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Abstract

Terrestrial records of past climatic conditions, such as lake sediments and speleothems, provide data of
great importance for understanding environmental changes. However, unlike marine and ice core records,
terrestrial palaeodata are often not available in databases or in a format that is easily accessible to the non-
specialist. As a consequence, many excellent terrestrial records are unknown to the broader palaeoclimate
community and are not included in compilations, comparisons, or modeling exercises. Here we present a
compilation of Western European terrestrial palaeo-records covering, entirely or partially, the 60-8-ka
INTIMATE time period. The compilation contains 56 natural archives, including lake records, speleothems,
ice cores, and terrestrial proxies in marine records. The compilation is limited to include records of high
temporal resolution and/or records that provide climate proxies or quantitative reconstructions of
environmental parameters, such as temperature or precipitation, and that are of relevance and interest to
a broader community. We briefly review the different types of terrestrial archives, their respective proxies,
their interpretation and their application for palaeoclimatic reconstructions. We also discuss the
importance of independent chronologies and the issue of record synchronization. The aim of this exercise is
to provide the wider palaeo-community with a consistent compilation of high-quality terrestrial records, to
facilitate model-data comparisons, and to identify key areas of interest for future investigations. We use
the compilation to investigate Western European latitudinal climate gradients during the deglacial period
and, despite of poorly constrained chronologies for the older records, we summarize the main results

obtained from NW and SW European terrestrial records before the LGM.

Keywords: Western Europe, terrestrial records, last deglaciation, databases, INTIMATE

1. Introduction

Since the discovery of abrupt climate change at decade-to-century time-scales during the last glacial period,
evidence of rapid climate variability has become available from an ever-growing number of palaeo-archives

worldwide. In the North Atlantic region, the climate of the last glacial period is characterized by a number
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of abrupt warming events referred to as Dansgaard-Oeschger events, which are most strongly expressed in
the Greenland ice cores (Dansgaard et al., 1993). North Atlantic marine records of the last glacial period are
sometimes dominated by ice rafting events, the so-called Heinrich events (Hemming, 2004) while other
terrestrial archives from Western Europe do not always show a strong response to such climatic events
(Ampel et al., 2010). The abrupt climate variability of the last glacial period differs from the slowly varying

orbital parameters that are believed to be the main drivers of climate change during this period.

The present work is concerned with the 60-8 ka period, covering the second half of the last glacial,
including the Last Glacial Maximum (LGM, ca 22-18 ka BP) and the deglacial period (ca. 14.7-11.7 ka BP),
and the early Holocene (ca 11.7-8 ka BP). Furthermore, the period is divided into Marine Isotope Stage 3
(MIS3, ca 60-28 ka BP), MIS2 (ca 28-11.7 ka BP), and part of MIS1 (last 11.7 ka). Within the INTegration of
Ice-core, MArine, and TErrestrial records (INTIMATE) community, the Greenland ice core stratigraphy
(Rasmussen et al., this issue) has been applied as a template for North Atlantic climate variability for the

60-8 ka period (Blockley et al., 2012).

Compilation of palaeoclimatic evidence from palaeo-archives is a prerequisite for obtaining an overview of
past climatic change. Bringing palaeo-records from various archives together on a common chronological
framework allows individual records to be placed in a broader context, exploration of both temporal and
spatial evolution of climate, and investigation of the drivers and mechanisms behind past climatic changes
together with the resulting impacts of climatic change (Birks et al., this issue). Furthermore, data
compilations enable model-data comparisons which can help to decipher the mechanisms that drive

climatic change.

A number of important studies have provided compilations of records of past climatic variability between
60-8 ka on both global and regional scales. (Voelker, 2002) provided the first global compilation of marine
and terrestrial sites, showing evidence of centennial-scale climatic change during the last glacial period.

Since then, this evidence has been supported and extended by a number of high resolution records, such as
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Antarctic ice cores (EPICA, 2006), Cariaco Basin and Arabian Sea sediment cores (Deplazes et al., 2013), and
Asian and American speleothems (Asmerom et al., 2013; Fleitmann et al., 2009; Wang et al., 2007, 2001).
The deglacial period provides more records and accurate chronologies than earlier periods, and a

comprehensive compilation of global proxy records is provided by (Clark et al., 2012; Shakun et al., 2012).

Other studies focused on the climate of the last glacial in the North Atlantic region, which is strongly
influenced by the presence of large continental ice sheets (Svendsen et al., 2004). (Bjorck et al., 1996)
linked deglacial records from different North Atlantic archives. Voelker et al. (this issue) provides the most
recent compilation of high resolution North Atlantic surface water temperatures for the last 60 ka, and a
comprehensive compilation of last glacial millennial-scale European vegetation records was provided by

(Fletcher et al., 2010a).

This paper presents a new compilation of Western European quantitative terrestrial climate records in the
60-8 ka INTIMATE time period (Fig. 1, Table 1) with a focus on the deglacial period. We briefly describe the
different terrestrial archives, their respective proxies, interpretation and application for palaeoclimatic
reconstructions. Furthermore, we discuss the importance of chronologies and record synchronization. We
investigate Western European latitudinal climate gradients during the deglacial period, and discuss the

period before the LGM.

2. Data compilation and selection criteria

The present compilation broadly covers Western Europe (with 15°E of longitude as an approximate
boundary) and is complemented by parallel compilations covering Eastern Europe (Feurdean et al., this
issue), the Austrian and Swiss sectors of the Alpine region (Heiri et al., this issue) and marine North Atlantic
records (Voelker et al., this issue). The scarcity of records from Scandinavia for this time period does not
require an additional compilation and those sequences are included here. The present compilation includes

published records from lakes, speleothems, ice cores, and terrestrial proxies in marine records. The
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following selection criteria were applied to obtain a dataset with a balanced geographical and temporal

distribution:

The record must cover a relevant interval of the 60-8-ka INTIMATE time frame, even if it is not
continuous.

The record must include at least one quantitative or semi-quantitative climate-related variable
(proxy or reconstruction). For example, temperature proxy/estimates, precipitation
proxy/estimates, vegetation/biome parameters, or lake level estimates. Preferably, all parameters
have an error estimate attached to them.

An age model must be available. Preferably the age model is independent, or tightly linked to a
well-dated archive. All information about how the age model is constructed must be provided and,
preferably, uncertainty estimates should be available.

Included records must be published or made available for this work.

Our compilation includes 56 Western European records of past climatic conditions on land, mostly

presenting temperature and precipitation reconstructions, but also records of dust supply and vegetation

biomes (Table 1; Fig. 1, Electronic Supplementary Material). The compilation contains 38 records from lake

sediments, 9 records from speleothems, one ice core record and 8 records of terrestrial remains (e.g.

pollen) in marine sediments. Loess, tree rings, and glacial-related records were also considered for the

compilation, but unfortunately we were unable to obtain any of these records that fulfilled all the selection

criteria. Data are available in the Electronic Supplementary Material (ESM) attached to this paper. It is

beyond the scope of the present work to re-interpret existing records or proxies or to provide revised age

models for the included records. The present compilation in a standardized format does, however, permit

future revision of age models and synchronization of records whenever new evidence or improved age

models become available.
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The time period covered by each record is indicated in Fig. 2. The scarcity of records available from 60 to 25
ka BP is apparent, whereas the last deglaciation is relatively well represented. The lack of quantitative data
from MIS3 sequences represents a major limitation of this compilation for understanding abrupt climate
variability on land associated with DO cycles. In addition, this data compilation reflects the fragmentary
character of some of the records (e.g. speleothem from El Pindal cave) while other records are continuous
(e.g. most lake records from SW Europe and marine sediments). However, for this compilation, the quality
of quantitative reconstructions has been the main selection criterion. As shown in the location map (Fig. 1),
the compiled sites are located from 75°N (Greenland ice core NGRIP) to 36°N (Alboran Sea core MD95-
2043), but most (60%) are concentrated in a narrow latitudinal band from 53°N to 45°N, which highlights
the scarcity of records from Scandinavia and the Mediterranean region (southern Spain, southern Italy).
Scandinavian sites covering the INTIMATE time period (60-8 ka BP) are restricted since that area was ice-
covered during most of last glacial cycle (see section 5.2.1). On the other hand, records from the
southernmost region of Western Europe are limited due to the aridity of the climate during MIS3 (e.g.

Moreno et al., 2012) (see section 5.2.2).

Using different approaches and methods, a range of proxies was quantified (Table 1, ESM) to obtain
numerical data on temperature (e.g. mean July air temperature from chironomids in lacustrine sequences),
precipitation variables (e.g. lake level reconstructed from carbonate in karstic lakes), and vegetation
distribution (e.g. biomes from pollen data in lake and marine sediments). Temperature reconstructions are
the most common records represented in this database (33 records), followed by records reflecting past
variation in precipitation (23 records). Temperature data come mainly from chironomids (19), pollen (8),
other organisms (4), sedimentological data (2), ice 8'20 isotopes (1), "0 isotopes in lake sediment records
(1) and pollen data in marine and lake records (8). Precipitation, expressed as the isotopic composition of
precipitation or as effective precipitation (water availability), is reconstructed, quantitatively or semi-

quantitatively, from stable isotopes in speleothems (8), 820 isotopes in lake sediment records (2), by lake



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

level variations (8) and by pollen data (4). Pollen data are also used to reconstruct vegetation cover (e.g.

pollen in marine sediments, 6 records) and biomes (1).

3. Terrestrial archives of past climate changes: advantages and limitations

Each type of archive included in the database is unique and has advantages and limitations regarding its
ability to reconstruct climate quantitatively (Table 2). To explore those characteristics, we outline the
methodology, type of quantitative information and dating methods used in analysis of lake sediments,
speleothems, ice cores, and terrestrial remains in marine records. Methods used to obtain quantitative
proxy climate data are summarized in the ESM. Finally, other terrestrial archives (tree rings, loess and

glacier deposits), which are not included in this compilation, are briefly discussed.

3.1. Lake sediments

Lacustrine archives potentially record environmental variability (e.g. water chemistry, temperature) at high
temporal resolution and high sensitivity to regional climatic changes. When annual sedimentation can be
discerned (e.g. varves in maar lakes), records with robust chronologies and high temporal resolution can be
obtained, potentially providing detailed climate reconstructions (Brauer et al., 2000; Sirocko et al., 2013).
Some lacustrine sediment records are discontinuous (e.g. resulting from sediment erosion, slumping
events, or the temporary disappearance of the lake following drought), and identifying and dating those
hiatuses can provide important palaeoclimatic information (Vegas et al., 2010). The resolution of a
lacustrine environmental reconstruction is influenced by its continuity, sedimentation rate, sampling
resolution and chronological accuracy. Lake sediment archives can provide detailed records spanning

several hundred thousand years to the recent decades.

In spite of the numerous proxies available in lake sediments, only a few proxies such as pollen, diatoms,
chironomids and ostracods (e.g. (Heiri et al., 2007; Peyron et al., 2005) can be used to provide quantitative
reconstructions. Additionally, lake level variations can be obtained after a detailed sedimentological study

(Magny et al., 2013a). Calibration procedures, based on analyses from multiple lakes, describe the modern
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relationship between individual taxa and one or more environmental variables (e.g. (Battarbee, 2000; Heiri
et al., 2011). Although widely used in palaeolimnology, these are not exempt from problems and criticism
(Birks et al., 2010; Juggins, 2013). Promising new proxies are becoming available. For instance, 8'%0
measured in lacustrine diatoms can be used to infer lake water temperature (Leng and Henderson, 2013),
the isotopic composition of n-alkyl diols, n-Cy3 or C, alkanes can be used to reconstruct changes in
precipitation, evaporation and/or the origin of air masses (Sachse et al., 2012) and the TEX86 organic

geochemical index is becoming an excellent palaeothermometer (Blaga et al., 2013).

Lake sediment chronology is mainly based on AMS **C dates which may be problematic. Ideally, **C dating
of lake sediment records is based on terrestrial plant remains. For sediments older than 15 ka BP and
records deposited in treeless environments, dating will often have to rely on bulk sediment samples.
Furthermore, in some karstic lakes with a limestone catchment, the hardwater and reservoir effects have to
be taken into account if the organic content comes from the aquatic environment (Moreno et al., 2010b).
Finally, the *C method becomes increasingly imprecise and difficult to calibrate beyond 50,000 years
(Ramsey et al., 2012). In such cases, other dating techniques are used, such as U-Th disintegration series on
lacustrine carbonates (Pérez-Obiol and Julia, 1994), Optically Stimulated Luminescence (OSL) dating on
siliciclastic sediments (Moreno et al., 2012) or palaeomagnetic excursions in particularly long records
(Vegas et al., 2010). In addition to these absolute dating techniques, varve counting and tephras are widely

used to provide a chronological framework (e.g. (Wulf et al., 2004).
3.2. Speleothems

The major advantage of speleothems (stalagmites and calcite flowstones are the most commonly studied)
as palaeoclimatic archives is their dating accuracy. The Uranium-Thorium method allows dating of
speleothems up to about 650 ka (Hellstrom, 2003). When geochemistry is favorable, old calcites can be
dated to more than 1 million years by applying the U-Pb method (Woodhead et al., 2006). Within the last

ca. 100 ka, two sigma (95%) errors can be below 1% of the age, which makes speleothems one of the most
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accurately datable terrestrial archives. However, as speleothem growth is sensitive to climatic conditions,
they may form hiatuses during cold and dry phases (Genty et al., 2010a). On the other hand, precise
determination of the durations of these hiatuses may provide valuable information about climatic
thresholds that affect regional climatic conditions (Moreno et al., 2010a; Stoll et al., 2013; Zhornyak et al.,

2011).

The stable isotopic composition of calcite is the most frequently used palaeoclimatic proxy in speleothems
(McDermott, 2004). Calcite 520 is linked to many factors, most importantly rainfall origin and trajectory,
precipitation amount, and atmospheric temperature. Calcite 580 reflects variations in precipitation sources
and amounts, especially for tropical climates (Cruz et al., 2006; Wang et al., 2008, 2001) where 50
decreases with increasing monsoon precipitation. Western Mediterranean speleothem records (e.g.
Corchia and Chauvet caves) also display a coupling between 8'20 and climate (Drysdale et al., 2005; Genty
et al., 2006; Zanchetta et al., 2007), but the exact causes of 80 variations are not well understood: most
likely both rainfall and temperature play a role, along with the sources of precipitation. At specific high
altitude sites, such as the Alps (Boch et al., 2011), the calcite 8'30 has been shown to be controlled mainly

by temperature through seasonal effects.

Carbon isotopes (8'3C) are sensitive to climatic changes through the vegetation (C3/C4 photosynthetic
pathways) (Dorale et al., 1998) and, more often, to soil microbial activity changes (Dorale et al., 1998;
Fleitmann et al., 2009; Genty et al., 2003a; Hellstrom et al., 1998; Moreno et al., 2010a). B¢ may also be
partly controlled by kinetics during calcite precipitation (Mickler et al., 2006) and responds to millennial-
scale climatic variations (e.g. DO events) as well as to centennial-scale changes, such as those during GI-1
and GS-1. The possibility that kinetics and/or prior calcite precipitation (PCP) may also control the §"*C
signal does not significantly affect this relationship; it may even amplify it because these effects are usually
positively related to amplify climatic effects: for instance, 8"3C increases as the climate becomes colder and

drier (Genty et al., 2006).

10
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For the majority of speleothems, especially in the mid-latitudes, it is difficult to distinguish the effects of
temperature from hydrological change only using calcite isotopes. Trace element analyses can provide
complementary information about humidity through the water/rock interaction, the residence time of
seepage water, and through the preferential incorporation of specific elements (e.g. Sr) into the calcite

lattice controlled by the growth rate (Borsato et al., 2007; Bourdin et al., 2011; Stoll et al., 2012).

Speleothem calcite stable isotopes and trace elements do not provide quantitative reconstructions of past
temperature or precipitation. However, recent progress in fluid inclusion (FI) analyses (Dublyansky and
Spotl, 2009; Vonhof et al., 2006) and on calcite clumped isotopes (Daeron et al., 2011, 2008; Guo et al.,
2008) has demonstrated its potential for estimating climatic parameters. A very promising approach is
found in the combination of Fl analyses with clumped isotopes data, as this appears to be the only way to

correct for kinetics effects (Wainer et al., 2011).

3.3. Ice cores

The only place in the North Atlantic region where ice core records are continuous to the last glacial is
Greenland (Johnsen et al., 2001). The Greenland ice cores record climatic change at sub-annual resolution
through a variety of proxies for most of the last glacial period (Steffensen et al., 2008) thus providing a
consistent record of abrupt climatic change with characteristic millennial-scale DO events (Dansgaard et al.,
1993). In Europe, ice cores have been retrieved from glaciers in the Alps, Iceland, Svalbard, and from caves

(Persoiu et al., 2011).

The most commonly used proxies from ice cores are 1) the water isotopic composition of the ice, which is
used as a temperature proxy, 2) the gas content of the ice, which provides a record of past atmospheric
composition and greenhouse gases, and 3) impurities in the ice that record past volcanism, storminess,

biomass burning, solar activity, and anthropogenic contributions.

Past Greenland ice accumulation rates are estimated from annual layer thickness and ice flow models that

simulate the annual layer thinning with depth. Past accumulation rates are known to have changed

11



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

significantly over the last glacial cycle, with significantly higher accumulation rates during interglacial
periods than during the glacial (Alley et al., 1993). This, in turn, has led to changes in Greenland ice sheet
volume and thus influenced past sea levels (Dahl-Jensen et al., 2013; Vinther et al., 2009). Within the last
glacial period, accumulation patterns have varied strongly in parallel with the abruptly changing climate,

with an approximate doubling of precipitation associated with the onset of DO events.

The deep Greenland ice cores are independently dated by a combination of annual layer counting for the
younger part and ice flow modeling for the deepest part (Wolff et al., 2010). In the Holocene, annual layers
can be resolved in the water isotopic signal (Vinther et al., 2006), whereas impurity records can be applied
for annual layer counting in the last glacial period (Rasmussen et al., 2006). The glacial part of the
Greenland ice cores dates to 60 ka BP, with an absolute uncertainty of about 5% using a multi-proxy
impurity dataset from the NorthGRIP ice core (Svensson et al., 2008). The modeled time scale for the oldest
part of the ice is based on an empirical relationship between the water isotopic composition and past
accumulation patterns (Buchardt et al., 2012). All the major deep Greenland ice cores (Dye-3, GRIP, GISP2,
NGRIP, NEEM) have been internally synchronized by volcanic reference horizons (Rasmussen et al., 2013)
Seierstad et al., this issue) and linked to other palaeoarchives in the North Atlantic region by tephra layers
(Blockley et al., 2012). Greenlandic and Antarctic ice cores are tightly synchronized by atmospheric gas

concentration records, records of cosmogenic isotopes, and bipolar volcanic events (Veres et al., 2013).
3.4. Terrestrial tracers in marine records

The study of terrestrial tracers in marine sediment cores from hemipelagic settings provides important
information on past climatic changes and their impacts on terrestrial environments. A large amount of data
is available from the Atlantic margin of SW Europe and the western Mediterranean Sea for the 60-8 ka
period (see Voelker et al., this issue). The particular value of terrestrial tracers in marine cores is the
possibility for direct land-sea correlation. The sequences benefit from continuous sedimentation without

hiatuses, but their chronologies are derived from either AMS **C dating of planktonic foraminifera, the

12
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alignment of planktonic 8'®0 or SST curves to a reference record (typically Greenland §'0), or a
combination of these two approaches. In addition, the reservoir effect of the ocean is variable in time and
space and is particularly important for accurate determination of the age of abrupt changes along MIS3 and
deglaciation in marine sediments (Austin et al., 2011). Due to the influence of bioturbation at the sediment
surface, the maximum achievable temporal resolution of these studies is typically limited to ~2 cm (around

200-400 yr for the last glacial period).

Key terrestrial tracers studied in marine records include pollen and spores (e.g. (Fletcher and Sanchez Gofii,
2008; Lézine and Denéfle, 1997; Naughton et al., 2007; Roucoux et al., 2001; Sanchez-Goiii et al., 2008,
2002, 2000), and charcoal (Daniau et al., 2009, 2007). Several sedimentological indicators of changing
terrestrial influxes have also been examined, for example grain-size (Moreno et al., 2002), clay mineralogy
(Bout-Roumazeilles et al., 2007), elemental composition (Hodell et al., 2010) and colour (Rogerson et al.,
2006). Quantitative climate reconstructions have been performed using the Modern Analogue Technique
on pollen assemblages (e.g. (Combourieu Nebout et al., 2009; Fletcher et al., 2010b; Sanchez-Goiji et al.,

2002) (see ESM).
3.5. Other terrestrial archives

Tree-rings, loess, soil-palaeosoil or glacier deposits are other sources of information of climate variability on

land for the last glacial cycle and deglaciation (Table 2).

Tree-rings can be absolutely dated to an exact calendar year and can provide quantified climatic
reconstructions (Friedrich et al., 2004). For instance, recently, cellulose isotope composition studies have
been used to reconstruct summer temperature (Etien et al., 2008). However, the value of the tree ring
archive in the INTIMATE context is restricted by the temporal coverage and, unfortunately, there are few
examples extending back to 15 ka BP (Kaiser et al., 2012). Therefore, the challenge is to find enough
preserved wood to permit construction of a reliable cross-dated chronology (e.g. Friedrich et al., 2007). To

extend the record beyond the period of trees currently alive in Europe, subfossil wood can be recovered
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from lakes, sediments, alluvial terraces, brown coal, or glaciers. Different tree-ring chronologies from
central Europe (Friedrich et al., 2004; Schaub et al., 2008, 2005) have been combined to form a continuous,
absolutely dated tree ring record for the Holocene and the last deglaciation, known as the Central
European master series (CELM) (Becker, 1993; Friedrich et al., 2004; Kaiser et al., 2012). While this provides
a reference for dendrochronological dating, it cannot yet be used for palaeoclimatic reconstruction because

the series has not been calibrated against any climate parameters (Friedrich, personal communication).

Another source of palaeoclimatic information is Western European loess. Loess deposits frequently develop
during glacial periods, and are associated with large floodplains close to ice sheets subject to eolian
deflation (Antoine et al., 2001). Their main advantage is the high sedimentation rate (up to 1 cm in 10 yr)
and the use of several independent dating methods (**C, OSL, etc.) to provide a record of high temporal
resolution. Comparison of loess sequences from Northern France, Belgium and Germany indicates similar
stratigraphic patterns during the last glacial cycle (Antoine et al., 2001), clearly resulting from a common
climatic control. The most detailed investigations are from Nussloch, Germany (Hatte et al., 2001; Lang et
al., 2003; Rousseau et al., 2002), where the loess deposits of the last glacial cycle are exceptionally well
developed compared to other European sites. In fact, variations in grain size, magnetic susceptibility and
malacofaunal composition of the Nussloch loess sequence have been correlated with Greenland ice
records, indicating a striking similarity during cold periods in the last glacial cycle (Antoine et al., 2009;
Moine et al., 2008; Rousseau et al., 2007). However, new dating of the Nussloch sequence has provided a
different chronology for some horizons (Kadereit et al., 2013; Tissoux et al., 2010) that requires more
investigation. Loess sequences from the Austrian and Swiss sectors of the Alpine region are presented by

Heiri et al. (this issue).

Glacial deposits, mostly moraines, but also glaciolacustrine deposits, are good markers of glacial advances
and retreats during last glacial cycle in Western European mountains, such as the Pyrenees (Garcia-Ruiz et
al., 2013) and the Alps (lvy-Ochs et al., 2009). A variety of methods have been used to identify the different

phases of glacial retreat, such as the relative topographic and stratigraphic position of the moraines and
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equilibrium line altitude (ELA) depression relative to the Little Ice Age (LIA). More recently, a combination
of dating techniques (cosmogenic radionuclides, *C, OSL, U-series) has been applied to glacial sediments.
Although these archives can provide a useful source of climatic information, their lack of continuity requires
special data treatment that precludes their inclusion in this compilation. However, examples from Austria

and Switzerland are presented in the Alpine compilation (see Heiri et al. this issue).
4. Linking of records

Good chronological control is critical for comparisons of palaeoclimate records to explore the timing,
duration and synchronicity of major climatic events and to evaluate the processes and mechanisms
involved in the spatial transference (rapid or gradual) of the climate signal. Therefore, only records with
independent age models were included in this compilation, and the dates are included as part of the
collected information (see ESM). Although **C dating is used for most age models in the compiled records,
varve counting and U-Th are also employed in many sequences (e.g. maar lakes or speleothems) (Table 1).
For some records, the identification of “climate events” was considered part of the chronology (e.g. Sokli
record(Engels et al., 2008a). In addition to absolute dating methods, the identification of tephra (volcanic
ash) layers in the sediments has become an important way to link distant records in Western Europe
chronologically (e.g. (Blockley et al., 2012). In Western Europe, tephra layers between 60-8 ka BP originated
from multiple volcanic sources, e.g. Iceland, the Eifel region in western Germany, the French Massif Central
and central-southern Italy. Fig. 3 shows the occurrence of the most significant tephra layers encountered in

the records compiled for this study.

Icelandic volcanoes produced a large number of basaltic, rhyolitic and minor intermediate tephra deposits
during the Late Quaternary, some of which are widely dispersed in the North Atlantic and on the European
mainland. For example, dating and synchronization of last deglaciation chironomid records in Scotland (e.g.
Abernethy Forest, (Brooks et al., 2012) and Norway (Krakenes, (Brooks and Birks, 2000), used the Vedde

Ash (12,120 + 114 years BP GICCO5) and the Saksunarvatn Tephra (10,297 + 90 years BP GICC05)
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(Rasmussen et al., 2006) which are also recorded in the NGRIP ice core (e.g., (Abbott and Davies, 2012;
Mortensen et al., 2005) (Fig. 3). The GS-1 Vedde Ash is the most widespread Icelandic tephra marker and
has been recently detected south of the Alps in the sediment sequences of Lago Piccolo di Avigliana (Lane

et al., 2012) (Fig. 3).

The Vedde Ash occurs in several terrestrial archives in Central Europe (e.g. Meerfelder Maar; (Lane et al.,
2013, 2012) that also include the Laacher See Tephra (LST; 12,880+40 varve years BP; Brauer et al., 1999a)
from the Eifel volcanic field in western Germany. The phonolitic LST forms a reliable anchoring point,
particularly in annually laminated sediments for the transition form Gl-1a to GS-1 (e.g., Brauer et al., 1999b;
Lane et al., 2011a; Wulf et al., 2013). The LST is widespread in lacustrine sediments in Central Europe (see
overview in Riede et al., 2011). Furthermore, a basanitic tephra of possible Eifel provenance was found in
the Les Echets palaeolake sequence ca. 500 km southwest of its source (Fig. 3) indicating great potential for

synchronizing other long French pollen sequences at ca. 42-45 ka BP (Veres et al., 2008).

SW European records (Spain, Portugal) so far lack tephras due to both the predominately easterly dispersal
of widespread ashes from Holocene Massif Central and Late Quaternary Italian volcanoes, and the local
restriction of pyroclastic deposits deriving from alkaline volcanic provinces in NE and SE Spain (e.g. Garrotxa
Volcanic Field; (Cebria et al., 2000). On the contrary, the Central Mediterranean region has a high potential
of tephrostratigraphical linking, as continuous Late Quaternary explosive activities of Central and Southern
Italian volcanoes produced numerous tephra layers. As an example, more than 120 tephra events are
recorded during the last 60 ka BP in the tephra reference profile and pollen record of Lago Grande di
Monticchio (Wulf et al., 2004), including the Pomici Principali (ca. 12 ka BP) and the Neapolitan Yellow Tuff

(14.1 ka BP) (Fig. 3).

5. Discussion

The time interval considered in INTIMATE network (60-8 ka BP) was characterized by large environmental

changes across Western Europe as a response, among other mechanisms (Clement and Peterson, 2008), to
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(1) advances and retreats of the Scandinavian Ice Sheet (SIS) (Svendsen et al., 2004)and (2) rapid
oceanographic changes associated to the different intensity modes of the thermohaline circulation
(Rahmstorf, 2002). In general, cool and dry climates were identified in Western European sequences during
Greenland Stadials (GS) while the climate was warmer and more humid during Greenland Interstadials (Gl)
(Fletcher et al., 2010a). Our compilation of quantitative reconstructions of climate variability allows a
comparison of records from northern and southwestern Europe during the last deglaciation interval (GS-

2.1-a, GI-1, GS-1) (Fig. 4) and before the LGM (GS-2.1b) (Fig. 5).
5.1. Last deglaciation: exploring latitudinal gradients

The last deglaciation is characterized by the decay of ice sheets, a global mean sea-level rise of
approximately 80 m, large disturbances in terrestrial and marine ecosystems and a net release of the
greenhouse gases CO, and CH, into the atmosphere (Clark et al., 2012). During this period, changes in
atmospheric and ocean circulation affected the global distribution and fluxes of water and heat, resulting in
a series of abrupt climatic changes (Gl-la to Gl-le, GS-1), which have broadly similar trends in
palaeoclimate records from many sites throughout the North Atlantic region (Bjorck et al., 1998). The last
deglaciation is well represented in most of the records compiled in our database (Fig. 2), thus allowing us to
explore (1) latitudinal gradients in the response time to the onset of the last deglaciation (ca. 14.7 ka BP in
NGRIP ice core) and (2) the characterization of GI-1 in terms of temperature change and precipitation

variability.

Fig. 4 shows a latitudinal transect of high-resolution terrestrial records during 16-8 ka cal BP. Most of these
records are summer temperature reconstructions, although some are isotopic records from cave
speleothems which may be influenced by both temperature and precipitation (e.g. (Genty et al., 2006). The
Savi 8'®0 record is interpreted as representative of temperature changes (Frisia et al., 2005) while §*C
records from Chauvet and El Pindal caves are the expression of changes in soil microbial activity and

degassing in relation to changes in humidity (Genty et al.,, 2006; Moreno et al., 2010a).Neglecting
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asynchronous responses at the onset and termination of GI-1 that may be due to age model uncertainties,
in general, a similar pattern is apparent between the records, which consistently indicate a warmer/wetter
climate during GI-1 and colder/drier conditions during GS-1. The absolute summer temperature difference
between the two intervals varies around 5-6 °C (with a minimum around 3°C in Lago Piccolo di Avigliana
and a maximum around 8°C in Egelsee), well above the error for temperature reconstructions based on
chironomids (about 1-1.5°C). No consistent latitudinal differences are observed in the magnitude of
temperature change from GI-1 to GS-1. However, northern records (e.g. Jansvatnet, Krakenes, Lough
Nadourcan) indicate a larger temperature increase at the onset of the Holocene than at the onset of GI-1,
similar to the NGRIP ice core record (Fig. 4). In contrast, alpine records (e.g. Savi, Egelsee, Lago Piccolo di
Avigliana) and southern European reconstructions (e.g. La Roya) show similar temperature variations for
the onset of both GI-1 and the Holocene. More temperature reconstructions, especially from southern and

Mediterranean regions of Western Europe, are necessary to confirm this preliminary observation.

Another latitudinal difference is related to the character of the onset of Gl-1, which is generally more
abrupt in northern records and more gradual in southern ones, including speleothem records (e.g. El Pindal
cave, Fig. 4). This observation is also apparent when several Iberian records (see Moreno et al., 2012) and
references therein) and speleothem records from southern France and northern Africa (Genty et al., 2006)
are compared to the NGRIP ice core. This different character of the onset of GI-1 cannot be explained solely
by differences in the accuracy of the age models. In fact, the chronology for speleothems from southern
France and northern Spain is sufficiently well-constrained to observe this gradual onset (see dates in ESM).
Additionally, a North—South gradient through GI-1 is apparent in which Gl-1a is warmer than Gl-1e in the
south but cooler in the north (black lines in Fig. 4). The warming trend during GI-1 was previously observed
in sea surface temperature reconstructions from Western Mediterranean marine cores (Cacho et al., 2001)
and in western Mediterranean temperate forest development (Combourieu Nebout et al., 2009). In spite of

this compelling evidence, there is still no clear explanation for the causes of these different patterns.
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However, all hypotheses suggest a close link to the North Atlantic ocean, atmospheric circulation patterns,

Scandinavian ice sheet retreat and sea ice cover (Genty et al., 2006; Lane et al., 2013).

Model results of the 14.7 ka BP transition (GS-2.1-a/Gl-1e, see Rasmussen et al., this issue) indicate that the
main temperature changes occurred in winter (Renssen and Isarin, 2001). More importantly, the model
simulations demonstrate that the largest change in atmospheric variability occurred in NW Europe where
the daily temperature variability decreased by 50%, whereas storm activity also decreased substantially
(Renssen and Bogaart, 2003). These changes are related to a northward shift of the Atlantic sea-ice margin
at 14.7 ka BP, leading to a northward relocation of Atlantic storm tracks. In such a situation we should
expect a more marked and abrupt temperature change in northern European records, which were more
directly affected by the position of the Atlantic storm tracks. Southernmost European records were located
south of the winter sea-ice margin throughout the deglacial interval (which was located at ca. 45°N in GS-
2.1-a, (Renssen and Isarin, 2001), and did not experience such an abrupt change. In fact, the latitude ca. 40-
43°N has been considered a “frontier” between two different responses in terrestrial climate to climate
change during the Holocene (Magny et al., 2013b). These modelling results explain the difference in abrupt
or gradual onset of GI-1 on a N-S transect in Western Europe, whereas the observed differences in the

pattern within the last deglaciation remain unexplained.

Besides the long-term trends within GI-1, some of the compiled records also indicate synchronous
temperature or precipitation changes within the short events Gl-la to Gl-le. Temperature and
precipitation decreases are indicated in lake records such as Ammersee, Gerzensee, Hijkermeer and in
speleothems from Chauvet and El Pindal caves during the cold Gl-1b, Gl-1c-2 and GI-1d intervals (Fig. 4).
Furthermore, recent analyses of pollen records in southern lberian marine cores indicate short-lived
intervals of forest decline consistent with cooling and drying during Gl-1d and GI-1b (Combourieu Nebout
et al., 2009; Fletcher et al., 2010b). Sometimes limited sampling resolution and the lack of a precise
chronology have prevented the identification of short-term events. Therefore, a comprehensive

comparison of terrestrial responses to these short climate oscillations is not yet possible.
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5.2. Western Europe climate reconstruction before the LGM

Palaeoclimatic reconstructions predating the LGM (ca. 23 — 19 ka BP, (Mix et al., 2001) offer challenges that
are less often encountered when studying younger material. For instance, with increasing age,
chronological control on sedimentary sequences (or other records) tends to worsen. Second, non-analogue
situations between present and past conditions are more likely to occur, hampering quantitative

reconstruction of key climatic parameters.

Sites that occur north of ~50°N latitude were either covered by the Scandinavian Ice Sheet (SIS) during (part
of) MIS3 and MIS2, or they were situated in a periglacial environment, which prevented formation of
continuous records (Engels et al., 2008a). South of the sub- and periglacial region, many sites provide
records throughout large parts of MIS2 and 3 (Fletcher et al.,, 2010a; Moreno et al.,, 2012). Below, we

discuss both regions of W Europe in more detail.

5.2.1 NW Europe

Dating is often problematic in sedimentary records from Scandinavia and other parts of the (peri-) glacial
environment, for the period predating the LGM. Subglacial erosion removed large sections of sedimentary
records in Scandinavia, and only discontinuous or fragmentary records are preserved in scattered locations
in NW Europe. The periglacial environment was probably too dry for the (continuous) accumulation of
organic matter, and only during warm periods (interstadials) did the SIS retreat, allowing lake or peat
deposits to accumulate. Therefore, lithostratigraphic correlation and palynostratigraphy are often not
possible in this region. Second, the older part of MIS-3 is at the age limit of radiocarbon dating. Until the
recent publication of the age-depth model for the Lake Suigetsu 06 core sequence (SG06; (Ramsey et al.,
2012) it was not possible to calibrate radiocarbon ages older than ~26 cal ka BP. Although the cumulative
counting error of the SG06 sequence still reaches ~6%, the availability of a calibration curve for the period
prior to 26 ka BP allows us for the first time to calibrate terrestrial radiocarbon samples and to correlate

key climate records from MIS2 and 3 directly. Currently, the chronologies of almost all NW European sites
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dated to MIS3 show major differences in both the applied dating methodology and in the number of dates
available per site, and it is often not clear during which time interval (i.e. which Greenland Stadial or
Interstadial) the deposit was formed. Combined, this hampers a detailed comparison of the available

paleoclimatological data for MIS2 and 3 in NW and central Europe.

The influence of the SIS is dominant in the formation and preservation of natural archives in the northern
parts of W Europe. Following the last major expansions of the SIS, only a few palaeoclimate records remain
in Scandinavia that predate the LGM time-interval. Furthermore, there is a bias towards preservation of
sediments formed during the (long) MIS3 interstadials. The SIS decreased in size during the prolonged
warm intervals of early MIS3, and the increase in temperature and moisture availability led to lake and

peatland development.

Most deposits studied from NW Europe were formed in shallow lacustrine environment. Dating for classic
sites such as Oerel (Behre and van der Plicht, 1992), Upton Warren (Coope et al., 1961) or Denekamp,
Hengelo and Moershoofd (van Der Hammen and Wijmstra, 1971) mostly relied on a few radiocarbon dates
as well as on palynostratigraphy. Based on the differences in the radiocarbon ages as well as in the pollen-
assemblages, the names of these sites were assigned to different interstadials of the Middle Pleniglacial.
These interstadials were later tentatively correlated with the Greenland Interstadials (Bos et al., 2001).
Proxies that were studied for the NW European sites mostly include pollen, non-pollen palynomorphs and
botanical and zoological macroremains. Using the plant-indicator approach, mean temperatures for the
warmest month have been reconstructed for some of these sites, resulting in reconstructed temperatures
that are close to present-day temperatures (see Huijzer and Vandenberghe, 1998, for a review of 268 NW
European Pleniglacial sites). Coleoptera-based temperature reconstructions of 15-18 °C (Coope, 2002)
showed that temperatures during early MIS3 might have been (sub-) equal to present-day conditions

(Huijzer and Vandenberghe, 1998; Behre and van der Plicht, 1992; Behre et al., 2005).
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Sokli (N Finland) has been the subject of one of the most detailed MIS3 multi-proxy projects in N Europe,
and some of the results of this research project are incorporated in the database presented in this paper
(ESM). The entire sediment column has been dated using a combination of radiocarbon dating, OSL dating,
lithostratigraphic correlation and palynostratigraphy (Alexanderson et al., 2008; Helmens et al., 20073,
2007b). The MIS3 sediments of the Sokli sequence have been analysed for pollen (Bos et al., 2009),
chironomids (Engels et al., 2008a), diatoms (Helmens et al., 2009), botanical macrofossils (Bos et al., 2009)
and sedimentological properties (Alexanderson et al., 2008; Helmens et al., 2007a, 2007b). Mean July air
temperatures have been derived from pollen and chironomids (Bos et al., 2009; Engels et al., 2008a;
Helmens et al., 2007a) while minimum mean July air temperatures have been reconstructed from aquatic
plant remains using the indicator species approach. The combined results show previously unknown rapid

climate warming to present-day temperatures in the early MIS-3.

Other recently studied MIS3 sites from NW Europe include Pilgrimstad (Wohlfarth et al., 2011) and
Riipiharju (Hattestrand and Robertsson, 2010) in Sweden and Hitura (Salonen et al., 2008), Ruunaa (Lunkka
et al., 2008) in Finland and Nochten (Engels et al., 2008b) in Germany. A combination of different dating
techniques (OSL, radiocarbon) and a multi-proxy approach to palaeoclimatic reconstruction were used. The
combined evidence of open-water conditions over different areas of the Fennoscandian region during early
MIS3 suggests a significantly decreased size of the SIS, tentatively correlated to the longest Greenland
Interstadial (GIS14) by (Helmens and Engels, 2010) and placed at ~49.6-54.2 ka BP (Rasmussen et al., this
issue). Other records from the Austrian and Swiss regions in the Alps covering the pre-LGM are reviewed in

Heiri et al. (this issue).

5.2.2. SW Europe

Pioneering palynological research into lake basins and deep bog sequences (Beaulieu and Reille, 1984;
Florschiitz et al., 1971; Follieri et al., 1989) established that southern European archives can provide

continuous records of terrestrial environmental and climatic change spanning the last glacial-interglacial
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cycle, thus providing insights into regional conditions and climatic variability for the intervals equivalent to
MIS3 and 2. In general, the proxies examined in SW European terrestrial archives have highlighted the
dynamic nature of glacial climate over southern Europe. The early view of a small number of southern
European glacial interstadials has now evolved into the recognition of pervasive millennial-scale variability
as temporal resolution, chronological control and range of proxies for records has improved (e.g. (Allen et
al., 1999; Follieri et al., 1998; Sdnchez-Goii et al., 2002; Wohlfarth et al., 2008) (Fig. 5). The record of both
terrestrial and marine climate tracers in marine sediments has provided important insights into rapid glacial
changes in SW Europe, notably the confirmation of in-phase changes between terrestrial and marine
paleoenvironments in response to Dansgaard-Oeschger and Heinrich variability (e.g. (Combourieu Nebout
et al., 2009; Roucoux et al., 2001; Sdnchez-Goiii et al., 2000; Turon et al., 2003). However, the timing of key
changes in lake and marine archives is typically constrained by radiocarbon dating, with the inherent
challenge of increased uncertainty beyond the LGM and towards the limits of this dating technique. In
some cases, chronologies were based on event stratigraphy and the alignment of sub-orbital and
millennial-scale events to master ice-core chronologies, provoking debate within the Quaternary
community (Blaauw, 2011). Tephrochronology appears as a highly effective chronostratigraphic tool for
correlating long sedimentary sequences within and beyond the Mediterranean region (Lane et al., 2011b)

(see section 3), excluding the Iberian Peninsula and Atlantic facade.

Speleothem records from SW Europe provide excellent information about past climate conditions beyond
the LGM, although few records are available (Villars and Chauvet in France and El Pindal in Spain) (Genty et
al.,, 2010b, 2003a; Moreno et al., 2010a; Wainer et al., 2009) (see also Heiri et al., this volume for Alpine
speleothems) and the fact that they do not provide quantitative reconstructions. The Chauvet and El Pindal
records overlap by just a few millennia (25-22 ka, Fig. 5) and, despite their different resolution, both
indicate a synchronous warming trend after Heinrich event 2, coinciding with GI-2.1 and 2.2. The main
feature of the Villars record is a general cooling trend between GIS12 at ~45.5 ka and the synchronous

ending of three stalagmites at 30+1 ka (Fig. 5), with an initial well-marked climatic threshold at ~41 ka, after
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which the growth rate of each stalagmite slows down significantly (Genty et al., 2010b). Due to difficulties
interpreting 8'20 records from temperate latitudes, 8"3C profiles are more often employed to infer past
changes in moisture and soil microbial activity. High speleothem 8"C values attained during GS indicate dry
climates on land (Fig. 5). Similarly, biome reconstruction from Lago Grande di Monticchio (Allen et al.,
1999) and AP:NAP (arboreal pollen to non-arboreal pollen ratios) from a marine core in the Alboran Sea

(Fletcher and Sanchez Goiii, 2008; Sanchez-Goiii et al., 2002) also indicate dry conditions (Fig.5).

Finally, the combined evidence from multiple studies indicates a characteristic pattern of climatic impacts
associated with Dansgaard-Oeschger variability during MIS3, with dry and cool (warm and humid)
conditions in southern Europe associated with cold stadial (warm interstadial) conditions at higher
latitudes. A few quantitative climate reconstructions have been performed, for example, using pollen
climate response surfaces at Lago Grande di Monticchio, Italy (Allen et al., 1999), or MAT reconstructions of
pollen records from marine sediments (e.g. Sdnchez-Goiii et al., 2002). Clearly, there is a need for further

guantitative climate reconstructions incorporating a range of reconstruction techniques and proxies.
7. Suggestions for future studies

Considering the large number of Western European terrestrial palaeo-studies available in the literature, the
relatively low number of records included in the present study reflects the difficulties related to obtaining
guantitative climate proxies from terrestrial archives that are chronologically well-constrained (see Brauer
et al., this issue). Based on the experience of making the present compilation, we have several suggestions

on how future studies can provide the wider palaeo-community with more high-quality terrestrial records.

Geographical key areas of interest for future investigations within the terrestrial palaeo-community. The
majority of existing Western European palaeoclimate records providing quantitative climate information
are constrained to a relatively narrow latitudinal band from 53 to 45°N and records from Scandinavia and
the Mediterranean are relatively scarce (Fig. 1). In addition, a high proportion of the investigated sites is

located in mountainous areas. This uneven coverage of sites is not only geographical but also temporal, as
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many high latitude records are associated with long interstadials, such as Gl-14. There is therefore a need
for more palaeoclimate reconstructions from the high latitudes (e.g. lacustrine records in Sweden) and
from lowland areas in SW Europe (e.g. lowlands in France, Spain and ltaly). Quantitative reconstructions
covering the time interval before the LGM are very scarce in W Europe, limiting our knowledge of climate

variability associated with DO changes.

Inclusion of additional archives. The present compilation consists of records from lakes, speleothems, ice
cores, and terrestrial proxies in marine records. However, records of loess sequences, tree rings, and glacier
geomorphology also constitute important contributions to the quantitative reconstruction of past climate
conditions. Unfortunately, the chronological framework in many of these records is not well-developed or
they are difficult to interpret in terms of climate variability. There is, however, potential for these archives

to produce important climate reconstructions in the future.

Proxies: towards better quantifying past climate. This compilation has shown an unbalanced use of proxies
to calibrate past climate conditions. Climate inferences from chironomid and pollen data follow consistent
approaches and methods, whereas these approaches are more difficult in other proxies due to (1) the lack
of adequate calibration data and numerical inference models and (2) the paucity of information on how
climate influences the distribution and abundance of the proxies. More work is needed to increase the
number of regional training sets (chironomids, pollen, diatoms) and to understand taphonomic processes
and the response of proxies to climatic change. In addition, the recent development of new proxies (and
methods) to produce quantitative reconstructions of past climatic conditions (e.g. combination of fluid
inclusions analyses with clumped isotope data on speleothems or the application of the TEX86 index in lake
sediments) provide exciting opportunities to improve our quantitative understanding of past climatic

changes.

Acknowledgments

25



588

589

590

591

592

This work and the workshop leading to this publication have been supported by the Cost Action ES0907
"Integrating ice core, marine and terrestrial records 60,000 to 8000 years ago (INTIMATE)". AM
acknowledges the funding from the “Ramdn y Cajal” postdoctoral program. We are indebted to Miguel

Sevilla (IPE-CSIC) for designing Figure 1.

26



593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Figures:

Fig. 1: Location map showing the records compiled (pink: lake sediments; white: speleothems; blue:
terrestrial proxies on marine sediments). The Alpine region is enlarged to better indicate the included

records. See text and Table 1 for more information on the archives and proxies compiled in this study.

Fig. 2: Temporal coverage (base and top) of all records included in this compilation. Gray bands indicate

Greenland Interstadials (Gls) and pink bands the position of marine expression of Heinrich events.

Fig. 3: Map of main tephra occurrences in the Western European terrestrial palaeoclimate records

mentioned in the text.

Fig. 4: Selected high-resolution terrestrial records from Western Europe from 16 to 8 ka BP. From top to
bottom: NGRIP ice core (Rasmussen et al., 2006); Jansvatnet (Birks et al., 2012), Krakenes (Brooks and Birks,
2001), Nadourcan (Watson et al., 2010), Fiddaun (van Asch and Hoek, 2012), Hijkermeer (Heiri et al., 2011),
Klein Ven (van Asch et al., 2013), Ammersee (von Grafenstein et al., 1999), Egelsee (Larocque-Tobler, 2010),
Gerzensee (Lotter et al., 2000, 2012) (including temperature reconstruction from chironomids and pollen)
and Lago Picolo di Avigliana (Larocque and Finsinger, 2008) lakes; Savi (Frisia et al., 2005), Chauvet (Genty
et al., 2006), and El Pindal (Moreno et al., 2010a) caves and La Roya (Mufioz Sobrino et al., 2013) and
Monticchio lakes (Allen et al., 1999) (biome reconstruction derived from pollen data, indicating higher
temperature and/or precipitation as the number increases). Latitudinal position of the selected sequences
and the type of climate variable reconstructed are indicated. Shaded bands mark GS-1 and GS-2.1a
intervals, based on the NGRIP ice core (Rasmussen et al., this issue). Black lines along GI-1 show the

warming or cooling character of the different records.

Fig 5: Selected terrestrial records from Southwestern Europe from 60 to 20 ka BP compared to the NGRIP
ice core record. From top to bottom: 830 (%) from the NGRIP ice core (Rasmussen et al., 2006); 8C (%o)
from Chauvet (Genty et al., 2006), Villars (Genty et al., 2010b) and El Pindal (Moreno et al., 2010a) caves,

biome reconstruction from Monticchio lake derived from pollen data (Allen et al., 1999) and arboreal
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pollen to non arboreal pollen ratios from marine core MD95-2043 (Fletcher and Sanchez Goii, 2008;
Sanchez-Goii et al., 2002). Latitudinal position of the selected sequences is indicated. Shaded bands mark

warm Gls, based on the NGRIP record (Rasmussen et al., this issue).

Tables:

Table 1. List of compiled records indicating the type of dating, the climate variable that was reconstructed

and the proxy data that were quantified. Reference to published data is indicated.

Table 2. Advantages and limitations in the palaeoclimate reconstruction from the most common terrestrial

archives.

Electronic Supplementary Material:

Information about methods to calibrate proxies in order to obtain quantitative data about temperature,

precipitation or biomes. All 56 records are included in a standardized format.
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Table 1. List of compiled records from Western Europe in the INTIMATE chronological framework, specifying the type of dating, the climate variable

that was reconstructed and the proxy data that were quantified. Reference to published data is indicated for more information.

Altitude (m
Reconstructed Quantified
N¢ | Archive Country Site above or below Type of dating Reference
variable proxy
sea level)
C-14,
1 Finland Sokli 220 palynostratigraphy, Temperature Chironomids (Engels et al., 2008a)
OosL
Temperature, lake Lithology, (Heiri and Millet, 2005;
2 Lautrey 788 C-14, tephra
level chironomids Magny et al., 2006)
E France (Ampel et al., 2010, 2009,
()
3 _% Les Echets 267 C-14, tephra Temperature Diatoms 2008; Veres et al., 2009;
&
1 Wohlfarth et al., 2008)
8
(Seelos et al., 2009; Sirocko
4 Eifel 565 C-14 Dust supply Lightness, dust
et al., 2013)
>
[
g Friedlander
5 5 10 C-14, events, tephra Temperature Chironomids (van Asch et al., 2012)
© Grosse Wiese
6 Holzmaar 425 Varve counting, Temperature, Pollen (Litt et al., 2009)
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tephras, C-14

precipitation

10

11

12

13

14

15

16

Meerfelder Varve counting, Temperature,
336.5 Pollen (Litt et al., 2009)
Maar tephras, C-14 precipitation
Varve counting, Calcite layer
Rehwiese 28 Temperature (Neugebauer et al., 2012)
tephra thickness
Isotopic
(von Grafenstein et al.,
Ammersee 533 C-14, tephra composition of Ostracods 8'°0
1999)
precipitation
Fiddaun 30 C-14, events Temperature Chironomids (van Asch and Hoek, 2012)
Ireland Lough
70 C-14 Temperature Chironomids (Watson et al., 2010)
Nadourcan
Temperature,
Lithology, (Magny, 2006; Magny et al.,
Accesa 157 C-14, tephra precipitation, lake
pollen 2007)
level
Frassino 78 C-14 Precipitation Bivalves 8'°0 (Baroni et al., 2006)
>
S Preola 4 C-14 Lake level Lithology (Magny et al., 2011)
C-14,
Lavarone 1100 Temperature Chironomids (Heiri et al., 2007)
palynostratography
Piccolo di 365 C-14, tephra Temperature Chironomids (Larocque and Finsinger,
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17

18

19

20

21

22

23

24

25

26

27

Avigliana 2008)
Temperature, (Joannin et al., 2013; Magny
Lithology,
Ledro 652 C-14 precipitation, lake et al., 2009; Vanniére et al.,
pollen
level 2013)
Grande di varve dating, C-14,
656 Biomes Pollen (Allen et al., 1999)
Monticchio tephras
Hijkermeer 14 Palynostratigraphy Temperature Chironomids (Heiri et al., 2011)
C-14,
Klein Ven 28.5 Temperature Chironomids (van Asch et al., 2013)
Netherlands palynostratigraphy
C-14,
Usselo 33 Temperature Coleoptera (van Geel et al., 1989)
palynostratigraphy
Jansvatnet 53 C-14 Temperature Chironomids (Birks et al., 2012)
Norway
Krakenes 38 C-14 Temperature Chironomids (Brooks and Birks, 2001)
(Perez-Obiol and Julia,
Vegetation cover, Calcite 8180,
Banyoles 173 C-14, U-Th 1994; Valero-Garcés et al.,
Precipitation (e
1998)
£
©
& Enol 1070 C-14 Temperature Calcium content | (Moreno et al., 2010b)
Estanya 670 C-14 Lake level Lithology (Morellon et al., 2009)
Fuentillejo 635 C-14, Lake level Lithology (Vegas et al., 2010)
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28

29

30

palaeomagnetism

(Gonzalez-Sampériz et al.,

31

32

33

34

35

36

37

Portalet 1608 C-14 Lake level Lithology
2006)
(Mufoz Sobrino et al.,
La Roya 1802 C-14 Temperature Chironomids
2013)
(Larocque-Tobler, 2010;
Egelsee 770 C-14 Temperature Chironomids
Webhrli et al., 2007)
Foppe 1470 C-14 Temperature Chironomids (Samartin et al., 2012b)
Chironomids,
isotope stratigraphy, Temperature, (Lotter et al., 2000, 2012;
b pollen,
% Gerzensee 603 palynostratigraphy, Precipitation, lake Magny, 2012; van Raden et
S lithology,
u;, tephra level al., 2012)
cladocera
Hinterburgsee 1515 C-14 Temperature Chironomids (Heiri et al., 2003)
Origlio 416 C-14 Temperature Chironomids (Samartin et al., 2012a)
Maloja 1815 C-14 Temperature Chironomids (llyashuk et al., 2009)
Abernethy
340 C-14 Temperature Chironomids (Brooks et al., 2012)
~ forest
)
Gransmoor 8 C-14 Temperature Coleoptera (Blockley et al., 2004; Elias
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and Matthews, 2013;

Walker et al., 1993)

(Blockley et al., 2004; Elias

38 Llanilid 60 C-14 Temperature Coleoptera and Matthews, 2013;
Walker et al., 2003)
Chauvet- Soil and vegetation, | Calcite 6180,
39 205 U-Th (Genty et al., 2006)
Chastm6 precipitation (e
Soil and vegetation, | Calcite 8180,
40 Villars-11 175 U-Th (Genty et al., 2006)
precipitation 8
o Soil and vegetation, | Calcite 50, (Genty et al., 2010a; Wainer
41 e Villars-14 175 U-Th
= precipitation (e et al., 2009)
%) 18
g Soil and vegetation, | Calcite 80,
42 % Villars-27 175 U-Th (Genty et al., 2010a)
o precipitation 8
a
(%]
Soil and vegetation, | Calcite 8180,
43 Villars-9 175 U-Th (Genty et al., 2003b)
precipitation 8
Soil and vegetation,
Calcite 6180,
44 Ireland Cragg 80 U-Th temperature, (McDermott et al., 2001)
8C
precipitation
45 Italy Corchia 840 U-Th Precipitation Calcite 5"°0, (Zanchetta et al., 2007)
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(e

Calcite 8180,

46 Grotta Savi 441 U-Th Temperature (Frisia et al., 2005)
8°C
Soil and vegetation, | Calcite 8180,
47 Spain El Pindal cave 24 U-Th (Moreno et al., 2010a)
precipitation e
48 | Ice core | Greenland | NGRIP 2917 layer counting Temperature 50 isotopes (Andersen et al., 2004)
(Combourieu Nebout et al.,
Temperature,
49 ODP-906 -1841 C-14, events Pollen data 2009; Fletcher et al., 20103;
precipitation
Genty et al., 2010b)
Alboran Sea
(Fletcher and Sanchez Goii,
50 MD95-2043 -1108 C-14, events Vegetation Pollen data 2008; Sanchez-Goiii et al.,
— 2002)
[
Q
51 §. MDO03-2697 -2164 C-14 Vegetation Pollen data (Naughton et al., 2007)
(]
[
52 © MD95-2039 -3381 Events Vegetation Pollen data (Roucoux et al., 2001)
2 Iberian
(Sanchez-Goiii et al., 2008,
53 margin MD95-2042 -3148 C-14, events Vegetation Pollen data
2000, 1999, 2009)
54 MD99-2331 -2110 C-14, events Vegetation Pollen data (Naughton et al., 2007)
Western
55 MDO04-2845 -4100 C-14, events Vegetation Pollen data (Sanchez-Goiii et al., 2008)
France
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56

Adriatic Sea

MD90-917

-1010

C-14, events

Temperature,

precipitation

Pollen data

(Combourieu-Nebout et al.,

2013)
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Table 2. Advantages and limitations in the palaeoclimate reconstruction from the most common terrestrial

archives.

Advantages

Limitations

Lake sediments

High resolution, high sedimentation rates, even

laminated or varved sediments

Quantifying past temperatures is possible from

different lacustrine organisms groups

Reconstructing past lake levels can be a way to

explore water availability in the past

Some lake sediments contain tephra layers

Lack of continuity in dry or cold climates

Dating is difficult beyond C-14 range or when

sediments have low organic content

Lacustrine sedimentation is tightly linked to
local factors — not always a good

representation of past regional climate

Speleothems

High resolution, annual bands

Precise chronological control (U-Th) under most

common conditions

Lack of continuity in dry and cold climates

Some speleothems can not be dated due to

low U in the samples or high detrital content

Accurate interpretation of stable isotopes

usually requires other proxies

Ice cores High resolution, annual bands Only obtainable from ice sheets
Precise chronological control (varve counting) Difficult to obtain quantitative temperature
reconstructions
Loess Proxy for atmospheric intensity in the past Difficult to obtain continuous records
Dating comes from the combination of 14C and Complicated stratigraphy
OSL techniques Limited spatial coverage
Tree rings High resolution, annual bands Quantification of climate from tree rings can

Precise  chronological control (tree-ring

be problematic

36




counting and 14C)

Scarce records covering INTIMATE

chronological framework

Glacier deposits

Dating comes from the combination of

different techniques (14C, OSL, 10Be, etc)

Difficult to obtain continuous records

Difficult to obtain climate parameters in a

quantitative way

Terrestrial tracers

in marine

sediments

Long, continuous archives

Terrestrial information can be easily combined
(under the same chronology) with marine data

(SST, productivity, etc)

Source areas for terrestrial tracers may be
poorly defined, and transport pathways may
change over time and in response to climate

changes
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SUPPLEMENTARY MATERIAL
METHODS FOR PROXY CALIBRATION
1. Temperature

Most Western Europe temperature reconstructions in this compilation are based on
chironomids (19 records from a total of 33 temperature reconstructions, Table 1).
Chironomidae is a family of two-winged flies (Insecta: Diptera), also known as non-biting
midges. The larvae of most species are aquatic and chironomids can be found in almost all
types of freshwater. The head capsules of chironomid larvae are abundant and well-preserved
in most lake sediments, although are less diverse and may be absent from the bottom of lakes
that have long periods of anoxia. Individual fossils can usually be identified to genus or species-
morphotype (Brooks et al., 2007). The winged adult chironomids are poor fliers but are widely
and rapidly dispersed across the landscape by wind. Therefore the response of chironomids to
climatic and environmental change is rapid, often within the sampling resolution of most
sediment core analyses, so no lag is evident. The development rate of the immature stages of
most chironomid species is primarily driven by summer temperature and so the distribution
and abundance of each taxon is closely related to mean July air temperature (Eggermont and
Heiri, 2012). This relationship is the basis for chironomid-based temperature inference models.
These inference models typically have an error of about 1-1.5°C and an r? of around 0.8-9.
Chironomid-based temperature inference models and modern calibration sets suitable for use
on European lake sediment sequences are currently available from Scandinavia (e.g. Larocque
et al., 2001), Switzerland (Lotter et al., 1997), Iceland (Langdon et al., 2008) western Russia
(Self et al., 2011) and western Europe (Heiri et al., 2011). These models have been successfully
applied to many sequences since the LGM to produce high resolution temperature inferences.
The reliability of these temperature reconstructions has been confirmed by comparison to

independently derived reconstructions based on other proxies, particularly oxygen isotopes



(Brooks and Birks, 2000), and for recent sequences, with meteorological records (Larocque et
al., 2009). Because of the sensitivity of chironomids to climate change, chironomid-base
reconstructions apparently reflect even the short-duration, low amplitude, climate oscillations
seen in the Greenland ice core records (e.g. Gl-1d or Gl-1b, events) with little or no lag in the

response (Brooks and Birks, 2001).

Three other groups of organisms have been used to reconstruct temperature in this
compilation: diatoms, Coleoptera and Cladocera. Diatoms are a major group of algae, and are
among the most common types of phytoplankton. Diatoms have played an important role in
the development of quantitative methods for environmental reconstruction, not only for
temperature reconstruction (e.g. Lotter et al., 1997) but also for pH variability (e.g. Birks et al.,
1990) and salinity (e.g. Fritz et al., 1991). Many studies on latitudinal climatic gradients indicate
the importance of a temperature relationship in diatoms (see references in Smol and
Stoermer, 2010). In this compilation, the Les Echets temperature record (Table 1, Fig. 1) is
based on diatoms and shows a clear differentiation among DO interstadials and stadials
(Ampel et al., 2010; Wohlfarth et al., 2008). Coleoptera, or beetles, are one of the most
species-rich groups of organisms. They are excellent proxies for climate change because of
their good preservation, because their morphology and ecology does not appear to have
changed through time, and because they respond quickly to climatic changes. Since the work
by Atkinson et al., (1987), many other researchers have used Coleoptera to determine
quantitative environmental changes (Coope et al., 1998; Ponel et al., 2007). However, due to
the poor chronological control of most Western European beetle records, only three
coleopteran-based reconstructions are included in this compilation: the Usselo record in the
Netherlands (Van Geel et al., 1989) and Gransmoor and Llanilid records in UK (Elias and
Matthews, 2013) (Table 1, Fig. 1). Cladocera is an order of small crustaceans that has been
used by several authors to infer temperature from lake sediments (Smol et al., 2001, chap. 2).

Lotter et al., (1997) made the first attempt to quantify the relationship between climate and



Cladocera assemblages and his model was later applied to obtain the Gerzensee temperature

reconstruction (Lotter et al., 2000) (Table 1, Fig. 1).

Temperatures can be also reconstructed from Greenland ice core records. Thus, Greenland
temperatures from the last glacial period are estimated by a combination of 1) the water
isotopic composition of the ice (8'30) which provides a high resolution temperature proxy
(Johnsen et al., 2001), 2) accurate borehole temperature records that provide long term
absolute temperatures of past precipitation (Dahl-Jensen et al., 1998), and 3) measurement of
nitrogen isotopes in the gas phase (8"°N) to provide an estimate of abrupt climatic changes
(Huber et al., 2006). During the coldest phases of the last glacial period temperatures in central
Greenland were about 25°C colder than the present, and temperature increases associated
with the onset of DO events are between 5-15 °C of amplitude (Wolff et al., 2010). Recently, an
absolute temperature calibration for the entire NGRIP ice core has become available (Kindler

et al.,, 2013).

Finally, although inferring qualitative temperature changes from sedimentological and
geochemical data in lake sediments is common (e.g. Gonzdlez-Sampériz et al., 2006),
quantification of those proxies is still far from complete. The main difficulty is the necessity to
calibrate the sedimentological and geochemical properties for each lake sediment record. In
this compilation, and in a semi-quantitative way, the Calcium record of Enol lake, in the
Cantabrian mountains (Spain), is presented as a temperature proxy as carbonate is only
preserved in that environment under warm climates (Moreno et al.,, 2010b). Similarly, the
thickness of calcite layers in Rehwiese palaeolake (Germany) is a temperature indicator during
GS-1 as those varves are formed during the warm season (Neugebauer et al., 2012). Some
temperature reconstructions based on pollen records are also presented in this compilation

(Table 1) and are discussed below (section 3).

2 Precipitation/effective moisture



2.1 Lake levels

Lakes are one of the best archives to record past changes in water availability, such a
reconstruction is particularly reliable in closed lakes where lake level is controlled by the
precipitation — evaporation balance and other inputs and outputs are negligible. However,
quantifying the processes influencing lake level is not an easy task and depends on
sedimentary facies that can be related to particular lake levels. At least two approaches have
been used to describe variations in lake levels using sedimentological information. One
approach, which is quantitative but not calibrated against present-day water level, is based on
the assignation of a number to the sedimentary facies, indicating the lowest lake level by the
lowest number. In some lakes with high lake level variation, the observed sedimentary facies
can give interesting information about the deposition environment and allow estimates of
relative lake level change. In the example from Lake Estanya, in the Spanish Pre-Pyrenees,
deposition of yellowish, massive, coarse-grained gypsum is associated to an ephemeral saline
lake—mud flat — lake level 1 — while black, massive to faintly laminated silty clay sediments
were characteristics of a deep, dimictic, freshwater lake — lake level 10 (Morellén et al., 2009).
The second approach was first applied to marls accumulated in the lakes of the Jura and Swiss
Plateau and then applied in other places, such as the Italian Peninsula (Magny, 2012; Magny et
al., 2007). This technique is based on counting and classifying the different carbonate
concretions, morphotypes of biochemical origin that compose the coarser fraction (Magny,
2001), together with an assessment of the lithofacies changes. Modern analogues based on
surface samples taken along transects perpendicular to the shore have revealed that each
concretion morphotype shows a specific spatial distribution from the shore to the deep zone in
relation to the hydrodynamics and the aquatic vegetation belts (e.g. Oncolites characterize
nearshore areas; cauliflower-like forms dominate the littoral platform, etc.). Therefore,
characterizing the different sub-environments in several cores taken on a depth transect,

dating the observed transitions in all the cores and correlating them, allows the main changes



in lake level to be distinguished (e.g. Accesa lake, Lac Lautrey — see a recent compilation in

Magny et al., 2013).

2.2. Stable isotopes as indicators of precipitation and hydrological changes

Determining the isotopic composition of past precipitation is usually a challenging task, with
the notable exception of ice cores, where the solid precipitation (snow, then transformed into
ice) can be measured almost directly from the ice and is often seen as a basic proxy for
reconstructing past surface temperatures (see above). For other natural substances we have to
consider that the primary isotopic composition of meteoric precipitant can be quite different
from “environmental water” from which the proxy precipitates and the composition of the
proxy is also influenced by other biological, physical and/or chemical processes. For instance, a
body of water can be influenced by evaporation, which tends to enrich it in heavy isotopes
compared to rainfall. In addition, the oxygen isotope composition of a carbonate precipitated
from a water body is also influence by the temperature and kinetic isotopic fractionations (e.g.

Leng and Marshall, 2004).

2.2.1 Lake stable isotopes

Lake sediments supply different kinds of authigenic minerals like mollusc shells, ostracods,
diatoms or biogenic-induced carbonate, which can be analyzed for stable isotopes for the
reconstruction of past environmental conditions (e.g. Leng, 2006; Sagnotti et al., 2001). More
recently, the isotopic composition of chironomids has been proposed as a potential tool to
reconstruct past lake water isotopic compositions (Verbruggen et al., 2010). Unfortunately, the
climatic information which can be obtained from isotopes is strongly skewed by the period of
formation of the different substances and the characteristics of the water body such as its
recharge system and residence time. However, careful selection of the appropriate lacustrine

system together with the analysis of a specific carbonate fraction (i.e. ostracods), allows the



reconstruction of past variation in isotopic composition of lake waters which can be related to

rainfall isotopic composition (von Grafenstein et al., 1999).

Most of the 80 records from Northwestern and Central European lakes are from the last
deglaciation and (early) Holocene (e.g. Ahlberg et al., 1996; Bottger et al., 1998; Lotter et al.,
1992; von Grafenstein et al., 1999; Hammarlund and Buchardt, 1996) and, unfortunately,
many of them were obtained from bulk carbonate with the consequent risk of detrital
contamination (Leng et al., 2010). The evolution of those 620 records during the lateglacial
indicates an increasing trend at the beginning of GI-1 interstadial and, in some cases, a
decreasing trend with a clear phase of lower values linked to climatic deterioration during GS-
1. Lotter et al. (1992) have shown that not only major shifts in the oxygen-isotope profiles
from central European lakes but also minor shifts are nearly synchronous with those
recognized in the Greenland oxygen-isotope record. This is mostly related to the strong link
between surface temperature and 8'20 of precipitation in these regions (e.g. Rozanski et al.,
1993) as dominant factors in controlling the final isotopic composition of lacustrine carbonate.
Additionally, in order to improve interpretation of 6'®0 variability in lacustrine carbonates, the
sensitivity of lakes to hydrological budget and evaporation must be taken into account as these
effects can be dominant compared to the effects of temperature and amount of precipitation
on the isotopic composition of rainfall. This is particularly evident from the water isotopic
composition of Mediterranean lake water (Roberts et al., 2010, 2008) where last deglaciation
580 records are linked to changes in the hydrological balance (Baroni et al., 2006; Zanchetta et

al., 2007a).

2.2.2 Speleothem isotopic composition

The majority of speleothem-based palaeoclimate studies have focused on 60 records as
proxies of variability in the isotopic composition of rainfall (Lachniet et al., 2009). Compared to

lakes, speleothem 80 records are less affected by evaporation in the soil-epikarst zone (at



least for the European records), thus facilitating their interpretation. However, the presence of
non-equilibrium isotopic effects during calcite precipitation (Mickler et al., 2006) may mask
part of the relationship with local rainfall, which is usually averaged in the isotopic composition
of dripwaters. On the other hand, different time periods of calcite precipitation or water
infiltration can skew the isotopic signal towards a specific season (Tremaine et al., 2011). The
interpretation of speleothem 60 records differs regionally. Thus, in the Southern Europe-
Western Mediterranean area the signal is often considered to be dominated by the amount of
precipitation (Zanchetta et al., 2007 and references therein) impinging in the cave waters. In
northern regions, such as the Alps, temperature is believed to play a dominant role (e.g. Frisia
et al.,, 2005; Mangini et al.,, 2005), although changes in storm trajectories could also be
important (Mangini et al., 2007; Spotl et al.,, 2010). Recently, McDermott et al., (2011)
presented the first compilation of European speleothems 60 records of the Holocene,
observing interesting latitudinal patterns with a tight isotope-latitude correlation which
indicates that speleothems are reliable recorders of combined rainfall oxygen isotope
composition and temperature. Unfortunately, a similar treatment of data for the last

deglaciation is not still possible due to the scarcity of long records.

Besides 60 values, other proxies can shed light on regional climate variability reconstructed
from speleothems. These proxies include §'3C variability, which was shown to be very sensitive
to climate changes and likely controlled by the vegetation and soil activity, thus a combination
of moisture and temperature (Genty et al.,, 2003; Moreno et al., 2010a), trace element
concentrations (Fairchild and Treble, 2009), and growth rates (Dominguez-Villar et al., 2009).
Despite the fact that quantitative interpretation of these proxies is still problematic, isotopic
measurements of fluid inclusion and on the clumped isotope measurements that provided the
first temperature reconstructions combined with fluid inclusions data show great promise

(Vonhof et al., 2006; Wainer et al., 2011).

3. Biome and climate reconstruction from pollen data



Biomes are the basic ecological units used to describe the major ecosystems of the Earth.
Biomes are primarily distributed according to climatic factors (warmth of the growing season,
winter temperature and available moisture) and are defined by the characteristic life-forms
that inhabit each one. Biome reconstruction is essentially a means of classifying information
about past vegetation, usually pollen data, into biomes. It recognises that vegetation in the
past may have differed in species composition relative to present-day plant communities.
Underpinning the approach is the assumption that biomes contain characteristic suites of plant
functional types (PFTs). For example, desert vegetation usually includes many drought-tolerant
forbs and very few broad-leafed trees, even though the species composition of desert
vegetation varies enormously from region to region as a consequence of historical

biogeography.

Biomisation was originally developed to validate biome maps based on climatic modelling
experiments (Prentice et al., 1996; Prentice and Webb IIl, 1998). Its wide applicability in
diverse environments has seen biome reconstruction employed in almost all parts of the world
where pollen records exist (Elenga et al., 2000; Jolly et al., 1998; Pickett et al., 2004; Prentice
et al., 1996; Tarasov et al., 2000, 1998). The resulting maps are currently the most spatially and
temporally accurate depictions of past vegetation on a global scale. PFT-based approaches to
pollen data (Peyron et al.,, 1998) may also be used in conjunction with climate—vegetation
models to produce quantitative palaeoclimatic estimates (Guiot et al., 2000), although the

broad tolerances of individual PFTs mean that the errors inherent in this procedure are large.

In European and Mediterranean regions, palaeoclimatic reconstructions have been produced
on a continental scale at a coarse temporal resolution (e.g. Cheddadi and Bar-Hen, 2009;
Cheddadi et al., 1997; Davis and Brewer, 2009; Davis et al., 2003; Huntley and Prentice, 1988;
Peyron et al., 1998), while high-resolution pollen records from individual sites have been used
to provide continuous palaeoclimatic records (e.g. Brewer et al.,, 2012; Guiot et al., 1989;

Peyron et al.,, 2013, 2011). Quantitative palaeoclimatic estimates from pollen data are



produced using different approaches: since the early 20th century, there has been a
development of methods for the estimation of climate from pollen assemblages, from the
simple climate overlap methods of Iversen (1944) to more sophisticated probability-based

approaches (Juggins and Birks, 2012).

Most standard methods are based on different ecological concepts. We can distinguish
“assemblage-based” methods such as the Modern Analogues Technique (MAT), “species-
based” methods such as Weighted Averaging (WA) or Weighted Averaging Partial Least
Squares regression (WA/PLS), which are transfer functions, and probabilistic indicator taxa
approaches such as Probability Density Functions (PDF). MAT reconstructs past climate
parameters by considering the similarity of pollen assemblages (Guiot, 1990; Overpeck et al.,
1985). The MAT uses squared-chord distance, to determine the degree of similarity between
samples with known climate parameters (modern pollen samples) to a sample for which
climate parameters are to be estimated (fossil pollen sample). The smaller the chord distance
is, the greater the degree of analogy between the two samples. The palaeoclimate is
reconstructed by weighted averaging. While the MAT does not require real calibration and is
based on a comparison of past assemblages to modern pollen assemblages, regression-based
transfer functions include on a calibration between environmental variables and modern
pollen assemblages. WAPLS, an extension of simple Weighted Averaging, is a “classic”
regression method that assumes that the relationships between pollen percentages and
climate are unimodal: each taxon tends to be most abundant at a particular optimal value of
an environmental variable and cannot survive where the value of that variable is too low or
too high. Assuming that taxon’s ecological preferences remain constant in time, even if the
overall pollen assemblage has no modern analogue, estimation for past environmental

conditions can be provided.

Despite the broad agreement of pollen-based palaeoclimate reconstructions with other

proxies, there are important issues surrounding their use (Salonen et al., 2012). Bartlein et al.



(2010) provide an assessment of statistical reconstruction methods and their application to
fossil pollen data, highlighting the problems associated with ‘no analogue’ or "multiple
analogue” situations (Birks et al., 2010) and spatial auto-correlation effects. Some problems
are also noted with WA and WAPLS when the effective number of species in the fossil data-set
is low (Telford and Birks, 2011). Recognition of these uncertainties had recently led to further
analyse the potential advantages and limitations of the different methods (Guiot et al., 2009;
Juggins, 2013; Telford and Birks, 2011, 2009, 2005). Recently, multi-method approaches are
adopted which allows to better assess the error of reconstruction inherent in pollen-based
climate prediction. Such approaches have been successfully tested for different time periods in
Europe and Mediterranean areas and enable us to provide more precise and robust climate
estimates than those based on only one method (Brewer et al., 2008; Klotz et al., 2003; Kihl et
al., 2010; Peyron et al., 2013, 2011, 2005). Moreover, we find new methods such as Boosted
Regression Trees (Salonen et al., 2012) or the recent improvement of the inverse modelling
approach (Garreta et al., 2012) highly promising and well-performing tools for pollen-inferred
palaeoclimatic reconstructions. Reliable palaeoclimate estimates are more and more needed

as benchmarks for model simulations (Morrill et al., 2013).

4. Other climate variables

Besides temperature and precipitation, few other climate variables have been quantified
based on terrestrial proxies from Western Europe sequences. It is worth highlighting the work
carried out on some sequences to reconstruct past atmospheric circulation intensity from the
dust content in the sediments. Thus, particles transported by wind were identified in several
lakes from the Eifel region in northern Germany based on the grain-size, colour and
geochemical composition (Sirocko et al., 2013) producing a summary curve that reflects the
intensity of atmospheric circulation and dust availability for the last glacial cycle (electronic
Supplementary material). Similarly, the content of dust particles in ice cores has served to

discriminate periods with more material supplied from world deserts that have been



interpreted as arid periods but with an enhanced intensity of atmospheric winds (Fuhrer et al.,
1999; Mayewski et al., 1997). A more intense atmospheric circulation linked to dry periods of
the last glacial cycle (DO stadials) was also apparent in some studies carried out in marine
sediments from Western Mediterranean where an increase in grain-size of detrital particles
was observed (Bout-Roumazeilles et al., 2007; Combourieu Nebout et al., 2002; Moreno et al.,
2002). In any case, we are still far from being able to estimate the necessary wind intensity to

account for the observed changes in the sediments in order to provide quantified data.
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