Magneto-Electroacoustic Dynamics in a Straintronic Random Access Memory Cell
Abstract
The straintronic principle of nonvolatile magnetoelectric random access memory (MELRAM) isattracting attention because of the prospect of achieving ultra-low-power consumption in memory devices onits basis. The mechanism of switching magnetic moments by pulse deformation of elastically coupled mag-netic and piezoelectric subsystems is associated with the excitation of acoustic oscillations in memory cells.The oscillation period in nanoscale cells is comparable to the switching time of magnetic moments, whichcan distort the process of recording information. The inf luence of acoustic excitations on the dynamics ofmagnetic switching has been investigated using numerical simulation in relation to a magnetostrictive cell of50 × 50 × 400-nm size on a PMN-PT 011 piezoelectric substrate. The parameters of the control electricalpulses providing stable binary switching of the system magnetic states have been determined
Origin | Files produced by the author(s) |
---|
Loading...