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Abstract
Density-dependent Markov chains form an important class of continuous-time Markov chains

in population dynamics. On any fixed time window [0, T ], when the scale parameter K > 0 is
large such chains are well approximated by the solution of an ODE (the fluid limit), with Gaussian
fluctuations superimposed upon it. In this paper we quantify the period of time during which this
Gaussian approximation remains precise, uniformly on the trajectory, in the case where the fluid
limit converges to an exponentially stable equilibrium point. We provide a new coupling between
the density-dependent chain and the approximating Gaussian process, based on a construction
of Kurtz using the celebrated Komlós-Major-Tusnády theorem for random walks. We show that
under mild hypotheses the time T (K) necessary for the strong approximation error to reach a
threshold ε(K) � 1 is at least of order exp(V Kε(K)), for some constant V > 0. This notably
entails that the Gaussian approximation yields the correct asymptotics regarding the time scales
of moderate deviations. We also present applications to the Gaussian approximation of a logistic
birth-and-death process conditioned to survive, and to the estimation of a quantity modeling the
cost of an epidemic.

1 Introduction and main result
Density-dependent Markov chains are widely used, in ecology, biology, chemistry and epidemiology, to
model the evolution of populations. Let us cite [1, 6, 22] for numerous examples, including stochastic
Lotka-Volterra models, chemical reaction networks and epidemic models. Such chains record the
abundances of a finite set of populations, in interaction with one another. They involve a scale
parameter K > 0, which can have different interpretations depending on the context (quantity of
resources, volume of reaction, or total size of the population). As shown by Kurtz [20], density-
dependent families

(
NK ; K > 0

)
satisfy a functional law of large numbers and a central limit theorem.

On a fixed time window [0, T ], when K is large the trajectory of the process XK = NK/K, called the
density, is well approximated by the solution of an ODE (the fluid limit), with Gaussian fluctuations
of order 1/

√
K superimposed upon it. Since in a number of applications, notably in ecology and

evolution, the relevant periods of time are very long, we are led to the following question: on which
time scales T (K) does the Gaussian approximation of the trajectories remain valid ?

To answer this question, we first construct a coupling between the density XK and its Gaussian
approximation. This coupling is based on a construction of Kurtz [21], which we modify in order to
improve the approximation for large times. This construction relies on the possibility to represent
density-dependent Markov chains using time-changed Poisson processes, combined with the powerful
strong approximation theorem of Komlós, Major and Tusnády (KMT)[18, 19] for one-dimensional
random walks. The KMT theorem entails the existence of a coupling between a Poisson process P and
a Brownian motion B, and constants a, b, c > 0 such that

P

(
sup

0≤t≤T
|P (t)− t−B(t)| > c log(T ) + x

)
≤ ae−bx (1)
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for all T ≥ 1 and x ≥ 0 [13, Chapter 7, Corollary 5.3]. Generalizations of the KMT result to inde-
pendent, nonidentically distributed, and multidimensional increments were obtained by Sakhanenko,
Einhmahl and Zaitsev, see [15] for a review on the subject. More recently, KMT type results were ob-
tained in various weakly-dependent cases, with applications to mixing dynamical systems and ergodic
Markov chains, see [5, 16, 24] and the references therein.

In our context, the chain XK is subject to a drift, given by the vector field of the limiting ODE.
We focus on the case where the limiting ODE admits an exponentially stable equilibrium point. This
is common in applications: let us mention coexistence equilibriums in competitive population models,
endemic equilibriums in epidemic models, and chemical equilibriums. In this situation, near the
equilibrium the drift tends to reduce the gap between XK and its strong (path-by-path) Gaussian
approximation. We show in our main result, Theorem 1.1, that it allows the Gaussian approximation
to remain precise for very large periods of time.

Let us set the framework precisely. Fix d ∈ N∗, and for all e ∈ Zd \ {0}, let βe be a non-negative
function defined on Rd. For all K > 0, let NK be a Zd-valued continous-time Markov chain, with
transition rate from n to m 6= n given by

qKn,m = Kβm−n(n/K). (2)

The family
(
NK ; K > 0

)
is called a density-dependent family of Markov chains, associated to the rate

functions βe, e ∈ Zd \{0}. For the sake of concision, a given NK is called a density-dependent Markov
chain. We make the following assumptions on the rate functions. They stand in the rest of the paper.

Assumption (A).

1. There exists a finite, non empty subset E of Zd \ {0} such that βe ≡ 0 for all e /∈ E.

2. There exists an open subset U of Rd such that, for all e ∈ E:

• βe is differentiable on U and its gradient is locally Lispchitz;
•
√
βe is locally Lipschitz on U .

3. The lifetime of NK , i.e. the limit of the time of the i-th jump of NK as i goes to infinity, is
almost surely infinite.

These assumptions are satisfied in all the applications we consider in this paper. Note that if βe is
indeed C1, a sufficient condition for its square root to be locally Lipschitz is that βe does not vanish
on U . Assumption (A3) is only made for mathematical comfort.

Let F : U → Rd be the vector field defined by

F (x) =
∑
e∈E

βe(x)e, (3)

and for all x ∈ U , let ϕx be the maximal solution of the Cauchy problem{
ϕ̇x = F (ϕx)

ϕx(0) = x
, (4)

where ϕ̇x denotes the time derivative of ϕx. The flow ϕ : (x, t) 7→ ϕx(t) is of class C1 on its domain
of definition, which is an open subset of U ×R. Let us fix x = (x1, . . . , xd) ∈ U , assume NK(0) =
bKxc := (bKx1c, . . . , bKxdc) and set XK

x = NK/K. We have the following functional central limit
theorem [20]. For all T > 0 such that ϕx is defined on [0, T ], we have

√
K
(
XK
x − ϕx

)
=⇒
K→∞

Ux

in the Skorokhod space D([0, T ],Rd), and Ux satisfies, almost surely for all t ∈ [0, T ],

Ux(t) =

∫ t

0

F ′(ϕx(s))Ux(s)ds+
∑
e∈E

(∫ t

0

√
βe(ϕx(s))dWe(s)

)
e,
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where W = (We(t) ; e ∈ E, t ≥ 0) is a RE-valued standard Brownian motion, and F ′(y) denotes the
Jacobian matrix of F at y.

Moreover, Kurtz showed that we can construct XK
x and Ux on the same probability space such

that

P

(
sup

0≤t≤T

∥∥XK
x (t)− ϕx(t)− Ux(t)/

√
K
∥∥ ≥ CT log(K)/K

)
−→

K→+∞
0, (5)

where CT is a constant which grows exponentially fast as T increases, due to the use of Grönwall
lemma (see [21] or [13, Chapter 11, Section 3]). This suggests that with high probability the gap
between XK

x and its Gaussian approximation is negligible with respect to 1/
√
K during a period of

time of order log(K). In the present paper, we show that with additional stability assumptions on the
limiting ODE, we can obtain much longer time scales. The following assumption is in force in the rest
of the paper:

Assumption (B). There exists x∗ ∈ U such that F (x∗) = 0 and all the eigenvalues of the Jacobian
F ′(x∗) have a negative real part.

This entails that x∗ is an exponentially stable equilibrium point of F , see e.g. [31, Corollary 3.27].
Let U∗ denote its basin of attraction, i.e. the set of all x ∈ U such that ϕx(t)→ x∗ as t→ +∞. It is
an open subset of U .

Let us take x ∈ U∗. It is known that XK
x shows a metastable behaviour: the theory of large

deviations for dynamical systems perturbed with Poissonian noise [29, 6] predicts that XK
x stays in

a small neighbourhood of the equilibrium for a time which is exponentially large in K. Similarly,
the vector field F tends to bring the trajectories of the density XK

x and the Gaussian approximation
ϕx + Ux/

√
K closer together, keeping the gap small between them. In this paper we construct a

coupling between these two processes by essentially concatenating couplings like the one constructed
by Kurtz on intervals of length one. Then, roughly speaking, reaching an error threshold ε(K) can be
compared to a succession of trials of low probability of success.

Let us introduce some notation before stating our main result. We denote by µKx the probability
distribution of XK

x on the Skorokhod space D(R+,R
d), and by νx the probability distribution of Ux

on C(R+,R
d). Given two probability spaces (E1,E1, µ1) and (E2,E2, µ2), a coupling of (µ1, µ2) is a

random element (X1, X2) of (E1 × E2,E1 ⊗ E2) such that X1 is distributed as µ1 and X2 as µ2. For
two functions f, g : R∗+ → R∗+, we write f(K) � g(K), or f(K) = o(g(K)), if f(K)/g(K) → 0 as
K → +∞.

Theorem 1.1. Assume (A) and (B), and let D be a compact subset of U∗. There exist constants
C, V, α > 0 such that for every ε : R∗+ → R∗+ satisfying α log(K)/K ≤ ε(K)� 1, the following holds.
For all K large enough and for all x ∈ D , there exists a coupling (XK

x , Ux) of (µKx , νx) such that for
all T ≥ 0,

P

(
sup

0≤t≤T

∥∥XK
x (t)− ϕx(t)− Ux(t)/

√
K
∥∥ > ε(K)

)
≤ C(T + 1) exp (−V Kε(K)) .

With this coupling, the gap between the density and its Gaussian approximation remains smaller
than ε(K) during a period of time of order exp(V Kε(K)). The main choices for ε(K) and the corre-
sponding time scales are regrouped in the following table.

Precision ε(K) CT log(K)/K α log(K)/K o(1/
√
K) K−p, 0 < p < 1/2

Time scale T KV α exp(o(
√
K)) exp(V K1−p)

The first column recalls the result (5) obtained by Kurtz on a fixed time window in the general
cse. We see in the second column that with Assumption (B), a precision of order log(K)/K can be
achieved uniformly during polynomial time scales. The third colum shows that, roughly speaking,
the functional central limit theorem can be extended to any time scale of the form exp(o(

√
K)).
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Choosing K−1/2 � ε(K) � 1 yields interesting results too and enables to explore the whole range
of subexponential time scales. We cannot expect more, since exponential time scales are associated
to large deviations [6, 29], and the rate functions associated to the large deviations of XK

x − ϕx and
Ux/
√
K are different [14]. Note that the time scale exp(V Kε(K)) coincides with the time needed

for ‖XK
x − ϕx‖ to reach a level of order

√
ε(K) (see Lemma 3.8), which corresponds to moderate

deviations of XK
x − ϕx since

√
K �

√
ε(K)� 1. We refer the reader to the work of Pardoux [26] for

a detailed account of moderate deviations of density-dependent Markov chains.

Figure 1: Simulation of the coupling (XK
x , Z

K
x ) given by Theorem 1.1, where ZKx := XK

x + Ux/
√
K,

for the logistic birth-and-death process (see Section 2.2). Here d = 1, E = {−1, 1}, β1(x) = 2x1x≥0,
β−1(x) = x(1 + x)1x≥0, K = 100 and x = 0.5. The coupling is described in Section 3.2. We use the
algorithm presented in [25] to generate ‘KMT couplings’ of Poisson processes and Brownian motions,
satisfying (1).

Of course, it is important to understand the large time behaviour of the process ϕx + Ux/
√
K.

Actually, after a transitory period, it can be well approximated by a stationary process. Set

S∗ =
∑
e∈E

βe(x∗) e e
T and Σ∗ =

∫ ∞
0

esF
′(x∗)S∗e

sF ′(x∗)
T

ds, (6)

where Σ∗ is well defined since s 7→ ‖esF ′(x∗)‖ is exponentially decreasing. We can show that for all
x ∈ U∗,

Ux(t) =⇒
t→+∞

N (0,Σ∗) , (7)

see Proposition 3.3. Moreover, if we letW = (We(t) ; e ∈ E, t ≥ 0) be a RE-valued standard Brownian
motion and U∗(0) be distributed as N (0,Σ∗) and independent of W , then the unique strong solution
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U∗ of the SDE

U∗(t) = U∗(0) +

∫ t

0

F ′(x∗)U∗(s)ds+
∑
e∈E

√
βe(x∗)We(t)e

is a stationary process. Let us denote by ν∗ its probability distribution on C
(
R+,R

d
)
, and set

ρ∗ = min {−Re(λ);λ ∈ Sp(F ′(x∗))}, which is positive due to 1.2. From Theorem 1.1 we can deduce
the following corollary, which gives a simpler approximation for XK

x , valid after a transitory period of
order log(K).

Corollary 1.2. Assume (A) and (B), and let D be a compact subset of U∗. There exists C ′, V, α > 0
such that for every ε : R∗+ → R∗+ satisfying α log(K)/K ≤ ε(K) � 1, the following holds. For all
K large enough and for all x ∈ D , there exists a coupling

(
XK
x , U∗

)
of
(
µKx , ν∗

)
such that for all

T ≥ (6/ρ∗) log(K),

P

(
sup

(6/ρ∗) log(K)≤t≤T

∥∥∥XK
x (s)− x∗ − U∗(s)/

√
K
∥∥∥ > ε(K)

)
≤ C ′(T + 1) exp (−V Kε(K)) .

Of course, the trajectorial approximation of the density process yields a Gaussian approximation of
its marginal distributions. Combining Corollary 1.2 with the observation that XK

x stays in D with high
probability for a period of time that is exponentially large in K yields Corollary 1.3 below. We denote
by Wc the Wasserstein distance on P(Rd) associated to the truncated distance c(x, y) = ‖x− y‖ ∧ 1,
i.e.

Wc : P(Rd)× P(Rd) → R+

(µ1, µ2) 7→ infπ∈Π(µ1,µ2)

∫
Rd×Rd c(x, y)π(dx, dy),

where Π(µ1, µ2) is the set of probability measures on Rd × Rd with first marginal µ1 and second
marginal µ2.

Corollary 1.3. Assume (A) and (B), and let D be a compact subset of U∗. There exists V ′ > 0 such
that for all x ∈ D ,

sup
(12/ρ∗) log(K)≤t≤exp(V ′K)

Wc

[
P
(√

K
(
XK
x (t)− x∗

)
∈ ·
)
,N (0,Σ∗)

]
−→

K→+∞
0.

This is closely related to results obtained by Collet, Chazottes, Méléard and Martinez[8, 9] for
a special class of density-dependent multi-species birth-and-death processes, which evolve in Nd and
meet our assumptions with U = U∗ = (R∗+)d. The authors obtain sharp bounds which entail that
the law of XK

x is very close in total variation distance to the unique quasi-stationary distribution γK
of NK/K, for all x � 1/K and log(K) � t � T0(K), where T0(K) is exponentially large in K.
Moreover, they show that the image of γK under x 7→

√
K(x − x∗) converges in law to N (0,Σ∗) as

K → +∞. Thus, combining these two facts leads to a result very close to Corollary 1.3 in this context,
on a larger set of initial conditions (x� 1/K instead of x ∈ D), for a slightly restricted range of times
(t � log(K) instead of t ≥ (12/ρ∗) log(K)). Some further details on the case d = 1 are discussed at
the end of Section 2.2.

The rest of the present paper is organized as follows: Section 2 is devoted to various applications
of our main result, and Section 3 contains all the proofs.

Notation. Given a topological space Y , B(Y ) stands for its Borel sigma-algebra, and P(Y )
stands for the set of probability measures on (Y,B(Y )). If Z,Z ′ are random elements of Y and
λ ∈ P(Y ), the notation Z ∼ Z ′ (resp. Z ∼ λ) means that Z and Z ′ share the same distribution
(resp. that Z has distribution λ). We use the notation ‖·‖ both for the Euclidean norm on Rd and
for the associated operator norm on the set Md(R) of d × d real matrices. We denote by AT the
transpose of a matrix A. The notation u̇ refers to the derivative of a function of time t 7→ u(t). For
all x ∈ Rd and r ≥ 0, B(x, r) (resp. B̄(x, r)) stands for the open (resp. closed) Euclidean ball of
center x and radius r. Given a function f : E1 → E2, where E2 is some normed vector space, we
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denote by ‖f‖∞ the supremum norm of f . If E1 is a subset of Rd, we let ‖f‖Lip denote the quantity
sup

{
‖f(y)− f(x)‖/‖x− y‖ ; x, y ∈ Rd, x 6= y

}
. Finally, if S ⊂ E1, then we write ‖f‖∞,S := ‖f|S‖∞

and ‖f‖Lip,S := ‖f|S‖Lip.

2 Applications
We discuss some consequences of Theorem 1.1. In Section 2.1 we show that we can use the Gaussian
approximation to estimate the time scales of moderate deviations ofXK

x −ϕx. The next two subsections
are devoted to concrete examples of density-dependent Markov chains. In Section 2.2 we consider the
logistic birth-and-death process, and we obtain Gaussian approximation estimates for the process
conditioned to survive, and for the associated quasi-stationary distribution. Then, in Section 2.3 we
consider the stochastic SIRS epidemic model and we apply Theorem 1.1 to give a Gaussian estimation
of a quantity modeling the cost of the epidemic.

2.1 Moderate deviations

As usual, we work under Assumptions (A) and (B). We know that the density XK
x∗ stays close to the

equilibrium point x∗ for a long time. In population models it is useful to estimate precisely the time
needed for deviations to occur (in particular, the extinction of a population). In this section we consider
deviations of order η(K), where K−1/2 � η(K) � 1. They are called moderate deviations: K−1/2 is
the natural scale of the fluctuations given by the central limit theorem, while taking η constant would
correspond to large deviations.

Moderate deviations of density-dependent Markov chains at the neighbourhood of a stable equilib-
rium point of the fluid limit have been investigated by Pardoux [26]. It appears that the time scales
of moderate deviations of XK

x∗ are governed by a rate function which coincides with the rate function
associated to its Gaussian approximation. Thus, the Gaussian approximation yields the good asymp-
totics regarding the time scales of moderate devations of XK

x∗ (let us also mention the earlier work of
Barbour [4] who proved similar results under the assumption η(K)� K−3/8). In this section, we offer
a different proof of this fact, based on our strong approximation estimates.

In what follows, we assume that S∗ ∈ S++
d , where S++

d denotes the set of symmetric, positive-
definite d× d real matrices. This entails that Σ∗ ∈ S++

d (recall that S∗ and Σ∗ are defined in (6)). We
denote by ‖·‖A the norm associated to a matrix A ∈ S++

d , defined by ‖y‖A =
√
yTAy. For all δ > 0,

the process U δ := δUx∗ satisfies the SDE

U δ(t) =

∫ t

0

F ′(x∗)U
δ(s)ds+ δ S

1/2
∗ B(t),

where B is a d-dimensional Brownian motion and S1/2
∗ denotes the symmetric square root of S∗. Set

δ(K) = 1/(
√
Kη(K)). Then the process U δ(K) is an approximation of

(
XK
x∗ − x∗

)
/η(K), and its large

deviations are well described by the Freidlin-Wentzell theory. For all T > 0, let IT : C([0, T ],Rd)→ R+

be the Freidlin-Wentzell action associated to the family (Uδ ; δ > 0), defined by

IT (u) =


1
2

∫ T
0
‖(u̇(s)− F ′(x∗)u(s))‖2

S−1
∗

ds if u(0) = 0, u is absolutely continuous

and u̇(s)− F ′(x∗)u(s) ∈ Im(σ) a.e.;
+∞ otherwise,

,

The associated quasi-potential is explicit [10, Proposition 2.3.6]: for all y ∈ Rd,

inf
{
IT (u) ; T > 0, u ∈ C([0, T ],Rd), u(T ) = y

}
=

1

2
‖y‖2

Σ−1
∗
.

For all y on the unit sphere of ‖·‖Σ−1
∗
, the vector F ′(x∗)y points towards the interior of the ball. Indeed,

an integration by parts shows that Σ∗ solves the Lyapunov equation F ′(x∗)Σ∗ + Σ∗F
′(x∗)

T = −S∗,
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hence (F ′(x∗)y)
T

(2Σ−1
∗ y) = −(Σ−1

∗ y)TS∗Σ
−1
∗ y < 0. Thus, Theorem 4.2 in Chapter 4 of [14] entails

that for all h > 0,

P

[
exp

(
δ−2

(
1

2
− h
))

< inf
{
t ≥ 0 :

∥∥Uδ(t)∥∥
Σ−1
∗
≥ 1
}
< exp

(
δ−2

(
1

2
+ h

))]
−→
δ→0

1. (8)

Combining this with Theorem 1.1, we can show that the Gaussian approximation yields the good
asymptotics for the moderate deviations of XK

x∗ . This contrasts with the case of large deviations: the
rate function governing the time scales of large deviations of XK

x∗−x∗ is indeed different from IT [29, 6].

Proposition 2.1. Assume (A), (B), S∗ ∈ S++
d , and let

τKη = inf
{
t ≥ 0 :

∥∥XK
x∗(t)− x∗

∥∥
Σ−1
∗
≥ η(K)

}
.

For all h > 0, we have

P

[
exp

((
1

2
− h
)
Kη2(K)

)
< τKη < exp

((
1

2
+ h

)
Kη2(K)

)]
−→

K→+∞
1. (9)

2.2 Logistic birth-and-death process conditioned to survival

We consider a density-dependent family of logistic birth-and-death processes. It corresponds to the
case d = 1, E = {−1, 1}, β1(x) = px1x≥0 for some p > 0, and β−1(x) = β−1(x) = x(q + x)1x≥0 for
some 0 < q < p. We suppose NK(0) ∈ N. Then NK is a N-valued continuous-time Markov chain
with transition rates from n ∈ N to m ∈ N \ {n} given by

qKn,m =


pn if m = n+ 1 (birth)
n(q + n/K) if m = n− 1 (death)
0 otherwise

. (10)

This is a very classical model in population dynamics. The quadratic form of the death rate models
the competition between individuals. The scale paramater K > 0 is the inverse of the intensity of the
competition: it can be interpreted as an amount of resources available to the population. We refer to
[3] for the proof that the lifetime of NK is almost surely infinite. Note that the functions β−1 and
β1 are of class C∞ and do not vanish on U = R∗+. Hence, Assumption (A) is met. The vector field
F : R∗+ 3 x 7→ β1(x) − β−1(x) = x(p − q − x) admits x∗ = p − q as an equilibrium point, and since
ρ∗ := −F ′(x∗) = x∗ > 0, Assumption (B) is met. The basin of attraction of x∗ is U∗ = R∗+. Moreover
Σ∗ = p and the process U∗ satisfies

U∗(t) = U∗(0)− x∗
∫ t

0

U∗(s)ds+
√

2px∗W (t)

where W is a real Brownian motion and U∗(0) ∼ N (0, p) is independent of W .

Almost surely, the process NK hits the absorbing point 0 in finite time (see e.g. [3]). Suppose that
we know that a population, whose size is well modeled by NK , has survived for a long time. What can
we say about the present size of this population, and how it evolved in the past ? Such questions are
classical, and a vast literature exists about the large time behaviour of Markov processes conditioned
to non extinction, and the related notion of quasi-stationary distribution (see for instance the survey
[23] and the book [11]).

Using Theorem 1.1, we show that one can strongly approximate the past trajectory with good
precision on large time scales by the trajectory of a stationary Gaussian process. For all t, T ≥ 0,
we denote by µ̃K;t,T

x the probability distribution of the process
(
XK
x (t+ s)

)
0≤s≤T conditional on the

event
{
XK
x (t+ T ) > 0

}
, where XK

x ∼ µKx , and we denote by µ̃K;t
x the probability distribution of XK

x (t)

conditional on
{
XK
x (t) > 0

}
.
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Proposition 2.2. There exist constants C ′′, V ′′, α, β > 0 such that the following holds. For all ε :
R∗+ → R∗+ satisfying α log(K)/K ≤ ε(K) � 1, for all K large enough, for all t ≥ (6/x∗) log(K), all
T ≥ 0 and all x ∈ K−1N∗, there exists a coupling (X̃, U∗) of

(
µ̃K;t,T
x , ν∗

)
, such that

P

(
sup

0≤s≤T

∣∣∣X̃(s)− x∗ − U∗(s)/
√
K
∣∣∣ > ε(K)

)
≤ C ′′

(
exp

(
− t

β log(K)

)
+ (T + 1) exp (−V ′′Kε(K))

)
.

Note that it is important that the estimate be uniform in x when the initial size of the population is
not known. This uniformity in the initial condition is an important difference with respect to Theorem
1.1. It stems from the fact that the process XK

x returns to a fixed compact [a, b], with 0 < a < x∗ < b,
in a time of order at most log(K) conditional on survival, uniformly for x ∈ K−1N∗. Although this
property is well-known (see e.g. [7] or [8]), we prove it again for the sake of completeness, using a
comparison with a supercritical branching process near 0. Proposition 2.2 essentially follows from the
combination of this property and Theorem 1.1.

Let us mention an interesting consequence of Proposition 2.2. It is shown in [32] that for all
K > 0, there exists a unique probability distribution γK on K−1N∗ such that, if XK(0) ∼ γK ,
then P

(
XK(t) ∈ · |XK(t) > 0

)
= γK for all t ≥ 0. Such a probability distribution is called a quasi-

stationary distribution (QSD). Moreover, the QSD satisfies, for all x ∈ K−1N∗ and A ⊂ K−1N∗,

µ̃K;t
x (A) −→

t→+∞
γK(A).

In [7], Chazottes, Collet and Méléard showed that γK was very close in total variation distance to
the discrete Gaussian distribution

λK =
1

Z(K)

∑
n∈N

exp

(
− (n− bKx∗c)2

2Kp

)
δn/K ,

where Z(K) is a normalization constant. More precisely, they obtained the following sharp bound:

dTV
(
γK , λK

)
= O(1/

√
K), (11)

where dTV stands for the total variation distance.
Since Proposition 2.2 yields a trajectorial Gaussian approximation of the process XK

x conditioned
to survive, it is worth mentioning that we can deduce a result analogous to (11), Corollary 2.3 below.
We recall that Wc was defined in the introduction as the Wasserstein distance on P(R) associated to
the truncated distance c(x, y) = |x− y| ∧ 1.

Corollary 2.3. Let γ̃K be the rescaled quasi-stationary distribution defined by

γ̃K (A) = γK
({
x > 0 :

√
K (x− x∗) ∈ A

})
,

for all A ∈ B(R). Then, we have

Wc

(
γ̃K ,N (0, p)

)
= O

(
K−1/2 log(K)

)
.

This result is in fact weaker than the total variation bound of Collet, Chazottes and Méléard, as one
could remove the logarithmic factor using (11). However, we expect our approach to be applicable to
more general density-dependent processes, as soon as one can quantify the time needed by the density
process to return to compact subsets of the basin of attraction of x∗, conditional on non-absorption.
In particular, we expect Proposition 2.2 and Corollary 2.3 to hold for the class of multi-species birth-
and-death processes studied in [8] and [9], by using a comparison to a multitype (instead of monotype)
supercritical branching process near 0 in the proof of Proposition 2.2. If true, the generalization of
Corollary 2.3 to this multidimensional context would precise [9, Theorem C.1] by yielding a speed of
convergence with respect to Wc.
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2.3 SIRS model and cost of an epidemic

Consider the following epidemic model (SIRS). An infectious disease spreads in a population of indi-
viduals which can be either susceptible, infected, of recovered. We assume that the total size of the
population is constant equal to a large K ∈ N∗, hence it is enough to record the amounts of suscep-
tibles and infected, denoted by NK

s and NK
i respectively. We model the evolution of the epidemic by

assuming that the process NK = (NK
s (t), NK

i (t))t≥0 is a N2-valued continuous-time Markov chain,
such that the transition rate from n = (ns, ni) to m 6= n is given by

qKn,m =


λns(ni/K) if m = (ns − 1, ni + 1) (infection)
γni if m = (ns, ni − 1) (recovery)
θ(K − ni − ns) if m = (ns + 1, ni) (loss of immunity)
0 otherwise

,

for some λ, γ, θ > 0. The loss of immunity may arise if the pathogen mutates (one may have in
mind, for instance, the influenza virus). In other words, NK is a density-dependent Markov chain
with d = 2, E = {einf = (−1, 1), erec = (0,−1), eloi = (1, 0)}, and, for all (s, i) ∈ R2, setting ∆ ={

(s, i) ∈ R2
+ : i+ s ≤ 1

}
,

βinf (s, i) = λ s i1∆(s, i), βrec(s, i) = γ i1∆(s, i), βloi(s, i) = θ (1− i− s)1∆(s, i),

with obvious notations. Their restrictions to the open set U = ∆̊ are C∞ and positive, hence Assump-
tion (A) is met. If we let F = βinfeinf + βrecerec + βloieloi, then for (s, i) ∈ U , we have

F (s, i) = (−λ s i+ θ(1− i− s), λ s i− γ i) .

From now on, we assume that λ > γ. Then, F has a unique zero on U , given by

x∗ = (s∗, i∗) =

(
γ

λ
,
θ(λ− γ)

λ(γ + θ)

)
.

The equilibrium point x∗ satisfies Assumption (B). Indeed,

F ′(x∗) =

−θ(λ+ θ)/(γ + θ) −(γ + θ)

θ(λ− γ)/(γ + θ) 0


has a positive determinant and a negative trace. We call x∗ the endemic equilibrium: it corresponds
to a persistence of the disease in the population. Here, it is made possible by the supply of new
susceptibles due to the loss of immunity.

Say we want to estimate the cost of the epidemic for the population, on a time interval [0, t]. A
simple model is to consider that the total cost is proportional to the sum, on all individuals, of the total
time during which they were infected. The cost per person of the epidemic on [0, t] is then proportional
to ∫ t

0

IK(s)ds,

where IK = NK
i /K. To estimate this quantity, we can make use of the trajectorial Gaussian approxi-

mation given by Theorem 1.1. To simplify, we suppose that NK(0) = bKx∗c. Set

S∗ = βinf (x∗)einf e
T
inf + βrec(x∗)erec e

T
rec + βloi(x∗)eloi e

T
loi =

γθ(λ− γ)

λ(γ + θ)

 2 −1

−1 2

 ,

and let C, V, α > 0 be given by Theorem 1.1 (choose D = {x∗} for instance). We may assume that, on
the same probability space as NK , there is a continuous 2-dimensional process Ux∗ satisfying the SDE

Ux∗(t) =

∫ t

0

F ′(x∗)Ux∗(s)ds+ S
1/2
∗ B(t) (12)
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where B is a 2-dimensional Brownian motion, such that the following holds. For every ε : R∗+ → R∗+
satisfying α log(K)/K ≤ ε(K)� 1, we have, for all K large enough and for all t ≥ 0:

P

(
sup

0≤s≤t

∥∥NK(s)/K − x∗ − Ux∗(s)/
√
K
∥∥ > ε(K)

)
≤ C(t+ 1) exp (−V Kε(K)) .

From this we can deduce a Gaussian approximation for the cost per person of the epidemic. Given
a family of (real-valued) random variables

(
AK ; K > 0

)
and a function f : R∗+ → R∗+, we write

AK = OP(f(K)) if for all δ > 0, there exists M > 0 and K0 > 0 such that P
(
|AK | > Mf(K)

)
≤ δ

for all K ≥ K0. We denote by y(1) and y(2) the first and second coordinates of a vector y ∈ R2 .

Proposition 2.4. Set

σ =

[
2γθ

λ(λ− θ)(γ + θ)3

(
(λ− γ)2 + (γ + θ)(λ+ θ)

)]1/2

.

For all t ≥ 0, we have∫ t

0

IK(s)ds = i∗ t+ σW (t)/
√
K +

(
F ′(x∗)

−1Ux∗
)(2)

(t)/
√
K +

∫ t

0

(
IK(s)− i∗ − U (2)

x∗ (s)/
√
K
)

ds,

(13)

where W is a real Brownian motion. For all T : R∗+ → R∗+ such that 1� T (K)� Kp for some p > 1,
we have∫ T (K)

0

IK(s)ds = i∗ T (K) + σ
√
T (K)/KN (0, 1) +OP

(
1/
√
K + T (K) log(K)/K

)
. (14)

The leading term i∗ T (K) is given by the deterministic approximation of IK . Note that in the regime
K/(log(K))2 � T (K) � Kp, the Gaussian term becomes negligible with respect to T (K) log(K)/K
and the approximation reduces to∫ T (K)

0

IK(s)ds = T (K) (i∗ +OP (log(K)/K)) .

3 Proofs

3.1 Preliminaries

We work under Assumptions (A) and (B) everywhere.

3.1.1 Limiting ODE

We first prove some basic consequences of Assumption (B) on the fluid limit ϕx and on solutions of
the ODE

ẏ = F ′ (ϕx) y, (15)

for x ∈ U∗. The ODE (15) is the linearization of the limiting ODE, driven by the vector field F , along
the trajectory ϕx. It is important for our purposes because XK

x is a random perturbation of ϕx. For
all s ≥ 0, let Ψx(·, s) : R+ →Md(R) be the unique matrix solution of the Cauchy problem

∂Ψx(t, s)

∂t
= F ′

(
ϕx(t)

)
Ψx(t, s), t ∈ R+

Ψx(s, s) = Id.
.
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This is a classical object known as the principal matrix solution of the ODE (15) at time s. Given
r, s ≥ 0, the functions t 7→ Ψx(t, r) and t 7→ Ψx(t, s)Ψx(s, r) satisfy the same Cauchy problem at time
s, hence

Ψx(t, r) = Ψx(t, s)Ψx(s, r) and Ψx(t, s) = Ψx(s, t)−1

for all r, s, t ≥ 0. Thus Ψx is also differentiable with respect to its second variable and we have

∂Ψx(t, s)

∂s
= Ψx(t, s)F ′

(
ϕx(s)

)
. (16)

The following lemma gives classical bounds related to the exponential stability of x∗ (resp. 0) for
the limiting ODE (resp. its linearization). Recall that ρ∗ = min {−Re(λ) ; λ ∈ Sp(F ′(x∗))}.

Lemma 3.1. For every compact subset D of U∗:

i) There exists Γ1 ≥ 1 such that, for all t ≥ 0 and x ∈ D ,

‖ϕx(t)− x∗‖ ≤ Γ1e
−ρ∗t/2. (17)

ii) The set ϕ (R+ ×D) is compact.

iii) There exists Γ2 ≥ 1 such that, for all t ≥ s ≥ 0 and x ∈ D ,

‖Ψx(t, s)‖ ≤ Γ2e
−ρ∗(t−s)/2. (18)

Proof. Let D be a compact subset of U∗. We start with the proof of i). Assumption (B) entails that
there exist ρ > 0, δ > 0 and Γ0 ≥ 1 such that, for all x ∈ B̄(x∗, δ) and all t ≥ 0,

‖ϕx(t)− x∗‖ ≤ Γ0‖x− x∗‖e−ρt.

Moreover, we can choose ρ to be any value in the open interval (0, ρ∗) (see e.g. [31, Corollary 3.27]). We
take ρ = ρ∗/2. Consider the function T : U∗ → R+, defined by T (x) = inf {t ≥ 0 : ‖ϕx(t)− x∗‖ < δ}.
By continuity of the flow ϕ with respect to the space variable, the function T is upper semi-continuous,
and consequently it is bounded from above on the compact D . Let T̄ ≥ ‖T‖∞,D , define M =
sup

{
‖ϕx(t)− x∗‖ ; x ∈ D , 0 ≤ t ≤ T̄

}
, which is finite due to the continuity of ϕ, and set

Γ1 = (M ∨ Γ0δ) e
ρ∗T̄ /2,

where p ∨ q (resp. p ∧ q) stands for the maximum (resp. the minimum) of p and q. Let x ∈ D . There
exist 0 ≤ s ≤ T̄ such that ϕx(s) ∈ B̄(x∗, δ). For all 0 ≤ t ≤ s, (17) holds by definition of Γ1, and for
all t ≥ s,

‖ϕx(t)− x∗‖ = ‖ϕϕx(s)(t− s)− x∗‖ ≤ Γ0δe
−ρ∗(t−s)/2 ≤ Γ1e

−ρ∗t/2.

Let us prove ii). Let (xn, tn)n∈N be a sequence of elements of D × R+. If (tn) is not bounded,
there exists a subsequence tnk −→

k→+∞
+∞, and i) entails that ϕ(xnk , tnk) −→

k→+∞
x∗. Otherwise, if (tn)

is bounded, we can a extract subsequence (xnk , tnk) which converges to a limit (x̃, t̃) ∈ D × R+, so
that ϕ(xnk , tnk) −→

k→+∞
ϕ(x̃, t̃). Hence, ϕ(D ×R+) is relatively compact.

Now, we turn to iii). The proof is very similar to [31, Theorem 3.20]. Due to iii), we may suppose
without loss of generality that D is positively invariant by the flow ϕ. Let x ∈ D , s ≥ 0, and set
Y : R+ 3 t 7→ Ψx(t, s). We have

Ẏ = F ′(ϕx)Y = F ′(x∗)Y +
[
F ′(ϕx)− F ′(x∗)

]
Y,

thus, by variation of constants,

Y (t) = e(t−s)F ′(x∗) +

∫ t

s

e(t−r)F ′(x∗)
[
F ′(ϕx(r))− F ′(x∗)

]
Y (r)dr. (19)
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Let C ≥ 1 be such that for all t ≥ 0, ‖etF ′(x∗)‖ ≤ Ce−3ρ∗t/4. Recall that the gradient of the βe are
locally Lipschitz, hence ‖F ′‖Lip,D < ∞. Set z(t) = e3ρ∗(t−s)/4‖Y (t)‖. Equation (19) yields, for all
t ≥ s,

z(t) ≤ C + C‖F ′‖Lip,DΓ1e
−ρ∗s/2

∫ t

s

z(r)dr.

Obviously there exists t0 ≥ 0 such that C‖F ′‖Lip,DΓ1e
−ρ∗s/2 ≤ ρ∗/4. For all t ≥ s ≥ t0, Grönwall’s

lemma yields z(t) ≤ Ceρ∗(t−s)/4, hence

‖Ψx(t, s)‖ ≤ Ce−ρ∗(t−s)/2. (20)

We end the proof by showing that the condition s ≥ t0 can be removed, if we change the constant C.
For t0 ≥ t ≥ s ≥ 0, Grönwall’s lemma entails ‖Ψx(t, s)‖ ≤ et0‖F ′‖∞,D . Finally, the case t ≥ t0 ≥ s ≥ 0
can be reduced to the previous ones thanks to the relation Ψx(t, s) = Ψx(t, t0)Ψx(t0, s). Hence, setting
Γ2 = C exp

(
t0(‖F ′‖∞,D + ρ∗/2)

)
, the inequality

‖Ψx(t, s)‖ ≤ Γ2e
−ρ∗(t−s)/2

holds for all t ≥ s ≥ 0. �

3.1.2 Perturbed linear ODE

We know from Lemma 3.1 that the solutions of the linear ODE (15) are killed exponentially fast. In
the following lemma, we consider a solution y of a perturbed version of the integral equation associated
to this ODE. We show that if one wants the norm of y to reach high values, then the pertubation
term must oscillate strongly enough, to be able to compensate the killing effect of the (non-perturbed)
ODE. This lemma is crucial for the proof of Theorem 1.1.

Lemma 3.2. Let D be a compact subset of U∗. There exists Γ ≥ 1 such that for every x ∈ D and
every Borel measurable locally bounded functions y, h : R+ → Rd satisfying

y(t) = y(0) +

∫ t

0

F ′
(
ϕx(s)

)
y(s)ds+ h(t), t ≥ 0, (21)

we have, for all t ≥ 0:

sup
0≤s≤t

‖y(s)‖ ≤ Γ

‖y(0)‖ ∨ sup
0≤r,s≤t
|s−r|≤1

∥∥h(s)− h(r)
∥∥
 . (22)

Proof. We may suppose that D is positively invariant by ϕ due to Lemma 3.1, ii). Let x ∈ D , and
let y, h : R+ → Rd be Borel measurable locally bounded functions satisfying (21).

For all t ≥ 0, we have

(y − h)(t) = y(0) +

∫ t

0

F ′(ϕx(s))y(s)ds.

By variation of constants, we can deduce from the above equation that

(y − h)(t) = Ψx(t, 0)y(0) +

∫ t

0

Ψx(t, s)F ′
(
ϕx(s)

)
h(s)ds. (23)

Let us precise the argument. We have, for all t ≥ 0, using (16),

Ψx(0, t) = Id −
∫ t

0

Ψx(0, s)F ′(ϕx(s))ds. (24)
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For all functions a1, A1 : R+ → Md(R) and a2, A2 : R+ → Rd such that a1, a2 are locally integrable
and Ai(t) = Ai(0) +

∫ t
0
ai(s)ds, Fubini’s theorem yields

A1(t)A2(t) = A1(0)A2(0) +

∫ t

0

(a1(s)A2(s) +A1(s)a2(s)) ds.

Equation (23) is obtained by applying this formula to A1 = Ψx(0, ·) and A2 = y − h, before left-
multiplying by Ψx(t, 0). More generally, if we set, for each j ∈ N,

hj(t) = h(t)− h(j) and h̃j(t) = hj(t) +

∫ t

j

Ψx(t, s)F ′(ϕx(s))hj(s)ds,

then the same argument yields, for all t ≥ j,

y(t) = Ψx(t, j)y(j) + h̃j(t).

By induction on btc, we obtain

y(t) = Ψx(t, 0)y(0) +

btc∑
j=1

Ψx(t, j)h̃j−1(j) + h̃btc(t).

The term h̃btc(t) represents the contribution of the most recent increments of h to the value of y(t).
Lemma 3.1, iii) entails that the other terms, which represent the contribution of increments of h that
are more distant in the past, are killed exponentially fast. Letting Γ2 ≥ 1 be given by Lemma 3.1, we
get

‖y(t)‖ ≤ Γ2e
− ρ∗2 t‖y(0)‖+

btc∑
i=1

Γ2e
− ρ∗2 (t−j)h̃j−1(j) + sup

btc≤s≤t

∥∥h̃btc(s)∥∥
≤

(
‖y(0)‖ ∨ max

0≤j≤btc
sup

j≤s≤t∧(j+1)

∥∥h̃j(s)∥∥)(1 +
Γ2

1− e− ρ∗2

)
.

Now, the definition of h̃j implies that for all j ∈ N and j ≤ r ≤ j + 1,

sup
i≤s≤r

∥∥h̃i(s)∥∥ ≤ sup
i≤s≤r

∥∥hi(s)∥∥ (1 + Γ2‖F ′‖∞,D) .

Finally, we obtain

sup
0≤s≤t

‖y(s)‖ ≤ Γ

(
‖y(0)‖ ∨ max

0≤i≤btc
sup

i≤s≤t∧(i+1)

∥∥h(s)− h(i)
∥∥) .

with
Γ =

(
1 +

Γ2

1− e− ρ∗2

)
(1 + Γ2‖F ′‖∞,D) .

�

3.1.3 Gaussian process

We show that the Gaussian processes Ux and U∗ are well defined and satisfy the properties given in
the introduction.

Proposition 3.3. Let W = (We(t) ; e ∈ E, t ≥ 0) be a RE-valued Brownian motion, and let U∗(0) ∼
N (0,Σ∗) be independent of W . For all x ∈ U∗, there exist unique strong solutions Ux and U∗ to the
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SDEs

Ux(t) =

∫ t

0

F ′(ϕx(s))Ux(s)ds+
∑
e∈E

(∫ t

0

√
βe(ϕx(s))dWe(s)

)
e, (25)

U∗(t) = U∗(0) +

∫ t

0

F ′(x∗)U∗(s)ds+
∑
e∈E

√
βe(x∗)We(t)e. (26)

Moreover, Ux(t)⇒ N (0,Σ∗) as t→ +∞, and the process U∗ is stationary,i.e. U∗(t+ ·) ∼ U∗ for all
t ≥ 0.

Proof. Let x ∈ U∗. Using Itô’s lemma and the relation dΨx(t, 0)/dt = F ′
(
ϕx(t)

)
Ψx(t, 0), we see that

Ux solves the SDE (25) if and only if

Ψ(0, t)Ux(t) =
∑
e∈E

∫ t

0

√
βe(ϕx(s))Ψx(0, s)edWe(s)

almost surely for all t ≥ 0. Thus (25) has a unique strong solution given by the formula

Ux(t) =
∑
e∈E

∫ t

0

√
βe(ϕx(s))Ψx(t, s)edWe(s).

A similar argument shows that (26) has a unique strong solution given by

U∗(t) = etF
′(x∗)U∗(0) +

∑
e∈E

∫ t

0

√
βe(ϕx(s))e(t−s)F ′(x∗)edWe(s).

For all t ≥ 0,

E
(
Ux(t)Ux(t)T

)
=

∫ t

0

Ψx(t, s)

(∑
e∈E

βe
(
ϕx(s)

)
e eT

)
Ψx(t, s)Tds

=

∫ ∞
0

1{u≤t}Ψx(t, t− u)

(∑
e∈E

βe
(
ϕx(t− u)

)
e eT

)
Ψx(t, t− u)Tdu.

Using Lemma 3.1, iii) and the boundedness of the functions βe on the compact ϕ({x} ×R+), we see
that the norm of the above integrand is dominated by u 7→ Ce−ρ∗u, for some C > 0. Let Γ1 and Γ2

be given by Lemma 3.1. For all t ≥ u, (19) yields∥∥Ψx(t, t− u)− euF
′(x∗)

∥∥ ≤ ∫ t

t−u
Γ2‖F ′‖Lip,DΓ1e

−ρ∗r/2Γ2dr ≤ 2ρ−1
∗ Γ1Γ2

2‖F ′‖Lip,De
−ρ∗(t−u)/2.

Hence, as t → +∞, we have Ψx(t, t − u) → euF
′(x∗). Moreover ϕx(t − u) → x∗, thus by dominated

convergence we obtain
E
(
Ux(t)Ux(t)T

)
−→
t→+∞

Σ∗.

Since Ux is a centered Gaussian process, this implies Ux(t)⇒ N (0,Σ∗) as t→ +∞.
Let us show that the process U∗ is stationary. Since it satisfies the SDE with constant coefficients

(26), it is Markovian, thus it is enough to show that all its marginals are distributed as N (0,Σ∗). For
all t ≥ 0, the independence of U∗(0) and Ux∗ entails that U∗(t) is a centered Gaussian random vector
with covariance matrix

E
(
U∗(t)U∗(t)

T
)

= etF
′(x∗)Σ∗etF

′(x∗)
T

+

∫ t

0

e(t−s)F ′(x∗)S∗e
(t−s)F ′(x∗)T ds

= etF
′(x∗)Σ∗etF

′(x∗)
T

+ Σ∗ −
∫ ∞
t

esF
′(x∗)S∗e

sF ′(x∗)
T

ds

= Σ∗,

which ends the proof. �
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3.1.4 Chernoff bounds for Poisson process and Brownian motion

We give exponential bounds on the tail probabilities of the supremum norm of a compensated Poisson
Process (Lemma 3.4), and a Brownian stochastic integral (Lemma 3.5) on a given time interval.
These results are not new and we provide the proofs here for the sake of completeness. We follow
the standard method which consists in optimizing over a one-parameter family of Chernoff bounds
obtained via Doob’s maximal inequality.

Lemma 3.4. Let P be a standard Poisson process. For all S,A > 0 such that A ≤ 2 log(2)S, we have

P

(
sup

0≤s≤S
|P (s)− s| ≥ A

)
≤ 2 exp

(
−A

2

4S

)
. (27)

Proof. Let P̃ be the compensated process defined by P̃ (t) = P (t) − t. Let S,A > 0 such that
A ≤ 2 log(2)S, and let ξ > 0. We have

P

(
sup

0≤s≤S

∣∣∣P̃ (s)
∣∣∣ ≥ A) ≤ P

(
sup

0≤s≤S
eξP̃ (s) ≥ eξA

)
+ P

(
sup

0≤s≤S
e−ξP̃ (s) ≥ eξA

)
. (28)

Since P̃ is a càdlàg martingale (with respect to its canonical filtration), eξP̃ and e−ξP̃ are càdlàg
submartingales and Doob’s maximal inequality yields

P

(
sup

0≤s≤S

∣∣∣P̃ (s)
∣∣∣ ≥ A) ≤ e−ξA (E(eξP̃ (S)

)
+ E

(
e−ξP̃ (S)

))
≤ e−ξA

(
eS(eξ−ξ−1) + eS(e−ξ+ξ−1)

)
.

Let us choose ξ = A/2S. By hypothesis, ξ ≤ log(2), hence e±ξ ∓ ξ − 1 ≤ ξ2. Consequently,

P

(
sup

0≤s≤S

∣∣∣P̃ (s)
∣∣∣ ≥ A) ≤ 2e−ξA+Sξ2 = 2 exp

(
−A

2

4S

)
.

�

We say that a filtration (Ft)0≤t≤∞ defined on probability space (Ω,F ,P) satisfies the usual con-
ditions if it is complete, i.e. F0 contains the P-null sets of F∞, and right-continuous.

Lemma 3.5. Let B be a real Brownian motion with respect to a filtration (Ft)0≤t≤∞ satisfying the
usual conditions. Let A,S, ρ > 0, and let R be a (Ft)-progressive process such that, almost surely,

|R| ≤ ρ almost everywhere on [0, S].

Then

P

(
sup

0≤s≤S

∣∣∣∣∫ s

0

R(r)dB(r)

∣∣∣∣ ≥ A) ≤ 2 exp

(
− A2

2Sρ2

)
. (29)

Proof. We can proceed in a similar way as in the proof of Lemma 3.4. Let M be the (Ft)-martingale
defined by

M(t) =

∫ t

0

R(s)dB(s).

For all ξ > 0, we have

P

(
sup

0≤s≤S
|M(s)| ≥ A

)
≤ e−ξA

(
E
(
eξM(S)

)
+ E

(
e−ξM(S)

))
. (30)
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The Doléans-Dade exponentials

E±ξM (t) = exp

(
±ξM(t)− ξ2

2

∫ t

0

R2(s)ds

)
are positive local martingales as shown by Ito’s lemma, thus supermartingales. Consequently,

E
(
e±ξM(S)

)
≤ eξ

2Sρ2/2E
(
E±ξM (S)

)
≤ eξ

2Sρ2/2.

We conclude by plugging this inequality into (30) and choosing ξ = A/(Sρ2). �

From Lemma 3.5 we can deduce an exponential bound on the probability of large oscillations of
Brownian motion.

Lemma 3.6. Let B be a real Brownian motion. For all S, T,A > 0, we have

P

 sup
0≤s,t≤T
|t−s|≤S

|B(t)−B(s)| ≥ A

 ≤ 2

⌈
T

S

⌉
exp

(
− A2

18S

)
. (31)

Proof. Let S, T,A > 0. It follows easily from the triangular inequality that

sup
0≤s,t≤T
|t−s|≤S

|B(t)−B(s)| ≤ 3 sup
k∈{0,...,dT/Se−1}

sup
0≤r≤S

|B(kS + r)−B(kS)| .

Since for all k ∈ N the process
(
B(kS + r)−B(kS) ; r ≥ 0

)
is a Brownian motion, we get

P

 sup
0≤s,t≤T
|t−s|≤S

|B(t)−B(s)| ≥ A

 ≤ ⌈T
S

⌉
P

(
sup

0≤r≤S
|B(r)| ≥ A/3

)
.

We conclude by applying Lemma 3.5 with R ≡ 1. �

3.2 Proof of Theorem 1.1

We may suppose that D is positively invariant by the flow ϕ due to Lemma 3.1, ii). Let r0 > 0 be
such that the compact D ′ := D + B̄(0, r0) is a subset of U . Let Γ ≥ 1 be given by Lemma 3.2, and set

M0 =
∑
e∈E
‖e‖, M1 = max

e∈E
‖βe‖∞,D′ , M2 = max

e∈E
‖βe‖Lip,D′ , M3 = ‖F ′‖Lip,D′ , M4 = max

e∈E

∥∥√βe∥∥Lip,D′
.

Note thatM1 andM2 are finite due to the fact the βe are C1 on U , whileM3 andM4 are finite because
for each e ∈ E the gradient of βe and

√
βe are locally Lipschitz on U . We say that (B,P ) is a KMT

coupling when B is a Brownian motion and P is a Poisson Process such that

P

[
sup

0≤t≤T
|P (t)− t−B(t)| > c log(T ) + u

]
≤ ae−bu, (32)

for all T ≥ 1 and u ≥ 0, where a, b, c are the constants appearing in (1).
Let us fix K > 0 and x ∈ D for the rest of the proof. The first step is to construct the coupling(

XK
x , Ux

)
of (µKx , νx).

Proposition 3.7. We can construct a probability space (Ω,F ,P), equipped with
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a) a filtration (Ft)0≤t≤∞ satisfying the usual conditions, a RE-valued (Ft)-Brownian motion W =
(We(t) ; e ∈ E, t ≥ 0), and a (Ft)-adapted, d-dimensional continuous process Y Kx such that, P-
almost surely for all t ≤ inf {s ≥ 0 : Y (s) /∈ D ′},

Y Kx (t) =
bKxc
K

+

∫ t

0

F (Y Kx (s))ds+
1√
K

∑
e∈E

(∫ t

0

√
βe (Y Kx (s)) dWe(s)

)
e ; (33)

b) a family (Be,j ; e ∈ E, j ∈ N) of mutually independent real Brownian motions such that, for all
e ∈ E, j ∈ N, and P-almost surely for all j ≤ t ≤ (j + 1) ∧ inf {s ≥ 0 : Y (s) /∈ D ′},

Y Kx (t) = Y Kx (j) +

∫ t

j

F (Y Kx (s))ds+
1

K
Be,j

(
K

∫ t

j

βe(Y
K
x (s))ds

)
; (34)

c) a (Ft)-adapted, d-dimensional continuous process Ux, of probability distribution νx, solution of

Ux(t) =

∫ t

0

F ′(ϕx(s))Ux(s)ds+
∑
e∈E

(∫ t

0

√
βe(ϕx(s)) dWe(s)

)
e ; (35)

d) a family (Pe,j ; e ∈ E, j ∈ N) of mutually independent Poisson processes, such that for all e ∈ E,
j ∈ N, (Be,j , Pe,j) is a KMT coupling;

e) a d-dimensional càdlàg process XK
x of probability distribution µKx , such that for all j ∈ N, P-

almost surely for all j ≤ t ≤ j + 1,

XK
x (t) = XK

x (j) +
1

K

∑
e∈E

Pe,j

(
K

∫ t

j

βe(X
K
x (s)) ds

)
e. (36)

Let us make some comments. This construction involves a diffusion Y Kx , which admits the repre-
sentation (34), involving time-changed Brownian motions. The analogous representation (36) of XK

x ,
involving time-changed Poisson processes, enables to use KMT couplings. The coupling between Y Kx
and the Gaussian process ϕx + Ux/

√
K is more straightforward: we use the same family of Brownian

motions We to drive them both.
This coupling is based on the construction of Kurtz in [21], but here we use different KMT couplings

on each time interval [j, j + 1]. That way, gaps between the time changes of Poisson processes and
Brownian motion are suitably controlled, even for large t. This is crucial since we are interested in
large time scales.

Proof. Let χ : Rd → R+ be a continuous function with compact support such that χ|D′ = 1. The
functions χF and χβe are continuous and bounded, thus Theorem 2.2 in [17, Chapter IV] yields
the existence of a probability space (Ω,F ,P) equipped with a filtration (Ft)0≤t≤∞ satisfying the
usual conditions, a RE-valued (Ft)-Brownian motion W = (We(t) ; e ∈ E, t ≥ 0), and a (Ft)-adapted,
d-dimensional càdlàg process Y Kx such that, P-almost surely for all t ≥ 0,

Y Kx (t) =
bKxc
K

+

∫ t

0

(χF )
(
Y Kx (s)

)
ds+

1√
K

∑
e∈E

(∫ t

0

√
(χβe)

(
Y Kx (s)

)
dWe(s)

)
e.

This equation implies (33) almost surely for all t ≤ inf
{
s ≥ 0 : Y Kx (s) /∈ D ′

}
, using that χ|D′ = 1.

Enlarging the filtered probability space, we may suppose that there exists mutually independent real
Brownian motions

(
B̃e,j ; e ∈ E, j ∈ N

)
and mutually independent random variables (Ve,j ; e ∈ E, j ∈ N)

uniformly distributed on [0, 1], such that the sigma-fields σ (Ve,j ; e ∈ E, j ∈ N), σ
(
B̃e,j ; e ∈ E, j ∈ N

)
and F∞ are mutually independent.
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Let us deal with b). Given Equation (33), what we need is to construct a family (Be,j ; e ∈ E, j ∈ N)
of mutually independent real Brownian motions such that, for all e ∈ E and j ∈ N, we have, almost
surely for all t ≥ 0,

Be,j

(
K

∫ t

j

βe(Y
K
x (s))ds

)
=
√
K

∫ t

j

√
βe(Y Kx (s))dWe(s). (37)

For all e ∈ E and j ∈ N, define the process Me,j by

Me,j(t) =

∫ t

0

1{j≤s≤j+1}

√
K(χβe)

(
Y Kx (s)

)
dWe(s).

It is a continuous (Ft)-local martingale starting from 0 with quadratic variation given by

〈Me,j〉(t) =

∫ t

0

1{j≤s≤j+1}K(χβe)
(
Y Kx (s)

)
ds.

Moreover, (Me,j ; e ∈ E, j ∈ N) is an orthogonal family, in the sense that (e, j) 6= (e′, j′) implies
〈Me,j ,Me′,j′〉 ≡ 0, where 〈·, ·〉 denotes the quadratic covariation. For all u ≥ 0, define the (Ft)-
stopping time

τe,j(u) = inf {t ≥ 0 : 〈Me,j〉(t) > u} ,

and define the process Be,j by

Be,j(u) =

{
Me,j (τe,j(u)) if u < 〈Me,j〉(j + 1)

Me,j (j + 1) + B̃e,j (u− 〈Me,j〉(j + 1)) if u ≥ 〈Me,j〉(j + 1)
.

Then, (Be,j , e ∈ E, j ∈ N) is a family of mutually independent real Brownian motions, see Theorem
1.10 in [27, Chapter V]. The fact that Be,j is a Brownian motion is essentially Dambis-Dubins-Schwarz’s
theorem, but we need B̃e,j to extend Be,j after time 〈Me,j〉(j+ 1), which is finite. As for the indepen-
dence of the Be,j , it comes from the orthogonality of the Me,j .

To conclude the proof of b), we still need to verify (37). Set τ−e,j(0) = 0 and τ−e,j(u) = limv→u,v<u τe,j(v)

for all u > 0. The process 〈Me,j〉 is constant on [τ−e,j(u), τe,j(u)] for all u ≥ 0, almost surely,
hence this is also the case for Me,j . Moreover, almost surely for all j ≤ t ≤ j + 1, we have
t ∈
[
τ−e,j
(
〈Me,j〉(t)

)
, τe,j

(
〈Me,j〉(t)

)]
, thus

Me,j(t) = Me,j

[
τe,j
(
〈Me,j〉(t)

)]
= Be,j

(
〈Me,j〉(t)

)
.

This entails (37) almost surely for all t ≤ inf
{
s ≥ 0 : Y Kx (s) /∈ D ′

}
.

Now, let us turn to d). The definition of the Pe,j should satisfy two constraints: (Be,j , Pe,j) should
be a KMT coupling, and the Pe,j should form an independent family. In order to do that, we use the
Ve,j and Lemma 3.12, which guarantees the existence of a measurable function G : C(R+,R

d)×[0, 1]→
D(R+,R

d) such that, if B is a real Brownian motion, and V is uniformly distributed on (0, 1) and
independent of B, then (B,G(B, V )) is a KMT coupling. Thus, we set Pe,j = G(Be,j , Ve,j), and d) is
satisfied.

Finally, let us define the process XK
x . For each y ∈ D ∩ K−1Zd, it follows from Theorem 4.1 in

[13, Chapter 6] that there exists a unique d-dimensional càdlàg process
(
X ′y,j(t) ; t ≥ 0

)
satisfying the

equation

X ′y,j(t) = y +
1

K

∑
e∈E

Pe,j

(∫ t

0

βe(X
′
y,j(s))ds

)
e,

and we have X ′y,j ∼ µKy . What’s more, σ(X ′y,j) ⊂ σ(Pe,j ; e ∈ E). Now, define XK
x by XK

x (0) =
bKxc/K and, for all j ∈ N and j < t ≤ j + 1,

XK
x (t) = X ′XKx (j),j(t− j).
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It is not hard to prove by induction that σ
(
XK
x (t) ; 0 ≤ t ≤ j

)
⊂ σ(Pe,i ; e ∈ E, 0 ≤ i ≤ j − 1) and

that (XK
x (t) ; 0 ≤ t ≤ j) is a K−1Zd-valued continuous-time Markov chain, with transition rate from

y to z 6= y equal to q̃Ky,z := qKKy,Kz = KβK(z−y)(y). The key point is that conditional on XK
x (j), the

process (XK
x (t) ; j ≤ t ≤ j+ 1) is a continuous-time Markov chain with transition rates

(
q̃Ky,z
)
starting

from XK
x (j), and independent of σ

(
XK
x (t) ; 0 ≤ t ≤ j

)
. Hence, XK

x ∼ µKx . �

In the rest of the proof, we generally write (X,Y, U) =
(
XK
x , Y

K
x , Ux

)
. The quantities we call

constants may only depend on the Mi, r0, the constants a, b, c involved in (1), and the cardinal of E,
which we denote by |E|. When we say that an assertion holds ‘for K large enough’, we mean that
there exists K0 > 0, independent of x, such that the assertion is true if K ≥ K0. For all (e, j) ∈ E×N,
we denote by P̃e,j the compensated Poisson process associated to Pe,j , defined by P̃e,j(t) = Pe,j(t)− t.

The next step is to study the deviations of XK
x from the fluid limit ϕx. Taking K−1/2 � η(K)� 1

in the next proposition corresponds to moderate deviations of XK
x − ϕx, while taking η constant

corresponds to large deviations.

Proposition 3.8. There exist constants V0, η0 > 0 such that for all η : R∗+ → R∗+ satisfying K−1/2 �
η(K) ≤ η0, we have, for K large enough and for all t ≥ 0:

P

(
sup

0≤s≤t

∥∥XK
x (s)− ϕx(s)

∥∥ > η(K)

)
≤ 2|E|(t+ 1) exp

(
−V0Kη

2(K)
)
. (38)

Proof. Set

η0 = (6ΓM3)
−1 ∧ (12 log(2)ΓM0M1) ∧ r0.

Let η : R∗+ → R∗+ be such that K−1/2 � η(K) ≤ η0, and set

τη = inf
{
t ≥ 0 :

∥∥X(t)− ϕx(t)
∥∥ > η(K)

}
.

Note that since η0 ≤ r0, we have X(t) ∈ D ′ almost surely for all t < τη. Using (36), we get, almost
surely for all t ≥ 0,

X(t) =
bKxc
K

+

∫ t

0

F
(
X(s)

)
ds+

∑
0≤j≤btc

Aj(t)

where

Aj(t) = 1{t≥j}
1

K

∑
e∈E

P̃e,j

(
K

∫ t∧(j+1)

j

βe
(
X(s)

)
ds

)
e.

Recalling that

ϕx(t) = x+

∫ t

0

F
(
ϕx(s)

)
ds,

we can write

X(t)− ϕx(t) =

(
bKxc
K
− x
)

+

∫ t

0

F ′
(
ϕx(s)

)(
X(s)− ϕx(s)

)
ds+

∑
0≤j≤btc

(Aj +Dj) (t) (39)

where

Dj(t) = 1{t≥j}

∫ t∧(j+1)

j

[
F
(
X(s)

)
− F

(
ϕx(s)

)
− F ′

(
ϕx(s)

)(
X(s)− ϕx(s)

)]
ds.

Let t ≥ 0. On the event {τη ≤ t}, we have ‖X(t ∧ τη)‖ = ‖X(τη)‖ ≥ η(K) by right-continuity of
X, thus

{τη ≤ t} ⊂

{
sup

0≤s≤t∧τη

∥∥X(s)− ϕx(s)
∥∥ ≥ η(K)

}
.
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Now, consider Equation (39): it shows that X − ϕx can be seen as a perturbation of a solution of the
linear ODE ẏ = F ′(ϕx)y. Thus, we can use the key Lemma 3.2, which allows us to control X − ϕx in
terms of the Aj and the Dj . Since for all f : R+ → Rd and T > 0,

sup
0≤r,s≤T
|s−r|≤1

‖f(s)− f(r)‖ ≤ 3 max
0≤j≤bTc

sup
j≤s≤(j+1)∧T

‖f(s)− f(j)‖,

and since ‖bKxc/K − x‖ ≤
√
d/K � η(K), we obtain, for K large enough,{

sup
0≤s≤t∧τη

∥∥X(s)− ϕx(s)
∥∥ ≥ η(K)

}
⊂

{
max

0≤j≤btc
sup

j≤s≤t∧τη

∥∥(Aj +Dj)(s)
∥∥ ≥ η(K)/(3Γ)

}
.

We recall that Γ ≥ 1 is given by Lemma 3.2. Consequently, setting η′(K) = η(K)/(3Γ),

P (τη ≤ t) ≤ (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧τη

∥∥(Aj +Dj)(s)
∥∥ ≥ η′(K)

)
. (40)

Let us bound the right handside of this inequality. For K large enough, for all 0 ≤ j ≤ btc and
j ≤ s ≤ t ∧ τη, we have

‖Dj(s)‖ ≤
∫ s∧(j+1)

j

∥∥∥F (X(r)
)
− F

(
ϕx(r)

)
− F ′

(
ϕx(r)

)(
X(r)− ϕx(r)

)∥∥∥dr

≤
∫ s∧(j+1)

j

M3

∥∥X(r)− ϕx(r)
∥∥2

dr

≤M3η(K)2

≤ η′(K)/2,

where we used that 6ΓM3η0 ≤ 1 for the last inequality. Hence (40) yields, for K large enough,

P (τη ≤ t) ≤ (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧τη

∥∥Aj(s)∥∥ ≥ η′(K)/2

)
.

Now, for all 0 ≤ j ≤ btc and all j ≤ s ≤ t ∧ τη, we have

max
e∈E

(∫ s∧(j+1)

j

βe
(
X(r)

)
dr

)
≤ max

e∈E
‖βe‖∞,D′ ≤M1,

thus
sup

j≤s≤t∧τη

∥∥Aj(s)∥∥ ≤ K−1M0 max
e∈E

sup
0≤s≤KM1

|P̃e,j (s) |.

Letting P̃ denote a compensated Poisson process, we get

P (τη ≤ t) ≤ |E|(t+ 1)P

(
sup

0≤s≤KM1

|P̃ (s)| ≥ Kη′′(K)

)
, (41)

where η′′(K) = η′(K)/(2M0) = η(K)/(6ΓM0). The inequality η(K) ≤ η0 entails η′′(K) ≤ 2 log(2)M1,
thus we can use Lemma 3.4, which yields

P (τη ≤ t) ≤ 2|E|(t+ 1) exp

(
−Kη

′′(K)2

4M1

)
.

This entails (38) with V0 =
(
144Γ2M2

0M1

)−1, hence the proposition is proved. �

Next, in Proposition 3.9 (resp. Proposition 3.10), we obtain upper bounds on the probability that
‖X − Y ‖ (resp. ‖Y − ϕx − U/

√
K‖) exceeds a level ε(K). Once again, the idea of the proof is to see

the process as solution of a perturbed linear ODE and use Lemma 3.2.
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Proposition 3.9. There exist constants C1, V1, α1 > 0, such that for every ε : R∗+ → R∗+ satisfying
α1 log(K)/K ≤ ε(K)� 1, we have, for K large enough and for all t ≥ 0:

P

(
sup

0≤s≤t

∥∥XK
x (s)− Y Kx (s)

∥∥ > ε(K)

)
≤ C1(t+ 1) exp (−V1Kε(K)) . (42)

Proof. Let ε, η : R∗+ → R∗+ be such that K−1 � ε(K)� 1 and K−1/2 � η(K)� 1. Set

σε = inf
{
t ≥ 0 :

∥∥X(t)− Y (t)
∥∥ > ε(K)

}
and τη = inf

{
t ≥ 0 :

∥∥X(t)− ϕx(t)
∥∥ > η(K)

}
.

The scale η will be specified later, as a function of ε. Since ε(K) + η(K)� 1, for K large enough
both Y (t) and X(t) belong to D ′ almost surely for all t < τη ∧ σε. Thus, using (34) and (36), we
obtain that almost surely for all t ≤ τη ∧ σε,

X(t)− Y (t) =

∫ t

0

F ′
(
ϕx(s)

)(
X(s)− Y (s)

)
ds+

∑
0≤j≤btc

(Hj + Jj + Lj) (t), (43)

where

Hj(t) = 1{t≥j}
1

K

∑
e∈E

(
P̃e,j −Be,j

)(
K

∫ t∧(j+1)

j

βe
(
X(s)

)
ds

)
e

Ij(t) = 1{t≥j}
1

K

∑
e∈E

[
Be,j

(
K

∫ t∧(j+1)

j

βe
(
X(s)

)
ds

)
−Be,j

(
K

∫ t∧(j+1)

j

βe
(
Y (s)

)
ds

)]
e

Lj(t) = 1{t≥j}

∫ t∧(j+1)

j

[
F
(
X(s)

)
− F

(
Y (s)

)
− F ′

(
ϕx(s)

)(
X(s)− Y (s)

)]
ds.

Let t ≥ 0. We have{
σε ≤ t

}
⊂
{
τη < t

}
∪
{
σε ≤ t ≤ τη

}
⊂
{
τη < t

}
∪

{
sup

0≤s≤t∧τη∧σε

∥∥X(s)− Y (s)
∥∥ ≥ ε(K)

}
.

Using Equation (43), we apply Lemma 3.2 with X − Y playing the role of y and we get{
sup

0≤s≤t∧τη∧σε

∥∥X(s)− Y (s)
∥∥ ≥ ε(K)

}
⊂

{
max

0≤j≤bt∧τη∧σεc
sup

j≤s≤t∧τη∧σε

∥∥(Hj + Ij + Lj)(s)
∥∥ ≥ ε′(K)

}
,

where ε′(K) = ε(K)
/

(3Γ). Hence, for K large enough we have

P (σε < t) ≤ P (τη < t) + P

(
max

0≤j≤btc
sup

j≤s≤t∧τη∧σε

∥∥(Hj + Ij + Lj)(s)
∥∥ ≥ ε′(K)

)

≤ (t+ 1)

[
2|E| exp

(
−V0Kη

2(K)
)

+ max
0≤j≤btc

P

(
sup

j≤s≤t∧τη∧σε

∥∥(Hj + Ij + Lj)(s)
∥∥ ≥ ε′(K)

)]
,

where V0 > 0 is given by Lemma 3.8. Moreover, for K large enough, for all 0 ≤ j ≤ btc and for all
j ≤ s ≤ t ∧ τη ∧ σε,

‖Lj(s)‖ ≤
∫ s∧(j+1)

j

sup
0≤θ≤1

∥∥F ′(θX(r) + (1− θ)Y (r)
)
− F ′

(
ϕx(r)

)∥∥∥∥Y (r)−X(r)
∥∥dr

≤M3 (η(K) + ε(K)) ε(K)

≤ ε′(K)/3,

21



hence

P (σε ≤ t) ≤ 2|E|(t+ 1) exp
(
−V0Kη

2(K)
)

+ (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧τη∧σε

∥∥Hj(s)
∥∥ ≥ ε′(K)/3

)

+ (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧τη∧σε

∥∥Ij(s)∥∥ ≥ ε′(K)/3

)
. (44)

Let 0 ≤ j ≤ btc. The term Hj is the error term due to the difference between the P̃e,j and the
Be,j , and we bound it thanks to the KMT estimate (32). We have

P

(
sup

j≤s≤t∧τη∧σε
‖Hj(s)‖ ≥ ε′(K)/3

)
≤ P

(
max
e∈E

sup
0≤u≤KM1

∣∣∣P̃e,j(u)−Be,j(u)
∣∣∣ ≥ Kε′′(K)

)
,

where ε′′(K) = ε′(K)/(3M0) = ε(K)/(9ΓM0). Let a, b, c > 0 be the constants involved in (32). If we
suppose ε′′(K) ≥ 2c log(K)/K, then

Kε′′(K) ≥ c log(KM1) + (Kε′′(K)/2− c log(M1)) ,

and the use of the KMT estimate yields, for K large enough:

P

(
sup

j≤s≤t∧τη∧σε
‖Hj(s)‖ ≥ ε′(K)/3

)
≤ |E| a exp (bcM1) exp

(
−bKε

′′(K)

2

)
. (45)

Finally, let us bound the last term in (44), which comes from the difference between the time
changes of P̃e,j and Be,j . Recalling that M2 = maxe∈E‖βe‖Lip,D′ , we have, for all j ≤ s ≤ t ∧ τη ∧ σε,

max
e∈E

(∫ s∧(j+1)

j

∣∣βe(X(r)
)
− βe

(
Y (r)

)∣∣ dr) ≤M2ε(K),

hence

P

(
sup

j≤s≤t∧τη∧σε
‖Ij(s)‖ ≥ ε′(K)/3

)
≤ P

max
e∈E

sup
0≤r,s≤KM1

|s−r|≤M2Kε(K)

|Be,j(s)−Be,j(r)| ≥ Kε′′(K)

 .

We control the oscillations of Brownian motion thanks to Lemma 3.6 and we get, setting ε′′′(K) =
ε′′(K)

/
(162ΓM0M2):

P

(
sup

j≤s≤t∧τη∧σε
‖Ij(s)‖ ≥ ε′(K)/3

)
≤ 2|E|

⌈
M1

M2ε(K)

⌉
exp (−Kε′′′(K)) .

If we suppose ε′′′(K) ≥ 2 log(K)/K, then for K large enough
⌈
M1

/
(M2ε(K))

⌉
≤ exp (Kε′′′(K)/2),

thus

P

(
sup

j≤s≤t∧τη∧σε
‖Ij(s)‖ ≥ ε′(K)/3

)
≤ 2|E| exp

(
−Kε

′′′(K)

2

)
. (46)

Now, it is time to fix η. We choose η =
√
ε, which satisfies the condition K−1/2 � η(K)� 1, and set

α = 9ΓM0 (2c ∧ (324ΓM0M2)) , C1 = 2|E| (2 + a exp (bcM1)) , V1 =

(
V0 ∧

b

18ΓM0
∧ 1

2916Γ2M2
0M2

)
.

We conclude by combining (44), (45) and (46). We obtain that if ε(K) ≥ α log(K)/K, then for K
large enough, for all t ≥ 0,

P (σε ≤ t) ≤ C1(t+ 1) exp (−V1Kε(K)) .

�

Next proposition provides the last piece of the puzzle..
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Proposition 3.10. There exists a constant V2 > 0 such that for every ε : R∗+ → R∗+ satisfying
K−1 � ε(K)� 1, we have, for K large enough and for all t ≥ 0:

P

(
sup

0≤s≤t

∥∥∥∥Y Kx (s)− ϕx(s)− Ux(s)/
√
K

∥∥∥∥ > ε(K)

)
≤ (4|E|+ 1)(t+ 1) exp (−V2Kε(K)) . (47)

Proof. Let Z = ϕx +K−1/2U . It follows from (35) and the definition of ϕx that

Z(t) = x+

∫ t

0

F
(
ϕx(s)

)
ds+

∫ t

0

F ′
(
ϕx(s)

)(
Z(s)− ϕx(s)

)
ds+

1√
K

∑
e∈E

(∫ t

0

√
βe
(
ϕx(s)

)
dWe(s)

)
e,

almost surely for all t ≥ 0. Using (33), we obtain that almost surely for all t ≤ inf {s ≥ 0 : Y (s) /∈ D ′},

Y (t)− Z(t) =

(
bKxc
K
− x
)

+

∫ t

0

F ′
(
ϕx(s)

)(
Y (s)− Z(s)

)
ds+

∑
0≤j≤btc

(Sj + Tj) (t), (48)

where

Sj(t) = 1{t≥j}
1√
K

∑
e∈E

(∫ t∧(j+1)

j

(√
βe
(
Y (s)

)
−
√
βe
(
ϕx(s)

))
dWe(s)

)
e,

Tj(t) = 1{t≥j}

∫ t∧(j+1)

j

[
F
(
Y (s)

)
− F

(
ϕx(s)

)
− F ′

(
ϕx(s)

)(
Y (s)− ϕx(s)

)]
ds.

The term Sj comes from the fact that the dispersion matrix appearing in the equation (35) defining
U is

√
βe(ϕx), which follows the deterministic trajectory ϕx, whereas the equation (33) defining Y

involves
√
βe(Y ). As for the term Tj , it comes from the linearization of F along ϕx.

Let ε, η : R∗+ → R∗+ be such that K−1 � ε(K) and K−1/2 � η(K)� 1. Set

ζε = inf {t ≥ 0 : ‖Y (t)− Z(t)‖ > ε(K)} and θη = inf {t ≥ 0 : ‖Y (t)− ϕx(t)‖ > η(K)} .

Let t ≥ 0, we have

{ζε ≤ t} ⊂ {θη < t} ∪ {ζε ≤ t ≤ θη}

⊂ {θη < t} ∪

{
sup

0≤s≤t∧θη
‖Y (s)− Z(s)‖ ≥ ε(K)

}
.

Since η(K)� 1, for K large enough we have θη ≤ inf {s ≥ 0 : Y (s) /∈ D ′} and thus (48) holds almost
surely for all t ≤ θη. Applying Lemma 3.2 with Y −Z playing the role of y, we get, for K large enough,{

sup
0≤s≤t∧θη

∥∥Y (s)− Z(s)
∥∥ ≥ ε(K)

}
⊂

{
max

0≤j≤btc
sup

j≤s≤t∧θη

∥∥(Sj + Tj)(s)
∥∥ ≥ ε′(K)

}
where ε′(K) = ε(K)/(3Γ). Hence,

P (ζε ≤ t) ≤ P (θη < t) + (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧θη
‖Sj(s)‖ ≥ ε′(K)/2

)

+ (t+ 1) max
0≤j≤btc

P

(
sup

j≤s≤t∧θη
‖Tj(s)‖ > ε′(K)/2

)
. (49)

We bound successively each term, before choosing an adequate η. First, if we let V0 and V1 be
given by Proposition 3.8 and Proposition 3.9 respectively, then for K large enough, we have

P(θη < t) ≤ P

(
sup

0≤s<t
‖X(s)− ϕx(s)‖ > η(K)/2

)
+ P

(
sup

0≤s<t
‖X(s)− Y (s)‖ > η(K)/2

)
≤ (t+ 1)

[
2|E| exp

(
−V0Kη

2(K)/4
)

+ C1 exp (−V1Kη(K)/2)
]

≤ (2|E|+ 1)(t+ 1) exp
(
−V0Kη

2(K)/4
)
. (50)
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Next, let us bound the second term of (49). Let 0 ≤ j ≤ btc. We have

sup
j≤s≤t∧θη

‖Sj(s)‖ ≤ K−1/2M0 max
e∈E

sup
j≤s≤j+1

∣∣∣∣∫ s

j

Re(r)dWe(r)

∣∣∣∣
where

Re(r) =

(√
βe
(
Y (r)

)
−
√
βe
(
ϕx(r)

))
1{r≤θη}.

Since the
√
βe are M4-Lipschitz on D ′, we have |Re(r)| ≤M4η(K) for all r 6= θη , hence

max
0≤j≤btc

P

(
sup

j≤s≤t∧θη
‖Sj(s)‖ ≥ ε′(K)/2

)
≤ max

0≤j≤btc
P

(
max
e∈E

sup
j≤s≤j+1

∣∣∣∣∫ s

j

Re(r)dWe(r)

∣∣∣∣ ≥
√
Kε′(K)

2M0

)

≤ 2|E| exp

(
− Kε′2(K)

8M2
0M

2
4 η

2(K)

)
, (51)

using Lemma 3.5 for the last inequality. In addition, we have

sup
j≤s≤t∧θη

‖Tj(s)‖ ≤M3η
2(K).

Let us choose η =
√
ε′/(2M3), which satisfies the condition K−1/2 � η(K) � 1. Due to the above

inequality, the last term of the right handside of (49) vanishes. If we set

V2 =
V0

24ΓM3
∧ M3

12ΓM2
0M

2
4

,

then the bounds (50) and (51) yield, for K large enough and for all t ≥ 0,

P (ζε < t) ≤ (4|E|+ 1)(t+ 1) exp (−V2Kε(K)) ,

which ends the proof of the proposition.
�

We conclude the proof of Theorem 1.1 by combining Proposition 3.9 and Proposition 3.10, using
the triangular inequality: take α = 2α1, C = C1 + 4|E|+ 1, V = (V1 ∧ V2) /2. �

Let us mention that if we do not assume that the functions
√
βe are locally Lipschitz, we can prove

a theorem similar to Theorem 1.1, with the following modifications: consider ε : R∗+ → R∗+ such that
K−3/4 � ε(K) � 1, and replace exp(−V Kε(K)) by exp(−Ṽ Kε4/3(K)). Thus, in that context the
gap between XK

x and its Gaussian approximation remains smaller than δ/
√
K for a period of time of

order exp
(
Ṽ δ4/3K1/3

)
. The proof is the same except that in Proposition 3.10 we can only dominate

Re by the square root of η(K). This result can be useful for instance if the trajectory of ϕx spends
time in a region where one of the functions βe vanishes. However this is not the case in the models we
consider in Section 2, at least in the neighbourhood of the equilibrium point x∗.

3.3 Proof of Corollary 1.2

We may suppose that D is positively invariant by the flow ϕ due to Lemma 3.1, ii). We start by the
following lemma, which shows that the processes Ux, x ∈ D , can be well approximated by U∗ after
a period of time of order log(K). In what follows, when we say that an assertion holds ‘for K large
enough’, we mean that there exist K0 > 0, independent of x, such that the assertion is true if K ≥ K0.

Lemma 3.11. LetW = (We(t) ; e ∈ E, t ≥ 0) be a RE-valued Brownian motion, let U∗(0) ∼ N (0,Σ∗)
be independent of W , and let (Ux ; x ∈ U∗) and U∗ be defined as in Proposition 3.3. Then, for all K
large enough and all x ∈ D , we have:

P

(
sup

t≥(6/ρ∗) log(K)

∥∥Ux(t)− U∗(t)
∥∥ ≥ 1/

√
K

)
≤ exp (−K) . (52)
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Proof. Let x ∈ D , and let t1 ≥ 0. Set x1 = ϕx(t1). Setting

∆U(t) = U∗(t)− U(t), (53)

A(t) =

∫ t

0

(
F ′(x∗)− F ′

(
ϕx(s)

))
U∗(s)ds, (54)

D(t) =
∑
e∈E

(∫ t

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]
dWe(s)

)
e, (55)

we have, almost surely for all t ≥ 0,

∆U(t1 + t) = ∆U(t1) +

∫ t

0

F ′(ϕx1(s))∆U(t1 + s)ds+A(t1 + t)−A(t1) +D(t1 + t)−D(t1).

The application of Lemma 3.2 with ∆U(t1 + ·) playing the role of y yields Γ ≥ 1 such that

sup
t≥t1
‖∆U(t)‖ ≤ Γ

(∥∥∆U(t1)
∥∥ ∨ 3 sup

j∈N
sup

j≤t≤j+1

∥∥(A+D)(t1 + t)− (A+D)(t1 + j)
∥∥) .

Let K ≥ 1, and choose t1 = t1(K) = (6/ρ∗) log(K). We get

P

(
sup

t≥t1(K)

‖∆U(t)‖ ≥ 1/
√
K

)
≤ P

(∥∥∆U(t1)
∥∥ ≥ 1/(2Γ

√
K)
)

+
∑
j∈N

P

(
sup

j≤t≤j+1
‖A(t1 + t)−A(t1 + j)‖ ≥ 1/(12Γ

√
K)

)

+
∑
j∈N

P

(
sup

j≤t≤j+1
‖D(t1 + t)−D(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
(56)

We bound each term of the right handside of this inequality. We start by the second term. Let
Γ1,Γ2 be given by Lemma 3.1, M0 =

∑
e∈E‖e‖, M1 = maxe∈E‖βe‖∞,D , M2 = maxe∈E‖βe‖Lip,D , and

M3 = ‖F ′‖Lip,D . Let j ∈ N. We have

sup
j≤t≤j+1

‖A(t1 + t)−A(t1 + j)‖ ≤
∫ t1+j+1

t1+j

∥∥F ′(x∗)− F ′(ϕx(t)
)∥∥∥∥U∗(t)∥∥dt

≤M3Γ1e
− ρ∗2 (t1+j) sup

t1+j≤t≤t1+j+1

∥∥U∗(t)∥∥,
hence, recalling that t1 = (6/ρ∗) log(K),

P

(
sup

j≤t≤j+1
‖A(t1 + t)−A(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤ P

(
sup

0≤t≤1
‖U∗(t)‖ ≥

e
ρ∗
2 jK5/2

12ΓΓ1M3

)
.

Now, Lemma 3.2 entails that for all δ > 0,

P

(
sup

0≤t≤1

∥∥U∗(t)∥∥ ≥ δ) ≤ P

[
Γ

(∥∥U∗(0)
∥∥ ∨ 2 sup

0≤t≤1

∥∥∥∥∑
e∈E

∫ t

0

√
βe(x∗)dWe(s)e

∥∥∥∥
)
≥ δ

]

≤ P

(∥∥U∗(0)
∥∥ ≥ δ

Γ

)
+ |E|P

(
sup

0≤t≤1
|B(t)| ≥ δ

2ΓM0

√
M1

)
,

where B denotes a real Brownian motion.
If the rank r of Σ∗ is not zero, then thre exists (G1, . . . , Gr) ∼ N (0, Ir) and (σ1, . . . , σr) ∈ Rr

+

such that ‖U∗(0)‖2 =
∑

1≤i≤r σ
2
iG

2
i ≤ Tr(Σ∗) max1≤i≤r G

2
i , and thus for all δ > 0,

P (‖U∗(0)‖ ≥ δ) ≤ rP
(
G2

1 ≥ δ2/Tr(Σ∗)
)
≤ 2r exp

(
− δ2

2Tr(Σ∗)

)
. (57)
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If r = 0, then U∗ ≡ 0 and this bound also holds, with the convention exp(−∞) = 0. Using Lemma 3.5
to bound the Brownian term we obtain that, for all δ > 0,

P

(
sup

0≤t≤1

∥∥U∗(t)∥∥ ≥ δ) ≤ (2r + 2|E|) exp

(
− δ2

2Γ2 (Tr(Σ∗) ∨ 4M2
0M1)

)
, (58)

which entails

P

(
sup

j≤t≤j+1
‖A(t1 + t)−A(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤ (2r + 2|E|) exp

(
−e

ρ∗jK5

C1

)
(59)

where C1 = 288Γ4Γ2
1M

2
3

(
Tr(Σ∗) ∨ 4M2

0M1

)
. Using that eρ∗j ≥ (1 + ρ∗j), we get, for K large enough,

∑
j∈N

P

(
sup

j≤t≤j+1
‖A(t1 + t)−A(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤ (2r + 2|E|) exp

(
−K

5

C1

)∑
j∈N

exp

(
−K

5ρ∗j

C1

)
≤ exp(−K)/3. (60)

Now, let us bound the second term of the right handside of (56). For all j ∈ N, we have

P

(
sup

j≤t≤j+1
‖D(t1 + t)−D(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤
∑
e∈E

P

(
sup

j≤t≤j+1

∣∣∣∣∫ t1+t

t1+j

(√
βe(x∗)−

√
βe(ϕx(t))

)
dWe(t)

∣∣∣∣ ≥ 1/(12ΓM0

√
K)

)
. (61)

Using that (
√
u−
√
v)

2 ≤ |u− v|, we obtain that for all e ∈ E,∫ t1+j+1

t1+j

(√
βe(x∗)−

√
βe(ϕx(t))

)2

dt ≤M2Γ1K
−3e−

ρ∗
2 j .

Thus, Lemma 3.6 yields

P

(
sup

j≤t≤j+1
‖D(t1 + t)−D(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤ 2|E| exp

(
−e

ρ∗
2 jK2

C2

)
, (62)

where C2 = 288Γ2Γ1M
2
0M2, and therefore, for K large enough∑

j∈N

P

(
sup

j≤t≤j+1
‖D(t1 + t)−D(t1 + j)‖ ≥ 1/(12Γ

√
K)

)
≤ exp(−K)/3.

Finally, let us bound the first term of the right handside of (56). We have

∆U(t) = ∆U(0) +

∫ t

0

F ′
(
ϕx(s)

)
∆U(s)ds+A(t) +D(t),

thus, applying Itô’s lemma to Ψx(0, t)∆U(t) and left multiplying by Ψx(t, 0) after that yields

∆U(t) = Ψx(t, 0)∆U(0) +

∫ t

0

Ψx(t, s)
(
F ′(x∗)− F ′

(
ϕx(s)

))
U∗(s)ds

+
∑
e∈E

∫ t

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]
Ψx(t, s)e dWe(s).

It follows from Lemma 3.1 that ∥∥Ψx(t1, 0)∆U(0)
∥∥ ≤ Γ2K

−3
∥∥U∗(0)

∥∥
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and ∥∥∥∥∫ t1

0

Ψx(t, s)
(
F ′(x∗)− F ′

(
ϕx(s)

))
U∗(s)ds

∥∥∥∥ ≤ ∫ t1

0

Γ2e
− ρ∗2 (t−s)M3Γ1Re

− ρ∗2 s
∥∥U∗(s)∥∥ds

≤ 6ρ−1
∗ Γ1Γ2M3 log(K)K−3 sup

0≤t≤t1

∥∥U∗(t)∥∥.
Using inequalities (57) and (58), we obtain, for K large enough

P
(∥∥Ψx(t1, 0)∆U(0)

∥∥ ≥ 1/(6Γ
√
K)
)
≤ P

(∥∥U∗(0)
∥∥ ≥ K5/2

6ΓΓ2

)
≤ exp(−K)/9 (63)

and

P

(∥∥∥∥∫ t1

0

Ψx(t, s)
(
F ′(x∗)− F ′

(
ϕx(s)

))
U∗(s)ds

∥∥∥∥ ≥ 1

6Γ
√
K

)
≤ P

(
sup

0≤t≤t1

∥∥U∗(t)∥∥ ≥ ρ∗K
5/2

36ΓΓ1Γ2M3 log(K)

)
≤
⌈

6 log(K)

ρ∗

⌉
P

(
sup

0≤t≤1

∥∥U∗(t)∥∥ ≥ ρ∗K
5/2

36ΓΓ1Γ2M3 log(K)

)
≤ exp(−K)/9. (64)

Moreover,

P

(∥∥∥∥∑
e∈E

∫ t1

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]
Ψx(t1, s)e dWe(s)

∥∥∥∥ ≥ 1

6Γ
√
K

)

≤ P

(
max

1≤i≤d,e∈E

∣∣∣∣∫ t1

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]
(Ψx(t1, s)e)idWe(s)

∣∣∣∣ ≥ 1

6Γ
√
d|E|
√
K

)
,

and for all 1 ≤ i ≤ d and e ∈ E,∫ t1

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]2

(Ψx(t1, s)e)
2
ids ≤

∫ t1

0

M2Γ1e
− ρ∗2 s(Γ2e

− ρ∗2 (t1−s)‖e‖)2ds

≤ Γ1Γ2
2M

2
0M2t1e

− ρ∗2 t1 .

Thus, Lemma 3.5 entails that we have, for K large enough,

P

(∥∥∥∥∑
e∈E

∫ t1

0

[√
βe(x∗)−

√
βe
(
ϕx(s)

)]
Ψx(t1, s)e dWe(s)

∥∥∥∥ ≥ 1

6Γ
√
K

)
≤ exp(−K)/9, (65)

The bounds (63), (64) and (65) yield

P
(∥∥∆U(t1)

∥∥ ≥ 1/(2Γ
√
K)
)
≤ exp(−K)/3.

Plugging this into (56) together with (59) and (62), we obtain that, for K large enough, for all x ∈ D ,

P

(
sup

t≥(6/ρ∗) log(K)

∥∥U∗(t)− Ux(t)
∥∥ ≥ 1/

√
K

)
≤ exp(−K).

�

Now, let us prove Corollary 1.2. Let C, V, α be given by Theorem 1.1 and let ε : R∗+ → R∗+ be
such that α log(K)/K ≤ ε(K) � 1. Let K > 0 be large enough, let x ∈ D , and let

(
XK
x , Ux

)
be the

coupling given by Theorem 1.1. Using Lemma 3.11, we may suppose that there exists, on the same
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probability space as XK
x and Ux, a process U∗ ∼ ν∗ satisfying (52). Set t(K) = (6/ρ∗) log(K). Letting

Γ1 ≥ 1 be given by Lemma 3.1, we have

sup
s≥t(K)

‖ϕx(s)− x∗‖ ≤ Γ1e
− ρ∗2 t(K) ≤ Γ1K

−3. (66)

Hence, for K large enough we have, for all T ≥ t(K),

P

(
sup

t(K)≤t≤T

∥∥XK
x (t)− x∗ − U∗(t)/

√
K
∥∥ > ε(K)

)

≤ P

(
sup

t(K)≤t≤T

∥∥XK
x (t)− ϕx(t)− Ux(t)/

√
K
∥∥ > ε(K)− 2/K

)

+ P

(
sup

t(K)≤t≤T
‖ϕx(t)− x∗‖ > 1/K

)
+ P

(
sup

t(K)≤t≤T

∥∥UKx (t)− U∗(t)
∥∥ > 1/

√
K

)
≤ C(T + 1) exp (−V Kε(K)) + exp(−K).

using (66) and Lemma 3.11 for the last inequality. Using that ε(K)� 1, the corollary is proved with
C ′ = C + 1.

3.4 Proof of Corollary 1.3

We may suppose that D is positively invariant by the flow ϕ, and that it contains x∗ in its interior. For
all K > 0, x ∈ Rd and t ≥ 0, let µK;t

x denote the probability distribution of XK
x (t), where XK

x ∼ µKx .
Let C ′, V, α > 0 be given by Corollary 1.2, and let t(K) = (6/ρ∗) log(K). It follows from Corollary 1.2
that there exists K0 ≥ 1 such that for all K ≥ K0 and for all x ∈ D there exists a coupling

(
XK
x , U∗

)
of (µKx , ν∗) such that,

P
(∥∥XK

x

(
t(K)

)
− x∗ − U∗

(
t(K)

)∥∥ > α log(K)/K
)
≤ C ′(t(K) + 1)K−V α. (67)

For all K ≥ K0, we denote by πKx the probability distribution of the coupling
(
XK
x

(
t(K)

)
, U∗

(
t(K)

))
for x ∈ D , while we set πKx = µ

K;t(K)
x ⊗N (0,Σ∗) for x /∈ D .

Now, for t ≥ 2t(K) we get an upper bound on the probability that XK
x (t− t(K)) /∈ D and combine

it with (67) using the Markov property. Let r > 0 be such that D ⊃ B̄(x∗, r). Proposition 3.8 yields
constants η0, V0 > 0 such that, setting η̃0 = η0 ∧ (r/2), we have, for all K large enough, for all x ∈ D
and for all t ≥ 0,

P

(
sup

0≤s≤t

∥∥XK
x (s)− ϕx(s)

∥∥ > η̃0

)
≤ 2|E|(t+ 1) exp

(
−V0η̃

2
0K
)
.

In addition, it follows from Lemma 3.1 that

sup {‖ϕx(t)− x∗‖ ; x ∈ D , t ≥ t(K)} = O(K−3).

Consequently, for K larger than some K1 ≥ K0, for all x ∈ D and t ≥ 2t(K), we have

P
(∥∥XK

x (t− t(K))− x∗
∥∥ > r

)
≤ P

(∥∥XK
x (t− t(K))− ϕx(t− t(K))

∥∥ > η̃0

)
,

hence

P
(
XK
x (t− t(K)) /∈ D

)
≤ 2|E|(t− t(K) + 1) exp

(
−V0η̃

2
0K
)
. (68)

Set V ′ = V0η̃
2
0/2. Let K ≥ K1, x ∈ D , t ∈

[
2t(K), eV

′K
]
and define π̃ ∈ P

(
Rd ×Rd

)
by

π̃ =
∑

y∈K−1Zd

P
(
XK
x (t− t(K)) = y

)
πKy .
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The first marginal of π̃ is µK;t
x as a consequence of the Markov property of XK

x at time t− t(K), while
the second marginal of π̃ is N (0,Σ∗). Letting X,G : Rd × Rd → Rd denote the first and second
canonical projections, and Eπ̃ the expectation with respect to π̃, we have

Eπ̃

[
c
(√

K(X − x∗), G
)]
≤ α log(K)/

√
K + π̃

(∣∣√K(X − x∗)−G
∣∣ > α log(K)/

√
K
)

≤ α log(K)/
√
K + P

(
XK
x (t− t(K)) /∈ D

)
+ sup
y∈D

πKy

(∣∣√K(X − x∗)−G
∣∣ > α log(K)/

√
K
)

≤ α log(K)/
√
K + 2|E|(eV

′K + 1)e−2V ′K + C ′(t(K) + 1)K−V α,

using (67) and (68) for the last inequality. We conclude the proof using the definition of Wc: for all
x ∈ D ,

sup
2t(K)≤t≤exp(V ′K)

Wc

[
P
(√

K
(
XK
x (t)− x∗

)
∈ ·
)
,N (0,Σ∗)

]
−→

K→+∞
0.

3.5 Proof of Proposition 2.1

Let 0 < h < 1. Set

t1(K) = exp

((
1

2
− h
)

(1− h)2Kη2(K)

)
and t2(K) = exp

((
1

2
+ h

)
(1 + h)2Kη2(K)

)
.

We have 1� Kη2(K)� Kη(K), hence the coupling (XK
x∗ , Ux∗) given by Theorem 1.1 satisfies

P

(
sup

0≤s≤t2(K)

∥∥∥XK
x∗(s)− x∗ − Ux∗(s)/

√
K
∥∥∥

Σ−1
∗
≥ h η(K)

)
−→

K→+∞
0, (69)

using the equivalence of norms on Rd. Now, (8) entails

P

(
sup

0≤s<t2(K)

∥∥Ux∗(s)/√K∥∥Σ−1
∗
≥ (1 + h)η(K)

)
−→

K→+∞
1, (70)

and

P

(
sup

0≤s≤t1(K)

∥∥Ux∗(s)/√K∥∥Σ−1
∗
≥ (1− h)η(K)

)
−→

K→+∞
0. (71)

Combining (69), (70), (71) with the triangular inequality yields

P

[
exp

((
1

2
− h
)

(1− h)2Kη2(K)

)
≤ τKη < exp

((
1

2
+ h

)
(1 + h)2Kη2(K)

)]
−→

K→+∞
1.

This holds for all h > 0, thus the proposition is proved.

3.6 Proof of Proposition 2.2

We start by showing that when we condition a process XK
x to survive for a large time, then for t much

larger than log(K), XK
x (t) belongs to the compact [x∗/4, 3x∗] with high probability, uniformly in x,

for x ∈ K−1N∗.
First, we compare the logistic birth-and-death process with a supercritical branching process at the

neighbourhood of 0. Let M be a Poisson point measure on R2
+, of intensity the Lebesgue measure.

Let K > 0. For all n ∈ N, we can construct a logistic birth-and-death process NK
n starting from n
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(with the transition rates defined in (10)), as the unique real-valued process, up to indinstiguishability,
satisfying

NK
n (t) = n+

∫
]0,t]×R+

(
1{u≤pNKn (s−)} − 1{pNKn (s−)<u≤NKn (s−)(p+q+NKn (s−)/K)}

)
M (ds,du)

almost surely for all t ≥ 0. The unique process L solution of

L(t) = 1 +

∫
]0,t]×R+

(
1{u≤pL(s−)} − 1{pL(s−)<u≤(p+q+x∗/2)L(s−)}

)
M (ds,du)

is a branching process starting from L(0) = 1, with transition rate from m to m + 1 given by
pm and transition rate from m to m − 1 given by (q + x∗/2)m. It is supercritical because p −
q − x∗/2 = x∗/2 > 0. This coupling between NK

1 and L has the useful property that τN ≤ τL,
where τN = inf

{
t ≥ 0 : NK

1 (t) ≥ Kx∗/2
}
and τL = inf {t ≥ 0 : L(t) ≥ Kx∗/2}. Indeed, setting σ =

inf
{
t ≥ 0 : L(t) > NK

1 (t)
}
, we see that on the event {σ <∞}, it is necessary that L(σ−) = NK

1 (σ−)
and that a death happens at time σ for NK

1 but not for L. Hence NK
1 (σ−) > x∗/2, which entails

τN < σ, and τL ≥ τN .
Now, it is a classical result that

(
e−tx∗/2L(t) ; t ≥ 0

)
is a martingale which converges almost-surely,

when t → +∞, to a nonnegative random variable W such that E(W ) = 1, see e.g.[2, Chapter III].
Hence, there exists η < 1 such that, for t large enough,

P
(
e−tx∗/2L(t) ≤ 1/2

)
≤ η.

From this we deduce that, for K larger than some K0 > 0,

P (τN > 3 log(K)/x∗) ≤ P (τL > 3 log(K)/x∗)

≤ P
(
K−3/2L (3 log(K)/x∗) ≤ 1/2

)
≤ η.

Moreover, we can see that for all n ≥ 1, we have NK
1 (t) ≤ NK

n (t) almost surely for all t ≥ 0. Hence,
the same inequality holds when we replace NK

1 by NK
n in the definition of τN .

Let us introduce the canonical real càdlàg process X = (X(t) ; t ≥ 0), defined by X(t)(ω) = ω(t) for
all ω ∈ D (R+,R), and set, for all h ∈ R+, τ+

h = inf {t ≥ 0 : X(t) ≥ h} and τ−h = inf {t ≥ 0 : X(t) ≤ h}.
The result we just obtained can be restated as follows: for K ≥ K0, for all x ∈ K−1N∗,

µKx

(
τ+
x∗/2

> 3 log(K)/x∗

)
≤ η.

When we condition a birth-and-death process to survive, we favour trajectories that go away from
zero. Setting t1(K) = 3 log(K)/x∗, we have, for K ≥ K0, for all t ≥ t1(K) and all x ∈ K−1N∗,

µKx

(
τ+
x∗/2

≤ t1(K), X(t) > 0
)
≥ µKx

(
τ+
x∗/2

≤ t1(K), X(τ+
x∗/2

+ t) > 0
)

= µKx

(
τ+
x∗/2

≤ t1(K)
)
µKdKx∗/2e/K (X(t) > 0)

≥ µKx
(
τ+
x∗/2

≤ t1(K)
)
µKx (X(t) > 0) ,

where the equality comes from the strong Markov property at time τ+
x∗/2

. Thus,

µKx

(
τ+
x∗/2

> t1(K)
∣∣X(t) > 0

)
≤ η.

Moreover, for all x ∈ K−1N∗, for all t, T ≥ 0, for allA ∈ B (D ([0, t],R)) and for allB ∈ B (D ([0, T ],R)),
the Markov property entails that

µKx

[
(X(s))0≤s≤t ∈ A, (X(t+ s))0≤s≤t ∈ B

∣∣X(t+ T ) > 0
]

=
∑

y∈K−1N∗

µKx

[
(X(s))0≤s≤t ∈ A,X(t) = y

∣∣X(t+ T ) > 0
]
µKy

[
(X(s))0≤s≤T ∈ B

∣∣X(T ) > 0
]
. (72)
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Let ti = ti(K) = it1(K) for all i ∈ N. For K ≥ K0, for all i ∈ N∗, for all t ≥ ti and for all x ∈ K−1N∗,
we get

µKx

[
τ+
x∗/2

> ti
∣∣X(t) > 0

]
=

∑
y∈K−1N∗

µKx

[
τ+
x∗/2

> ti−1, X(ti−1) = y
∣∣X(t) > 0

]
µKy

[
τ+
x∗/2

> t1,
∣∣X(t− ti−1) > 0

]
≤ η

∑
y∈K−1N∗

µKx

[
τ+
x∗/2

> ti−1, X(ti−1) = y
∣∣X(T ) > 0

]
= η µKx

[
τ+
x∗/2

> ti−1

∣∣X(t) > 0
]
,

hence, by induction,

µKx

[
τ+
x∗/2

> ti(K)
∣∣X(t) > 0

]
≤ ηi. (73)

Let t, T ≥ 0, let K ≥ K0 and let x ∈ K−1N∗. We have

µKx
(
X(t+ T ) > 0

∣∣ 0 < X(t) < x∗/4
)

=
∑

y∈(0,x∗/4)∩K−1N∗

µKx
(
X(t) = y

∣∣ 0 < X(t) < x∗/4
)
µKy (X(T ) > 0)

≤ µKbKx∗/4c/K (X(T ) > 0)

≤ µKx
(
X(t+ T ) > 0

∣∣X(t) ≥ x∗/4
)
,

hence

µKx
(
X(t+ T ) > 0

∣∣ 0 < X(t) < x∗/4
)
≤ µKx

(
X(t+ T ) > 0

∣∣X(t) > 0
)
.

Given that {X(t+ T ) > 0} ⊂ {X(t) > 0}, this inequality is equivalent to

µKx
(
X(t) < x∗/4

∣∣X(t+ T ) > 0
)
≤ µKx

(
X(t) < x∗/4

∣∣X(t) > 0
)
. (74)

Now, the right handside satisfies

µKx
(
X(t) < x∗/4

∣∣X(t) > 0
)
≤ µKx

(
τ+
x∗/2

> t
∣∣X(t) > 0

)
+ µKx

(
τ+
x∗/2

≤ t,X(t) < x∗/4
∣∣X(t) > 0

)
≤ ηbt/t1(K)c +

µKx

(
τ+
x∗/2

≤ t,X(t) < x∗/4
)

µKx

(
τ+
x∗/2

≤ t,X(τ+
x∗/2

+ t) > 0
)

≤ ηbt/t1(K)c +
µKdKx∗/2e/K

(
τ−x∗/4 ≤ t

)
µKdKx∗/2e/K (X(t) > 0)

,

using (73) for the first inequality and the strong Markov property at time τ+
x∗/2

for the last one. It
follows from Proposition 3.8 that there exists V ′0 > 0 such that for all K large enough, for all t ≥ 0,

sup
x∗/4≤x≤3x∗

µKx

(
sup

0≤s≤t

∣∣X(s)− ϕx(s)
∣∣ > x∗/4

)
≤ 4(t+ 1) exp (−V ′0K) , (75)

Using that ϕdKx∗/2e/K(s) ≥ x∗/2 for all s ≥ 0, this yields, for all K large enough and for all t ≥ 0,

µKdKx∗/2e/K

(
τ−x∗/4 ≤ t

)
≤ 4(t+ 1) exp (−V ′0K) ,
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hence
sup

x∈K−1N∗
µKx
(
X(t) < x∗/4

∣∣X(t) > 0
)
≤ ηbt/t1(K)c +

4(t+ 1) exp (−V ′0K)

1− 4(t+ 1) exp (−V ′0K)
.

Set β = 3/(x∗| log(η)|). The above inequality yields, for allK large enough and for all t ≤ βV ′0K log(K)/2,

sup
x∈K−1N∗

µKx
(
X(t) < x∗/4

∣∣X(t) > 0
)
≤ η−1 exp

(
− t

β log(K)

)
+ exp

(
−V

′
0K

2

)
.

Moreover, as a consequence of (72), the left handside of this inequality is a non-increasing function of
t. Thus, for t ≥ βV ′0K log(K)/2, the left handside is less than the right handside evaluated at time
βV ′0K log(K)/2. Using (74), we obtain that for all K large enough, and for all t, T ≥ 0,

sup
x∈K−1N∗

µKx
(
X(t) < x∗/4

∣∣X(t+ T ) > 0
)
≤ η−1 exp

(
− t

β log(K)

)
+ (η−1 + 1) exp

(
−V

′
0K

2

)
. (76)

Now, we bound µKx
(
X(t) > 3x∗

∣∣X(t+ T ) > 0
)
. Let us set, for all n ∈ N∗,

πKn =
n∏
j=1

qKj,j−1

qKj,j+1

=
n∏
j=1

q + j/K

p
,

and denote by EKx the expectation under µKx . For all x ∈ (2x∗,+∞) ∩K−1N∗, we have the following
explicit formulas for expectations of first passage times (see e.g. [28]):

EKx
(
τ−2x∗

)
=

Kx∑
i=b2Kx∗c+1

∞∑
n=i

πi−1

n(q + n/K)πn−1
.

Hence,

sup
x∈K−1N∗

EKx
(
τ−2x∗

)
=

∞∑
i=b2Kx∗c+1

∞∑
n=i

πi−1

n(q + n/K)πn−1

=

∞∑
n=b2Kx∗c+1

1

n(q + n/K)

n∑
i=b2Kx∗c+1

n−1∏
j=i

p

q + j/K

≤
∞∑

n=b2Kx∗c+1

1

n(q + n/K)

n∑
i=b2Kx∗c+1

(
p

p+ x∗

)n−i
≤ (1 + p/x∗)

∫ ∞
b2Kx∗c/K

1

u(q + u)
du.

Let θ = 2(1 + p/x∗)
∫∞
x∗

1
u(q+u)du, it is finite and for K large enough, Markov inequality yields

sup
x∈K−1N∗

µKx
(
τ−2x∗ > θ

)
≤ 1/2,

and then Markov property entails that for all t ≥ 0,

sup
x∈K−1N∗

µKx
(
τ−2x∗ > t

)
≤ 2−bt/θc.

Let K be large enough so that the above inequality holds, let x ∈ K−1N∗ and let t ≥ 0. We have

µKx (X(t) > 3x∗) ≤ µKx
(
τ−2x∗ > t

)
+ µKx

(
τ−2x∗ ≤ t,X(t) > 3x∗

)
≤ 2−bt/θc + µKb2Kx∗c/K

(
τ+
3x∗
≤ t
)
,
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and thus, using (75),
µKx (X(t) > 3x∗) ≤ 21−t/θ + 4(t+ 1) exp(−V ′0K)

Now, let T ≥ 0. Since

µKx (X(t+ T ) > 0) ≥ µKx
(
τ+
x∗/2

<∞, X(τ+
x∗/2

+ t+ T ) > 0
)

= µKx

(
τ+
x∗/2

<∞
)
µKdKx∗/2e/K (X(t+ T ) > 0)

≥ (1− η) (1− 4(t+ T + 1) exp (−V ′0K)) ,

we obtain

sup
x∈K−1N∗

µKx
(
X(t) > 3x∗

∣∣X(t+ T ) > 0
)
≤ 21−t/θ + 4(t+ 1) exp(−V ′0K)

(1− η) (1− 4(t+ T + 1) exp (−V ′0K))
.

Moreover, as consequence of (72), the left handside of the above inequality is a non-increasing function
of t. Setting t2(K) = V ′0θK/(2 log(2)), we get, for all K large enough, t ≥ 0 and T ≤ exp (V ′0K/2),

sup
x∈K−1N∗

µKx
(
X(t) > 3x∗

∣∣X(t+ T ) > 0
)
≤ sup
x∈K−1N∗

µKx
(
X (t ∧ t2(K)) > 3x∗

∣∣X (t ∧ t2(K) + T ) > 0
)

≤ C1

(
2−t/θ + exp(−V ′0K/2)

)
, (77)

where C1 = 5/(1− η). Now we can combine (76) and (77), and we obtain that for all K large enough,
t ≥ 0 and T ≤ exp (V ′0K/2),

sup
x∈K−1N∗

µKx
(
X(t) /∈ [x∗/4, 3x∗]

∣∣X(t+ T ) > 0
)
≤ C2

(
exp

(
− t

β log(K)

)
+ exp

(
−V

′
0

2
K

))
, (78)

where C2 = C1 + η−1 + 1.
Now that we control, uniformly in X(0), the probability that X(t) belongs to some fixed compact,

conditional on later survival, we use Corollary 1.2 to build the desired couplings. Let C ′, V, α > 0
be given by the application of Corollary 1.2 to D = [x∗/4, 3x∗]. Note that ρ∗ = −F ′(x∗) = x∗ and
(6/ρ∗) log(K) = 2t1(K). Let ε : R∗+ → R∗+ such that α log(K)/K ≤ ε(K) � 1. For K larger than
some K0 ≥ 1, for all T ≥ 0 and all y ∈ [x∗/4, 3x∗], Corollary 1.2 yields a coupling

(
XK
y , U∗

)
of
(
µKy , ν∗

)
such that

P

(
sup

2t1(K)≤s≤2t1(K)+T

∥∥∥XK
y (s)− x∗ − U∗(s)/

√
K
∥∥∥ > ε(K)

)
≤ C ′(2t1(K) + T + 1) exp (−V Kε(K))

≤ (T + 1) exp (−(V/2)Kε(K)) .

Enlarging the probability space, we may suppose that there exists a process Y independent of XK
y and

distributed as µ̃K;0,2t1(K)+T
y . The process (Z(s) ; 0 ≤ s ≤ 2t1(K) + T ) defined by

Z = XK
y 1{XKy (2t1(K)+T )>0} + Y Ky 1{XKy (2t1(K)+T )=0}

is then also distributed as µ̃K;0,2t1(K)+T
y . It satisfies, for K large enough and any y ∈ [x∗/4, 3x∗],

P

(
sup

2t1(K)≤s≤2t1(K)+T

∥∥Z(s)− x∗ − U∗(s)/
√
K
∥∥ > ε(K)

)
≤ (T + 1) exp (−(V/2)Kε(K)) + P

(
XK
y (2t1(K) + T ) = 0

)
≤ (T + 1) exp (−(V/2)Kε(K)) + 4(2t1(K) + T + 1) exp (−V ′0K)

≤ 2(T + 1) exp (−(V/2)Kε(K)) . (79)
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Let us denote by ΓK;T
y ∈ P (D ([0, T ] ,R)× C (R+,R)) the probability distribution of(

Z(2t1(K) + s)0≤s≤T , U∗(2t1(K) + s)s≥0

)
.

For all K ≥ K0, t ≥ 2t1(K), T ≥ 0, and x ∈ K−1N∗, let us set

Γ̃K;t,T
x =

∑
y∈K−1N∗

µKx
(
X (t− 2t1(K)) = y

∣∣X(t+ T ) > 0
)

ΓK;T
y .

As a consequence of (72), its first marginal is µ̃K;t,T
x , while its second marginal is ν∗. Let the pro-

cesses
(
X̃(s) ; 0 ≤ s ≤ T

)
and

(
Ũ(s) ; s ≥ 0

)
be defined on the space D ([0, T ] ,R) × C (R+,R) by

X̃(s)(ω1, ω2) = ω1(s) and Ũ(s)(ω1, ω2) = ω2(s). Combining (78) and (79) yields, for K large enough,
for all t ≥ 2t1(K), x ∈ K−1N∗ and T ≤ exp (V ′0K/2) /2,

Γ̃K;t,T
x

(
sup

0≤s≤T

∣∣∣X̃(s)− x∗ − Ũ(s)/
√
K
∣∣∣ > ε(K)

)
≤ µKx

(
X(t− 2t1(K)) /∈ [x∗/4, 3x∗]

∣∣X(t+ T ) > 0
)

+ 2(T + 1) exp (−(V/2)Kε(K))

≤ C2

(
exp

(
− t− 2t1(K)

β log(K)

)
+ exp

(
−V

′
0

2
K

))
+ 2(T + 1) exp (−(V/2)Kε(K)) .

Setting C ′′ = C2e
6/(βx∗) ∨ 3, and using that exp (−V ′0K/2)� exp (−(V/2)Kε(K)) and that a proba-

bility is less than 1, we obtain that, for K large enough, for all t ≥ 2t1(K), x ∈ K−1N∗ and T ≥ 0,

Γ̃K;t,T
x

(
sup

0≤s≤T

∣∣∣X̃(s)− x∗ − Ũ(s)/
√
K
∣∣∣ > ε(K)

)

≤ C ′′
(

exp

(
− t

β log(K)

)
+ (T + 1) exp (−(V/2)Kε(K))

)
.

Since ΓK;t,T
x ◦ X̃−1 = µ̃K;t,T

x and ΓK;t,T
x ◦ Ũ−1 = ν∗, the proposition is proved.

3.7 Proof of Corollary 2.3

Let C ′′, V ′′, α, β > 0 be given by Proposition 2.2. Let ε : R∗+ → R∗+ be such that α log(K)/K ≤
ε(K) � 1. Proposition 2.2 entails that for K large enough, and for all t ≥ (6/x∗) log(K), we can
construct a coupling

(
X̃,G

)
of
(
µ̃K;t
x∗ ,N (0,Σ∗)

)
such that

P
(∣∣∣X̃ − x∗ −G/√K∣∣∣ > ε(K)

)
≤ C ′′

(
exp

(
− t

β log(K)

)
+ exp (−V ′′Kε(K))

)
. (80)

Let ΓK;t be the probability distribution of (X̃,G). We may suppose that the underlying probability
space of

(
X̃,G

)
is
(
R2,B(R2),ΓK;t

)
and that X̃ and G are respectively the first and second canonical

projections from R2 to R. We know that the first marginal of ΓK;t converges weakly to γK as t→ +∞,
while its second marginal is constant, hence

(
ΓK;n ; n ∈ N

)
is tight in P(R2). Therefore there exists

an increasing integer sequence (nj ; j ∈ N) and ΓK ∈ P
(
R2
)
such that

ΓK;nj =⇒
j→+∞

ΓK .

The first marginal of ΓK is γK , and its second marginal is N (0,Σ∗). For every open subset O of R2,
we have ΓK(O) ≤ lim infj→∞ ΓK;nj (O), thus (80) entails

ΓK
(∣∣∣X̃ − x∗ −G/√K∣∣∣ > ε(K)

)
≤ C ′′ exp (−V ′′Kε(K)) .
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Let EΓK denote the expectation under ΓK . For K large enough, we have

EΓK

[
c
(√

K(X̃ − x∗), G
)]
≤ ΓK

(∣∣∣√K (X̃ − x∗)−G∣∣∣ > √Kε(K)
)

+
√
Kε(K),

and this entails, by definition of Wc and γ̃K ,

Wc

(
γ̃K ,N (0,Σ∗)

)
≤ C ′′ exp (−V ′′Kε(K)) +

√
Kε(K).

Given that ε(K) ≥ α log(K)/K, the second term of the above right handside is at best of order
O
(√

K/ log(K)
)
. Choosing ε(K) = (α ∨ 1/(2V ′′)) log(K)/K we obtain, for K large enough,

Wc

(
γ̃K ,N (0,Σ∗)

)
≤ C ′′ + (α ∨ 1/(2V ′′)) log(K)√

K
.

3.8 Proof of Proposition 2.4

The SDE (12) satisfied by Ux∗ yields, for all t ≥ 0,∫ t

0

U (2)
x∗ (s)ds =

(
F ′(x∗)

−1Ux∗
)(2)

(t)−
(
F ′(x∗)

−1S
1/2
∗ B

)(2)

(t).

Then (13) follows from the equality

(
0 1

)
F ′(x∗)

−1S∗
(
F ′(x∗)

−1
)T 0

1

 = σ2.

Let T : R∗+ → R∗+ be such that 1� T (K)� Kp for some p > 1. Theorem 1.1 yields

P

(
sup

0≤s≤T (K)

∣∣∣IK(s)− i∗ − U (2)
x∗ (s)/

√
K
∣∣∣ > (α ∨ p/V ) log(K)/K

)
−→
K→∞

0.

Moreover, since Ux∗(T (K)) converges in distribution as K → +∞, we have Ux∗(T (K)) = OP(1).
Hence, we obtain∫ T (K)

0

IK(s)ds = i∗ T (K) + σ
√
T (K)/KN (0, 1) +OP

(
1/
√
K + T (K) log(K)/K

)
,

which concludes the proof.

3.9 A coupling lemma

In what follows, U (0, 1) stands for the uniform distribution on the interval (0, 1).

Lemma 3.12. Let E1 and E2 be two complete separable metric spaces, let µ be a probability distribution
on (E1 × E2,B(E1)⊗B(E2)). Let µ1 denote the first marginal of µ. There exists a measurable
function G : E1 × (0, 1)→ E2 such that if (X1, V ) ∼ µ1 ⊗U (0, 1), then (X1, G(X1, V )) ∼ µ.
Proof. We may suppose without loss of generality that E1 and E2 are Borel subsets of R, thanks
to the Borel isomorphism theorem (see e.g. Theorem 13.1.1 in [12]). There exist a probability kernel
R : E1 ×B(E2)→ [0, 1] such that µ = µ1 ⊗R, i.e. µ(A×B) =

∫
A
µ1(dx1)R(x1, B) for all A ∈ B(E1)

and B ∈ B(E2) (see e.g. Theorem 9.2.2 in [30]). Define G0 : E1 × (0, 1)→ R by

G0(x, v) = inf {y ∈ R : R(x, (−∞, y]) ≥ v} .

For all x ∈ E1, v ∈ (0, 1) and a ∈ R, we have

G0(x, v) ≤ a⇔ R(x, (−∞, a]) ≥ v.
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This entails that G0 is measurable and that G0(x, V ) ∼ R(x, ·) for all x ∈ E1 and V ∼ U (0, 1). Let
(X1, V ) ∼ µ1 ⊗U (0, 1), we have, for all A ∈ B(E1) and B ∈ B(E2):

P(X1 ∈ A,G0(X1, V ) ∈ B) =

∫
A

µ1(dx)

∫ 1

0

dv1B(G0(x, v))

=

∫
A

µ1(dx)R(x,B)

= µ(A×B),

hence (X1, G0(X1, V )) ∼ µ. We have almost finished, except that we still need to modify the function
G0 to get a function G taking values in E2. But we know that (X1, G0(X1, V )) ∈ E1 ×E2 a.s., thus if
we fix y ∈ E2 and define G : E1 × (0, 1)→ E2 by G(x, v) = G0(x, v) if G0(x, v) ∈ E2 and G(x, v) = y
otherwise, we have (X1, G(X1, V )) = (X1, G0(X1, V )) a.s., which ends the proof. �
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