
Modular and Distributed IDE
Fabien Coulon

fabien.coulon@obeo.fr
Obeo
France

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Alex Auvolat
alex.auvolat@inria.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Benoit Combemale
benoit.combemale@inria.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Yérom-David Bromberg
david.bromberg@irisa.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

François Taïani
francois.taiani@irisa.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Olivier Barais
olivier.barais@irisa.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Noël Plouzeau
noel.plouzeau@irisa.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Abstract
Integrated Development Environments (IDEs) are indispens-
able companions to programming languages. They are in-
creasingly turning towards Web-based infrastructure. The
rise of a protocol such as the Language Server Protocol
(LSP) that standardizes the separation between a language-
agnostic IDE, and a language server that provides all lan-
guage services (e.g., auto completion, compiler...) has allowed
the emergence of high quality generic Web components to
build the IDE part that runs in the browser. However, all lan-
guage services require different computing capacities and re-
sponse times to guarantee a user-friendly experience within
the IDE. The monolithic distribution of all language services
prevents to leverage on the available execution platforms
(e.g., local platform, application server, cloud). In contrast
with the current approaches that provide IDEs in the form
of a monolithic client-server architecture, we explore in this
paper the modularization of all language services to support
their individual deployment and dynamic adaptation within
an IDE. We evaluate the performance impact of the distribu-
tion of the language services across the available execution
platforms on four EMF-based languages, and demonstrate
the benefit of a custom distribution.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: Microservice, IDE, Generative approach

ACM Reference Format:
Fabien Coulon, Alex Auvolat, Benoit Combemale, Yérom-David
Bromberg, François Taïani, Olivier Barais, and Noël Plouzeau. 2020.
Modular and Distributed IDE. In Proceedings of Proceedings of the

SLE ’20, November 16–17, 2020, Virtual, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

13th ACM SIGPLAN International Conference on Software Language
Engineering (SLE ’20). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Modern Integrated Development Environments (IDE) are
moving to the Software as a Service (SaaS) model [2] in order
to benefit from advantages [7] such as better accessibility
(since the application is already installed and configured),
lower costs to maintain and/or upgrade, scalability, etc. The
rise of a protocol such as the Language Server Protocol (LSP)
that standardizes the protocol used between a language-
agnostic IDE and a language server that provides language
services (as defined in Definition 1.1) such as auto completion,
search for definition, search for all references, compilation,
etc. has allowed the emergence of high quality generic Web
components to build the IDE part that runs in the browser.
For instance, Monaco1 (used in VSCode2, Theia3 , . . .), Atom4,
CodeMirror5 (CodePen6, Jupyter7), are now embeddableWeb
components with a direct support of most of the LSP features,
thereby simplifying the development of Web-based IDEs.

Definition 1.1. We consider as language service any language-
specific functionality that can be used by a language user,
and that takes a program as input. Such service can be a
functionality related to editing programs giving quick feed-
back to the user (e.g., auto completion, goto definition, etc)
but can also be a more long running functionality related to
other activities (e.g., compiler, debugger, etc).
1https://microsoft.github.io/monaco-editor/
2https://code.visualstudio.com/
3https://theia-ide.org/
4https://atom.io/
5https://codemirror.net/
6https://codepen.io/
7https://jupyter.org/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://microsoft.github.io/monaco-editor/
https://code.visualstudio.com/
https://theia-ide.org/
https://atom.io/
https://codemirror.net/
https://codepen.io/
https://jupyter.org/

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

However, defining the architecture of an LSP server imple-
mentation and more generally the server implementation for
a particular language remains a complex step. The simplis-
tic deployment of the language server part in a sufficiently
powerful cloud does not in reality provide the optimal user-
experience. Each of language services has specific require-
ments in terms of latency and bandwidth, but also in terms
of specific computing capacity. It is therefore important to
tune the deployment according to the services of a particu-
lar language but also according to the context of use of the
IDE for a given user, and the available execution platforms.
For example, it could be required to reduce the network
requirements if the quality of the network decreases for a
specific user. Such an implementation of a language server
should therefore be essentially a Dynamically Adaptive Sys-
tem (DAS)[9] in which we could provide tailored distribution
of the language services that optimizes the user experience
and their overall performance. Defining the architecture of
such a system requires fine-grained modularity in both de-
sign and deployment, and the ability to run in a distributed
and heterogeneous environment.

In contrast with the current approaches that provide IDEs
in the form of a monolithic client-server architecture, we ex-
plore in this paper themodularization of all language services
to support their individual deployment and dynamic adap-
tation within an IDE. Since the distribution requires both
the modularization of the language services, and the deploy-
ment (and possibly the dynamic reconfiguration) over the
available environment, we propose a generative approach to
automatically obtain microservices implementing language
services from a language specification, complemented with
a feature model that drives the safe configuration and au-
tomates the deployment of IDE features. We explicit IDE
feature in Definition 1.2.

Definition 1.2. We define an IDE feature as the deployment
unit of a distributed IDE. It is a coherent group of language
services intended to always be deployed together.

We study the impact on performances when distributing
the language services across the available execution plat-
forms. We evaluate our approach on four EMF-based lan-
guages and demonstrate the benefit of a custom distribution
of the various language services. In particular, we apply our
approach to NabLab8, our own implementation of the Logo
language9, MiniJava10 and ThingML11 to compare response
times of language services in our approach with monolithic
language server.

8https://github.com/cea-hpc/NabLab
9https://github.com/fcoulon/sle2020-dev/tree/master/logo/logo.xtext.parent
10https://github.com/tetrabox/minijava
11https://github.com/TelluIoT/ThingML

This paper is organized as follows. Section 2 motivates
this work by describing the example of a monolithic lan-
guage server, and the heterogeneity of the different pro-
posed language services. Section 3 gives the big picture of
our approach and explains why we use microservices and
feature modeling. Section 4 describes how we generate mi-
croservices, as well as the feature model and its associated
deployment approach. In section 5 we study our approach
on four EMF-based languages and we evaluate the cost by
comparing the response times of the language services of
our microservice-based architecture with that of monolithic
language servers.

2 Motivating example
To illustrate the heterogeneity of the various services pro-
vided by modern IDEs, we use in this section and throughout
this paper the open-source and industrial Domain-Specific
Language (DSL) NabLab. NabLab provides a productive de-
velopment environment for numerical analysis over exas-
cale HPC technologies. The associated IDE provides all the
common editing services (syntax coloring, auto-completion,
validators...) and a complex compilation chain targeting var-
ious backends. NabLab users are mathematicians and physi-
cists that write algorithms for numerical analysis. NabLab
programs are mainly composed of jobs with complex data
flow between them, representing physical systems. As the
computation used to simulate physical systems is expensive,
NabLab programs are given to a compilation chain generat-
ing efficient source code to run the different jobs in parallel.
Figure 1 represents the current IDE architecture accord-

ing to the state of practices. This architecture separates the
IDE client, which is the language-agnostic interface for lan-
guage users, from the language server which implements
the language-specific services. The IDE client remotely calls
these services by sending JSON-RPC12 messages to the lan-
guage server. This architecture allows to deploy the IDE
client and the language server possibly in different execu-
tion platforms (e.g., the client on the development laptop,
and the server on the cloud or an application server). In prac-
tice, NabLab has been developed using the Eclipse Modeling
Framework [10], including the Ecore13, Xtext14 and Sirius15
technologies.

For the sake of illustration, we selected four representative
language services provided by the NabLab IDE: completion
is a content assist that returns a list of proposals for a given
context, references searches for elements in a file referring to
a given symbol, rename changes names for a given element
and for all its referring elements, and compiler performs
graph analysis of the concurrent job to generate optimized

12https://www.jsonrpc.org/
13https://www.eclipse.org/ecoretools
14https://www.eclipse.org/Xtext
15https://www.eclipse.org/sirius

https://github.com/cea-hpc/NabLab
https://www.eclipse.org/ecoretools
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

s

JSON-RPC
(local or over

Internet)

IDE Client

Language
user

Completion

Language Server

References
Rename

Compiler

Workspace

Storage

…

Interpreter

Figure 1. Current IDE Architecture, including a language-
agnostic client that provides the user interface, and a
language-specific server that provides all the language ser-
vices for a given language

Java source code (one of the possible backends in NabLab).
We have chosen these language services to be representative
of language user’s activities: editing of code, navigation in
the code, code refactoring, and code transformation.

Figure 2. Response times of four NabLab services (client
and server deployed on the same local development laptop)

In the NabLab IDE, completion, references and rename are
obtained with Xtext and the support of the Language Server
Protocol (LSP), while compiler is a separate compilation chain
integrated and prompted from the IDE. To illustrate the het-
erogeneity of these language services and the potential ben-
efits of distributing them, we measured their response times
on NabLab files of increasing size. The measurements were
performed 100 times for each language service, with a client
and a server both deployed on the same machine with an
Intel Core i7-7600U CPU at 2.80GHz, 32 GiB of RAM, and the
HotSpot JVM 11.0.5. Figure 2 presents the means of the re-
sponse times expressed in milliseconds (ms) for the different
files and, due to the large range of values, with a logarithmic
scale.
We observe significant heterogeneity among language

services, ranging from completion that lasts about 5 ms con-
stantly over the files, to references that goes up to about
188 ms, rename that goes up to 7.106 seconds, and finally
compiler that goes up to 14.78 minutes. This difference in
response times between the language services is of several
orders of magnitude. It can be explained by the amount

of computation performed by each service: completion tra-
verses object’s references, reference is a query in a graph
of objects, rename rewrites the file and compiler performs
complex graph analysis and generates source code. This mo-
tivates the need for an individual and distributed deployment
of each language service to leverage better the available exe-
cution platforms, fit the activities performed, and eventually
provide the best user experience within the IDE client. In
particular, in this paper, we focus on the following research
questions:

RQ1 Is it possible to provide a systematic approach that au-
tomates the modularization of the language service im-
plementations, supports their individual deployment,
and enables their dynamic adaptation according to a
given context (e.g. usage, environment)?

RQ2 Is it possible to optimize the distribution of the lan-
guage services across the available runtime platforms
(e.g., local platform, application server, cloud) to im-
prove their performances within the IDE?

3 Approach overview
We propose a systematic approach that eases the modulariza-
tion and distribution of highly configurable IDEs for DSLs.
The approach takes as inputs i) a software language speci-
fication, in the form of a metamodel, a syntax description,
and any additional concerns such as validators, compilers,
etc., and ii) a set of desired features (i.e., coherent groups
of services) that the IDE must or may provide. As output,
the approach generates a set of modular, language-specific,
IDE features and a tool-supported feature model to config-
ure and automate their distribution and integration within a
Web-based IDE.

We distinguish two different user roles: language users,
and language designers. In our process, configurability of an
IDE by an end user relies on software product line principles:
using a language specification as input, language designers
build in fact a family of distributed IDEs. Language design-
ers, or even language users, can then configure the family to
deploy a distributed IDE that suits the user’s needs and expe-
rience. Since the needs of language user can evolve over time,
the deployment of the IDE can be dynamically reconfigured

Figure 3 presents the overall approach, from the specifica-
tions to the deployment of an IDE. First, a language designer
provides a language specification along with a protocol specifi-
cation that describes the expected modularity of the language
services and their interactions. From these specifications, we
automatically generate a set of microservices implement-
ing the IDE features and a feature model that captures their
valid configurations (step 1○). The feature model offers a
description of the variability of a system, here our variabil-
ity is the availability of IDE features and their deployment
configuration, presented as a tree of features enriched with
logical constraints. It essentially describes what the feature

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

Language
Specification

Protocol
Specification

Language
Designer

IDE

Runtime Workspace
Rename

References

Completion …

InterpreterCompiler

Completion References

Rename

Compiler Workspace

Storage
…

Interpreter

Language user
/ designer

IDE & Deployment Configuration

MyCloud

Application Server #1

Development Laptop

JSON-RPC
(local or over

Internet)

Application Server #2

References

Workspace

Storage

Completion

Rename

Compiler

1 2

Microservices Feature Model

IDE
Microservicesation

IDE
Deployment

Storage

✔Completion

Interpreter
✔Compiler

✔Rename
✔Workspace
✔Storage

Development Laptop
Application Server #1

Development Laptop
Application Server #2
MyCloud

Figure 3. Approach overview, with the two main steps: 1○ IDE microservicesation and 2○ IDE deployment

alternatives are, their dependencies and whether they are
mandatory or optional. Since dependencies form a graph, we
compute a minimum spanning tree to create the hierarchy of
the feature model and we encode as logical constraints the
remaining dependencies. The IDE and its deployment can
then be configured by a language designer or user (step 2○),
depending on who has the knowledge to decide where to
deploy the microservices. Configurations could also be pro-
posed by an automated process involving a predictive model
in the deployment, or through dynamic reconfiguration, in
an attempt to maintain metrics such as user experience. The
IDE configuration consists of selecting the microservices
that will be available to the language user, together with
information on where to deploy them. The feature model is
used to validate the set of microservices to be deployed by
checking the variability constraints. At the end, the microser-
vices are distributed to different execution platforms such
as development laptop, cloud or application servers. At this
stage, the language services are running and the language
user can use them through an IDE client.
The following quality criteria guided our current imple-

mentation of this systematic approach:

• IDE configurability for the end user: it is supported
by a feature model driving the safe deployment of the
language services

• efficiency of resource usage (CPU time, bandwidth,
reactivity as perceived by the end user): it is allowed
by the modularization of language services which are
individually deployables according to their expected
optimal quality of service

• extendibility and reusability from the point of the lan-
guage designer, i.e., when the set of features evolve or
when distributed platform technologies change (long
term, human driven adaptation): they are enabled thanks
to the specification of the protocol by the language
designer which defines the granularity of the language
services and their dependencies

• adaptability, possibly dynamically (according to the us-
age and environment): it is reached through the state-
less nature of generated microservices that supports
dynamic reconfiguration (maintenance, evolution, de-
ployment, ...)

Our process design decisions were taken to obtain a satisfac-
tory balance of these criteria.

In the rest of this section, we detail the two main steps of
our approach (1○ and 2○ in Figure 3).

3.1 Designing IDE microservices
The design of an IDE family is based on two main inputs
that are required to improve flexibility and reusability of ele-
mentary design elements, thereby supporting the language
designer in providing a highly and dynamically customizable
distributed IDE.

Language specification. The language designer needs a
language specification. In our prototype, the language speci-
fication comes as an Ecore metamodel, and Xtext grammar
description, and additional services such as compilers. Using
tools such as Xtext, the language designer is able to produce
a software module that acts as a parser and builds a model
from a program file, as an internal, metamodel compliant,
form of the program.

Protocol specification. The language designer also pro-
vides a description of the expected modularity of the lan-
guage services in the form of a so called protocol. Code com-
pletion, symbol renaming, compiler, are examples of such
language services (capabilities) that may be grouped into IDE
features as deployment units. The grouping of the language
services into IDE features, and their inter-dependencies, are
expressed in a specific model, for which we provide a spe-
cific DSL with a concrete syntax, and a metamodel shown in
Figure 4.
Using this DSL the language designer is able to declare

the properties and relationships of each feature declared in a
protocol specification. The DSL relies on the following types
(cf. Figure 4):

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

Figure 4. The metamodel used to describe a protocol for IDE
features

• The Capability type allows for the definition of a basic
service point, akin to a callable function in the architec-
ture. Details of the function implementation, such as a
port number for micro-service based implementations
are also indirectly provided by a Capability.

• The Feature type regroups a coherent set of capabilities.
It typically represents an elementary tool supported
by the IDE (e.g., code completion, name refactoring).

• The Protocol type regroups the features that are po-
tentially supported by an IDE.

• The Dependency type describes the relationships be-
tween capabilities supported by a protocol, for instance
the call dependency between two capabilities.

From the language specification and the protocol specifica-
tion, we implemented a generative approach (1○ in Figure 3)
that produces:

• a set of modular language services in the form of cloud-
native applications as microservices, and the required
code that will take care of the communication between
language services as described in the protocol.

• a feature model that represents the IDE family.
The feature model can then be enriched with deployments

constraints, e.g.:
• for efficiency reason some capabilities need to be im-
plemented by the same feature, and therefore deployed
on the same execution node;

• some features are alternatives in a group, e.g., if at run
time the currently deployed feature becomes unavail-
able then one alternative will be deployed automati-
cally.

3.2 IDE Deployment
The final task to build a usable, running IDE is the deploy-
ment phase. As mentioned before, we aim at providing a
family of IDEs to the final language user, as different users
have different needs, and a given user may also wish to tailor
the IDE depending on the current tasks she is involved in. To

support this flexibility we provide a deployment configura-
tor, which is parameterized by the feature model generated
from the protocol specification, to allow user control on
which capabilities to deploy and where, while maintaining
the constraints defined in the feature model.

A point to consider in order to support reconfiguration of
the deployment (i.e., to move microservices) is that we imple-
ment language services as stateless microservices. This has
benefits for the scalability of distributed applications since a
microservice can be replicated and the requests dispatched
among the different instances to handle load increases. It
also allows the microservices to be moved easily from one
location to another, and it avoids data loss in case of a mi-
croservice crash. However, stateless microservice does not
keep any states between requests that involve retrieving pro-
grams from a persistence storage and parsing them to get a
model before processing language services, which increases
response times compared to stateful microservices. This ad-
ditional cost on response times must be taken into account
to benefit from the reconfiguration of a distributed IDE.
The proposed generative approach (2○ in Figure 3) takes

as inputs a specific configuration of the feature model and
the microservices, and produces a distributed IDE integrated
with the Web-based client.

4 Towards a modular and distributed
NabLab IDE

In this section we use a running example to detail the steps
introduced in the previous section. Our task is the design of
a distributed IDE for Nablab users. We chose NabLab as a
language for our experiments on modular and distributed
IDE construction because developing NabLab software pro-
vides a wide range of requirements, from responsive editing
operations of code to CPU intensive compilation and ex-
ecution. Taking care of this range of requirements is best
addressed by distributing language services on various types
of execution platforms.
NabLab users are supported by a set of tools that form a

specific IDE:
• A textual editor supports contextual code completion,
code folding, syntax highlighting, error detection, quick
fixes, variable scoping, and type checking.

• A model explorer provides a dedicated outline view
and a contextual LaTeX view.

• A debugging environment provides variable inspec-
tion, plot display and 2D/3D visualization.

• A NabLab compiler generates efficient implementa-
tions thanks to the associated compilation chain.

4.1 Language and protocol specifications
As mentioned in the previous section, in our approach a
language specification consists of defining a metamodel, a
concrete syntax and semantics. We use the Eclipse Modeling

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

Protocol {
mandatory feature s t o r a g e {

c a p a b i l i t i e s :
document
update

}
feature comp le t i on {

c a p a b i l i t i e s :
comple te

}
(. . .)
dependencies {

c omp le t i on . comple te −> s t o r a g e . document
(. . .)

}
}

Listing 1. Excerpt of the protocol specification for the com-
pletion feature of NabLab

Framework16 (EMF) and its ecosystem to define our language
specification.

The concrete syntax of NabLab is a grammar defined with
Xtext[5]. Taking a grammar as input, Xtext is able to generate
the source code implementing a set of language services
for a text editor. Xtext can also generate a language server,
which embeds the language services that are then callable
remotely. In our approach we use this generator to produce
implementations of IDE features.
The compilation chain comes as a separate language ser-

vice implemented with Xtend17, and this service is integrated
and prompted from the IDE client.

Listing 1 is an excerpt from the protocol specification for
NabLab. This protocol specification conforms to the meta-
model described in Figure 4. Our tool to edit a protocol tex-
tual specification and simultaneously build a protocol model
is based on Xtext. As a language designer, through the pro-
tocol specification we made the choice for NabLab to define
the language services as stateless services and we defined
the granularity of the deployment units by declaring how
the language services are grouped in the IDE features. Our
NabLab protocol model declares the storage and completion
features, and a dependency between their respective capabil-
ities. The storage feature provides the following capabilities:
document, to retrieve a persisted document (a program), and
update, to change the contents of a program. The completion
feature provides the complete capability to get content assist
proposals. In the dependencies, the complete capability first
retrieves a program by calling the document capability before
computing the set of completion choices. The protocol speci-
fication of NabLab, in addition to the storage and completion
features shown in the listing, also has the following features:

16https://www.eclipse.org/modeling/emf/
17https://www.eclipse.org/xtend/

workspace, which computes diagnostics for programs and
indexes their content, definition, which gives the location
of an element’s definition, highlight, which looks up the el-
ement’s definition as well as other elements linked to the
same definition, hover, which returns the element’s descrip-
tion, documentSymbol, which returns all the elements of a
program, formatting, which computes text edition operations
to normalize program’s indentation, rename, which returns
text edition operations to rename an element’s definition
and other elements linked to the same definition, references,
which finds elements having the same definition, symbol,
which returns all the symbols in the opened program match-
ing a query, and compiler, which generates a Java source file
from a NabLab file.

4.2 Feature model generation
In a second step we generate a NabLab feature model by
taking the NabLab protocol specification as input. Figure 5
presents the resulting feature model built by applying the ap-
proach described in the previous section. The features of the
model match the IDE features of the protocol specification
and the hierarchy is derived from the dependencies between
capabilities. For example, in the protocol specification sym-
bol has a capability calling the index capability declared in
workspace. We infer that symbol requires workspace to run,
and we set a parent-child relationship in the feature model. It
means that a configuration of this feature model containing
symbol is valid only if workspace is also present. We compute
similarly the hierarchy for other features.

Our implementation of the feature model generator relies
on the Feature IDE framework [13], which provides facilities
to construct and manipulate feature models.

The feature model generated with this framework is then
used to configure the expected deployment and ensure its
validity with regards to the constraints defined in the feature
model.

4.3 Microservice generation
We use the Quarkus18 framework to implement Java mi-
croservices for each IDE feature defined in the protocol spec-
ification. A Java class is generated with methods correspond-
ing to the Capabilities of the IDE feature. Each Capability is
implemented as a REST API, by annotating methods with
HTTP verbs, query parameters, and endpoint paths. These
methods are callbacks for the HTTP requests. We process the
Capability’s JSON definition file to generate arguments and
return type for the methods. We also generate proxy classes
from the dependencies of the IDE features. These classes pro-
vide methods to remotely call the capabilities implemented
in the other microservices.

The language service implementations of NabLab are pro-
vided by Xtext, except for the compiler. We leverage on

18https://quarkus.io/

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

Figure 5. Feature model of the language NabLab

these available implementations by providing a generative
approach that reuses the Xtext generators to complete mi-
croservice implementations. The integration with an IDE
client is not addressed by this work and it is up to the lan-
guage designer to implement the calls to the microservices
from the client. However, this can be facilitated by using an
integration protocol such as the LSP that provides interoper-
ability between client IDEs and language services.

4.4 Deployment configuration
Our distribution of the IDE features relies on Docker19 and
the container orchestrator Kubernetes20. The microservices
are packaged in Docker containers, which isolate the mi-
croservices and ease the deployment by embedding their
runtime environment (e.g., a JVM). We deploy containers in
a cluster by using a container orchestrator, since it allows
to plan their deployment at different locations and move
them at runtime. Our deployment configurator monitors
the deployment using the Kubernetes API, to get the list
of deployed microservices with their locations to construct
the configuration representing the current deployment. We
provide a frontend for the configurator as a web page that
displays configurations to the language user and designer.
Through this web page, the language user can change the
deployment configuration by disabling microservices, select-
ing new ones and change their deployment location. If the
new configuration is valid, a deployment plan is sent to the
Kubernetes API. Although we implemented our deployment
configurator with Kubernetes, other container orchestra-
tors like Nomad21 can be used to distribute IDE features (as
shown in section 5 where we manually deploy IDE features
on a Nomad cluster)

5 Experimentations
In this section we present our experiments to answer the
research questions introduced in Section 2 (RQ1 and RQ2).

19https://www.docker.com/
20https://kubernetes.io/
21https://www.nomadproject.io/

We conducted these experiments on four EMF-based lan-
guages: NabLab, our own implementation of the Logo lan-
guage, ThingML and MiniJava. Logo is an educational pro-
gramming language dedicated to 2D drawings, ThingML
is dedicated to applications for the Internet of Things, and
MiniJava is a subset of the Java language. We selected this
mix of general purpose and domain specific languages of
distinct domains to be representative of the generalization
of the proposed approach.

Our experiments compare language services implemented
by monolithic servers deployed locally and modular servers
distributed over the available execution platforms. Our re-
sults show that monolithic servers deployed locally (i.e., on
the same execution platform than the client) offer better
response times when not resource demanding but quickly
limited for computationally intensive IDE features, and that
parsing models and loading model elements constitute a bot-
tleneck for microservices, which would prevent the design
of an entirely stateless architecture.

5.1 Experimental setup
The evaluationwas performed on threemachines in a Nomad
cluster. All machines were Dell PowerEdge R330 with Intel(R)
Xeon(R) CPUE3-1280 v6@3.90GHz 4 cores, hyper-threading
and 31GB of RAM. The IDE features were deployed in Docker
containers and running on OpenJDK 11.0.5.

The evaluation measured the response times of language
services implemented as monolithic language servers, and
as distributed language servers with microservices. Both are
implementing the Language Server Protocol22 (LSP), and
possibly additional services such as a compiler. Monolithic
language servers were deployed on a single machine of the
cluster. We generated programs of a similar number of lines
of code based on the content of existing examples for each
language23. For each program, we initialized an LSP session
and opened the program. After the initialization is completed,
we then called 100 times each language service in a row and

22https://microsoft.github.io/language-server-protocol/
23https://anonymous.4open.science/r/e03961ac-9f27-4c52-ab28-
87cf105a83f4/

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

compute the average of the time elapsed between the request
and the reply measured from the client’s point of view.

We performed the same experiments with the distributed
servers after distribution of the language services over the
available cluster. On the first machine we deployed the lan-
guage service storage, on the second machine workspace,
completion, definition, highlight, documentSymbol and on the
third machine hover, references, rename, symbol. Since we
wanted to measure the cost of message exchanges, we de-
ployed depending IDE features on different machines: for
instance, workspace feature was not on the same machine
as references and symbol, that storage is on its own machine.
The client that sends the requests to language services was
deployed outside of the cluster, on a machine connected to
the cluster by a local network.
In the case of the distributed servers, we also measured

the times taken to load and resolve the references of models,
in order to highlight the impact of load and resolve phases
in the response time of the microservices. More precisely,
models are graphs of objects that reference each other but
these references are not resolved at the first load, they are
resolved on demand when language services browse the
models, which has an impact on the processing time of the
language services. For each language we repeated 100 times
the measure of loading and resolution time of each program.

5.2 Results
To investigate the gains and the costs of distributing language
services, we first compared the response times of language
services of the motivating example in Section 2, which are
implemented by a monolithic server running on a laptop
(client co-located on the laptop), to the response times of
the same language services implemented by microservices
running on the Nomad cluster (client outside of the cluster,
and connected by a local network) for the NabLab language.
In a second experiment, we compared the response times of
language services for monolithic and distributed architec-
tures running both on the Nomad cluster to evaluate the cost
of the distribution for the languages NabLab, Logo, ThingML
and MiniJava. We then measured the loading time of the
programs for these four languages and compare them to the
response times of language services to evaluate the impact
of the stateless architecture.

5.2.1 Microservice-based version. We measured the re-
sponse times of microservices running on a cluster imple-
menting the language services of the motivating example
presented in Figure 2 and compare them with the response
times of language services running locally on the laptop.
Figure 6 presents response times of these microservices de-
ployed in the Nomad cluster. The percentage given for each
bar represents the overhead with regard to the time pre-
sented in Figure 2. Response times of the feature completion
increase with file size and are several orders higher than

Figure 6. Response times of language services of the mo-
tivating example deployed as microservices in the Nomad
cluster, and comparison with the response times from Figure
2.

in Figure 2, where they are between 2 and 6 milliseconds.
Response times for references are 2 to 10 times higher than
those in Figure 2. Feature rename takes 6% more on the 121-
line file, but gains between 16% and 25% for the other files.
Feature compiler gains 51% on the 121-line file and gains
between 9% and 21% on the other files.

5.2.2 Protocol. To evaluate the cost of modularization and
distribution of the language services, we measured response
times on programs of increasing sizes for the languages Logo,
NabLab, ThingML and MiniJava, with both monolithic and
distributed servers. For the distributed architecture, we also
measured the overheads from message exchanges between
the microservices to fulfill the request to language services
(i.e., the total time spent by a microservice waiting for re-
sponses to requests for additional inputs from other microser-
vices that are necessary to process its internal logic). We
performed 100 measurements for each language service on
each program and for both servers, and computed the means.
For the 320 measured means, 232 of them have a coefficient
of variation (i.e., the ratio of the standard deviation to the
mean) below 30%.
Figures 7, 8, 9 and 10 presents a comparison of the re-

sponse times of the language services for the monolithic
and distributed architectures on programs of increasing size,
respectively for NabLab, Logo, MiniJava and ThingML. The
cumulative times resulting from the modularization and the
distribution of language services are represented by the pro-
tocol overhead parts, in grey in the response times of the dis-
tributed architecture. They measure the times taken by the
exchanges between the distributed microservices, which in-
clude the retrieval of programs from the storagemicroservice,
and the retrieval of the workspace’s index (only for references
and symbol features). The upper parts of the bar displayed
in orange represent the times not due to the exchanges be-
tween the microservices, which include the processing times

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

Figure 7. Comparison of response times in monolithic and
distributed architectures for language services of NabLab

of the internal logic of the microservice implementing the
language service, and the time for sending the response to
the client.
In most cases, the distributed architecture introduces an

overhead in comparison to the monolithic implementation.
However, we observe that the overhead is marginally due
to the protocol (the means for each file are between 24.63
ms and 57.64 ms for NabLab, 11.43 ms and 22.88 ms for
Logo, 14.21 ms and 21.94 ms for MiniJava, 9.31 ms and 15.96
ms for ThingML), but mostly lies in the orange parts and
is rather due to the stateless nature of microservices. We
further explore this in the rest of this section.

5.2.3 Statelessness impact. Themicroservices being state-
less, they all require to fetch and load the necessary part of
the model in addition to executing the corresponding lan-
guage service(s). To evaluate the impact on response times of
the stateless nature of microservices implementing language
services, we measured the initial load times and the full refer-
ences resolution times for the four languages NabLab, Logo,
Minijava and ThingML on the same programs used before.
The considered programs are EMF models, in the form of
graphs of objects which are loaded lazily. An initial load is

Figure 8. Comparison of response times in monolithic and
distributed architectures for language services of Logo

performed to build the objects of the model but references
between them are resolved on demand. Language services
browse models when performing their internal logic. This
process requires resolving visited references, which consist
of finding the referenced elements in the model, and there-
fore has a cost in time. This means that language services
performing simple queries on a program, such as the comple-
tion feature which browses few object references, are less im-
pacted by model loading than language services that browse
the whole model, such as for instance the documentSymbol
feature which collects all named elements of a model.
Figure 11 shows the means of the measurements for the

four languages, on programs of increasing size. Since models
are loaded lazily, we measured the initial load times and
the reference resolution times. The load curve represents
the times to parse programs and build the corresponding
model. The resolve curve represents the times to resolve all
the references between objects in the model. The load and
resolve are cumulative times that correspond to the complete
model loading.

In all cases we observe a linear time for load, while resolve
can be exponential according to the size of the considered

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

Figure 9. Comparison of response times in monolithic and
distributed architectures for language services of MiniJava

program and consume an important part of the overall model
loading time.

To further compare the load and resolution times of model
with language service response times, we measured comple-
tion, which is one of the fastest of our language services and
documentSymbol which is one of the most time consuming.
Figure 12 shows their response times on programs of in-
creasing size for the monolithic and distributed architectures
of the four languages. The differences of response times of
completion and documentSymbol between monolithic and
distributed architectures go up to 355 ms and 220 ms respec-
tively for Logo, 347 ms and 2058 ms for NabLab, 229 ms and
242 ms for MiniJava, and 110 ms and 174 ms for ThingML.

5.3 Discussion
We modularized and distributed language services in a clus-
ter and we compared their response times with monolithic
servers implementing the same features. In this section we
discuss these results to answer the research questions intro-
duced in section 2.

5.3.1 Systematic approach to automate the modular-
ization and individual deployment of language services

Figure 10. Comparison of response times in monolithic and
distributed architectures for language services of ThingML

Figure 11. EMF model load and resolution times

(RQ1). We present in this paper a first generative approach
to modularize all services of a language server in the form
of deployment units as microservices, and a second genera-
tive approach in charge of establishing the communication
between the various microservices corresponding to a given
configuration of the expected IDE. The granularity of the
IDE features in terms of the language services to be included
in a given microservice, as well as the information on the
possible dependencies between them, are given by a proto-
col specification taken as input of our overall approach. The
microservices are stateless, and support custom and possibly
dynamic adaptation of their configuration.

We experiment our approach on four representative EMF-
based languages, namelyNabLab, Logo,MiniJava and ThingML,

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

Figure 12. Comparison of services browsing few model
references (completion) and many model references (doc-
umentSymbol) for the languages Logo, NabLab, MiniJava
and ThingML in the monolithic and the distributed architec-
tures

and demonstrate the ability of our approach to be applied to
all of them. We generate deployment configurators for these
four languages, and select language services to be deployed,
distribute them on the machines of a cluster and dynamically
change the deployment configuration. For all languages, the
monolithic and distributed implementations of the language
server are functionally equivalent.
Our evaluation shows that language services last longer

in distributed architectures compared to monolithic archi-
tectures. We have identified three sources of overhead, mea-
sured in figures 7 to 12 which we discuss afterward: the
modularization, the distribution, and the stateless nature of
language services.
The results from Figures 7 to 10 show that the overhead

due to message exchanges induced by the modularization
and latencies due to the distribution (the grey parts) is only
a small part of the overall overhead in the response times of
the distributed features. The overhead for features rename
and symbol last longer, which can be explained by the fact
that these two features query the symbol index in addition
to retrieving the model while the other features only send
requests to retrieve the model. The most of the overall over-
head comes from the orange parts, which represent the times
to load models and process the language services.

The differences of response times between the monolithic
architecture and the distributed architectures can be ex-
plained by the fact that the monolithic servers are stateful
and the microservices are stateless. The monolithic servers
load models only once at initialization and perform model
validation to find errors, a process that requires traversing
all elements of the model. This means that models are loaded
and all their references are resolved when the internal logic
of the feature is running. In the case of microservices, models
are loaded at each request and references are resolved on
demand while the internal logic of the feature is running.
We notice in Figure 12, that the differences in response time

between the monolithic and distributed curves are at least
equal to the loading times of themodels in Figure 11 and even
close to the full resolution time of the models for NabLab.
We also notice that the completion feature has less overhead
than the documentSymbol feature. This difference is due to
the lazy loading of the model since completion has to resolve
few model object references whereas documentSymbol has
to resolve all containment references of the model.
From these observations we conclude that the protocol

for stateless microservices implementing IDE features intro-
duces a small overhead corresponding to message exchanges.
The differences of response times between the monolithic
and distributed architectures are mostly due to the stateless
nature of microservices that requires to load the model and
to resolve the references lazily.

5.3.2 Distribution of the language services to improve
the overall performances of the IDE (RQ2). Our gener-
ator uses the specification of a communication protocol to
generate microservices communicating by HTTP requests.
Each microservice is associated with an HTTP resource,
which is identified by a URL address. To send a request to a
resource, a Domain Name System (DNS) must translate the
destination URL into an IP address. This process abstracts
the actual destination address of a request. We use HTTP
to convey messages to microservices that can dynamically
change their location after a reconfiguration of their deploy-
ment. Since microservices are by nature isolated from each
other, HTTP communication allows the microservices to be
distributed over different execution platforms.
We observed from Figure 6 that there is a real benefit

on the response times to distribute some computationally
intensive features (e.g., compiler) on powerful machines, even
if they are stateless and are not co-located with the client,
while others that are less demanding in terms of resources
are better deployed locally to keep the best user experience
(e.g., completion and references). The size of the program
considered is also important on the result (cf. rename).
We conclude that there is an important benefit in modu-

larizing the language services, and in distributing them in a
relevant way such as we can optimize the response time of
each feature individually, and improve the overall user expe-
rience of the IDE. As future work, we plan to use a learning
model to estimate the pros and cons of the distribution of
each feature according to the communications and the avail-
able execution platforms, and then to infer automatically the
best configuration for a given context.

6 Related work
Our approach to the distribution of an IDE involves the spec-
ification of IDE features, the generation of microservices
implementing IDE features and the configuration of deploy-
ments of IDE features.

SLE ’20, November 16–17, 2020, Virtual, USA Coulon, et al.

Eclipse Che [4] is an online IDE using containers to the
provision of IDE features. All the IDE features for a language
are embedded in a container. Eclipse Che is only configurable
at the granularity of a language and doesn’t allow to select
the deployment location of the containers. Our configurator
operates at a granularity of the IDE feature and allows to
distribute them on different locations.
Monto [8] is an approach to decouple IDE from IDE fea-

tures. The authors manually implemented IDE features as
microservices and specified IDE agnostics intermediate rep-
resentations (IR) for four IDE features to communicate with
them. Our approach is to generate microservices from speci-
fications. Monto does not cover the concern of IDE configu-
ration.

DISTIL [1] is a DSL to describe cloud-based Model-Driven
Engineering (MDE) services (e.g.,model transformation,model
queries, ...) that are close to what we call IDE features. This
DSL allows to generate persistence service, REST services
and HTML front-end. MDE service descriptions can declare
input and output and a validator checks correctness of con-
nected inputs and outputs based on their types. DISTIL al-
lows to describe the data structure of elements stored in
the persistence service. Our approach does not provide a
generator for the front-end and we do not generate persis-
tence service. Our approach allows to specify dependencies
of IDE features and provide a feature model to ensure a safe
configuration.
Jolie [6] is a programming language to implement mi-

croservices and specify microservice architectures. It pro-
vides abstractions for microservices coordination to be used
in implementations. We provide a language to describe the
dependencies between language services, and based on such
descriptions, we automatically generate for each microser-
vice the source code needed to call the dependencies. How-
ever, we rely on the language designer to complete microser-
vice implementations by calling the dependencies in the right
order. Our language could benefit from such coordination
abstractions to go further in the automatic generation of
microservices.
MicroBuilder [12] is an approach to generate microser-

vices with REST API from a specification of a microservice
architecture. Their specification uses REST concepts, such as
HTTP verbs and does not describe dependencies between mi-
croservices. Our specification uses a domain specific model
to define such information to not be tied to one technol-
ogy. The description of dependencies between IDE features
allows us to generate source code to call other microservices.
In [3], authors propose a metamodel to specify microser-

vice architectures to generate synthetic microservices for
benchmarking. Their metamodel allows specifying microser-
vices with REST API and their dependencies, which is close
to our protocol metamodel, and allows specifying deploy-
ment configuration composed of instances of the microser-
vices. Our approach does not allow to describe microservice

instances, as we let the cluster manage their replication au-
tomatically.
In [11], authors report experience on manually splitting

Sharelatex (a web editor for Latex documents) into microser-
vices, using a hybrid core/edge deployment of this applica-
tion. They identified criteria to split the state of microservices
for replication and criteria to decide on the deployment lo-
cation of the microservices. Our approach does not address
the concern of microservice replication and we do not de-
scribe deployment location criteria for IDE features, but we
provide a method to automatically generate microservices
and support reconfiguration of their deployment.
Our approach proposes an end to end solution, from a

language specification to the IDE deployment, to configure
and distribute IDEs by automatically generate microservices
for IDE features and a configurator for their individual de-
ployment. Our experiments demonstrate the benefits of such
an individual deployment.

7 Conclusion and Perspectives
This paper discusses the modularization of language services
to support their individual deployment and dynamic adap-
tation within an IDE. We propose a generative approach to
automatically obtain microservices implementing IDE fea-
tures from a language specification, complemented with a
feature model that drives the safe configuration and auto-
mate the deployment of IDE features.We study the impact on
performances when distributing the language services across
the available execution platforms. We evaluate our approach
on four EMF-based languages and demonstrate the benefit of
a custom distribution of the various language services. Our
experiments highlight the usefulness of distributing compu-
tationally intensive language services. Indeed, the use of dis-
tant application servers improves the performances of some
language services (e.g., rename and compile), thereby com-
pensating the overhead due to the distribution. Experiments
also show the benefits of retaining locally other features that
should be reactive and less demanding in resources.
These experiments highlight three important research

locks that we identify as directions to be investigated by
the community. Firstly, the load of models implied by state-
less microservices is costly. Hence, choosing its location and
proposing effective caching or replication techniques decided
on the basis of the information contained in the language
specification is an area to be explored, especially when we in-
tegrate collaborative editing scenarios. These scenarios were
outside the scope of this paper. Stateless microservices open
the possibility to share sets of load-balanced instances of
language services between language users. It could be inter-
esting to study the scalability and the resource consumption
of stateless microservices and compare it with a monolithic
architecture in a multi-users scenario. We demonstrated in
this paper it exists a trade-off between stateless and stateful

Modular and Distributed IDE SLE ’20, November 16–17, 2020, Virtual, USA

language services but further investigations are needed to
determine which nature is better for each language service.
Secondly, the availability of the WebAssembly24 technol-

ogy creates a new technical environment that facilitates the
development of modules that can run both on the client side
and on the server side in an efficient manner. Reflecting on
the granularity of these services and the technology stack
that allows one to embrace as many programming languages
as possible in designing these services while allowing both
client-side and server-side execution remains a great chal-
lenge.
Finally, the construction of the adaptation logic adapted

to the IDE operation to improve the user experience and
follow the evolution of its needs by automatically migrating
or reconfiguring a service is still a widely open research field.
These three locks will require further investigation to

characterize language services. For example, studying their
frequency of use and how they access the model will help
determine whether they should be stateless or stateful and
whether it is better to query part of the model on demand
rather than obtaining all of it. Studying their memory or
CPU needs will help determine the best deployment. The
application of static analysis techniques on the source code
of monolithic software implementing language services is
another direction that could be explored to automatically
extract protocol specifications and determine which service
can be asynchronous.
If these three challenges are widely addressed by dis-

tributed computing communities, web engineering commu-
nities or adaptive systems communities, the specific case
of IDEs brings a certain amount of information that allows
specific reflections on each of these topics.

References
[1] Carlos Carrascal-Manzanares, Jesús Sánchez Cuadrado, and Juan de

Lara. 2015. Building MDE cloud services with DISTIL. In International
Conference onModel Driven Engineering Languages and Systems (Model-
Driven Engineering on and for the Cloud), Vol. 1563. CEUR Workshop
Proceedings, Ottawa, Canada, 19–24. https://hal.archives-ouvertes.fr/
hal-01761670

[2] Abhijit Dubey and Dilip Wagle. 2007. Delivering software as a service.
The McKinsey Quarterly 6, 2007 (2007), 2007.

[3] Thomas F. Düllmann and André van Hoorn. 2017. Model-Driven
Generation of Microservice Architectures for Benchmarking Perfor-
mance and Resilience Engineering Approaches. In Proceedings of the

8th ACM/SPEC on International Conference on Performance Engineering
Companion (ICPE ’17 Companion). Association for Computing Machin-
ery, New York, NY, USA, 171–172. https://doi.org/10.1145/3053600.
3053627

[4] Eclipse Foundation. 2020. Eclipse Che | Eclipse Next-Generation IDE
for developer teams. https://www.eclipse.org/che/ [Online; accessed
25-February-2020].

[5] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your
Language Faster than the Quick and Dirty Way. In Proceedings of the
ACM International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion (OOPSLA ’10).

24https://webassembly.org/
Association for Computing Machinery, New York, NY, USA, 307–309.
https://doi.org/10.1145/1869542.1869625

[6] Claudio Guidi, Ivan Lanese, Manuel Mazzara, and Fabrizio Montesi.
2017. Microservices: a Language-based Approach. In Present and
Ulterior Software Engineering, Manuel Mazzara and Bertrand Meyer
(Eds.). Springer, https://hal.inria.fr/hal-01635817. https://hal.inria.fr/
hal-01635817

[7] Jay Heiser and John Santoro. 2019. Hype cycle for software as a
service.

[8] Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. 2016. The IDE
Portability Problem and Its Solution in Monto. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2016). Association for Computing Machinery, New
York, NY, USA, 152–162. https://doi.org/10.1145/2997364.2997368

[9] Andres J. Ramirez and Betty H. C. Cheng. 2010. Design Patterns for
Developing Dynamically Adaptive Systems. In Proceedings of the 2010
ICSEWorkshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS ’10). Association for ComputingMachinery, New York,
NY, USA, 49–58. https://doi.org/10.1145/1808984.1808990

[10] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2009. EMF: Eclipse Modeling Framework 2.0 (2nd ed.). Addison-
Wesley Professional, https://www.amazon.fr/Budinsky-Eclips-Modeli-
Framewrk-_p2/dp/0321331885.

[11] Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. 2018.
ShareLatex on the Edge: Evaluation of the Hybrid Core/Edge De-
ployment of a Microservices-Based Application. In Proceedings of the
3rd Workshop on Middleware for Edge Clouds & Cloudlets (MECC’18).
Association for Computing Machinery, New York, NY, USA, 8–15.
https://doi.org/10.1145/3286685.3286687

[12] Branko Terzic, Vladimir Dimitrieski, Slavica Kordic, Gordana Milosavl-
jevic, and Ivan Lukovic. 2018. Development and evaluation of Mi-
croBuilder: a Model-Driven tool for the specification of RESTMicroser-
vice Software Architectures. ENTERPRISE INFORMATION SYSTEMS
12, 8-9 (2018), 1034–1057.

[13] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. 2014. FeatureIDE: An extensible
framework for feature-oriented software development. Science of
Computer Programming 79 (2014), 70–85.

https://hal.archives-ouvertes.fr/hal-01761670
https://hal.archives-ouvertes.fr/hal-01761670
https://doi.org/10.1145/3053600.3053627
https://doi.org/10.1145/3053600.3053627
https://www.eclipse.org/che/
https://doi.org/10.1145/1869542.1869625
https://hal.inria.fr/hal-01635817
https://hal.inria.fr/hal-01635817
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/1808984.1808990
https://doi.org/10.1145/3286685.3286687

	Abstract
	1 Introduction
	2 Motivating example
	3 Approach overview
	3.1 Designing IDE microservices
	3.2 IDE Deployment

	4 Towards a modular and distributed NabLab IDE
	4.1 Language and protocol specifications
	4.2 Feature model generation
	4.3 Microservice generation
	4.4 Deployment configuration

	5 Experimentations
	5.1 Experimental setup
	5.2 Results
	5.3 Discussion

	6 Related work
	7 Conclusion and Perspectives
	References

