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MIP Formulations for the Maximum Expected Value Partially

Successful Path Problem

Noam Goldberg∗ Michael Poss†

Abstract

Mathematical programming formulations are developed for a problem motivated by de-
termining chains of organ-donation exchange pairs in a compatibility graph. The objective is
to maximize the expected value where pairs are known to fail with given probabilities. His-
torically this NP-hard problem has been solved heuristically or exactly only for limited path
lengths. Although the problem appears highly nonlinear, we formulate it as a mixed-integer
linear program (MILP). A computationally tractable layered formulation that approximately
solves larger instances is also presented.
Keywords: Longest path, layered formulation, kidney exchange, barter exchange, clearing
algorithms

1 Introduction
Consider a setting in which each of m items has an associated profit and probability of

success. In this paper we consider a maximum expected value partially successful (s, t)-path
problem (PSPP), where each (s, v)-subpath of an (s, t)-path, up to some vertex v along the
path, has a value of the product of probabilities of arcs along the (s, v)-subpath, times the sum
of arc profits.

Our problem bears similarities with the probabilistic all-or-nothing problem, which is to
select a subset of items so as to maximize the expected total profit – the product of probabilities
of selected items times the sum of profits of these items. In particular, the all-or-nothing
probabilistic path problem [13], has the subsets of items corresponding to paths in a graph, each
of which has an expected value that is equal to the product of its underlying arc probabilities
times the sum of its arc profits. Other all-or-nothing problems have been considered over all
unrestricted subsets of a given ground set, and matchings in a graph [14].

While all-or-nothing path problems have applications in designing series-connected subsys-
tems, among others, the partial failure variant studied in the current paper has important ap-
plications in live-donor organ exchange problems. In particular, paired-kidney donation graphs
indicate donor-recipient compatibility using directed arcs. Each vertex in such a graph corre-
sponds to a pair of a recipient (patient) and donor – typically a family member who is willing
to donate a kidney in exchange for the related patient receiving one [1]. Because exchanges
occur simultaneously, there is significant uncertainty with respect to the success of a particular
donation to take place as a part of the exchange. For example, a particular donor may not
be available on a given day due to illness or simply because reneging on the agreement. This
setting with uncertainty gives rise to partially successful paths and the objective considered in
this paper; see also the expected utility of chains formulated in [8] and the future work discussion
in [16].

The idea of performing kidney-transplant exchanges in chains or paths of donor-recepient
pairs, initiated by an altruistic donor, has been applied in practice and described in [18]. The
overall kidney-exchange problem described in [6], [12], [17], [1] and [8] is a market clearing
problem where all (recipient) vertices must be covered by paths or cycles. Cycles are initiated
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by paired donors and paths are initiated by yet-to-be-paired altruistic donor vertices (vertices
that have only outgoing arcs). The problem of determining a maximum expected-value PPSP
can be considered as the pricing problem of the overall market clearing problem. Also, PSPP
can be considered independently; as soon as an altruistic donor arrives he/she can be used to
initiate a path of maximum expected value. The current paper is focused on improving and
developing new mixed-integer programming formulations for this problem.

Related to our problem is the orienteering problem: an orienteering path problem is to
maximize the number or weight of vertices visited subject to a time limit on all visits [10, 4, 5].
In particular a discounted orienteering problem is a special case with pe = P for all e ∈ E and
some 0 < P < 1 (the problem is introduced in [4] for undirected graphs).

Next we formally describe the problem and relate our mixed-integer nonlinear programming
(MINLP) formulation to the optimization problem as it appears in the literature. We then
propose a linearization and reformulation of the MINLP, followed by an extended formulation
based on a layered graph. Finally, we conclude with computational experiments on simulated
kidney exchange data to evaluate the proposed formulations along with attempts to strengthen
them.

2 Problem definition
We now formally state the PPSP problem. Let G = (V,E) be a directed graph, s, t ∈ V be

the source and the sink, and let δ+(u) = {v ∈ V : (u, v) ∈ E} and δ−(u) = {v ∈ V : (v, u) ∈ E}
be sets of direct successors and predecessors of node i ∈ V , respectively. The problem with
multiple sources sinks is also handled by constructing a supersource s and a supersink t that are
connected to the multiple sources and sinks, respectively. For each edge e = (u, v) ∈ E, we are
given a positive profit ce = cuv ≥ 0 and a probability of success pe = puv ∈ [0, 1]. Let m = |E|
and n = |V |. The maximum expected value PPSP problem is to find a path π ∈ P(t), where
P(t) ∈ 2E is the set of all elementary paths from s to t, so that the objective function

z(π) =
∑

(u,v)∈π

cuv
∏

f∈π(v)

pf (1)

is maximized. First, the following proposition relates the simplified form of the objective (3) to
the objective function considered in for determining kidney exchange paths initiated by altruistic
donors in [8].

Proposition 1. The objective∑
(u,v)∈π

(1− puv)
∑
e∈π(u)

ce
∏

f∈π(u)

pf +
∑
e∈π

ce
∏
f∈π

pf , (2)

considered in [8] is equivalent to (1).

Proof. We rewrite (2) using straightforward algebra

(1) = −
∑

(u,v)∈π

puv
∑
e∈π(u)

ce
∏

f∈π(u)

pf +
∑

(u,v)∈π

∑
e∈π(u)

ce
∏

f∈π(u)

pf +
∑
e∈π

ce
∏
f∈π

pf

= −
∑

(u,v)∈π

∑
e∈π(u)

ce
∏

f∈π(v)

pf +
∑

(u,v)∈π

∑
e∈π(v)

ce
∏

f∈π(v)

pf

=
∑

(u,v)∈π

cuv
∏

f∈π(v)

pf

= z(π)

Then, the maximum expected value PPSP problem is

max{z(π) : π ∈ P(t)}. (3)

Evidently the problem (3) with pe = 1 for all e ∈ E is a longest path problem that is strongly
NP-hard in general directed graphs [11].
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3 MILP formulations
We now present mixed-integer linear programming (MILP) formulations to exactly and ap-

proximately solve (3).

3.1 Exact formulation
Although the problem (3) appears to be highly nonlinear in fact it can be formulated as a

MILP. Given a graph G = (V,E), with s, t ∈ V , let the path flow polytope be denoted by

Π =
{
x ∈ R|E|+

∣∣∣ ∑
u∈δ−(v) xuv=

∑
u∈δ+(v) xvu for v ∈ V \ {s, t}∑

u∈δ+(s) xsu=
∑
u∈δ−(t) xut=1

}
.

and consider the following MILP formulation.

max
∑

(u,v)∈E

cuvquv (4a)

subject to:
∑

w∈δ−(u)

qwu =
∑

v∈δ+(u)

1

puv
quv u ∈ V \ {s, t} (4b)

quv ≤Muvxuv (u, v) ∈ E (4c)

x ∈ Π (u, v) ∈ E (4d)

xuv ∈ {0, 1}, quv ≥ 0 (u, v) ∈ E, (4e)

where 0 < Muv ≤ 1 is a sufficiently large probability constant. For each (u, v) ∈ E the decision
variable xuv is used to indicate whether (u, v) is selected as a path edge, and the auxiliary
variables quv is used to define quv =

∏
(u,v)∈π(v) puv as in z(π). The constraints corresponding

to (4d) are the s − t path-flow conservation constraints. Constraint (4c) enforces that quv = 0
for each (u, v) ∈ E with xuv = 0. Finally, (4b) implements the recursion to accumulate the
probability product for each pair of selected incident edges (w, u) and (u, v) with xuv = xwu = 1,
it requires that qwupuv = quv.

To strengthen the formulation (4) it is desirable to select Muv for each (u, v) ∈ E as small as
possible. It can be observed it suffices to set Muv = p̄(u)puv where p̄(v) denotes the maximum
probability of a path from s to v for all v ∈ S \ {s} and p̄(s) = 1. It is known that p̄ can
be determined in polynomial time by solving a maximum reliability problem (assuming exact
arithmetic it is equivalent to a shortest path problem).

To prevent solutions that are feasible for (4) from containing cycles, cycle-breaking inequali-
ties must be added. We consider two alternative ways of breaking the cycles. First, following [20],
we consider generalized cutset inequalities,∑

(u,v)∈δ+(S)

xuv ≥
∑

(w,v)∈δ+(w)

xwv S ⊆ V \ {s, t} : |S| ≥ 2, w ∈ S. (5)

These constraints break any cycle by enforcing that the number of arcs leaving S be not smaller
than the number of arcs outgoing from any node k of S.

A second type of inequalities will prevent cycles if the probabilities are strictly less than
unity (specifically their product along cycles). The sufficiency of the inequalities∑

v∈δ+(u)

xuv ≤ 1 u ∈ V \ {t}, (6)

for prevention of cycles, given the condition that success is uncertain along cycles, is established
by the following proposition.

Proposition 2. The problem (4) with (6) has an acyclic optimal solution if
∏
f∈c pf < 1 for

each cycle c ⊆ E.
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Proof. Consider (x, q) that is a feasible solution of (4) with (6). Note that by the flow-
conservation constraints and the integrality of x, the support of x is a union of one path π
from s to t and a set of cycles C ⊂ 2E . Suppose that there is some u ∈ V that is incident to
edges in two different cycles or an edge in a cycle and and edge in π. Then, by the integrality
of x,

∑
v∈δ+(u) xuv > 1, thereby violating (6). It follows that the cycles c ∈ C and the path π

are all vertex disjoint. Now further suppose for the sake of deriving a contradiction that (x, q)
is an optimal solution with minimal |C| > 0 and consider a cycle c ∈ C. If qe = 0 for each e ∈ c,
then a new solution (x′, q) can be defined (using (x, q)) by setting x′e = 0 for each e ∈ c. The
objective value of (x′, q) is equal to that of (x, q) and has one less cycle, thereby establishing
a contradiction. Otherwise, if qe > 0 for some e ∈ c, constraints (4b) written for all (u, v) ∈ c
imply that

∏
f∈c pf = 1.

3.2 Rounded formulation
The formulation from the previous section tends to have a weak linear programming re-

laxation, due the big-M coefficients involved in constraints (4c). We present in this section an
alternative and stronger approach that is based on layered graphs, where multiple copies of graph
vertices and edges are created and “stacked on top of each other”; see for example [15]. Specif-
ically, we consider next a base 0 < α < 1 and define the rounded logarithms of the probabilities
as re = dlogα pee, and accordingly, using an upper bound on re for all e ∈ E of U = nmaxe∈E re,
the set of rounded logarithms values is R = {0, . . . , U}. Define V0 = V \{s, t} and let its induced
subset of edges be denoted by E0 = E[V0]. Then, consider copies of V0, one for each for each
k ∈ K, to be denoted by V k

0 = V0 ×K; each member (v, k) ∈ V k is the k-th copy of v ∈ V0 in

V̂ . The layered graph is then Ĝ = (V̂ , Ê), where V̂ = {(s, 0), (t, 0)} ∪
⋃
k∈K V

k
0 and

Ê = {(u, k, v, k + ru,v) | (u, v) ∈ E0, k ∈ {0, . . . , U − ru,v}}
∪
{

(s, 0, v, 0)
∣∣ v ∈ δ+(s)

}
∪
{

(u, k, t, 0)
∣∣ u ∈ δ−(t), k ∈ {0, . . . , U}

}
.

Let Π̂ be the corresponding path flow polytope Π defined for the layered graph Ĝ in place of
G, with (s, 0) and (t, 0) as the source and the sink nodes. Evidently, all paths in this graph
correspond to extreme points of this polytope. Consider the formulation

max
∑

e=(u,k,v,k̄)∈Ê

αkcuvxe (7a)

subject to:
∑

v∈V \{s}:∃k̄∈K
e=(u,k,v,k̄)∈Ê

xe ≤ 1 u ∈ V \ {t} (7b)

x ∈ Π̂ (7c)

xe ∈ {0, 1} e ∈ Ê. (7d)

Note that while any path π̂ = ((u1, q1) = (s1, q1), (u2, q2), . . . , (ul, rl) = (tl, rl)) in Ĝ is elemen-
tary, its projection onto V , π = (u1 = s, u2, . . . , ul = t) might contain a cycle. We forbid such
paths π̂ (whose projection contain one or more cycles) by limiting the number of outgoing arcs
from any u ∈ V \ {s} to at most one in constraints (7b). Also note that the rouding makes
solving formulation (7) an inexact solution of (7). However, if α is chosen close enough to one,
the worst-case performance of the optimal solution of (7) can be bounded from the theoretical
viewpoint as formalized below.

Observation 1. For α ≤ (1 − ε)1/n, then each solution that is optimal to (7) is an (1 − ε)-
approximate solution to (4) with (6).

4 Computational results
4.1 Kidney exchange graph experiments

In this subsection we experiment with kidney compatibility graphs that are randomly gen-
erated following the structure and data given in kidney exchange literature.
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Graph topology simulated according to [3] (graph[n]a[A] datasets). We generate a
“sparse-dense” graph with the node connectivity generated according to the panel reactive an-
tibodies (PRA) levels as suggested in [3], and we make use of additional data given in [2, 8].
In particular we generate graph vertices with a highly sensitized recipient with probability 0.27
these recipients are connected with donors (corresponding to an incident incoming edge) with
probability 0.03. The failure probabilities are assigned also based on PRA levels and highly
sensitized patients are matched with a success probability of 0.5. Otherwise, low PRA recipients
are compatible with donors with probability 0.5, 57% of them are matched with a success prob-
ability of 0.75 (cross-match failure rate of 0.25) and 43% of them are matched with a success
probability of 0.95 (cross-match failure rate of 0.05). The values of matching PRA recipients
are generated from a normal distribution with mean 10 and standard deviation 2. The values of
matching highly sensitized recipients are a factor of 1.5 greater (so the mean is 15) as suggested
in [8].

Graphs based on simulated donor data instances of [7] and [8] (MD[n] datasets).
These instances were generated using a simulator based on [19]. Graph arcs were constructed
based on blood-type compatibility and we set the weights to be either unitary in datasets
MD[n]unitval or normally distributed with mean 10 and standard deviation 2 in datasets MD[n]-
stochval. For patients that are considered highly sensitized with PRA levels exceeding 0.73 in
the original data, the arc values considered were twice as much as initially generated. The
success probabilities are set to 0.5 for highly sensitized patients (determined by the PRA levels).
Otherwise, a success probability of 0.75 is set with probability 0.57 and success probability of
0.95 is set with probability 0.43 (similar to the graph[n]a[A] datasets).

4.2 Implementation details
All algorithms have been coded in Julia 1.3.1 on a platform using a (Intel i7-10510U) 1.80GHz

CPU with 4 cores and an 8MB cache and 16GB of RAM memory. The mathematical programs
are modeled using the JuMP v0.21.1 [9] and Gurobi v0.7.6 packages and solved using with the
Gurobi 9.0.1 solver running 4 threads.

None of our instances contain an edge with a probability equal to 1. Although, if an instance
has multiple altruistic donors, we then connect supersources and supersinks to all nodes with
edges having probability 1, but this may not lead to cycles c such that

∏
f∈c pf = 1. Hence,

the condition of Proposition 2 holds so inequalities (6) are enough to guarantee the existence of
optimal acyclic solutions. This being said, inequalities (5) are not dominated by inequalities (6),
so separation of the former through callbacks might be further improve the overall performance
of the formulation.

Following [20], we thus tested the separation of inequalities (5) at both fractional and integer
solutions by checking whether they are satisfied on each strongly connected component of the
graph induced by the positive components of x that is optimal to (a relaxation of) (4). Our
results indicated a worsening of the overall performance: the relaxation improvement, often
nonexistent, is too little to compensate for the time spent in the separation procedure. Therefore,
we do not use inequalities (5) in the results presented next.

4.3 Description of the results
Table 1 shows for the particular kidney exchange graph instances that we experimented,

statistics and characteristics including the number of nodes, edges, number of altruistic donors,
length of the longest path from the supersource to any node in the graph, and the root relaxation
gap (in %). Solution times are reported in seconds in Tables 2 and 3. Here T indicates that a
time limit of 1800 seconds is reached and M indicates that the solver has exhausted the available
memory. Several observations can be made from the results of these tables. First, we see that
the extended formulation (7) scales reasonably well, as long as the memory limit is not exceeded.
Some of the large MD instances, namely 84unitval, 84stochval, 125unitval, are solved faster than
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Instance |V | |E| |S| LP Root gap
MD12stochval 18 96 1 9 9
MD12unitval 18 96 1 9 10
MD19stochval 18 150 1 14 7
MD19unitval 18 150 1 14 4
MD21stochval 18 114 2 10 7
MD21unitval 18 114 2 10 1
MD23stochval 18 121 2 13 17
MD23unitval 18 121 2 13 28
MD43stochval 34 402 1 19 14
MD43unitval 34 402 1 19 13
MD44stochval 34 337 1 17 15
MD44unitval 34 337 1 17 11
MD51stochval 34 405 3 19 6
MD51unitval 34 405 3 19 16
MD60stochval 34 371 3 19 10
MD60unitval 34 371 3 19 9
MD61stochval 34 422 4 19 16
MD61unitval 34 422 4 19 17
MD66stochval 34 403 4 22 20
MD66unitval 34 403 4 22 16
MD70stochval 34 332 4 18 13
MD70unitval 34 332 4 18 18
MD81stochval 66 2205 3 55 15
MD81unitval 66 2205 3 55 20
MD84stochval 66 1512 3 36 29
MD84unitval 66 1512 3 36 27
MD125stochval 130 6026 6 73 7
MD125unitval 130 6026 6 73 12

Instance |V | |E| |S| LP Root gap
graph20a1 22 178 1 20 25
graph30a2 32 329 2 30 31
graph40a2 42 681 2 41 30
graph50a3 52 981 3 51 23
graph60a3 62 1387 3 61 17
graph70a4 72 1851 4 71 13
graph80a4 82 2247 4 81 10

Table 1: Kidney exchange graph instance main characteristics. LP stands for longest path and
the root gaps are in % with respect to formulation (4).

formulation (4). Second, the exact formulation (4) appears to be more efficiently solved with
instances MD than with instances “graph”. To further investigate this behavior we refer to the
graph instance characteristics in Table 1. The table data shows that graph30a2 and instances
MD43 – MD70 have comparable numbers of nodes and edges. However, graph30a2 cannot be
solved in 1800 seconds, while these MD instances are all solved within a few seconds, except
instance 66unitval which requires roughly 72 seconds. A partial explanation of this behavior
could lie in the strong root relaxation gap of (4) for these MD instances, ranging from 6 to
20% while for the graph30a2 instance it equals 31%. The strength of the relaxation appears to
correlate with the length of paths in these graphs (directly impacting Muv); for the MD instances
with 34 nodes the length ranges from 17 to 22 hops, compared with 30 hops in graph30a2.

Next, the third group of gap folumns of Tables 2 and 3 provide the best solution found by the
extended formulation (7), relatively to the best solution found by the exact formulation (4) and
expressed in %. All instances solved exactly by formulation (4) can only lead to negative values.
Evidently, α < 0.8 seems to lead to poor solutions, while setting α higher than 0.8 appears
to yield only marginal improvements. Finally, we remark that for the instance MD125unitval
that cannot be solved to optimality, the layered formulation (7) even provides slightly better
solutions than the best solution found by the exact formulation (within the 3 hour time limit).

5 Conclusions and future work
In this paper we proposed a linear formulation for the PPSP problem. For this formulation

we prove and evaluate cycle prevention inequalities that outperform standard longest path cycle
prevention inequalities. We then evaluateed a layered formulation that effectively solved the
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CPU Seconds Gap (%)

Instance
α

0.75 0.8 0.85 0.9 0.95 (4) 0.75 0.8 0.85 0.9 0.95

graph20a1 3 6 7 10 16 11 31 4 4 1 0
graph30a2 14 32 40 79 25 T 44 3 1 0 0
graph40a2 119 345 635 115 608 T 55 1 0 -1 -1
graph50a3 1198 128 407 590 114 T 49 0 -1 -1 -1
graph60a3 233 386 534 1456 216 T 71 0 -1 -1 -1
graph70a4 T 1521 1784 729 662 T 72 0 0 -1 -1
graph80a4 T T T 492 T T 74 1 20 0 –

Table 2: Solution CPU seconds and and optimality gap for approximate MILP (7) for the
“graph” instances.

CPU Seconds Gap (%)

Instance
α

0.75 0.8 0.85 0.9 0.95 (4) 0.75 0.8 0.85 0.9 0.95

MD12unitval 1 1 1 1 4 1 9 0 0 0 0
MD12stochval 1 1 1 1 4 1 7 0 0 0 0
MD19unitval 1 1 1 2 6 1 27 0 0 0 0
MD19stochval 1 1 1 3 18 1 26 0 0 0 0
MD21unitval 0 1 1 2 6 1 1 0 1 0 0
MD21stochval 1 1 1 2 4 1 24 0 0 0 0
MD23unitval 1 1 1 2 3 1 46 0 0 0 0
MD23stochval 1 1 1 1 2 1 37 2 3 2 0
MD43unitval 8 28 43 57 37 2 43 0 0 0 0
MD43stochval 10 27 37 54 53 2 44 10 0 0 0
MD44unitval 4 10 13 17 25 3 62 0 0 0 0
MD44stochval 4 11 13 17 13 1 52 1 1 1 0
MD51unitval 15 38 49 107 46 2 37 0 0 0 0
MD51stochval 11 39 57 114 73 1 30 0 0 0 0
MD60unitval 8 26 34 81 55 2 48 0 0 0 0
MD60stochval 10 21 31 59 70 1 34 2 2 0 0
MD61unitval 15 33 36 72 54 1 54 0 0 0 0
MD61stochval 11 29 35 74 44 2 42 0 0 0 0
MD66unitval 12 30 38 72 39 73 24 0 0 0 0
MD66stochval 18 64 121 170 62 2 59 3 3 0 0
MD70unitval 7 19 28 60 27 7 58 0 0 0 0
MD70stochval 6 21 37 58 45 1 50 3 2 2 0
MD81unitval 564 731 210 207 557 T 77 0 0 0 0
MD81stochval T T T T T T 63 100 27 8 1
MD84unitval 367 1469 1524 T T T 54 1 0 1 1
MD84stochval 332 603 715 521 T T 49 7 5 1 0
MD125unitval 409 1200 1343 M M T 64 -1 -1 – –
MD125stochval M M M M M T – – – – –

Table 3: Solution CPU seconds and optimality gap for approximate MILP (7) for the MD
instances.
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problem within a guaranteed approximation gap for larger instances. According to our exper-
iments the approximation gap in practice usually appeared much smaller than the theoretical
guarantee.

The problem considered in the current paper is strongly NP-hard in general graphs. Kidney-
exchange and other organ donation compatibility graphs do not appear to have much of a
special structure. In contrast, computing a path that maximizes the similar yet different all-
or-nothing objective remains NP-hard in directed acyclic graphs (DAGs); see [13]. Although it
is not difficult to extend the FPTAS suggested for the all-or-nothing objectives to the current
problem, it is a question of theoretical interest for future work to determine whether the current
problem remains NP-hard in a DAG.
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