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On the relation between number of bones and number of taxa in zooarchaeology

The relationship between the number of specimens found in a sample and the number of taxa represented by them is examined using data from 62 sites that were studied with the same recording and counting method. A critique is made of the various approaches that have been used to evaluate such data. The deficiencies of the "regression approach" and "sampling to redundancy" are discussed. An approach based on a simple random sampling model is suggested as the appropriate one and the effects of possible biases are evaluated. Examples of its application are given and its usefulness is assessed. A more rigorous basis for "sampling to redundancy" is also proposed.

Introduction

How many bones does a zooarchaeologist require in order to establish which animals were originally present? This question may at first appear trivial, but zooarchaeologists often consider the presence or absence of species when making chronological and geographical comparisons. It is therefore important to be aware of the way in which different factors, sample size being one of them, may influence the number of taxa that are recovered and identified in a zooarchaeological assemblage. The aim of this study is to examine the relationship between the sample size and the number of taxa, using as the basis for discussion 143 archaeological samples of animal bones from Europe, the Near East and Cyprus. The arguments inevitably become rather mathematical, so we have assumed a moderate knowledge of mathematics and statistics but have put the equations used and their derivations into appendices.

Variables

Five factors at least are likely to affect the number of taxa that a zooarchaeologist will identify and record from an archaeological site. They are sample size, recovery, identifiability, the age of the site and the degree of isolation of the site:

1) It seems logical that increasing the sample size will tend to raise the number of taxa identified.

2) Excavation may fail to recover smaller items. It has been shown that the bones of small mammals such as rodents and insectivores, as well as fish and small birds, will largely be missed if careful sieving is not undertaken (e.g. [START_REF] Payne | Partial recovery and sampling bias: the results of some sieving experiments[END_REF]. Recovery by hand may itself vary considerably between sites and indeed from one trench to another (Watson, 1972, Table I).

3) The identifiability of a specimen depends not only on the expertise of the zooarchaeologist, but also on the intrinsic impossibility in many cases of distinguishing morphologically similar parts of closely related taxa. With fragmented bone, the smaller the fragments are the more difficult the task becomes. For this reason, many domesticated caprine bones are attributed to an artificial "sheep/goat" taxon and many ass and horse fragments can only be classified as "equid". Identifiability also depends on which species are assumed to be present. For example, in N.W. Africa the artificial taxon "sheep/goat/Ammotragus" would have to be used instead of "sheep/goat", while in southern Africa small bovid identification is extremely complex because of the many species involved.

4) It is reasonable to suppose that sites at which the animals exploited were mainly domestic might show a reduced range of mammalian taxa compared with sites at which all the remains are from hunted animals. To test this, preNeolithic assemblages were compared with Neolithic and post Neolithic ones. 5) Faunas from harsh environments, such as deserts or Arctic regions, obviously tend to be poorer in species, but it is also one of the characteristics of oceanic islands (i.e. those located some distance from the mainland and never connected to it in the past) that they have an impoverished terrestrial fauna (e.g. [START_REF] Sondaar | Insularity and its effect on mammal evolution[END_REF]. Prehistoric sites on such islands should therefore be expected to contain few species of terrestrial mammals. One of the main themes of this paper will thus be the comparison of assemblages from the island of Cyprus with assemblages from the mainland of Europe and the Near East.

Material

Since 1971 one of the authors (SJMD) has studied the medium and large mammal remains from 62 late Pleistocene and Holocene sites in the Near East and Europe, including 2 sites on the island of Cyprus (Appendix 1). Of these sites, 24 have two or more strata, making a total of 143 chronologically and/or spatially separate assemblages. (Sites where only a part of the fauna, such as the ungulates, was studied and sites of a ritual nature are excluded from the present analysis.) Some assemblages are extremely small in terms of the number of bones while others are quite large. They range in size from 5 to 9673 recorded specimens identified to species or nearspecies level. Most were handcollected but some were sieved.

Sites from England, Portugal, Italy and the Near East are referred to as the "mainland" sites, since although Britain is an island its separation from Europe is a recent one in zoogeographical terms and the fauna is not seriously impoverished. On the other hand, Cyprus is geologically speaking an oceanic island and so the levels from the Cypriot sites of Khirokitia and Cape Andreas Kastros will be considered separately.

Methods

Since the aim here is to understand the effect of sample size, only assemblages studied by SJMD, on his own or with colleagues, using the same recording and counting method are considered. Thus the "Number of bones" is the sum of the "Parts of the Skeleton Always Counted" or PoSACs, as described in Davis (1992a;2002, 3335). This method has the advantage of limiting counts to those parts of the skeleton that are relatively easy to identify to species level and that provide useful information such as the age at death and the sex (cf. [START_REF] Watson | The Estimation of the Relative Frequencies of Mammalian Species: Khirokitia 1972[END_REF]. It also minimises the effect of differences in recovery.

In order to reduce the problems associated with recovery and identifiability, the analysis has been restricted to mammals of rabbit size or larger.

The term "taxon" is used rather loosely in the present paper. Sheep and goat are put into the single artificial taxon "sheep/goat" and the equids (horse, ass and Equus hydruntinus) are also lumped together. Thus, even when both sheep and goat, or both ass and horse, could be identified, they have been lumped into the single taxa "sheep/goat" and "equid" respectively.

In the list of assemblages (Appendix 1) it is indicated whether each assemblage is sieved or unsieved and whether it consists of predominantly domesticated (Neolithic and postNeolithic) or predominantly wild animals (preNeolithic). Levels within multiperiod sites are treated independently.

The abbreviations NTAXA and NISP will generally be used for the number of taxa and the number of identified specimens respectively.

Results

Figure 1 is a plot of the number of taxa identified (yaxis) against the number of bones identified to taxon (xaxis) for the 125 archaeological assemblages coming from the "mainland" of Europe and the Near East. It gives the impression of an upper limit of 15 taxa. This is false; the number of taxa found will continue to increase, albeit ever more slowly, as the number of bones increases, although obviously there will be an upper limit eventually since there are only a limited number of taxa available. This is an issue that will be discussed in more detail later on.

The shape of the scatter of points suggests that the general trend of the relationship between the two variables might be better represented if the logarithm of the number of bones were used instead. Figure 2 shows that this is so; it is a plot of the number of taxa identified (yaxis) against the logarithm to base 10 of the number of bones identified to taxon (xaxis) for the same data as in Figure 1.

No obvious difference could be observed between the sieved samples and the unsieved ones, probably because small mammals were excluded from this study, and so they have not been indicated separately in the figure. More surprisingly, no obvious difference was found between the preNeolithic assemblages and the Neolithic and later ones, as can be seen in the figure, where the former are indicated by black filled circles and the latter by grey triangles. The absence of any reduction in the spectrum of taxa in Neolithic and postNeolithic times may reflect a tendency for people to continue hunting, even if on a reduced scale, despite their possession of domesticated animals.

A linear regression line was then fitted to the points in the timehonoured way [START_REF] Grayson | Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas[END_REF][START_REF] Davis | Animal remains from Chalcolithic São Pedro (Redondo, Alentejo): evidence for a crisis in the Mesolithic[END_REF]. The equation of the regression line is y = 3.20x 0.15 and a value of r = 0.77 was obtained for the correlation coefficient. However, when the two Cyprus sites are added to the initial plot of Figure 1 they show a striking divergence from the "mainland" sites as the sample size increases (Figure 3). When the logarithm of the number of bones is used (Figure 4) there again appears to be an approximately linear relationship between the number of taxa and the logarithm of the number of bones, with a correlation coefficient of r = 0.39 and a regression line of y = 0.47x + 2.73, as shown.

At this point serious doubts about the validity of the "regression approach" began to emerge. Initially it was supposed that one could perhaps divide sites into two classes, normal "mainland" sites and sites for which the fauna was impoverished in some way. However, one Cyprus site, Cape Andreas Kastros, was slightly less impoverished than the other one, Khirokitia, and overlapped with the smaller "mainland" assemblages, some of which were themselves desert sites that consequently could also be expected to have an impoverished fauna. It soon became all too evident that the pattern obtained depends on the proportions of different types of sites included in the study and the way in which a site is subdivided into strata.

Another disturbing aspect was that on theoretical grounds any line needs to pass through the point (x = 0, y = 1), because if there is only one bone there can only be one taxon (the logarithm of 1 being 0). Indeed, the following thoughtexperiment seems conclusive. Suppose that the excavation of the Aceramic Neolithic levels at the Cypriot site of Khirokitia had stopped at the base of level C, as it might well have done. The upper levels I, II, III, B and C all have large samples of bones, whereas some of the samples from the lower levels are much smaller. The consequence of this is that the regression line for these five uppermost levels is much steeper (Figure 5) than the line for all the levels together. In fact, it is nearly as steep as the line for the "mainland" sites, at y = 2.72x 5.16. However, if a level with a single bone is now added, the regression line is pulled right round, as shown in Figure 6, and becomes y = 1.04x + 0.80.

Statistical analysis

At this point an evaluation was made of the way in which similar data had been treated by other workers, both in zooarchaeology and in other fields, and the theoretical basis of this kind of sampling was considered.

The question has been extensively considered by zooarchaeologists (see Lyman & Ames 2007 for summaries and bibliography). However, they have often copied methods developed or used by ecologists and palaeontologists without considering their applicability to zooarchaeology or even their mathematical validity.

The textbook on zooarchaeology by Reitz and Wing provides an example of the kind of confusion that has been created. They say that "data for numbers of individuals and species can be plotted on a graph and a linear regression constructed" (Reitz & Wing 2008, 113114), but then show a logarithmic regression line and call it a "rarefaction curve" (Reitz & Wing 2008, Fig. 4.6), which it emphatically is not, as will become clear later on. A rarefaction curve can never have a formula of the form log Y = a + b log X. In error Reitz and Wing put "log Y" in the formula instead of "Y", but a rarefaction curve cannot have a formula of the form Y = a + b log X either.

At the time of writing the most recent synthesis of the topic appears to be the paper by [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF] on "speciesarea curves". Much of it is repeated and discussed at greater length in Lyman's book on quantitative palaeozoology (Lyman 2008, 159167). With the best of intentions, Lyman and Ames set out to clarify the literature, but unfortunately, as a result of their imprecise use of terminology, they only succeed in confusing matters further. To begin with, they group together the various approaches used under the heading "speciesarea curves". However, the review of ways of quantifying biodiversity by [START_REF] Gotelli | Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness[END_REF], quoted by Lyman andAmes (2007, 1986), never uses the expression "speciesarea curve" but discusses species accumulation curves and rarefaction curves. Lyman (2008, 160) says "… graphs with the form of Figure 4.8 are sometimes referred to as accumulation curves. They are more often referred to as 'speciesarea curves ...". However, the fact that two curves have the same form does not mean that they serve the same purpose. While in the past the term "speciesarea curve" may have been used loosely in ecology to include species accumulation curves (Colwell & Coddington, 1994, 105), nowadays a clear distinction is made between speciesarea curves and species accumulation curves [START_REF] Scheiner | A mélange of curves -further dialogue about speciesarea relationships[END_REF][START_REF] Gray | On species accumulation and speciesarea curves[END_REF]. Lyman (2008, 159160) alleges that the relationship between the area examined and NTAXA and the relationship between the number of individuals counted and NTAXA are the same, because a larger area will have more individuals. However, the relationship between the area examined and the number of individuals counted also depends on how the individuals are distributed within the area.

In any case, it is not appropriate to use terms and concepts from ecology in the study of zooarchaeological remains, because the samples have passed through a process of cultural selection and modification that means that ecological concepts no longer apply. Thus ecological terms such as "speciesarea curve", "species accumulation curve", "evenness" and "diversity" should be avoided in zooarchaeology except when the living animals are being referred to.

In this paper we will only consider the problem of the number of taxa in relation to the number of specimens recovered. This is, in any case, all that Lyman and Ames do.

Lyman and Ames distinguish three approaches in the literature: "sampling to redundancy", "rarefaction" and the "regression method". A fourth approach is listed by Orton (2000, 173), who calls it "computer simulation". It is an approach proposed by [START_REF] Kintigh | Measuring archaeological diversity by comparison with simulated assemblages[END_REF] for archaeological finds in general, so that it deals with the number of types of artefact rather than the number of taxa.

Lyman and Ames stress that the aims of the first three differ: "sampling to redundancy" is to be used to determine whether the total sample collected is representative and thus whether further collection is necessary; regression analysis allows the detection of possible samplesize effects on the number of taxa when independent samples of different sizes are compared; rarefaction allows the comparison of the number of taxa across assemblages of different sizes [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF], 1988;Lyman 2008, 167). At the outset the second of these aims is futile, because sample size is bound to affect the number of taxa unless all the taxa are equally common. Lyman and Ames treat the fourth approach as a type of rarefaction (Lyman & Ames 2007, 162), which it emphatically is not; although the procedure superficially resembles rarefaction, Kintigh never mentions the word and does not use the rarefaction equations [START_REF] Hurlbert | The Nonconcept of Species Diversity: a Critique and Alternative Parameters[END_REF]), but creates his simulated samples by randomly selecting them with a computer from an infinite population. These approaches will now be considered in turn. It should be stressed at the beginning that there are two kinds of comparison between the number of bones and the number of taxa, although the difference is one of degree rather than a fundamental difference. At one extreme the comparison is made for different levels or samples from a single site. At the other extreme it is made for unrelated sites, which may not even share the same principal taxa, although in a broad sense they may still be considered to be samples from a single population such as the European or Near Eastern fauna as a whole. The data used in Figures 1 to 4 are in fact a mixture spanning these two extremes. There are also two ways of treating the data. One is to consider the number of taxa in individual samples. The other is to add the samples together cumulatively and consider NTAXA for each successive sum of samples. "Sampling to redundancy" is essentially a cumulative approach, while the other three approaches are based on individual samples.

"Sampling to Redundancy": "Sampling to redundancy" involves adding new samples or increasing the number of specimens identified until additional material appears not to contribute any new taxa and is therefore considered "redundant". It appears to be the standard approach (if not the only one) in many other fields, such as seed or charcoal analysis.

It is subjective, since it depends on the zooarchaeologist deciding what "redundancy" means in any given case. The implication that all taxa have been found is false, since rarer and rarer taxa could continue to be added for a very long time as new samples are added. What the approach does do is choose a point at which the common and the moderately common taxa have all been found. In economic or ecological terms this may make good sense, but the cutoff point is still chosen subjectively and without a clear definition. It would be preferable to make an explicit choice about the degree of rarity to be included.

There are two possible ways of treating the data. One is to plot individual samples and observe at what sample size a larger sample no longer produces additional taxa. The usual way, however, is to create a cumulative graph by adding successive layers together and plotting the new total NISP and the new total NTAXA each time.

When applied to a single site or layer, the cumulative approach can be misleading, since the way in which the shape of the curve changes, and therefore the judgement as to whether it has "levelled off" or not, depends on the order in which the samples or specimens are added, as Lyman and Ames indeed point out [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF][START_REF] Davis | The Archaeology of Animals[END_REF]Lyman 2008: 146147). However, Lyman's attempt to justify the order in which the samples are added at the Meier site by saying that it is chronological and thus an inherent order (Lyman 2008, 147) ignores the fact that whether or not a rare taxon is found in a given level is not only a question of whether that taxon was brought to the site at that period but also a question of chance.

The example given for the Meier site is a cumulative graph of the material recovered in each of 6 seasons of excavation (Lyman & Ames 2007, Fig. 1;Lyman 2008, Fig. 4.2) and shows that no new taxa are added in the last two seasons, on the basis of which it is claimed that these last two samples are "redundant". However, if the specimen of the porcupine Erethizon (one of 4 taxa at the site represented by only a single specimen) had been found in 1991 instead of 1989 the shape of the graph would be quite different and it would not be possible to assert that "redundancy" had been reached (Figures 7 &8).

When Lyman and Ames say they conclude they have sampled to redundancy, they add in parentheses: "at least with respect to nonrare taxa". This qualification is allimportant. However, the question remains: how rare is "rare"?

In any case, instead of plotting this type of curve that flattens off as the number of specimens increases, it would be better to use a semilogarithmic plot, which is generally found to approximate to a straight line (Figure 9). If this new curve begins to flatten out, then there is some ground for thinking that "redundancy" is perhaps being reached, as we shall see further on when considering the theoretical basis for sampling. In the case of Figure 9, however, there is no reason to suppose that the apparent flattening is caused by anything more than random variation (in NTAXA), as we shall demonstrate later in this paper. Were a sample of 20000 bones still to produce only 25 taxa, then one might begin to believe that there was a real flattening.

The cumulative approach is the effective way of sampling to redundancy, but it is sometimes informative to consider the samples separately. At Khirokitia, for instance, the cumulative results are highly dependent on the order in which the samples are added together and thus misleading (see Table 2). If one begins with the smallest sample and adds the samples in order of size, a plateau is soon reached at an NTAXA of 3 and it would be concluded that redundancy had been reached. On the other hand, if one begins with the largest sample, redundancy is reached at once, with an NTAXA of 6. If the samples are added in stratigraphic order, redundancy with an NTAXA of 6 is reached with the second sample, which happens to be the largest one. In the case of Khirokitia, therefore, plotting the samples individually is a more informative approach.

Clearly, plotting the samples individually is more suited to single sites or layers than to data of the kind shown in Figure 1, which could be used to argue that there is no point in examining more than about 5000 bones (i.e. PoSACs) from a European or Near Eastern site because there are no more than 15 taxa of larger mammals to be found. This is false for two reasons. First of all, Figure 2 shows that when a semilogarithmic plot is used the trend is a linear or even a steepening one and there is no reason to suppose that if 100,000 bones were examined 17 or 18 taxa might not be found. More importantly, the taxa being counted are not the same at different sites, so that a cumulative plot is needed in order to show the true relationship. However, the exercise would not be very useful for the whole of Europe and the Near East over the entire timespan from the Palaeolithic to recent times, although it might be interesting for a more limited geographical area and timeperiod.

Related to "sampling to redundancy" are a series of techniques used in ecology to predict the total number of taxa in the population from the trend of the curve (e.g. [START_REF] Soberón | The Use of Species Accumulation Functions for the Prediction of Species Richness[END_REF][START_REF] Colwell | Estimating terrestrial biodiversity through extrapolation[END_REF][START_REF] Jamniczky | Vertebrate microsite sampling: How much is enough?[END_REF]). These techniques are not relevant here since they assume some kind of continuous progression of taxa of everincreasing rareness. This may exist for living organisms when there are very large numbers of taxa, but the mammalian taxa recovered from archaeological sites have passed through a cultural filter, which means that taxa that are equally rare in a natural environment do not necessarily have an equal chance of occurring in an archaeological site.

Rarefaction:

Rarefaction [START_REF] Sanders | Marine benthic diversity: a comparative study[END_REF][START_REF] Hurlbert | The Nonconcept of Species Diversity: a Critique and Alternative Parameters[END_REF][START_REF] Tipper | Rarefaction and rarefiction the use and abuse of a method in paleoecology[END_REF] is not useful for the study of the data presented here, but will be considered briefly because the mathematical formula used is of more general application and provides the basis for the new approach described further on. Rarefaction, in the correct sense of the word, as defined by Sanders, is a method for reducing a set of samples of different sizes mathematically to a common sample size (the size of the smallest sample), so that the numbers of taxa recovered may be compared directly. For example, if one sample consists of 5000 specimens and contains 20 taxa, while another sample consists of 2000 specimens and has 15 taxa, rarefaction calculates the number of taxa that would be expected in the first sample if it had only 2000 specimens. The relative abundances in taxa of the two samples can then be compared. Alternatively a set of samples can be reduced to a whole series of common sample sizes so that "rarefaction curves" may be plotted. Rarefaction is an approach that can be helpful when there are large numbers of taxa, but most zooarchaeological samples do not have enough taxa for it to be useful.

The "Regression Method":

The "regression method", as the approach pioneered by [START_REF] Grayson | Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas[END_REF] has come to be called, is simply logically and mathematically unsound. It is based on the observation that in many cases there is an apparent linear relationship between the number of taxa found (or some function of it) and the size of the sample (or some function of it), as indeed is true for the two groups initially distinguished in the present study. However, the fact that a set of points on a graph lie approximately in a straight line does not mean that there is a linear relationship between the variables. In any case, a mathematical function may approximate to a straight line in part of its range but deviate sharply from it in other places. This, as will be shown, is how the most appropriate theoretical function in this case behaves. Grayson (1984, 134) suggested that most archaeological assemblages were well described by equations of the form Y = aX b or Y = a + b log X , where Y is the number of taxa and X is the number of identified specimens. In other words, since the first equation can also be expressed as log Y = log a + b log X, plotting either the number of taxa or the logarithm of the number of taxa against the logarithm of the number of identified specimens produces an approximately linear relationship.

Grayson plotted these kinds of graphs for a number of assemblages and calculated correlation coefficients and the probabilities corresponding to them (Grayson 1984, Figs. 5.6 5.13, Fig. 5.15).

In practice it does not make a great deal of difference whether the logarithm of the number of taxa is taken or not, since the number of taxa only spans an order of magnitude or so; it is more important to take the logarithm of the number of specimens, which typically spans two or three orders of magnitude.

It seems as though the excellent early results Grayson obtained from fitting regression lines to assemblages such as those from Gatecliff, Hidden Cave, Meadowcroft and the Fremont sites (Grayson, 1984, 138150) misled him eventually into thinking that there was some kind of theoretical basis for a linear relationship between the number of taxa and the sample size. There is not.

Fitting straight lines to a series of points on a plot of the number of taxa against the logarithm of the number of specimens and calculating a correlation coefficient is perfectly valid. As Hoel (1971, 167) says, "r is merely a number". To which one might add "and the regression line is merely a line". As descriptions of the sample being studied they are perfectly valid. The problems begin when attempts are made to deduce things about the population that the sample comes from, by calculating significance levels, confidence limits and so on.

To begin with, there is a widespread misunderstanding, not only in zooarchaeology but in many other fields, about the nature of the significance level habitually given with the correlation coefficient.

For instance, in Figure 3 of [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF], the correlation coefficient is given as r = 0.94 and a probability level of p < 0.01 is associated with it. Lyman and Ames say "the bestfit regression line is statistically significant (p < 0.01)", while in his book Lyman (2008, 165), referring to almost the same data, says that the "correlation and the regression line are statistically significant (p < 0.01)". It is clear that they have not understood what the significance test is being applied to. What is in fact being tested is not the value of the correlation coefficient but whether there is any correlation at all; the probability level habitually given is the probability that the population from which the sample has been drawn has a correlation coefficient of zero. That this is what has been calculated is evident from the result obtained when such a calculation is made, which is indeed p < 0.01.

Thus the correlation in the population might be only p = 0.10 and the sample could still be described as having r = 0.94 with p < 0.01 (the convention is that the sample correlation coefficient is written as r and the population correlation coefficient as p). The impression of great precision that such figures give to the uninitiated is thus entirely spurious.

A more serious problem is that the sample correlation coefficient can only provide a reliable estimate of the population correlation coefficent if the two variables have a joint normal distribution. Indeed, the correlation coefficient cannot be used as a measure of the relationship between the variables if this requirement is not met (e.g. Hoel 1971, 168169). The number of taxa found and the logarithm of the number of specimens certainly do not have a joint normal distribution and thus the correlation coefficient cannot be relied upon as a measure of the relationship between NTAXA and log (NISP). In any case, even if the conditions were met, the 95% confidence limits for the correlation coefficient of r = 0.94 in Figure 3 of [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF] would be r = 0.50 and r = 0.99 [START_REF] Chang | Exact Test Critical Values for Correlation Testing with Application[END_REF].

To be fair to Lyman and Ames, their figure was constructed merely to illustrate the "regression method". They state that the purpose of the regression method is to detect when samplesize effects may be present, and so the figure does not claim to do more than show a possible dependence of NTAXA on sample size. However, it is obvious that sample size is going to affect the number of taxa recovered unless all the taxa are equally common and, as we will show, there are better ways of investigating the relationship.

In the case of the present Figures 2 and4, the regression lines drawn indicate the general trend of the scatters of points, but nothing more can be done with them, since the points are not a random sample from a defined population but a haphazard mixture of independent samples from different sites or levels.

Finally, an important consideration is that the leastsquares method by which the regression line is calculated gives equal weight to each point. This means that a few points for low values in the bottom lefthand corner of the plot will pull the regression line down into this corner and produce a high correlation whatever the relationship between the points for higher values may be, as has been illustrated in Figure 6. It is obviously absurd that in Figure 2 the smallest sample, consisting of 5 bones, should be given the same weight as the 9673 bones from the largest sample, but in the calculation of the regression line and correlation coefficient it is so. This is crucial in plots of NTAXA against log (NISP), in which samples with low values of log (NISP) are in fact of very little importance for the overall pattern.

The Population

At this point it should be made clear what is meant by "population". The mathematical approach described below assumes (as does rarefaction) that the sample is a random sample of the population. But what population? [START_REF] Davis | The Archaeology of Animals[END_REF], Fig 1.1, based on Meadow 1980and Payne 1985, fig. 1) shows the factors affecting the composition of a sample of bones from an archaeological site (see also [START_REF] Klein | The Analysis of Animal Bones from Archeological Sites[END_REF]CruzUribe 1984, 3 4 and[START_REF] Gilbert | Reassessing zooarchaeological quantification[END_REF]Singer 1982, 23 24). The population of which one has a random sample clearly cannot be the animals living round the site, nor the dead animals brought to the site, nor the bones buried, nor the bones preserved, nor the bones present in the excavation area. It has to be the bones that would have been recovered if the whole site or the whole layer had been dug, rather than only part of it, using the same excavation techniques. As Grayson says (1984, 116), " ... the faunal assemblage recovered is a sample of the entire set of bones that could have been recovered".

The relationship between this population and the bones present in the excavation area (or the individuals they represent) is a matter for debate, but there is no reason why this debate should not take place at the population level rather than the sample level.

The only assumption made in the mathematical model for sampling is that each item has an equal chance of being chosen, in other words that each piece of bone has an equal chance of being recovered in the excavation.

Thus the only problem from the statistical point of view is the possibility of the nonindependence of the data; if bones are grouped, for example in a complete skeleton, then the same individual is being counted more than once, but in addition the fact that one bone in a group is recovered may make it more likely that other bones in that group will be recovered too. However, any inhomogeneity in the site always acts in the same direction; it means that the effective sample size is lower than the actual sample size. Any estimate of the sample size needed in order to recover a given taxon will thus always be a minimum estimate. So the answer to the question "How many bones ...?" will always be of the form: "At least ...". The way to avoid this kind of problem is to count a single element (e.g. left astragali), but this requires much larger samples of bone, which may not be available. Grayson (1984, 152) rejected rarefaction on the basis that it made the "assumption that the units being counted are true individuals" and that "nothing comparable to this exists for archaeological vertebrate fauna". However, he then went on to ignore the reality that every other method used in zooarchaeology makes the same assumption that the entities being counted are independent, or rather, recognises that they cannot necessarily be assumed to be independent and then turns a blind eye to the question. Lyman (2008, 162, 190) uncritically repeats Grayson's objection to rarefaction, evidently not understanding the mathematical basis any more than Grayson did. Earlier he discusses the problem of nonindependence at length, after concluding that it is the only really serious problem with quantification using NISP (Lyman 2008, 37). However he comes to no definite conclusion. Like Grayson, he fails to realise that rarefaction no more deserves to be rejected than any other approach used in zooarchaeology. It is curious that he himself had previously used binomial probabilities in making an assessment of how large a sample might be needed in order to detect the presence of a species in an area [START_REF] Lyman | Determining When Rare (Zoo)Archaeological Phenomena Are Truly Absent[END_REF].

Thus a failure to cope with nonindependence cannot be considered to be a defect of the approach to be proposed below. It is a serious problem for any other approach as well. The approach proposed actually makes fewer assumptions than many other approaches; it assumes that the sampling is random and that each specimen has an equal chance of being chosen, and nothing more.

Let it be supposed that the specimens are not independent. Let it be supposed that if one specimen is recovered a second specimen in the earth near it becomes more likely to be recovered. What is the effect going to be?

First of all, will the recovery of a specimen from one taxon affect the chance of recovering a specimen from a different taxon? Possibly, but it is hard to envisage circumstances in which it would be so. The primary concern is thus with nonindependence within a given taxon.

In what proportion of cases can one postulate a possible influence? Obviously, nobody is going to suggest including whole skeletons in the NISP count, or even a whole limb. This is a question of common sense, and most zooarchaeologists would automatically exclude such finds from such a count and consider them separately.

To be on the safe side, let it be decided that in such cases the two specimens should be treated as if they were a single specimen for the purposes of the calculations. What is the likely effect?

Clearly, if a skeletal element is broken into several fragments, the fragments cannot be considered to be independent of one another, quite apart from the fact that if one fragment is recovered the other fragments are more likely to be recovered as well. It is for this reason that the authors have always used PoSACs or "diagnostic zones" for NISP counts. The PoSACs are, in general, defined so that only one limited part of each skeletal element is counted; similarly, when using diagnostic zones, only one zone should be used for each element when making this kind of count [START_REF] Watson | The Estimation of the Relative Frequencies of Mammalian Species: Khirokitia 1972[END_REF]. Such counts might be termed "restricted NISP" counts.

Thus in the present analyses the problem of interdependence has already been minimised. It remains to be estimated how far the recovery of a specimen from one skeletal element might influence the recovery of a specimen from a different skeletal element. Clearly there will be some influence. Even if obvious whole limbs are excluded, it is not unusual for foot bones to be found in groups even though it cannot be shown for certain that they are from the same limb.

The challenge is thus to estimate how big the effect is. Clearly at many sites the bones are scattered about so that the majority of specimens are unlikely to be affected by the recovery of another specimen. We suspect that at most sites the proportion of specimens affected would not exceed 10%. However, even if it is 20% or 50%, once the effect is quantified its consequences can be evaluated.

In the present case, the variables used are the number of taxa recovered and the total number of specimens recovered for all the taxa together. The number of taxa recovered is very unlikely to be affected by nonindependence, since it will only be affected by the presence or absence of the rarest taxa, represented by only one or two specimens; if, as discussed above, the finding of one taxon is unlikely to affect the finding of a different taxon, then the effect is going to be negligible.

The second variable, the number of specimens, will be dominated by the commonest taxa, so non independence in the other taxa is in practice irrelevant. Since the variable is on a logarithmic scale, a reduction of 10% to correct for nonindependence will produce a shift leftwards on the graphs of the points for the samples that will be hardly noticeable at the scale at which they are plotted (see also Note 1).

Since the procedure is a "what if" one, any set of hypothetical biases can be introduced into the model and the effect observed. The only kind of effect of nonindependence that would seriously threaten its usefulness would be if, in a comparison between sites, some sites had a 20% bias or more and other sites had none or little; in a comparison between levels at the same site such a phenomenon seems highly improbable.

Finally, it is important to distinguish between the distribution of the taxa within a living population and the distribution of the taxa in a sample taken from that population. The distribution of taxa in an archaeological population will differ from the distribution of the living taxa in the natural environment, since there will typically be a concentration on a few economic staples, accompanied by a few taxa of secondary importance and finally some rare taxa that occur accidentally or casually.

Whatever the distribution of the taxa in the population, the distribution of a sample drawn at random, without replacement, is hypergeometric; this is the appropriate model for the kind of sampling we are concerned with.

A New Approach [START_REF] Hurlbert | The Nonconcept of Species Diversity: a Critique and Alternative Parameters[END_REF] uses the hypergeometric distribution as the basis of his equation for the expected number of taxa in the calculation of rarefaction. The "expected number" is the mean of all the values that would be obtained in a long series of trials, i.e. repeated sampling. The binomial equivalent of this equation is given by [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF]. The actual equations are shown in Appendix 2, together with a discussion of their derivation.

However, instead of using Hurlbert's equation on a sample and performing a rarefaction, the equation can be applied to a hypothetical population and used to show whether a given sample or samples could reasonably have been derived from such a population.

The actual identities of the taxa are not relevant to the calculation; what is important is the structure of the population. The method shows how many taxa can be expected; it does not show which taxa they are (although in many cases it is obvious), nor does it say anything about their relative frequencies.

We shall use the term "population structure" as a name for the pattern of the frequencies of taxa in the population, as opposed to the frequencies of specific taxa; the term "evenness" used in ecology or palaeontology (Tipper 1979, 428) applies to the structure of natural populations and is not appropriate for the remains from an archaeological site.

It should be stressed that one is not trying to estimate the proportions of the taxa in the population. What one is saying is "if the proportions were suchandsuch, would the various samples be compatible with that, and what other proportions or additional rare taxa would also be compatible?". It is a "what if" approach. [START_REF] Kintigh | Measuring archaeological diversity by comparison with simulated assemblages[END_REF] proposed using a computer to simulate simple random sampling, in this case with replacement, apparently being unaware of the formula for the expected number of species given in [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF]. In the examples he gave, the population used was the aggregate of all the data considered in each analysis; in other words, the sum of all the categories in the various samples served as the basis for the frequency distribution of the categories in a population that was effectively infinite, since sampling was with replacement. The materials studied were boneengravings and petroglyphs. He did suggest that the frequency distribution might be generated in other ways, either derived theoretically or based on similar samples. Kintigh's approach was subsequently applied to faunal assemblages by [START_REF] Mccartney | Simulation models and the interpretation of archaeological diversity[END_REF].

Essentially, therefore, Kintigh's approach is the same as the one proposed here; the differences are that we generate the curve mathematically, that the sampling can also be without replacement and above all that, although the sum of the samples is indeed a good starting point, we propose to compare the results produced when various different population structures are tried.

The objections of [START_REF] Rhode | Measurement of archaeological diversity and the samplesize effect[END_REF] and [START_REF] Ringrose | Diversity indices and archaeology[END_REF] to generating the population from the sum of the samples are thus irrelevant except in so far as they concern the actual identities of the taxa, which are not of concern here, although the principal drawback to using the NTAXA NISP relationship as a way of comparing assemblages is indeed that it discards all information about the identity of the taxa involved.

Baxter ( 2001) follows Kintigh's approach but generates the curve using Hurlbert's equation, sampling without replacement, just as is done here. However, he goes no further than using the sum of the samples to generate the population. He goes on to discuss resampling methods that attempt to estimate properties of the population and are not relevant to the present discussion.

Curiously enough, Lyman (2008, 191, Fig. 5.8) shows what he calls a rarefaction analysis based on the sum of 18 samples and wonders why four of the samples should lie outside the limits, but then fails to make the final conceptual leap that would bring him to the approach explained here.

Thus the approach followed here, although envisaged by Kintigh, has not been seriously attempted, and certainly not in zooarchaeology.

The hypothetical population chosen initially has the frequencies of the taxa in a multiple of the frequencies in the sample, or, in the case of a number of samples that could be considered to have possibly been drawn from the same population, a multiple of the sum of the frequencies in the various samples. This is because the population that is most likely is the one in which the taxa are present in the same proportions as in the sample, i.e. the sample proportion remains an unbiassed estimator of the population proportion (Kendall & Stuart 1977, 238). Subsequently the frequencies of the taxa in the population can be varied to see what the effect is.

The multiple chosen should ideally reflect the proportion of the population (i.e. site or level) that the sample is judged to represent. However, if the population can be assumed to be at least 10 times as big as the sample it does not matter what the proportion is, so for the purposes of illustrating the method we have used a multiple of 10, which means that the binomial version of the equation for the expected number of taxa can be used instead of the hypergeometric one. Tipper (1979, 428) implies that the binomial approximation can be considered valid if the population size is 10 times the sample size or more and this is what has been found in practice when simulations using the two distributions have been compared; whether the samples are removed from the population or replaced back into it makes little difference to the result obtained. However, one is sometimes interested in precisely those situations in which the binomial distribution ceases to be a good approximation, i.e. when the sample size approaches the population size, as it may easily do if a large proportion of a site is excavated.

It is not suggested that the differences in NTAXA between two samples are due only to the difference in sample size, merely that they could be, that there is no need to look for another explanation. Of course there could be another explanation, either wholly or in part, but there is no way of knowing. What the approach does show is when differences in NTAXA are too large to be due merely to the difference in sample size.

However, the calculation of confidence intervals for the expected number of taxa is somewhat problematic. [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF] give formulae for the variance for both sampling without replacement and sampling with replacement (see also [START_REF] Tipper | Rarefaction and rarefiction the use and abuse of a method in paleoecology[END_REF]. [START_REF] Smith | Sampling Properties of a Family of Diversity Measures[END_REF] also give equations for the variance and add cryptically that approximate confidence intervals can be found from it. Baxter (2001, 719) similarly says that the "formula for E(s m ) and var(s m ) can be used to derive confidence limits for any chosen value of m", but does not explain how. The instructions for Holland's Analytic Rarefaction program [START_REF] Holland | [END_REF] state " ... 95% confidence limits are calculated as E +/ 1.96 * sqrt (Var) ...", which is presumably why Lyman (2008, 166) refers to the lines in his "rarefaction curve" of the Meier site as 95% confidence limits [START_REF] Lyman | On the use of speciesarea curves to detect the effects of sample size[END_REF], 1988, Fig. 2;Lyman 2008, 166, Fig. 4.10). However, there appears to be no reason to suppose that the distribution is a normal one and thus no reason to suppose that the 95% confidence limits are at 1.96 standard deviations.

In any case, the number of taxa is a discrete variable, not a continuous one, and can only be a whole number, so that the confidence limit would have to be at the value of NTAXA that lies within the line and nearest to it. This in practice means that most of the time it is not of great importance whether the lines at 1.96 standard deviations represent 95% confidence limits or 88% ones or 97% ones. If there are only three or four values that are at all likely for NTAXA, the concept of precise confidence limits becomes somewhat irrelevant.

However, it is possible to calculate the exact probabilities of getting different values of NTAXA by using the multivariate hypergeometric distribution (see Appendix 3). When this is done with the Cape Andreas Kastros samples (Tables 3 and5) it is seen that the confidence interval represented by 2 standard deviations can be as low as 80%. Similarly, Tables 4 and6 show the proportions of the different values for NTAXA falling within 2 standard deviations for the Aceramic levels of Khirokitia. That these figures are correct is confirmed by calculating the standard deviation for the exact values, which gives the same results as the formula in [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF].

As a guide, therefore, a line has been drawn at 2 standard deviations on either side of the curve and at the same time the range of values of NTAXA that includes at least 95% of the probabilities is indicated by rectangular boxes.

As indicated by Figures 1 and2, a semilogarithmic graph is the most convenient way of representing the relationship between the number of taxa and the number of specimens, so we have plotted the number of taxa (the expected number of taxa in the case of the hypothetical curve and the actual number of taxa in the case of the sample points) against the logarithm of the number of specimens (the postulated number in the case of the hypothetical curve and the actual number of specimens in the case of the sample points). It should be stressed that the curve is in fact a series of points, since the number of specimens can only be a whole number. That is why the curve appears as a dotted line when the number of specimens is below about 20.

The shape of the curve depends on the balance between common and rare taxa in the population. If the taxa are all equally common, then the curve goes up steeply and flattens out abruptly. At the other extreme, if there is only one common taxon and the rest are very rare, the curve will be flat to start with and only begin to steepen when the sample size is very large. In the area between these extremes the path followed by the curve can vary greatly and it may steepen and flatten more than once. It stops when the population size is reached, of course, since the sample cannot be bigger than the population.

The Aceramic Neolithic of Cyprus

There are Aceramic Neolithic samples from two sites in Cyprus, namely the samples from Cape Andreas Kastros that first cast doubt on the regression approach and the samples from the Aceramic levels of Khirokitia. Since the fauna of Cyprus is an impoverished one it would not be surprising to find that the samples from each site were drawn from similar populations. Tables 1 and2 show the PoSAC counts for the various levels at the two sites and the totals used in the simulations.

Figure 10 shows the curve for the expected number of taxa at Cape Andreas Kastros when the population is set at ten times the sum of the PoSAC counts for the taxa in the five samples. It can be seen that Layer II does not fit well with the curve, lying outside the 2 standard deviation interval. It is unusual that one of the smallest samples should have more taxa than the largest samples, but the chance is in fact quite high. Calculation of the exact probabilities shows that five taxa can be expected 9% of the time in a sample of 85 (Table 5).

Although obviously nothing can be concluded from a single bone, the presence of Canis in one of the smallest samples may be a hint that Canis is commoner at the site than would appear. It would be difficult to arrive at this idea in any other way, which suggests that the present approach may have a role to play in spite of the limitation that it does not take the identities of the taxa into account.

The Aceramic Neolithic of Khirokitia can be analysed in the same way. Once again, the population used initially is ten times the sum of the taxa in the 12 samples. The result is shown in Figure 11. Once again the fit is surprisingly good, in spite of the unpromising shape of the cluster of points. All the points fall within 2 standard deviations and 5 out of 12 are very close to the curve. The unpromising flat "tail" of points is seen to correspond to a plateau in the curve.

At this point it is instructive to consider how the curve is made up. As an inspection of Hurlbert's equation shows, it is in fact nothing more than the sum of individual curves for each taxon. Figure 12 shows the breakdown of the Khirokitia curve of Figure 11 into its component parts. The curve for each taxon depends on the frequency of that taxon in the population. Each frequency has a fixed curve, so that if the frequencies are known (or decided upon) then the whole composite curve can be predicted. The curve of a very common taxon rises immediately and levels off very soon; the Ovis/Capra at Khirokitia, constituting 60% of the total sample and therefore 60% of the hypothetical population in the simulation, is virtually certain (99%) to be found even in a sample as small as 5; on the other hand Canis, constituting only one bone in the total sample of 24230 and thus 0.004% of the hypothetical population, is virtually certain not to be found unless the sample is bigger than 200. Even between the commonest of the rare taxa (Vulpes) and the rarest of the common taxa (Sus) there is a gap, roughly between sample sizes of 30 and 70, where Vulpes is very unlikely to be found and Sus is almost certain to be found. This dichotomy of 3 common taxa and 3 rare taxa explains the plateau on the composite curve and why all the smaller samples from Khirokitia have only 3 taxa (but never fewer than 3), and it explains why the standard deviation narrows so dramatically when the sample size is around 30. The smallest sample from Khirokitia has 3 taxa because it could hardly have anything else. Table 6 shows the exact probabilities.

Figure 13 shows the curve for Khirokitia with the Cape Andreas Kastros levels added. Although Levels V and VI fit well, Levels II, III and IV lie outside the 2 standard deviation band. The standard deviation curves happen to be a poor indicator at this point, no doubt as a consequence of the dramatic narrowing of the bands in this region, but even so the probabilities of 4 taxa occurring in samples as small as those from Levels III and IV are only 8% and 6% respectively (Table 7), while Level II is extremely unlikely to have come from the same population, since the probability of 5 taxa occurring in a sample of 85 is less than 1 in 1000. If an attempt is made to find a curve that fits better, by increasing the proportion of the fourth commonest taxon (in fact Vulpes) in the population used for the simulation, it is found that Levels B and C at Khirokitia are soon pushed out of the 2 standard deviation band on the other side. The conclusion must be that Vulpes really is commoner in the lower levels of Cape Andreas Kastros than at Aceramic Khirokitia, in spite of the small number of specimens recovered.

So how common could a taxon be in the Aceramic Neolithic and still not be found in the samples recovered from the excavations?

Figure 14 and Table 8 show the consequences of adding 8 taxa as rare as Canis. It can be seen that although the samples still all fall within or close to the 2 standard deviation band, the larger samples all fall on or below the line for the estimated number of taxa rather than being scattered more or less equally on either side of it. Thus one would expect at least 2 or 3 of the additional taxa to be found. However, if only a small number of additional taxa are postulated, it is not so surprising that they should not be found. Figure 15 and Table 9 show the result of adding only 2 more taxa as rare as Canis.

On the other hand, taxa that are considerably rarer than Canis could be present in quite large numbers and still be consistent with the samples recovered so far from the excavations. Figure 16 and Table 10 show this, postulating 8 additional taxa 10 times as rare as Canis.

The part of the curve up to the size of the existing samples is little affected. If there are a number of equally rare taxa, there is a range of sample sizes within which only some of the taxa are likely to be found, but not all of them. It can be seen that although one of the hypothetical new taxa would be expected in a sample of 40000 it would need a sample of over 70000 for two of them to be expected, and over a million bones for all 8 new taxa to be reasonably certain of turning up.

The probability of finding some new taxon depends not only on its rareness but also on how many such taxa there are to be found. As far as the chance of finding something new is concerned, there is no difference between 1 taxon present at 1 in 10,000 of the population and 10 taxa present at 1 in 100,000 of the population.

The Khirokitia samples are thus perfectly consistent with the possible presence of two more taxa as rare as Canis, but not much more than that. Additional taxa would have to be very much rarer for their existence to be consistent with the samples recovered so far from the excavations.

Usefulness and limitations of the simulation approach

The simulation approach used above is a quick and easy way of seeing what might be possible, but it does not take the actual identities of the taxa into account and can thus be misleading. It does not show that two samples are compatible with having come from the same population, only that they could be; what it does show is whether they are incompatible.

The approach does not detect, for example, the important differences between the upper and lower levels at Cape Andreas Kastros or between the uppermost levels at Khirokitia and the rest, caused principally by changes in the relative importance of Ovis/Capra and Dama.

An advantage of the approach is that, as long as all the taxa present are recorded, it is relatively insensitive to the way in which the number of identified specimens is evaluated and thus to any biases that may be present.

In general, however, it is preferable to work with the actual frequencies of the various taxa involved and to use statistical tests on them directly in order to see whether two samples could have been drawn from the same population, particularly now that exact tests are available that overcome the limitations of the chisquared test (the need for the expected values to be greater than about 5) [START_REF] Requena | A major improvement to the Network Algorithm for Fisher's Exact Test in 2xc Contingency Tables[END_REF].

So How Many Bones Are Required?

In fact, one can go further than this. What really matters is the relationship between the sample size and the individual taxon in the population. It has already been shown that individual curves for each taxon can be plotted. The expected value for a single taxon is in fact the same as the probability of the occurrence of that taxon in the sample. This relationship can be used to provide an answer to the question posed at the beginning: how many bones are required to establish which taxa were originally present?

The problem is that the population is unknown. However, if a fixed probability level for the occurrence of the taxon in the sample is chosen (95% is the customary one, but 99% could be used) and the corresponding population value for each sample size is then calculated, using sampling without replacement, some interesting relationships emerge. For a given sample size, the larger the population becomes, the less difference the increase in the population value makes; it is asymptotic. In other words it approaches more and more closely the result given by sampling with replacement. Therefore, to be sure of having a big enough sample, whatever the population size might be, the value given by sampling with replacement should be used. At the same time, however, as the sample size is increased its relationship to the frequency of the species in the population changes increasingly little and also appears as if it might be asymptotic. In the case of the 95% probability level, if the taxon is present in a proportion of 1 in 10 in the population, the sample size needed is 29; if the proportion is 1 in 100, it is 299; if the proportion is 1 in 1000, it is 2995; if the proportion is 1 in 10000, it is 29956. Generalising, it can be said that for a taxon present in the population in a proportion of 1 in M the sample size needed for there to be a 95% chance of the taxon being found in it is about 3.00 times M. Similarly, for there to be a 99% chance of the taxon occurring in the sample, the sample size has to be about 4.61 times M.

In fact, the sample size needed can be calculated directly using the formula: n = log(1 P) / log(1 -1 / M), where P is the desired probability level (e.g. 0.95 or 0.99) and 1 in M is the proportion of the taxon in the population, as above. This gives the asymptotic value. (See Appendix 4 for the derivation of this formula.) A slightly different version of this formula has been used in archaeological survey work for deciding how many quadrats need to be sampled to find a given type of site (Read 1986, 484;Orton 2000, 216), but it appears that the approach has not been applied to artefact types or bioarchaeological taxa. However, it is curious that Lyman (1995, 407) uses the binomial formula for probability from which the formula above is derived in his attempts to assess whether samples from excavated sites were big enough to detect the presence of mountain goats (Oreamnos) in the Olympic Mountains of Washington; had he rearranged the formula he could have arrived at the equation above.

Thus the initial question can now be rephrased as follows: "if a species is present in the population in a proportion of 1 in M, how big a sample is needed in order for there to be a 95% probability of the species being found in it?". Alternatively the question can be turned round to ask: "if a species is present in the population in a proportion of 1 in M, what is the probability that it will turn up in a sample of a given size?".

"Sampling to redundancy" is now shown up to be the vague concept that it is. "Redundant at what level?" is the question that needs to be asked.

Conclusions

It has been shown that both the "regression method" and "sampling to redundancy" are unsatisfactory, the first because it attempts to force an inappropriate theoretical model on to the data, the second because "redundancy" is a vague and subjective concept.

It has also been shown that if a clear statement is made about the level of rarity that a taxon may have and still be considered worth while recovering then there is a simple formula for the sample size necessary. "Redundancy" can now be explicitly defined and sampled for.

The initial fitting of regression lines to the data revealed very little. In general, fitting regression lines to this type of data is a futile exercise with no connection to reality and what it aims to do can be better achieved in other ways. In contrast, applying the appropriate theoretical model has led to real insights into why the points in Figures 3 and4 lie where they do.

The method of fitting curves generated from hypothetical populations to the data produces surprisingly good results. It is evident that the deviations from the requirements of randomness and independence of the sample items (i.e. the bone fragments) are not big enough to seriously affect the outcome.

As far as the Cyprus samples are concerned, the analysis has confirmed the initial suspicion that the low numbers of taxa recovered relative to the "mainland" sites were the consequence of an impoverished fauna and has revealed the processes involved. The points for the "mainland" assemblages in Figure 2 are independent of one another, except in as far as they constitute groups of levels from the same site that may well be drawn from the same population. They cluster in a linear fashion because, not surprisingly, the composition of the sites in terms of common and rare taxa is similar, irrespective of what those taxa actually are. It is usual for an assemblage to be dominated by between 2 and 4 taxa; it is not usual for all the taxa in an assemblage to be equally common. The less common taxa, too, tend to be distributed in a broadly similar way, with a number of moderately frequent ones and a number of rare ones. The Cyprus assemblages differ from this in that the moderately frequent taxa are absent or only one or two in number and the number of rare taxa is also very small.

Finally, the number of taxa recovered, although useful in ecological studies where large numbers of taxa are involved, is of course a very crude measure as far as zooarchaeology is concerned. It is useful for picking out sites that differ markedly from the average in their species structure, such as Khirokitia. It is not, however, the best way of comparing samples from different sites or layers since it discards most of the information. It does not specify the identities of the taxa, or in what proportions they occur, or even whether the same set of taxa is involved in each case. It is almost always preferable to work with the frequencies of the actual taxa recovered.

As has been shown, simulations showing the number of taxa that can be expected in samples of different sizes drawn from populations with different structures can be a quick and useful way of investigating the possibilities, but can be misleading if the actual identities of the taxa are not taken into account. They do not, for example, bring out the change in the commonest taxon at Cape Andreas Kastros from Ovis/Capra to Dama, which in fact makes the upper levels incompatible with the lower ones. Nor do they bring out similar changes at Khirokitia. On the other hand, they have the advantage that they do not depend on the counting method, only on which bones are identified and counted.

Note 1:

It should be noted that there is in fact a known bias in the figures for the number of specimens, but its effect on the graphs is negligible. It stems from the way in which the PoSACs have traditionally been used: artiodactyl metapodial condyles have been given a value of 1/2 in the counts and carnivore and leporid ones a value of 1/5. Since bovid and cervid condyles are mostly found as intact pairs and carnivore and leporid taxa are never amongst the commonest species (except for rabbits, where the small size of the metapodials means that relatively few are recovered), the only taxon seriously affected by this is Sus. At Alcáçova de Santarém, for example, the number of fragments counted would be about 10% higher overall if the metapodial condyles were counted as 1 rather than 1/2. This would increase the NISP for the site as a whole from 8381 to 8456, which means an increase from 3.92 to 3.93 in log (NISP), which is not noticeable at the scale at which the graphs are plotted. Even if all the bovid condyles had been found unpaired as well, a most unlikely occurrence, log (NISP) would only increase to 3.95. What is important is that this does not affect the values of NTAXA. On the other hand, a different method for calculating NISP in which additional skeletal elements were counted would potentially affect NTAXA.
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Figure 1. A plot of the number of mammal taxa, NTAXA, against the number of bones identified to taxon, NISP, for the 125 sites or levels in Europe and the Near East (the "mainland" sites). Only taxa of the size of a rabbit or larger have been included. The NISP used is the PoSAC count as described in Davis (1992[START_REF] Davis | The mammals and birds from the Gruta do Caldeirão, Portugal[END_REF]. Figure 5. The same data as in Figure 2, but now with the addition of only the 5 uppermost Aceramic Neolithic levels from Khirokitia, which are also the 5 largest samples (grey crosses). The regression line for the 5 levels is shown and can be seen to be nearly as steep as the regression line for the "mainland" sites; it is y = 2.72x 5.16 with r = 0.77.

Figure 6. The effect on the regression line of adding a further sample consisting of a single bone to the samples from the 5 uppermost Aceramic Neolithic levels from Khirokitia. The line is now y = 1.04x + 0.80, with r = 0.88. Since the sample size can only be a whole number, the curves are in fact a series of points, as becomes obvious when n is small. The exact values calculated are shown by rectangular boxes that enclose the values the sum of whose probabilities is 95% or more. It needs to be understood that the edge of the boxed area is not a confidence limit, even though it zigzags along following the 2 standard deviation curves. The value of a box corresponds to its centre, not to its outer edge, because the exact values can only be whole numbers, and it can be seen that the values of the samples all fall along the centre lines of the boxes. It can be seen that Level II does not fit well; it lies outside the 2 standard deviation curve, but even so the probability of there being 5 taxa in a sample of 85 is over 9% (see Table 5). Figure 13. The same simulation curve for the Aceramic levels of Khirokitia as in Figure 11, but with the samples from Cape Andreas Kastros added. It can be seen that although Levels V and VI at Cape Andreas Kastros are compatible with the Khirokitia curve, Levels III and IV are less likely to have come from such a population, since the probabilities of their having so many taxa are only 8% and 6% respectively (see Table 7). These probabilities are higher than the standard deviation curves might suggest, but they are a poor indicator at this particular point. Level II is extremely unlikely to have come from the same population, since the chance of there being 5 taxa in a sample of 85 is less than 1 in 1000. (See the caption to Figure 10 for an explanation of how the curves and boxes are to be interpreted.) 2 . Counts of PoSACs for the various taxa from the different levels of Khirokitia, together with the totals generated by rounding up the PoSAC counts before summing them. Level 2 is Ceramic Neolithic; the other levels are Aceramic Neolithic. "Level P" refers to the area on the periphery of the main site known as Potamos, which is not stratigraphically correlated with the main site; it is the sum of the four levels of Potamos, P2, P3, P4 and P5, together with some unstratified material. 
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 2 Figure 2. The same data as in Figure 1, but with the decimal logarithm of the number of bones, log(NISP), used instead of NISP. PreNeolithic sites or levels are shown as black solid circles and Neolithic and postNeolithic ones are shown as grey inverted triangles. The regression line is also shown and is y = 3.20x 0.15, with a correlation coefficient of r = 0.77.

Figure 3 .

 3 Figure 3. The same data as in Figure 1, together with the 18 Neolithic levels from the two sites in Cyprus, Khirokitia and Cape Andreas Kastros, shown as grey circles.

Figure 4 .

 4 Figure 4. The same data as in Figure 2, together with the 18 Neolithic levels from the two sites in Cyprus, shown now as grey crosses. The regression line for the Neolithic levels from Cyprus is shown as well and is y = 0.47x + 2.73, with a correlation coefficient of r = 0.39.

Figure 7 .

 7 Figure 7. A plot of the cumulative number of taxa recovered, NTAXA, against the cumulative number of specimens identified to taxon, NISP, for six seasons of excavation at the Meier site in Oregon. After Lyman 2008, Fig 4.2.

Figure 8 .

 8 Figure 8. A plot of the cumulative number of taxa recovered, NTAXA, against the cumulative number of specimens identified to taxon, NISP, for six seasons of excavation at the Meier site, as in Figure 7 but modified to show how the curve would be if the taxon Erethizon had been found in 1991 instead of in 1989.

Figure 9 .

 9 Figure 9. A plot of the cumulative number of taxa recovered, NTAXA, against the decimal logarithm of the cumulative number of specimens identified to taxon, log(NISP), for six seasons of excavation at the Meier site. The points shown in Figure 7 lie approximately in a straight line now that log(NISP) is used instead of NISP.

Figure 10 .

 10 Figure 10. Simulation curve for the levels of Cape Andreas Kastros. The population used is ten times the sum of the samples, i.e. 2420 Ovis/Capra, 3110 Dama, 2450 Sus, 200 Vulpes and 10 Canis. The black curve is the value of the expected number of taxa, E(S), for a given sample size. The dark grey curves are at 2 standard deviations on either side.Since the sample size can only be a whole number, the curves are in fact a series of points, as becomes obvious when n is small. The exact values calculated are shown by rectangular boxes that enclose the values the sum of whose probabilities is 95% or more. It needs to be understood that the edge of the boxed area is not a confidence limit, even though it zigzags along following the 2 standard deviation curves. The value of a box corresponds to its centre, not to its outer edge, because the exact values can only be whole numbers, and it can be seen that the values of the samples all fall along the centre lines of the boxes. It can be seen that Level II does not fit well; it lies outside the 2 standard deviation curve, but even so the probability of there being 5 taxa in a sample of 85 is over 9% (see Table5).

Figure 11 .

 11 Figure 11. Simulation curve for the Aceramic levels of Khirokitia. The population used is ten times the sum of the samples, i.e. 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis and 10 Canis. (See the caption to Figure 10 for an explanation of how the curves and boxes are to be interpreted.)

Figure 14 .

 14 Figure 14. Simulation curve for the Aceramic levels of Khirokitia with 8 taxa as rare as Canis added to the population, so that it is now 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis, 10 Canis and 10 of each of the 8 new taxa. (See the caption to Figure 10 for an explanation of how the curves and boxes are to be interpreted.)

  

  

  

  

Table 1 .

 1 Counts of PoSACs for the various taxa from the different levels of Cape Andreas Kastros, together with the totals generated by rounding up the PoSAC counts before summing them.

	Tables								
	Level	Ovis/Capra	Dama	Sus	Vulpes	Canis	Total	
	VI V	49 91		116.5 124	80 104.5	1.5 1.5		248 322	
	IV III	15.5 40		22 28.5	27 21	2.5 5.5		68 96	
	II	46		19	11.5	7	1	85	
	Total	242		311	245	20	1	819	
	Level					Taxon				Total
		Ovis/Capra	Dama	Sus	Vulpes	Felis	Bos	Canis
	2	489.5	76		62	2		0.5		631
	I	2404	277.5	229	1.5	1			2914
	II III	6620 1100	938 436.5	852.5 228.5	7 3	2		1	8421 1769
	B C	2299.5 629.5	2160 492		1087 361	2.5				5550 1483
	D E	434 112	585.5 115	365.5 78	0.5				1387 305
	F G	244 245	225.5 129	135.5 61.5	0.5 1				607 437
	H J	44.5 16.5	42 5		16.5 3					104 25
	P	425	564.5	238					1228
	Total	15066	6049		3721	20	3	1	1	24861
	Total less level 2	14576	5973		3659	18	3		1	24230

Table

  

Table 3 .

 3 The proportion of taxa falling within 2 standard deviations of the expected value E(S) for the various levels at Cape Andreas Kastros (in order of increasing sample size) using the same population as for Figure10(i.e. 2420 Ovis/Capra, 3110 Dama, 2450 Sus, 200 Vulpes and 10 Canis).

		IV	II	III	VI	V
	NISP	68	85	96	248	322
	E(S)	3.89	3.98	4.02	4.26	4.33
	2 s.d. above E(S)	4.84	4.86	4.87	5.14	5.26
	2 s.d. below E(S)	2.95	3.09	3.16	3.38	3.39
	NTAXA found	4	5	4	4	4
	Within 2 s.d.	100%	80%	81%	100%	100%

Table 4 .

 4 The proportion of taxa falling within 2 standard deviations of the expected value E(S) for the various Aceramic levels at Khirokitia (in order of increasing sample size) using the same population as for Figure11(i.e. 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis and 10 Canis). The value is in fact just under 6, being 5.995 with 3 decimal places, so the proportion falling within 2 s.d. is only 89% and not 100%.

			Level			
		IV	II	III	VI	V
	NISP	68	85	96	248	322
	E(S)	3.89	3.98	4.02	4.26	4.33
	NTAXA found	4	5	4	4	4
	Probabilities of obtaining:					
	5 taxa	6%	9%	10%	26%	33%
	4 taxa 3 taxa	76% 17%	80% 11%	82% 8%	74%	67%
	2 taxa 1 taxon					

*

Table 5 .

 5 Exact probabilities of obtaining a given number of taxa for Cape Andreas Kastros, as in Figure10, using a population that is ten times bigger than the sample size (i.e. 2420 Ovis/Capra, 3110 Dama, 2450 Sus, 200 Vulpes and 10 Canis).

			Level			
		IV	II	III	VI	V
	NISP	68	85	96	248	322
	E(S)	3.06	3.08	3.09	3.21	3.27
	NTAXA found	4	5	4	4	4
	Probabilities of obtaining:					
	5 taxa				1%	1%
	4 taxa 3 taxa	6% 94%	7% 93%	8% 92%	19% 80%	24% 75%
	2 taxa 1 taxon					

Table 7 .

 7 Exact probabilities of obtaining a given number of taxa for Cape Andreas Kastros, using the population for the Aceramic Neolithic levels of Khirokitia, as in Figure13(i.e. 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis and 10 Canis).

	51

Table 8 .

 8 Exact probabilities of obtaining a given number of taxa for the Aceramic Neolithic levels of Khirokitia, as in Figure14, using the same population as for Figure11but with 8 taxa as rare as Canis added to it (i.e. 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis, 10 Canis and 10 of each of the 8 new taxa).

	Level	J	H	E	G	F	P	D	C	III	I	B	II
	NISP	25	104	305	437	607	1228 1387 1483 1769 2914 5550 8421
	E(S)	3.01	3.10 3.28	3.38	3.51	3.89 3.97 4.01	4.14 4.53 5.10	5.53
	NTAXA recovered	3	3	3	4	4	3	4	3	4	5	4	6
	Probabilities of obtaining:												
	8 taxa												2%
	7 taxa										1%	5%	13%
	6 taxa						2%	2%	2%	4%	9%	24%	35%
	5 taxa			2%	3%	5%	15% 18% 19%	24% 36% 44%	38 %
	4 taxa	2% 10% 24%	32% 40%	54% 55% 55%	55% 48% 26%	12%
	3 taxa	96% 90% 74%	65% 55% 30% 25% 23%	17% 6%		
	2 taxa	2%											
	1 taxon												

Table 9 .

 9 Exact probabilities of obtaining a given number of taxa for the Aceramic Neolithic levels of Khirokitia, as in Figure15, using the same population as for Figure11but with 2 new taxa as rare as Canis added to it (i.e. 145760 Ovis/Capra, 59730 Dama, 36590 Sus, 180 Vulpes, 30 Felis, 10 Canis and 10 of each of the 2 new taxa).

 10. Exact probabilities of obtaining a given number of taxa for the Aceramic Neolithic levels of Khirokitia, as in Figure 16, using a population 10 times bigger than that used for Figure 11 but with 8 taxa ten times as rare as Canis added to it (i.e. 1457600 Ovis/Capra, 597300 Dama, 365900 Sus, 1800 Vulpes, 300 Felis, 100 Canis and 10 of each of the 8 new taxa).

Appendix 1

List of samples studied.

The column headings, with explanatory notes where necessary, are as follows:

1) ID. The sample identification number. Note that some numbers are missing.

2) Site: Period and Level (Locality).

3) Age. "Neol" is Neolithic; "Pre" is preNeolithic; "Post" is postNeolithic.

4) Sieve. "N" means that the sample was recovered by hand; "Y" means that it was sieved.

5) M or I. "M" means a "mainland" site, i.e. one situated on the mainland of Europe or in Britain; "D" means a desert site; "I" means an oceanic island site, i.e. Cyprus. Appendix 2

Simple random sampling makes two assumptions, firstly that each item in the sample has an equal chance of being drawn from the population and secondly that each item is independent of the others.

There are two kinds of sampling, sampling without replacement, in which the population decreases by one as each item is drawn, and sampling with replacement, in which each item drawn is returned to the population before the next item is drawn.

Hurlbert's equation [START_REF] Hurlbert | The Nonconcept of Species Diversity: a Critique and Alternative Parameters[END_REF]) uses sampling without replacement and is given as:

where E(S n ) is the expected number of taxa in a sample n taken from a bigger sample N (in our case a population N) and N i is the frequency of the i th taxon amongst the S taxa in the sample N (or in our case a population N). It is thus the sum of the expected values for the various taxa. The expected value for a single taxon is, however, the same as the probability of the occurrence of that taxon in the sample.

The cunning feature of the equation is that instead of calculating the number of ways in which a sample including a given taxon could be drawn from the population, which is rather complicated, Hurlbert calculates the number of ways in which a sample could be drawn so as not to include the taxon and subtracts the resulting probability from 1.

At this point it may be useful to give an account of the various notations used, since it may be confusing that there are so many ways of describing the same thing.

The fundamental concept involved is the number of ways in which n objects may be drawn from a population of N objects. This is known as the binomial coefficient.

It may be found written as ( N n ) , or as C (N , n) , or as C n N , or as C n N or as C n N .

In speech, at least in North America, it is "N choose n", which is easy to remember and means that the desired expression can be written straight down.

In the factorial notation, it is written N ! ( N-n)! n ! Factorials themselves can be written in various ways.

6! means 6 x 5 x 4 x 3 x 2 x 1, but can also be written as 6.5.4.3.2.1 or as 6.5 ..

. 2.1

Thus N! could be written as N.(N 1) ... 2.1 or, more usually, as N(N 1) ..

. 2.1

The core of Hurlbert's equation can therefore be derived as follows:

First of all, one needs to calculate how many ways there are of drawing a sample that does not include the taxon we are interested in. The number of ways of choosing any kind of sample at all of size n from the whole population N is "N choose n" or ( N n ) . The part of the population that does not include the taxon i is N-N i so the number of ways of choosing a sample of size n from it is "N -N i choose n"

Thus the probability of drawing a sample of size n that does not include the taxon i is

.

The probability of drawing a sample that does include the taxon i is thus 1 -( N-N i n )

( N n )

.

Changing the notation, this becomes 1-

For the purposes of calculation, this can be simplified enormously, and becomes simply:

1-( N-N i )(N-N i -1)...(N-N i -n+ 1) N (N-1)...( N-n+ 1) which is very easy and quick to calculate.

For example, if the total population N is 9, the number of specimens of taxon i in the population, N i , is 5 and the size of the sample drawn, n, is 3, then the probability of finding taxon i in that sample is: P = 1 -(9 -5)(9 -5 -1) . . . (9 -5 -3 + 1) / 9(9 -1)(9 -2) . . . (9 -3 + 1) = 1 -4.3.2 / 9.8.7 = 1 -24 / 504 = 480 / 504 = 0.9524

In the binomial equivalent of this calculation the sampling is with replacement, so that there is no need to subtract 1 from the population as each item is drawn from it. The above expression becomes simply:

The formulae for the variances are:

for the hypergeometric version, and:

for the binomial version [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF][START_REF] Tipper | Rarefaction and rarefiction the use and abuse of a method in paleoecology[END_REF].

Computation of the probabilities and variances in the hypergeometric version can be achieved simply and quickly by: a) Calculating the bottom line only once, since it is the same for all taxa. b) Using logarithms to do the multiplications, since straight multiplication soon produces numbers that are too big for a computer to handle. c) Pre-calculating all the logarithms of factorials that will be needed and storing them in an array, so that the same calculation never has to be made twice.

Appendix 3

The probabilities of obtaining the various different numbers of taxa can be calculated as follows:

First of all a matrix is set up giving all the possible combinations of the presence and absence of taxa. If presence is indicated by a "1" and absence by a "0", then the various combinations that can be drawn from a population that consists of the taxa A, B and C are:

Thus there are 3 ways of obtaining one taxon, 3 ways of obtaining two taxa and one way of obtaining three taxa.

If the probabilities of obtaining the different taxa are P A , P B and P C , then the probability of obtaining a given combination is found by multiplying the probabilities of obtaining the different outcomes in that line. If the a taxon is present, then the probability is the probability of obtaining that taxon; if the taxon is not present, then the probability is the probability of not obtaining that taxon, i.e. 1 P.

Thus, for example:

The probability of obtaining 0 0 1 is (1 P A ) x (1 P B ) x P C The probability of obtaining 0 1 0 is (1 P A ) x P B x (1 P C ) The probability of obtaining 1 0 0 is P A x (1 P B ) x (1 P C )

The probability of obtaining only one taxon is the sum of the probabilities of the different ways in which it may be obtained, i.e. :

(1 P A ) x (1 P B ) x P C + (1 P A ) x P B x (1 P C ) + P A x (1 P B ) x (1 P C )

Appendix 4

The formula for the sample size needed for there to be a given probability of a taxon being found in it can be derived directly from the binomial version of Hurlbert's equation given by [START_REF] Heck | Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size[END_REF].

The equation for the probability P of a taxon i occurring in a sample n drawn from a population N, with replacement, is:

Rearranging this: