∇ v, v .
Thus

|I 2 + I 3 | ≤ δ ( v + q 1 ) ∇q 1 ∞ v + Cδ ( ∇v + ∇q 1 ) ∂ z q 1 ∞ v ≤ Cδ v 2 + 1 + δν 1 4 ∇v 2 .
Combining the estimates for I i with inequality (6.6), we obtain

d dt v 2 +δν 1 ∇v 2 + δµ 1 ∂ z v 2 ≤ Cδ v 2 + θ 2 + 1 . (6.7)
Step 2. L 2 -estimate for θ. Now we take the scalar product in L 2 of Eq. (6.5) with θ:

1 2 d dt θ 2 +δν 2 ∇θ 2 + δµ 2 ∂ z θ 2 = -δ L 2 q 2 , θ -δ v + q 1 , ∇ (θ + q 2 ), θ + δ z 0 div(v + q 1 ) dz ∂ z (θ + q 2 ), θ -v, ∇ ζ, θ + z 0 div v dz ∂ z ζ, θ + δ h 2 , θ = 6 i=1 J i . (6.8) 
We start with the terms J 1 , J 4 , J 5 , J 6 :

|J 1 | ≤ δ L 2 q 2 θ ≤ Cδ θ , |J 4 | ≤ v ∇ζ ∞ θ ≤ C v θ , |J 5 | ≤ C ∇v ∂ z ζ ∞ θ ≤ C ∇v θ , |J 6 | ≤ δ h 2 θ ≤ Cδ θ .
To estimate J 2 and J 3 , we use the equality

z 0 div(v + q 1 ) dz ∂ z θ, θ = 1 2 T 3 z 0 div(v + q 1 ) dz ∂ z (θ 2 ) dx dy dz = - 1 2 T 3 div(v + q 1 ) (θ 2 ) dx dy dz = (v + q 1 ), ∇ θ, θ .
Then

|J 2 + J 3 | ≤ δ ( v + q 1 ) ∇q 2 ∞ θ + Cδ ( ∇v + ∇q 1 ) ∂ z q 2 ∞ θ ≤ Cδ v 2 + θ 2 + 1 + δν 1 ∇v 2 .
The estimates for J i and (6.8) imply that

d dt θ 2 + δν 2 ∇θ 2 + δµ 2 ∂ z θ 2 ≤ C v 2 + ∇v 2 + θ 2 + 1 + Cδ v 2 + θ 2 + 1 + δν 1 ∇v 2 .
Combining this with (6.7), we get

d dt θ 2 + C(ν 1 δ) -1 + 1 d dt v 2 + δν 2 ∇θ 2 + δµ 2 ∂ z θ 2 ≤ C(1 + δ) v 2 + θ 2 + 1 . (6.9)
Integrating in time, we obtain

θ(t) 2 + v(t) 2 ≤ C(1 + δ) t 0 v 2 + θ 2 + 1 ds.
The Gronwall inequality implies sup t∈[0,1], δ∈(0,1]

θ(t) 2 + v(t) 2 < ∞.
Going back to (6.7) and (6.9), we see that

v(t) 2 + θ(t) 2 + t 0 v 2 1 + θ 2 1 ds ≤ Cδ for t ∈ [0, 1]. (6.10)
Step 3. Barotropic-baroclinic formulation. Following the ideas of [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF], to estimate the L 6 -norm of v and H 1 -norms of v and θ, we use barotropic-baroclinic formulation of PEs. More precisely, we denote φ = (2π) -1 T φ(x, y, z) dz, φ = φ -φ.

Then the barotropic mode v satisfies the following system of equations:

∂ t v -δν 1 ∆(v + q1 ) + δ v + q1 , ∇ (v + q1 )
+δ ṽ + q1 , ∇ (ṽ + q1 ) + div(ṽ + q1 )(ṽ + q1 ) + δf (v + q1 ) ⊥ +δ∇p s -δ z 0 ∇(θ + q 2 ) dz = δ h1 , div v = 0, (6.11) and the baroclinic mode ṽ the following one:

∂ t ṽ + δL 1 (ṽ + q1 ) + δ ṽ + q1 , ∇ (ṽ + q1 ) -δ z 0 div(ṽ + q1 ) dz ∂ z (ṽ + q1 ) +δ v + q1 , ∇ (ṽ + q1 ) + δ ṽ + q1 , ∇ (v + q1 )

-δ ṽ + q1 , ∇ (ṽ + q1 ) + div(ṽ + q1 )(ṽ + q1 ) + δf (ṽ + q1 ) ⊥ -δ z 0 ∇(θ + q 2 ) dz + δ z 0 ∇(θ + q 2 ) dz = δ h1 (6.12)

(see [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF] for details). The advantage of this representation is that there is no pressure term in Eq. (6.12) and the barotropic mode depends only on horizontal variables (x, y) (its properties are similar to the ones of 2D NS system).

Step 4. L 6 -estimate for ṽ. We take the scalar product in L 2 of Eq. (6.12) with ṽ|ṽ| 4 :

1 6 d dt ṽ 6 L 6 + δν 1 |∇ṽ| |ṽ| 2 2 + δν 1 ṽ |∇|ṽ| 2 | 2 + δµ 1 |∂ z ṽ| |ṽ| 2 2 + δµ 1 ṽ |∂ z |ṽ| 2 | 2 = -δ L 1 q1 , ṽ|ṽ| 4
-δ ṽ + q1 , ∇ (ṽ + q1 ) -z 0 div(ṽ + q1 ) dz ∂ z (ṽ + q1 ), ṽ|ṽ| 4

-δ v + q1 , ∇ (ṽ + q1 ), ṽ|ṽ| 4 -δ ṽ + q1 , ∇ (v + q1 ), ṽ|ṽ| 4

+ δ ṽ + q1 , ∇ (ṽ + q1 ) + div(ṽ + q1 )(ṽ + q1 ), ṽ|ṽ| 4

+ δ z 0 ∇(θ + q 2 ) dz - z 0 ∇(θ + q 2 ) dz, ṽ|ṽ| 4 -δ f (ṽ + q1 ) ⊥ , ṽ|ṽ| 4 + δ h 1 , ṽ|ṽ| 4 = 8 i=1 I i . (6.13) Then |I 1 | ≤ δ L 1 q1 L 6 ṽ 5 L 6 ≤ Cδ ṽ 5 L 6 , |I 7 | = δ| f q⊥ 1 , ṽ|ṽ| 4 | ≤ Cδ q1 L 6 ṽ 5 L 6 ≤ Cδ ṽ 5 L 6 , |I 8 | ≤ δ h1 L 6 ṽ 5 L 6 ≤ Cδ ṽ 5 L 6 .
Integrating by parts, we see that ṽ + q1 , ∇ ṽ -z 0 div(ṽ + q1 ) dz ∂ z ṽ, ṽ|ṽ| 4 = 0, which implies (again by integrating by parts)

|I 2 | ≤ δ ( ṽ L 6 + q1 L 6 ) ∇q 1 ∞ ṽ 5 L 6 + Cδ ( ṽ L 6 + q1 L 6 ) ∇q 1 ∞ ṽ 5 L 6 + Cδ ( ṽ L 6 + q1 L 6 ) ṽ 2 L 6 ∂ z q1 ∞ |∇ṽ| |ṽ| 2 ≤ Cδ ṽ 6 L 6 + 1 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
As div v = div q1 = 0, we have that v + q1 , ∇ ṽ, ṽ|ṽ| 4 = 0, hence

|I 3 | ≤ δ ( v L 6 + q1 L 6 ) ∇q 1 ∞ ṽ 5 L 6 ≤ Cδ ( v L 6 + 1) ṽ 5 L 6 .
To estimate I 4 , we first integrate by parts:

I 4 = δ (v + q1
) div (ṽ + q1 ) , ṽ|ṽ| 4 + δ ṽ + q1 , ∇ (ṽ|ṽ| 4 ), v + q1 .
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We decompose I 4 as I 4 = I 1 4 + I 2 4 , where

I 1 4 = -δ ṽ, ∇ v, ṽ|ṽ| 4 = δ v div ṽ, ṽ|ṽ| 4 + δ ṽ, ∇ (ṽ|ṽ| 4 ), v .
It is proved on pages 255-257 in [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF] that

|I 1 4 | ≤ Cδ v 1 2 ∇v 1 2 ṽ 3 2 L 6 |∇ṽ| |ṽ| 2 3 2 + v 1 2 ∇v 1 2 ṽ 6 L 6 ≤ Cδ v 2 ∇v 2 + 1 ṽ 6 L 6 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
Then, integrating by parts, we estimate the term I 2 4 as follows:

|I 2 4 | ≤ Cδ v L 6 ∇q 1 ∞ ṽ 5 L 6 + q1 ∞ |∇ṽ| |ṽ| 2 ṽ 3 L 6 + q1 ∞ ∇q 1 L 6 ṽ 5 L 6 + q1 ∞ ṽ 2 L 6 |∇ṽ| |ṽ| 2 ( v L 6 + q1 L 6 ) ≤ Cδ v L 6 ṽ 5 L 6 + v 2 L 6 ṽ 4 L 6 + ṽ 6 L 6 + 1 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
To estimate I 5 , we first integrate by parts:

I 5 = δ ṽ + q1 , ∇ (ṽ + q1 ) + div(ṽ + q1 )(ṽ + q1 ), ṽ|ṽ| 4 = -δ 2 k,j=1 T 3 (ṽ + g1 ) k (ṽ + g1 ) j ∂ k (ṽ j |ṽ| 4 ),
where ∂ 1 = ∂ x and ∂ 2 = ∂ y . We write I 5 = I 1 5 + I 2 5 , where

I 1 5 = -δ 2 k,j=1 T 3 ṽk ṽj ∂ k (ṽ j |ṽ| 4 ).
By the computations on pages 255-257 in [CT07], we have

|I 1 5 | ≤ Cδ ṽ 3 L 6 ( ṽ + ∇ṽ ) |∇ṽ| |ṽ| 2 ≤ Cδ ṽ 6 L 6 ṽ 2 + ∇ṽ 2 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
Then we estimate I 2 5 as follows:

|I 2 5 | ≤ Cδ T 2 T (|ṽ| + 1) dz 2 T |∇ṽ||ṽ| 4 dz dx dy ≤ Cδ T 2 T |ṽ| 2 dz T |∇ṽ||ṽ| 4 dz dx dy + Cδ T 3
|∇ṽ||ṽ| 4 dx dy dz.

The first term on the right-hand side is estimated exactly in the same way as I 1 5

(see [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF]), and the second term by

Cδ T 3 |∇ṽ||ṽ| 4 dx dy dz ≤ Cδ |∇ṽ| |ṽ| 2 ṽ 2 L 4 ≤ Cδ ṽ 4 L 4 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
It remains to estimate I 6 . To this end, we write I 6 = I 1 6 + I 2 6 , where

I 1 6 = δ z 0 ∇θ dz - z 0 ∇θ dz, ṽ|ṽ| 4 .
Again we refer to pages 255-257 in [START_REF] Cao | Global well-posedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF] for the proof of the following inequality:

|I 1 6 | ≤ Cδ θ 1 2 ∇ θ 1 2 ṽ 3 2 L 6 ṽ 1 2 + ∇ṽ 1 2 |∇ṽ| |ṽ| 2 ≤ Cδ θ 2 ∇ θ 2 + ṽ 6 L 6 ṽ 2 + ṽ 6 L 6 ∇ṽ 2 + δν 1 9 |∇ṽ| |ṽ| 2 2 .
Then we estimate I 2 6 as follows:

|I 2 6 | ≤ Cδ ∇q 2 ∞ ṽ 5 L 5 ≤ Cδ ṽ 5 L 5 . Combining all the above estimates for the terms I i with (6.13), (6.10), the Sobolev embedding H 1 (T 3 ) ⊂ L 6 (T 3 ), and the Gronwall inequality, we conclude that ṽ

(t) L 6 + t 0 |∇ṽ| |ṽ| 2 2 ds ≤ Cδ for t ∈ [0, 1].
(6.14)

Step 5. Estimate for ∇v. Here we take the scalar product in L 2 of the first equation in (6.11) with -∆v:

1 2 d dt ∇v 2 +δν 1 ∆v 2 = -δν 1 ∆q 1 , ∆v + δ v + q1 , ∇ (v + q1 ), ∆v
+ δ ṽ + q1 , ∇ (ṽ + q1 ) + div(ṽ + q1 )(ṽ + q1 ), ∆v

+ δ f (v + q1 ) ⊥ , ∆v + δ ∇p s , ∆v -δ z 0 ∇(θ + q 2 ) dz, ∆v -δ h1 , ∆v = 7 i=1 I i . (6.15)
We estimate10 I 1 , I 4 , I 7 as follows:

|I 1 | ≤ δν 1 ∆q 1 ∆v ≤ Cδ + δν 1 10 ∆v 2 , |I 4 | = δ| f q⊥ 1 , ∆v | ≤ Cδ + δν 1 10 ∆v 2 , |I 7 | ≤ δ h1 ∆v ≤ Cδ + δν 1 10 ∆v 2 .
Integrating by parts and using the fact that div v = 0, we get I 5 = I 6 = 0. Next we use the Hölder inequality, the Sobolev embedding H 1 (T 2 ) ⊂ L 4 (T 4 ), and the interpolation inequality to estimate I 2 :

|I 2 | ≤ δ v + q1 L 4 ∇(v + q1 ) L 4 ∆v ≤ δ v + q1 1 2 ∇(v + q1 ) ∆v 3 2 ≤ Cδ ∇v 6 + 1 + δν 1 10 ∆v 2 .
Finally, we use the Hölder inequality to estimate I 3 : 

|I 3 | ≤ Cδ T 2 T |ṽ + q1 | |∇(ṽ + q1 )|
≤ A 1 3 δ Φ, or, equivalently, 1 Φ 3 d dt Φ ≤ A δ .
Integrating this, we obtain

Φ(t) ≤ A δ 1 -2A 3 δ t -1 2 for 0 ≤ t < 1 ∧ 1 2A 3 δ . Thus Φ(t) ≤ 2A δ for 0 ≤ t < 1 ∧ 3 8A 3 δ . Choosing δ 0 > 0 so small that 3 8A 3 δ > 1 for δ ∈ (0, δ 0 ), we arrive at Φ(t) ≤ 2A δ for t ∈ [0, 1], δ ∈ (0, δ 0 ).
Combining this with (6.16), we prove (6.17). Below everywhere we shall assume that δ ∈ (0, δ 0 ).

Step 6. Estimate for ∂ z v. The function ω = ∂ z v is a solution of the equation

∂ t ω + δL 1 (ω + q1 ) + δ v + q 1 , ∇ (ω + q1 ) -δ z 0 div(v + q 1 ) dz ∂ z (ω + q1 ) +δ ω + q1 , ∇ (v + q 1 ) -δ div(v + q 1 ) (ω + q1 ) +δf (ω + q1 ) ⊥ -δ∇(θ + q 2 ) = δ ĥ1 , (6.18) 
where we denote q1 = ∂ z q 1 and ĥ1 = ∂ z h 1 . Let us take the scalar product in L 2 of Eq. (6.18) with ω:

1 2 d dt ω 2 + δν 1 ∇ω 2 + δµ 1 ∂ z ω 2 = -δ L 1 q1 , ω -δ v + q 1 , ∇ (ω + q1 ) - z 0 div(v + q 1 ) dz ∂ z (ω + q1 ), ω -δ ω + q1 , ∇ (v + q 1 ) -div(v + q 1 ) (ω + q1 ), ω -δ f (ω + q1 ) ⊥ , ω + δ ∇(θ + q 2 ), ω + δ ĥ1 , ω = 6 i=1 I i . (6.19) 
Then I 1 , I 4 , I 5 , I 6 are estimated as follows: Integrating by parts in z, we get v + q 1 , ∇ ω -z 0 div(v + q 1 ) dz ∂ z ω, ω = 0, so we can estimate I 2 by

|I 1 | ≤ δ L 1 q 1 ω ≤ Cδ ω ,
|I 2 | ≤ δ ( v + q 1 ) ∇q 1 ∞ ω + Cδ ( ∇v + ∇q 1 ) ∂ z q1 ∞ ω ≤ Cδ ( v 1 + 1) ω .
Integrating by parts in x and y and using the Hölder, Gagliardo-Nirenberg, and Sobolev inequalities, we obtain 1 + 1 ( ∇ω + 1)

|I 3 | ≤ Cδ
≤ Cδ v 4 L 6 ω 2 + v 2 L 6 + ω 2 + 1 + δν 1 2 ∇ω 2 + δµ 1 2 ∂ z ω 2 ≤ Cδ ∇v 4 + ṽ 4 L 6 ω 2 + ∇v 2 + ṽ 2 L 6 + ω 2 + 1 + δν 1 4 ∇ω 2 + δµ 1 2 ∂ z ω 2 .
Combining the estimates for I i with (6.19), the Gronwall inequality, and inequalities (6.10), (6.14), and (6.17), we obtain

∂ z v(t) 2 + t 0 ∂ z v 2 1 ds ≤ Cδ for t ∈ [0, 1].
(6.20)

Step 7. Estimate for ∇v. We take the scalar product in L 2 of Eq. (6.4) with -∆v:

1 2 d dt
∇v 2 +δν 1 ∆v 2 + δµ 1 ∇∂ z v 2 = δ L 1 q 1 , ∆v + δ v + q 1 , ∇ (v + q 1 ), ∆v -δ z 0 div(v + q 1 ) dz ∂ z (v + q 1 ), ∆v + δ f (v + q 1 ) ⊥ , ∆v + δ ∇p s , ∆v -δ z 0 ∇(θ + q 2 ) dz, ∆v -δ h 1 , ∆v = Integrating by parts in x and y and using the condition T div v dz = 0, we get We decompose the terms I 2 and I 3 as follows:

I 5 = δ
I 2 = P 1 + P 2 , P 1 = δ v, ∇ v, ∆v ,

I 3 = Q 1 + Q 2 , Q 1 = -δ z 0 div v dz ∂ z v, ∆v ,
and estimate the quadratic in v terms P 2 and Q 2 in the following way:

|P 2 | ≤ δ ( v ∇q 1 ∞ + ∇v q 1 ∞ + q 1 ∇q 1 ∞ ) ∆v ≤ Cδ v 2 1 + 1 + δν 1 16 ∆v 2 , |Q 2 | ≤ Cδ ( ∂ z v ∇q 1 ∞ + ∇v ∂ z q 1 ∞ + ∇q 1 ∂ z q 1 ∞ ) ∆v ≤ Cδ v 2 1 + 1 + δν 1 16 ∆v 2 .
For P 1 , we use the Hölder, Sobolev, and Gagliardo-Nirenberg inequalities: Next, we use the following inequality which is proved in Proposition 2.2 in [START_REF] Cao | Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model[END_REF]:

|P 1 | ≤ Cδ
z 0 div φ dz ϕ, ψ ≤ C φ 1 2 1 L 1 φ 1 2 ϕ 1 2 ϕ 1 2
1 ψ (6.22)

for any φ ∈ H 2 (T 3 , R 2 ), ϕ ∈ H 1 (T 3 , R), and ψ ∈ L 2 (T 3 , R). Applying (6.22), we obtain

|Q 1 | ≤ Cδ v 1 2 1 L 1 v 1 2 ∂ z v 1 2 ∂ z v 1 2 1 ∆v ≤ Cδ ∇v 2 + ∂ z v 2 + v 2 ∂ z v 2 ∇∂ z v 2 + Cδ ∂ zz v 2 + δν 1 16 ∆v 2 .
The estimates for P 1 , P 2 , Q 1 , Q 2 and I i , together with (6.21), the Gronwall inequality, and inequalities (6.10), (6.14), (6.17), and (6.20) imply that ∇v(t) which implies, in particular that v(1) 1 → 0 as δ → 0 + .

Step 8. Estimate for ∂ z θ. Now we turn to the H 1 -estimates for θ. To estimate ∂ z θ, we take the scalar product in L 2 of Eq. (6.5) with -∂ zz θ:

1 2 d dt ∂ z θ 2 +δν 2 ∇∂ z θ 2 + δµ 2 ∂ zz θ 2 = δ L 2 q 2 , ∂ zz θ + δ v + q 1 , ∇ (θ + q 2 ), ∂ zz θ + v, ∇ ζ, ∂ zz θ -δ z 0 div(v + q 1 ) dz ∂ z (θ + q 2 ), ∂ zz θ - z 0 div v dz ∂ z ζ, ∂ zz θ -δ h 2 , ∂ zz θ = 6 i=1 J i . (6.24)
We start with the terms J 1 and J 6 :

|J 1 | ≤ δ L 2 q 2 ∂ zz θ ≤ Cδ + δµ 2 12 ∂ zz θ 2 , |J 6 | ≤ δ h 2 ∂ zz θ ≤ Cδ + δµ 2 12 ∂ zz θ 2 .
To estimate J 3 and J 5 , we integrate by parts in z and use the Cauchy-Schwarz and Sobolev inequalities:

|J 3 | ≤ | ∂ z v, ∇ ζ, ∂ z θ | + | v, ∇ ∂ z ζ, ∂ z θ | ≤ ∂ z v ∇ζ ∞ ∂ z θ + v ∇∂ z ζ ∞ ∂ z θ ≤ C v 1 ∂ z θ , |J 5 | ≤ | div v ∂ z ζ, ∂ z θ | + z 0 div v dz ∂ zz ζ, ∂ z θ ≤ C ∇v ∂ z ζ ∞ ∂ z θ + C ∇v ∂ zz ζ ∞ ∂ z θ ≤ C v 1 ∂ z θ .
We write the terms J 2 and J 4 as follows:

J 2 = P 1 + P 2 , P 1 = δ v, ∇ θ, ∂ zz θ ,

J 4 = Q 1 + Q 2 , Q 1 = -δ z 0 div v dz ∂ z θ, ∂ zz θ ,
and estimate P 2 and Q 2 as in the previous steps:

|P 2 | ≤ δ ( v ∇q 2 ∞ + ∇θ q 1 ∞ + q 1 ∇q 2 ∞ ) ∂ zz θ ≤ Cδ v 2 1 + θ 2 1 + 1 + δµ 2 12 ∂ zz θ 2 , |Q 2 | ≤ Cδ ( ∇v ∂ z q 2 ∞ + ∂ z θ ∇q 1 ∞ + ∇q 1 ∂ z q 2 ∞ ) ∂ zz θ ≤ Cδ v 2 1 + θ 2 1 + 1 + δµ 2 12 ∂ zz θ 2 .
To estimate P 1 , we use the Hölder, Sobolev, and Gagliardo-Nirenberg inequalities:

|P 1 | ≤ δ v L 6 ∇θ L 3 ∂ zz θ ≤ Cδ v 1 ∇θ 1 2 ∇θ 1 2 1 ∂ zz θ ≤ Cδ v 4 1 θ 2 1 + δν 2 ∆θ 2 + δµ 2 12 ∂ zz θ 2 .
To estimate Q 1 , we first integrate by parts in z:

z 0 div v dz ∂ z θ, ∂ zz θ = 1 2 T 3 z 0 div v dz ∂ z ((∂ z θ) 2 ) dx dy dz = - 1 2 T 3 (∂ z θ) 2 div v dx dy dz,
then we use the Cauchy-Schwarz and Gagliardo-Nirenberg inequalities:

|Q 1 | ≤ Cδ ∇v ∂ z θ 2 L 4 ≤ Cδ ∇v ∂ z θ 1 2 ∂ z θ 3 2 1 ≤ Cδ v 4 1 θ 2 1 + δν 2 2 ∇∂ z θ 2 + δµ 2 12 ∂ zz θ 2 .
Combining the estimates for P 1 , P 2 , Q 1 , Q 2 and J i with inequalities (6.10), (6.23), and (6.24), we obtain

∂ z θ(t) 2 + δµ 2 t 0
∂ zz θ 2 ds ≤ Cδ + δν 2 t 0 ∆θ 2 ds. (6.25)

Step 9. Estimate for ∇θ. Finally, to estimate ∇θ, we take the scalar product in L 2 of Eq. (6.5) with -∆θ:

1 2 d dt
∇θ 2 +δν 2 ∆θ 2 + δµ 2 ∇∂ z θ 2 = δ L 2 q 2 , ∆θ + δ v + q 1 , ∇ (θ + q 2 ), ∆θ + v, ∇ ζ, ∆θ -δ z 0 div(v + q 1 ) dz ∂ z (θ + q 2 ), ∆θ - The terms J 1 and J 6 are estimated as follows:

|J 1 | ≤ δ L 2 q 2 ∆θ ≤ Cδ + δν 2 12 ∆θ 2 , |J 6 | ≤ δ h 2 ∆θ ≤ Cδ + δν 2 12 ∆θ 2 .
To estimate J 3 and J 5 , we integrate by parts and use the Cauchy-Schwarz and Sobolev inequalities:

|J 3 | ≤ C v 1 θ 1 , |J 5 | ≤ C ∆v θ 1 .

  are the usual Lebesgue and Sobolev spaces of functions g : T d → R n endowed with the norms • L p and • k , respectively. If p = 2, we write • instead of • L 2 and denote by •, • the corresponding scalar product. If p = +∞, we write

Lemma 5. 4 .

 4 For any m ∈ Z 2 * , p ≥ 1, and i ∈ [[1, 4]], the following properties hold: (a) the functions m c m (x, y) cos pz, m s m (x, y) cos pz belong to H 1 (∞); (b) the functions

|I 4 |

 4 = δ| f q⊥ 1 , ω | ≤ δ f q1 ω ≤ Cδ ω , |I 5 | ≤ Cδ θ + q 2 ∇ω ≤ Cδ θ 2 + 1 + δν 1 4 ∇ω 2 , |I 6 | ≤ δ ĥ1 ω ≤ Cδ ω .

T 3 |v

 3 + q 1 | (|∇(ω + q1 )||ω| + |ω + q1 ||∇ω|) dx dy dz ≤ Cδ T 3 (|v| + 1) (|ω| + 1) (|∇ω| + 1) dx dy dz ≤ Cδ ( v L 6 + 1) ( ω L 3 + 1) ( ∇ω + 1) ≤ Cδ ( v L 6 + 1) ω

  s (x, y) ∆ T div v(x, y, z) dz dx dy = 0.

T 3 |v||∇v||∆v|≤

 3 dx dy dz ≤ Cδ v L 6 ∇v L 3 ∆v ≤ Cδ v L 6 ∇v Cδ ∇v 4 + ṽ 4 L 6 ∇v 2 + Cδ ∇∂ z v 2 + δν 1 16 ∆v 2 .

z 0 div

 0 v dz ∂ z ζ, ∆θ -δ h 2 , ∆θ =

  This completes the proof of Theorem 2.3. Remark 2.6. Note that the above proof gives approximate controllability to any target u 1 in H 1 × V 2 with respect to the norm of that space. Remark 2.7. The assumption that H 2 (∞) is dense in V 2 (see (b) in Definition 2.2) plays an important role in the above proof. We use it in Step 2 of the proof of Proposition 2.5. If H 2 (∞) was dense only in H, we would need a version of Proposition 1.1 with respect to the L 2 -norm. The latter is an open problem.

  S 1 that is twice continuously differentiable with derivatives that are bounded on bounded subsets of H 2 × O E . Moreover, for any u ∈ H 2 , the mapping η → S(u, η), O E → H 2 is analytic and the derivatives (D j η S)(u, η) are continuous in (u, η) and bounded on bounded subsets of H 2 × O E . Thus Condition (H 1 ) in Theorem 4.1 is verified with

  dz |∆v| dx dy

	≤ Cδ	(|ṽ| + 1) (|∇ṽ| + 1) dz |∆v| dx dy
	T 2	T				
				1			1
	≤ Cδ	(|∇ṽ| + 1) dz	2	(|ṽ| + 1) 2 (|∇ṽ| + 1) dz	2	|∆v| dx dy
	T 2	T			T	
	≤ Cδ ∇ṽ 2 + ṽ 2 L 4 + |∇ṽ| |ṽ| 2 2 + 1 +	δν 1 10	∆v 2 .
	Combining the estimates for I i and inequalities (6.15), (6.14), and (6.10), we get
		d dt	∇v 2 + δν 1 ∆v 2 ≤ Cδ ∇v 6 + 1 .	(6.16)
	This inequality implies that			
		∇v(t) 2 +			
	By inequality (6.16), we have			
					1	
			dt d	Φ	3	

t 0 ∆v 2 ds ≤ Cδ for t ∈ [0, 1],

(6.17)

provided that δ > 0 is sufficiently small. Indeed, to see this, let A δ = Cδ and

Φ(t) = A δ + A δ t 0 ∇v 6 ds.

  Again the terms I 1 , I 4 , I 6 , I 7 are easier to estimate: 11|I 1 | ≤ δ L 1 q 1 ∆v ≤ Cδ + δν 1 16 ∆v 2 , |I 4 | = δ| f q ⊥ 1 , ∆v | ≤ δ f q 1 ∆v ≤ Cδ +

				7
				I i .	(6.21)
				i=1
			δν 1 16	∆v 2 ,
	|I 6 | ≤ Cδ θ + q 2 1 ∆v ≤ Cδ θ 2 1 + 1 +	δν 1 16	∆v 2 ,
	|I 7 | ≤ δ h 1 ∆v ≤ Cδ +	δν 1 16	∆v 2 .

We denote v ⊥ = (-v

, v 1 ).

In what follows, the source term h will be fixed, so we shall not indicate the dependence of S on it.

With a slight abuse of notation, we will write B 2 (v, θ), Q(v, θ), . . . instead of B 2 ((v, θ)), Q((v, θ)), . . ..

The reason why we take H 1 × V 2 and not the space H is explained in Remark 2.7.

This means that is the image of by the mapping π J T : E → L ∞ (Jτ , H), η → η| Jτ .

In the case of Eq. (1.8), this can be proved by literally repeating the arguments of Section

7.2 in[START_REF] Kuksin | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF], where a similar result is proved for linear parabolic equations.

Slightly abusing the notation, we write •, • also for the scalar product in H 1 .

Here H 1 (∞) H 1 is the closure of H 1 (∞) in H 1 .

These inequalities and assumptions are used in almost all the estimates below, so we will not mention them every time. The same letter C is used to denote constants which may change from line to line.

In the estimate for I 4 , we use the equality v⊥ , ∆v = 0 which is easily verified by integration by parts in x and y.

In the estimate for I 4 , we use the equality v ⊥ , ∆v = 0.

The terms J 2 and J 3 are decomposed as follows:

and P 2 and Q 2 are estimated by

Using the Hölder, Sobolev, and Gagliardo-Nirenberg inequalities, we obtain

By (6.22), we have

The estimates of P 1 , P 2 , Q 1 , Q 2 and I i and the inequalities (6.10), (6.23), and (6.26) imply that

From this and (6.25) we derive that θ(t) 1 ≤ Cδ, so θ(1) 1 → 0 as δ → 0 + . This completes the proof of limit (1.7).

Remark 6.1. Limit (1.6) can be established by repeating the arguments of the proof of limit (1.7), by considering the function

where u(t) = S t (u 0 , δ -1 2 ζ, δ -1 η), q(t) = (q 1 (t), q 2 (t)), [START_REF] Nersesyan | Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension[END_REF] for a proof of a limit similar to (1.6) in the case of parabolic equations with polynomially growing nonlinearities.