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INTERNAL CONTROLLABILITY OF NONLOCALIZED SOLUTION
FOR THE KADOMTSEV–PETVIASHVILI II EQUATION∗

IVONNE RIVAS† AND CHENMIN SUN‡

Abstract. The internal control problem for the Kadomtsev–Petviashvili II equation, better
known as KP-II, is the object of study in this paper. The controllability in L2(T2) from a vertical
strip is proved using the Hilbert uniqueness method through the techniques of semiclassical and
microlocal analysis. Additionally, a negative result for the controllability in L2(T2) from a horizontal
strip is also shown.
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1. Introduction. The Kadomtsev–Petviashvili equations, better known as KP,
is

∂x(∂tu+ ∂3xu+ u∂xu)± ∂2yu = 0,(1.1)

and they was introduced by Kadomtsev and Petviashvili (see [17]) in 1970 from the
study of transverse stability of the solitary wave solution of the Korteweg–de Vries
(KdV) equation. The KP equations are completely integrable and they can be solved
by inverse scattering transform. Moreover, (1.1) has been studied separately depend-
ing on the sign that is used; with a negative sign it is known as the KP-I equation,
and otherwise it is the KP-II equation. The propagation of the trajectories behaves
very differently from one equation to the other and they do not allow study of them
at the same time. In this paper, we concentrate on the KP-II equation.

Concerning the Cauchy problem, the KP-II equation has been well studied. In
a pioneering work, Bourgain [3] proved the global well-posedness of the KP-II equa-
tion in L2(T2) by using the Fourier restriction norm he introduced in [2]. For the
nonperiodic setting, Takaoka and Tzvetkov in [15] proved local well-posedness in an-
isotropic Sobolev space Hs1,s2(R2) with s1 > − 1

3 and s2 ≥ 0. Hadac, Kerr, and Koch
in [8] proved global well-posedness and scattering for small data in critical functional

space H−
1
2 ,0(R2). Molinet, Saut, and Tzvetkov in [16] showed the local and global

well-posedness for partially periodic data.
We will address the problem of exact controllability for the KP-II equation. Before

getting into this problem, we observe that (1.1) can be written as

∂tu+ ∂3xu+ u∂xu± ∂−1x ∂2yu = 0,

where the Fourier multiplier ∂−1x is defined by

∂̂−1x v(k, η) =
1

ik
v̂(k, η)
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1716 IVONNE RIVAS AND CHENMIN SUN

for all distributions with horizontal mean value

v ∈ D′0(T2) :=
{
v ∈ D′(T2) : v̂(0, l) = 0 ∀l ∈ Z

}
.

For any s ∈ R, we denote by Hs
0(T2) := Hs(T2)∩D′0(T2) a closed subspace of Hs(T2).

In particular, L2
0(T2) := H0

0 (T2). Additionally, for an open set ω ⊂ T2, we denote

C2
ω(T2) :=

{
g ∈ C2(T2) : supp(g) ⊂ ω

}
.

When ω is of the form (a, b)x × Ty or Tx × (a, b)y, the functions in C2
ω(T2) can be

identified as functions of a single variable, supported in (a, b). In these cases, we will
use the notation C2

ω for short.
The internal control problem that we are interested in this paper is, given T > 0

and u0, u1 ∈ L2
0, does there exist a control input f ∈ L2((0, T );L2(T2)), supported

on some open subset ω ⊂ T2, such that the solution of{
∂tu+ ∂3xu+ ∂−1x ∂2yu+ u∂xu = f, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2),

(1.2)

satisfies u(T, ·) = u1?
Additionally, we face the difficulty that the control input f should be localized in

ω while keeping the horizontal mean value. However, if the control region ω is either
a horizontal strip or a vertical strip, we can define the control operator as follows.

For a vertical control region of the form ω = (a, b) × T, we fix a nonnegative
real-valued function g ∈ C2

ω(T) such that
∫
T g = 1. In this case, we define the control

input Gh, where G is the linear operator:

Gh(x, y) := g(x)

(
h(x, y)−

∫
T
g(x′)h(x′, y)dx′

)
.(1.3)

If the control region is a horizontal strip of the form ω = T × (a, b), we define the
control input as Kh, where K is the operator:

Kh(x, y) := g(y)

(
h(x, y)−

∫
T
g(y′)h(x, y′)dy′

)
.(1.4)

Our first result concerns the internal controllability of the linearized KP-II
equation on the vertical region:{

∂tu+ ∂3xu+ ∂−1x ∂2yu = Gh, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2).

(1.5)

Theorem 1.1. Given T > 0, and u0, u1 ∈ L2
0(T2), there exists h ∈ L2((0, T );

L2(T2)) such that the solution u of (1.5) satisfies u(T ) = u1.

For the nonlinear control system,{
∂tu+ ∂3xu+ ∂−1x ∂2yu+ u∂xu = Gh, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2),

(1.6)

by adapting a pertubative argument, relying on the Cauchy theory for the KP-II
equation, we obtain the following result of the exact controllability in a local sense.
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Theorem 1.2. Given T > 0, there exists R > 0 such that for any u0, u1 ∈
L2
0(T2) satisfying ‖u0‖L2(T2) ≤ R and ‖u1‖L2(T2) ≤ R, there exists a control h ∈

L2((0, T );L2(T2)) such that the solution u of (1.6) with G satisfies u(T ) = u1.

Remark 1.3. In [3], Bourgain proved that the KP-II equation is globally well-
posed in Hs

0(T2) for all s ≥ 0. Our results in Theorems 1.1 and 1.2 also hold for any
data in Hs

0(T2). The main reason to consider L2(T2) here is that the quantity∫
T2

|u(t, x, y)|2dxdy

is conserved along the KP-II flow (1.1) and hence L2(T2) is a natural functional space
to study the problem of controllability.

On the contrary, for the controllability from the horizontal region{
∂tu+ ∂3xu+ ∂−1x ∂2yu = Kh, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2),

(1.7)

we have a negative answer which shows that the exact controllability for the linearized
KP-II equation cannot hold at any time T > 0 when the control region is a horizontal
strip.

Theorem 1.4. Given T > 0 and u0 ∈ L2
0(T2), there exists u1 ∈ L2(T2) and

there does not exist h ∈ L2((0, T );L2
0(T)) such that the solution u of (1.7) satisfies

u(T ) = u1.

The proofs of Theorems 1.1 and 1.4 rely on the propagation of singularities for
the KP-II flow. It turns out that the propagation on the horizontal direction is much
stronger than on the vertical direction. The heuristic is that the singularities will
travel into some vertical control region in a very short time; however, for a horizontal
control region the singularities move too slowly to enter. This can be interpreted
physically, since the KP equations describe the regime where the wavelengths in the
transverse direction (in y) are much larger than in the direction of propagation (in x).

The paper is organized as follows. In section 2, some results of well-posedness
are mentioned; they will be important in the proof of the controllability of the full
control system. In section 3, the linear controllability is established by proving the
observability inequality. In section 4, the local controllability of the nonlinear equation
is proved by fixed point arguments. In section 5, we construct a counterexample to
complete the proof of Theorem 1.4.

2. Notation and preliminaries. Throughout this article, we use the identifica-
tion T = R/(2πZ) = [−π, π]/Z2. We will adapt the standard convention for constancy
in PDE. The constant C will denote a positive constant that can change from line to
line and the dependency will be specified if there is any risk of confusion.

We need the following classical inequality of Ingham.

Proposition 2.1 (Proposition 4.3 in [10]). Let (ωk)k∈Z be a family of real num-
bers, satisfying the uniform gap condition

γ := inf
k1 6=k2

|ωk1 − ωk2 | > 0.

If I ⊂ R is a bounded interval of length |I| > 2π
γ , then there exists Cγ > 0, depending

only on γ and the length |I|, such that for all (ak)k∈Z ⊂ l2(Z), we have
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1718 IVONNE RIVAS AND CHENMIN SUN

1

Cγ

∑
k∈Z
|ak|2 ≤

∫
I

∣∣∣∣∣∑
k∈Z

ake
iωkt

∣∣∣∣∣
2

dt ≤ Cγ
∑
k∈Z
|ak|2.

Next we briefly review the Cauchy theory for KP-II following [16]. The initial
value problem{

∂tu+ ∂3xu+ ∂−1x ∂2yu+ u∂xu = 0, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2),

(2.1)

is proved in [3] by Bourgain to be globally well-posed when u0 ∈ Hs
0(T2) for s ≥ 0.

In [3], Bourgain introduced a Fourier restriction norm

‖u‖2Xs,b,b1 =

∫
R

∑
(k,l)∈Z2

〈
〈σ(τ, k, l)〉
〈k〉3

〉2b1

〈σ(τ, k, l)〉2b〈(k, l)〉2s|û(τ, k, l)|2dτ,

where σ(τ, k, l) = τ − k3 + l2

k and 〈·〉 =
√

1 + | · |2. For T > 0, the norm in the
localized time interval [0, T ] is defined by

‖u‖
X
s,b,b1
T

:= inf{‖w‖Xs,b,b1 : w(t) = u(t) on (0, T )}.

Denoting by S(t) = e−it(∂
3
x+∂

−1
x ∂2

y) the linear semigroup, we have the following
estimate.

Proposition 2.2 (Proposition 2.6 in [3]). For s ≥ 0, − 1
2 < b′ ≤ 0 < 1

2 < b ≤
b′ + 1, b1 ∈ R, and T ≤ 1, we have∥∥∥∥∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
X
s,b,b1
T

≤ CT 1−(b−b′)‖F‖
X
s,b′,b1
T

for any F ∈ Xs,b′,b1
T .

The proposition above is false for the end points b′ = − 1
2 and b = 1

2 . However,
for the periodic problem, it seems that we cannot avoid use of these end points. The
way to resolve this issue is to define an auxiliary norm

‖u‖Zs,b := ‖〈σ〉b− 1
2 〈(k, l)〉sû‖l2

(k,l)
L1
τ
.

We denote by Zb,sT the restricted spaces, defined in the same manner. The analogue
of Proposition 2.2 is as follows.

Proposition 2.3 (Propositions 2.5 and 2.6 in [3]). Under the same conditions
as in Proposition 2.2, we have∥∥∥∥S(t)u0 +

∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
X
s, 1

2
,b1

T ∩Z
s, 1

2
T

≤ C‖u0‖Hs + C‖F‖
X
s,− 1

2
,b1

T ∩Z
s,− 1

2
T

.

The proof can be found, for example, in [18]. In order to show that (2.1) is locally
well-posed in the Fourier restriction spaces, we write it in the integral form:

u(t) = S(t)u0 +

∫ t

0

S(t− t′)(u∂xu)(t′)dt′.(2.2)

To use the fixed point argument, the following bilinear estimate is crucial.
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Proposition 2.4 (section 3.3 in [16]). There exist 1
4 < b1 <

3
8 , C > 0, and

ν > 0 such that for all 0 < T ≤ 1, s ≥ 0, the bilinear estimate

‖∂x(uv)‖
X
s,− 1

2
,b1

T ∩Z
s,− 1

2
T

≤ CT ν‖u‖
X
s, 1

2
,b1

T

‖v‖
X
s, 1

2
,b1

T

holds for functions u, v ∈ Xs, 12 ,b1
T satisfying∫

T
u(t, x, y)dx =

∫
T
v(t, x, y)dx = 0.

This bilinear estimate is established by Bourgain in [3]. We use the adapted
version of [16], in which the authors dealt with partially periodic data.

3. Linear controllability on vertical strip. In this section, the study of the
internal controllability of linear system (1.5) is addressed by defining a linear operator
in Proposition 3.9, which characterizes the control input of the linear system and drives
the solution from an initial state u0 to a final state u1. Notice that by reversibility,
the exact controllability is equivalent to null controllability: given any initial state
u0 ∈ L2

0, find a function h ∈ L2((0, T )×T2) so that the equation satisfies u(0, ·) = u0
and u(T, ·) = 0. Hence, we will study the null controllability.

The classical strategy to study the null controllability is to show the observability
inequality for the adjoint system associated to the equation; in the KP-II case, it
matches with the homogeneous linearized KP-II equation:{

∂tu+ ∂3xu+ ∂−1x ∂2yu = 0, (t, x, y) ∈ R× T2,

u|t=0 = u0 ∈ L2
0(T2).

(3.1)

From the classical Hilbert uniqueness method (HUM), one can deduce that the
null controllability is equivalent to the observability for its adjoint system.

Proposition 3.1 (see [14]). Given T > 0, the system (1.5) is null controllable
at T if and only if given u0 ∈ L2(T2), there exists a unique solution u to (3.1) such
that

‖u0‖2L2(T2) ≤ CT
∫ T

0

∫
T2

|Gu(t, x, y)|2dxdydt,(3.2)

where the constant CT > 0 does not depend on u0.

The region where the control will be placed is a vertical strip given by

ω := (a, b)× T

and the operator G is given by (1.3). The region ω will allow us to get a reduction
of the KP-II equation (3.1) in one dimension. Indeed, by expanding the solution
u(t, x, y) to (3.1) in Fourier series in the y variable

u(t, x, y) =
∑
l∈Z

al(t, x)eily,

we find that for each l ∈ Z, al satisfies the equation

∂tal + ∂3xal − l2∂−1x al = 0.
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1720 IVONNE RIVAS AND CHENMIN SUN

Therefore, by changing the notation, it is reduced to the study of the following
λ-dependent equations:{

∂tu+ ∂3xu− λ2∂−1x u = 0, (t, x) ∈ R× T,
u|t=0 = u0 ∈ L2

0(T).
(3.3)

3.1. Observability inequality. Due to Proposition 3.1, the proof of Theorem
1.1 is reduced to the proof of (3.2). From the one-dimensional reduction and
Plancherel’s theorem, we can further reduce the observability (3.2) to the following
uniform observability for the family of equations (3.3).

Proposition 3.2. Given T > 0, there exists CT > 0 such that for all λ > 0,

‖u0‖2L2(T) ≤ CT
∫ T

0

∫
T
|Gu(t, x)|2dxdt(3.4)

holds for all solution u of (3.3).

The rest of this section is devoted to the proof of Proposition 3.2. The strategy
is as follows. First, we reduce the inequality (3.4) to a weaker one (3.5), which
is the observability for high frequencies and it does not consider the normalization
part which simplifies the operator G. Next, inspired by the work of Lebeau in [12],
we rescale the time to change it to the semiclassical scale. This reduces the weak
observability for system (3.3) to an inequality of the same form but for another semi-
classical system (3.8). The third step is to reduce the inequality in the previous step
to a frequency-localized one. Finally, we use the propagation argument to prove the
frequency-localized semiclassical observability, namely (3.10).

3.1.1. Reduction to weak observability. The weak observability takes the
form, uniformly in λ ≥ 0,

‖u0‖2L2(T) ≤ CT
∫ T

0

∫
T
|g(x)u(t, x)|2dxdt+ C‖u0‖2H−1(T).(3.5)

First, we prove a lemma concerning the commutator of a high-frequency cut-off
and the operator G.

Lemma 3.3. Take χ ∈ C∞(R) with supp(χ) ⊂ {|ξ| > 1} and χ||ξ|≥2 = 1. Then
there exist h0 > 0, C > 0 such that for all 0 < h < h0, we have∫ T

0

‖[χ(hDx),G]u(t, ·)‖2L2(T)dt ≤ Ch
2‖u(0)‖2L2(T)

with the notation Dx := 1
i
∂
∂x and the commutator [A,B] := AB −BA.

Proof. We write ∫ T

0

‖[χ(hDx),G]u(t, ·)‖2L2(T)dt ≤ C(I + II),

where

I =

∫ T

0

∫
T
|[g(x), χ(hDx)]u(t, x)|2dxdt,

II =

∫ T

0

∫
T

∣∣∣∣g(x)

∫
T
g(x′)χ(hDx)u(t, x′)dx′−χ(hDx)

(
g(x)

∫
T
g(x′)u(t, x′)dx′

)∣∣∣∣2 dxdt.D
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From symbolic calculus,1 we have

‖[g(x), χ(hDx)]‖L2→L2 ≤ Ch,

and by conservation of the L2 norm, we have

I ≤ Ch2
∫ T

0

‖u(t)‖2L2(T)dt = Ch2T‖u(0)‖2L2(T).

For II, we first calculate (to simplify the notation, we omit the variable t here)(
g(x)

∫
T
g(x′)(χ(hDx)u)(x′)dx′

)̂
(l)− χ(hDx)

(
g(x)

∫
T
g(x′)u(x′)dx′

)̂
(l)

= ĝ(l)
∑
l1 6=0

(χ(hl1)− χ(hl)) ĝ(l1)û(l1).

Since |χ(hl1)− χ(hl)| ≤ ‖χ′‖L∞h|l1 − l|, we have

II ≤ Ch2
∑
l

|ĝ(l)|2
∣∣∣∣∣∣
∑
l1 6=0

|l1 − l|ĝ(l1)û(l1)

∣∣∣∣∣∣
2

≤ Ch2
∑
l

|ĝ(l)|2
∑
l1 6=0

|l1 − l|2|ĝ(l1)|2
∑

l1 6=0

|û(l1)|2


≤ Ch2‖u‖2L2(T)

∑
l,l1 6=0

|l1 − l|2|ĝ(l1)|2|ĝ(l)|2

= Ch2‖u‖2L2(T),

where we used the fact that g ∈ C2(T).

Proposition 3.4. (3.5) implies the following full observability inequality:

‖u0‖2L2(T) ≤ CT
∫ T

0

∫
T
|Gu(t, x)|2dxdt.(3.6)

Proof. The proof is essentially a unique continuation argument. However, it is
more delicate since we need a uniform estimate with respect to λ. The proof will be
divided into two steps.

The first step is to show that for any fixed λ > 0, (3.6) holds with constant
C(λ) > 0 which may depend on λ. We argue by contradiction, assuming that (3.6) is
not true; then we can select a sequence un of solutions to (3.3) so that

‖un(0)‖L2(T) = 1 and lim
n→∞

∫ T

0

∫
T
|Gun(t, x)|2dxdt = 0.

Up to a subsequence, we may assume that un(0) ⇀ u0, weakly in L2(T). One can
easily verify that u0 ∈ L2

0(T). Moreover, from the semigroup property, un(t) ⇀ u(t)
weakly in C([0, T ];L2(T)) and u(t) is the distributional solution to (3.3) with initial
data u0. Since G : L2

0(T)→ L2
0(T) is a bounded operator, we have that Gu(t, ·) = 0 in

1Though g is not assumed to be smooth, the following estimate is still valid.
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1722 IVONNE RIVAS AND CHENMIN SUN

L2
0(T) for a.e. t ∈ [0, T ]. This means that u(t, x)|ω = C(t) in D′(ω) for a.e. t ∈ [0, T ].

Moreover, from the strong continuity of the semigroup on L2
0(T),

C(t) =

∫
T
g(x)u(t, x)dx ∀t ∈ [0, T ],

and C(t) is a continuous function in t. Therefore we have that

g(x) (u(t, x)− C(t)) = 0, in C([0, T ];L2(T)).

Thus u(t, x)|x∈ω = C(t) in D′(ω) for all t ∈ [0, T ]. Now, if we rewrite (3.3) as
∂x(∂tu + ∂3xu) + λu = 0 and evaluate u for x ∈ ω, we have that u|ω = 0 in D′(ω).
Next we claim that u ≡ 0. Indeed, following [1], we consider the following family of
sets (depending on T ′):

NT ′ :=
{
u0 ∈ L2

0(T) : S(t)u0|ω = 0 ∀t ∈ [0, T ′]
}
.

For any T ′ > T/2, applying inequality (3.5) (with T/2), we have that for any u0 ∈ NT ′ ,

‖u0‖L2(T) ≤ C‖u0‖H−1(T).

This implies that the subspace NT ′ in L2
0(T) is finite dimensional. Moreover, NT1 ⊂

NT2
if T1 > T2. Now for δ > 0 small, S(δ) : NT ′ ⊂ NT ′−δ is a linear mapping. Since for

T ′ > T/2, dimNT ′−δ <∞, there exists δ0 > 0 such that for all δ ≤ δ0, NT ′−δ = NT ′ .
Therefore, (S(δ) − Id)δ−1 : NT ′ → NT ′ is a linear mapping. Passing δ → 0, we
have that (∂tS(t))|t=0 : NT ′ → NT ′ . Denoting by σ and v0 any of its eigenvalue
and the corresponding eigenfunction of ∂tS(t)|t=0 on NT ′ , since (∂tS(t)v0)|t=0 =
(−∂3x + λ2∂−1x )v0, we have (

−∂3x + λ2∂−1x
)
v0 = σv0.

This implies that v0 has only a finite number of nonvanishing Fourier modes. Thus
v0 has an analytic extension near the real axis. Therefore, v0|ω = 0 yields v0 ≡ 0.
Hence NT ′ = {0}.

Since the weak limit of un(0) is 0, we have∫
T
g(x)un(t, x)dx→ 0 and ‖gun‖L2([0,T ]×T) → 0.

Moreover, up to a subsequence, ‖un(0)‖H−1(T) → 0, due to the Rellich theorem. This
is a contradiction to the assumption that ‖un(0)‖L2(T) = 1.

The second step is to prove that (3.6) is uniformly on λ. Again, we assume that
(3.6) is not true. Then there exists a sequence of positive numbers λn > 0 and a
sequence of solutions un to (3.3) with parameters λn such that

‖un(0)‖L2(T) = 1 and lim
n→∞

∫ T

0

∫
T
|Gun(t, x)|2dxdt = 0.

Up to a subsequence, we may assume that λn → λ∞ ∈ [0,∞]. Suppose λ∞ < ∞; a
similar argument as in the first step will lead to a contradiction.

The last possibility is λ∞ =∞. We write

un(0) =
∑
l 6=0

an,le
ilx
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and the corresponding solution of (3.3) is

un(t, x) =
∑
l 6=0

an,le
it

(
l3−λ

2
n
l

)
eilx.

For any ε0 > 0, we set

u(ε0)n :=
∑
|l|≥ 1

ε0

an,le
it

(
l3−λ

2
n
l

)
eilx, v(ε0)n = un − u(ε0)n .

From Lemma 3.3, we have∫ T

0

‖Gu(ε0)n (t)‖2L2(T)dt ≤ Cε
2
0‖un(0)‖2L2(T) + C

∫ T

0

‖(Gun)(ε0)(t)‖2L2(T)dt.

Thus, there exists C > 0 such that for any ε0 > 0, we have

lim sup
n→∞

∫ T

0

‖Gu(ε0)n (t)‖2L2(T)dt ≤ Cε
2
0,

lim sup
n→∞

∫ T

0

‖Gv(ε0)n (t)‖2L2(T)dt ≤ Cε
2
0.

(3.7)

For any ε > 0 small, we can find ε0 > 0 small enough such that∑
|l|≥ 1

ε0

|ĝ(l)|2 ≤ ε2,

and then ∥∥∥∥g(x)

∫
T
g(x′)u(ε0)n (t, x′)dx′

∥∥∥∥2
L2(T)

≤ ε2‖g‖2L2(T)‖u
(ε0)
n (0)‖2L2(T).

Thus, from (3.5),

‖u(ε0)n (0)‖2L2(T) ≤ Cε
2 + Cε20 + ‖u(ε0)n (0)‖2H−1(T)

≤ C(ε2 + ε20)

for n large enough.
On the other hand, direct calculation yields∫ T

0

‖Gv(ε0)n (t)‖2L2(T)dt =

∫ T

0

∑
l

∣∣∣∣∣∣
∑

1≤|l1|≤1/ε0

(ĝ(l − l1)− ĝ(l)ĝ(l1))an,l1e
it

(
l31−

λ2n
l1

)∣∣∣∣∣∣
2

dt

≥ C
∑
l

∑
1≤|l1|≤1/ε0

|ĝ(l − l1)− ĝ(l)ĝ(l1)|2|an,l1 |2

= C
∑

1≤|l1|≤1/ε0

cl1 |an,l1 |2

with cl1 =
∑
l |ĝ(l − l1) − ĝ(l)ĝ(l1)|2, by the Ingham inequality (Proposition 2.1),

due to the assumption that λn → ∞. Notice that the constant C can be chosen
independent of n and ε0, provided that if n is large enough, then∑

1≤|l1|≤1/ε0

∣∣∣∣(l1 + 1)
3 − l31 −

λ2n
l1

+
λ2n

l1 + 1

∣∣∣∣ ≥ γ > 0 and T >
2π

γ
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1724 IVONNE RIVAS AND CHENMIN SUN

Noting that cl1 ≥ |ĝ(0) − ĝ(l1)2|2 and ĝ(0) = 1, there exists a constant c0 > 0,
independent of ε0, ε, and n, so that cl1 ≥ c0 for all 1 ≤ |l1| ≤ 1/ε0. Thus, for n
sufficiently large,

‖v(ε0)(0)n ‖2L2(T) ≤
C

c0

∫ T

0

‖Gv(ε0)n (t)‖2L2(T)dt ≤ Cε
2
0.

Therefore,

1 = lim sup
n→∞

‖un(0)‖2L2(T) = ‖uε0n (0)‖2L2(T) + ‖vε0n (0)‖2L2(T) ≤ C(ε20 + ε2) < 1,

which cannot happen.

3.2. Reduction to semiclassical observability. Now, we consider the semi-
classical equation of the following form:{

h∂tu+ (h∂x)3u− (h∂x)−1u = 0, (t, x) ∈ R× T,
u|t=0 = u0 ∈ L2

0(T).
(3.8)

Proposition 3.5. Assume that there exist T0 > 0, h0 > 0 such that the semi-
classical observability

‖u0‖2L2(T) ≤ CT0

∫ T0

0

∫
T
|g(x)u(t, x)|2dxdt+ C‖u0‖2H−1(T)(3.9)

holds for any h-dependent solutions u of (3.8) with initial data u0 ∈ L2
0(T), uniformly

for 0 < h < h0. Then for any T > 0, the observability inequality (3.5) holds for the
λ-dependent solutions of (3.3), uniformly in λ ≥ 0.

Proof. It would be sufficient to prove (3.5) when λ > 1 is large enough since for
bounded λ ≥ 0, (3.3) can be viewed as a pertubation of the linear KdV equation
and the constant C on the right-hand side of (3.5) can be chosen to be continuously
depended on λ. For λ ≥ 1

h2
0
, we write λ2 = 1

h4 and (3.3) becomes

h3∂tu+ (h∂x)3u− (h∂x)−1u = 0.

Setting w(t, x) = u(h2t, x), it satisfies the equation

h∂tw + (h∂x)3w − (h∂x)−1w = 0.

Now from (3.9), we have

‖w(0)‖2L2(T) ≤ C
∫ T0

0

∫
T
|g(x)w(t, x)|2dxdt+ C‖w(0)‖2H−1(T).

Changing back to u(t, x), it holds that

‖u(0)‖2L2(T) ≤
C

h2

∫ h2T0

0

∫
T
|g(x)u(s, x)|2dxds+ C‖u(0)‖2H−1(T).

Due to the invariance of the time-translation and the conservation of the Hs norm of
the linear equation, we have for any M ∈ N,

‖u(Mh2T0)‖2L2(T) = ‖u(0)‖2L2(T)

≤ C

h2

∫ (M+1)h2T0

Mh2T0

∫
T
|g(x)u(s, x)|2dxds+ C‖u(Mh2T0)‖2H−1(T)

=
C

h2

∫ (M+1)h2T0

Mh2T0

∫
T
|g(x)u(s, x)|2dxds+ C‖u(0)‖2H−1(T).
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Summing for M from 0 to ε0h
−2, with ε0T0 ≤ T , we have

‖u(0)‖2L2(T) ≤
C

ε0

∫ T

0

∫
T
|g(x)u(t, x)|2dxdt+

C

ε0
‖u(0)‖2H−1(T).

This completes the proof of Proposition 3.5.

3.2.1. Reduction to frequency-localized semiclassical observability. We
use a homogeneous Littlewood–Paley decomposition. Take ψ ∈ C∞c (R) with support
supp(ψ) ⊂ {1/2 ≤ |ξ| ≤ 2} and ψk ∈ C∞c (R) such that∑

k∈Z
ψk(ξ) = 1 ∀ξ 6= 0,

where ψk(ξ) = ψ(2kξ). We will reduce the proof of the inequality (3.9) to the follow-
ing.

Proposition 3.6. There exist ε0 > 0, h0 > 0, small and T0 > 0, C0 = C0(ε0) > 0
such that for all k ∈ Z, with 2kh ≤ ε0,

‖ψk(hDx)u(0)‖2L2(T) ≤ C0

∫ T0

0

∫
T
|g(x)ψk(hDx)u(t, x)|2dxdt(3.10)

holds for all solutions u(t, x) of (3.8), uniformly in h ∈ (0, h0).

This proposition will be proved in the next subsection. In fact, from the proof,
we can deduce that if Proposition 3.6 holds true for some ε0 > 0, h0 > 0, it is also true
for any other parameters ε1, h1 such that ε1 < ε0 and h1 < h0 with possible change
in the dependency of constant C0.

Lemma 3.7. Proposition 3.6 implies the inequality (3.9).

Indeed, applying Lemma 3.3, we have

‖gψk(hDx)u‖2L2(T) ≤ 2‖ψk(hDx)(gu)‖2L2(T) + 2‖[ψ(2khDx), g]u‖2L2(T)

≤ 2‖ψk(hDx)(gu)‖2L2(T) + C(2kh)2‖u(t)‖2L2(T),

thus ∑
k≤log2(ε0/h)

‖ψk(hDx)u(0)‖2L2(T) ≤ C
∑

k≤log2(ε0/h)

∫ T0

0

‖ψk(hDx)(gu(t))‖2L2(T)

+ CT0
∑

k≤log2(ε0/h)

(2kh)2‖u(0)‖2L2(T)

≤ C
∫ T0

0

‖gu(t)‖2L2(T)dt+ CT0ε
2
0‖u(0)‖2L2(T).

Therefore,

‖u(0)‖2L2(T) ≤ C
∫ T0

0

∫
T
|g(x)u(t, x)|2dxdt+ CT0ε

2
0‖u(0)‖2L2(T) + C‖u(0)‖2H−1(T).

To complete the proof, we choose ε20 <
CT0

2 and (3.9) follows.
In summary, we have shown that in order to prove the uniform observability

inequality (3.6) for all solutions of (3.3), it suffices to prove the observability (3.10)
for all solutions of (3.8), uniformly in 0 < h� 1 and k ∈ Z such that 2kh < ε0.
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3.2.2. Propagation estimate with parameter dependence symbol. This
section is devoted to the proof of Proposition 3.6. We recall some basic notation
and results about h̃-pseudodifferential calculus. For m ∈ R, let Sm be the set of
h̃-dependent functions a(x, ξ, h̃) with parameter h̃ ∈ (0, 1) such that for any indices
α, β,

sup
(x,ξ,h̃)∈R2d×(0,1)

|∂αx ∂
β
ξ a(x, ξ, h̃)| ≤ Cα,β(1 + |ξ|)m−|β|.

For a ∈ Sm, we denote by Oph̃(a) the h̃-pseudodifferential operator acting on Schwartz
functions via

Oph̃(a)f(x) :=
1

(2πh̃)d

∫
R2d

e
i(x−y)·ξ

h̃ a(x, ξ, h̃)f(y)dydξ.

We refer to [19] for symbolic calculus and other basic properties about the h̃-
pseudodifferential operator. For functions on a compact Riemannian manifold, we
can also define the h̃-pseudodifferential operator by using local coordinate and parti-
tion of unity.

Now let us consider the following ε-dependence symbols:

pε(x, ξ) =

(
ε4

ξ
− ξ3

)
χ(ξ), qε(x, ξ) =

(
1

ξ
− ε4ξ3

)
χ(ξ),

where χ ∈ C∞c (R) with supp(χ) ⊂ {α < |ξ| < β} for some 0 < α < 1
2 , β > 2, and

χ ≡ 1 in a neighborhood of {1/2 ≤ |ξ| ≤ 2}. Denote Pε = Oph̃(pε) and Qε = Oph̃(qε).
Denote Uε(t) and Vε(t) solutions of the operator equations{

h̃
i ∂tUε(t) + Uε(t)Pε = 0,

Uε(0) = I,
(3.11)

{
h̃
i ∂tVε(t) + Vε(t)Qε = 0,

Vε(0) = I.
(3.12)

The flows associated to the vector fields Hpε , Hqε are explicitly given by

φε,t(x0, ξ0) =

(
x0 −

(
ε4

ξ20
+ 3ξ20

)
χ(ξ0)t+

(
ε4

ξ0
− ξ30

)
χ′(ξ0)t, ξ0

)
,

ϕε,t(x0, ξ0) =

(
x0 −

(
1

ξ20
+ 3ε4ξ20

)
χ(ξ0)t+

(
1

ξ0
− ε4ξ30

)
χ′(ξ0)t, ξ0

)
.

From Egorov’s theorem (see [19]), for any symbol a(x, ξ) ∈ C∞c (T ∗T), we have

Uε(−t)Oph̃(a)Uε(t) = Oph̃(a ◦ φε,t) +OL2→L2(h̃),

Vε(−t)Oph̃(a)Vε(t) = Oph̃(a ◦ ϕε,t) +OL2→L2(h̃).

Moreover, the remainders OL2→L2(h̃) can be written more precisely as some operator
Ah̃ on L2(T) with the operator norm bounded by

‖Ah̃‖L2→L2 ≤ CN h̃
∑
|α|≤N

h̃|α|

(
sup
(x,ξ)

|∂αx,ξ(a ◦ ϕε,t)|+ sup
(x,ξ)

|∂αx,ξ(a ◦ φε,t|

)
for some N ∈ N and for some h0 > 0, 0 < h < h0. Therefore, we remark that the
bounds OL2→L2(h̃) are independent of ε ≤ 1, due to the explicit formulas of ϕε,t and
φε,t.

Now we prove the following localized observability estimates.
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Proposition 3.8. There exist C0 > 0, T0 > 0, h̃0 > 0 such that for all u0 ∈
L2
0(T), all h̃ ≤ h̃0,

‖ψ(h̃Dx)u0‖2L2(T) ≤ C0

∫ T0

0

‖gUε(t)ψ(h̃Dx)u0‖2L2(T)dt,(3.13)

‖ψ(h̃Dx)u0‖2L2(T) ≤ C0

∫ T0

0

‖gVε(t)ψ(h̃Dx)u0‖2L2(T)dt.(3.14)

Proof. Here we only prove the first inequality, since the second one follows in the
same manner. Consider the symbol a(x, ξ) = g(x)2ψ̃(ξ) (strictly speaking, g is not
smooth and we need to approximate it by smoothing functions) and its quantization

Oph̃(a) = (g(x))2ψ̃(h̃Dx), where ψ̃ is a slight enlargement of ψ such that ψ̃ψ = ψ and

supp ψ̃ ⊂ {α < |ξ| < β}. From Egorov’s theorem, we have

Uε(−t)Oph̃(a)Uε(t) = Oph̃(a ◦ φε,t) +OL2→L2(h̃), uniformly in ε ≤ 1.

Note that on the support of a, χ′(ξ) = 0, so we have

φε,t(x0, ξ0) =

(
x0 −

(
ε4

ξ20
+ 3ξ20

)
t, ξ0

)
.

Notice that | ε
4

ξ20
+3ξ20 | ≥ c0 > 0, uniformly in ε, on the ξ-support of ψ̃. Since g ≥ 0

is a nonzero continuous function, for some T0 = T0(c0) > 0, and c1 > 0, we have2∫ T0

0

a ◦ φε,tdt ≥ c1 > 0.

Now we calculate∫ T0

0

‖gUε(t)ψ(h̃Dx)u0‖2L2(T)dt

=

∫ T0

0

(
gUε(t)ψ(h̃Dx)u0, gUε(t)ψ̃(h̃Dx)ψ(h̃Dx)u0

)
L2(T)

dt

=

∫ T0

0

(
Uε(−t)ψ̃(h̃Dx)g2Uε(t)u0, ψ(h̃Dx)u0

)
L2(T)

dt

=
(

Oph̃(bT0
)ψ(h̃Dx)u0, ψ(h̃Dx)u0

)
L2(T)

with bT0
(x, ξ) =

∫ T0

0
a ◦ φε,tdt modulo h̃S0. Thus, from the sharp G̊arding inequality

(see [19]), we have(
Oph̃(bT0

)ψ(h̃Dx)u0, ψ(h̃Dx)u0

)
L2(T)

≥ c1
2
‖ψ(h̃Dx)u0‖2L2(T) − Ch̃‖ψ(h̃Dx)u0‖2L2(T).

To conclude the proof, we choose h̃0 < min{ c14C , 1}.

2This is just the geometric control condition, which is trivially satisfied in the one-dimensional
situation.
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Proof of Proposition 3.6. For fixed h� 1, we analyze the three regimes for k ∈ Z.
Case 1: |k| ≤ N0 for some large natural number N0. This corresponds to the case

|ξ| ∼ 1. Let uk = ψk(hDx)u; the equation satisfied by uk is (3.8). We can use either

(3.13) or (3.14) with parameter ε = 1 to obtain that (note that h̃ = 2kh̃ ∼ h in this
regime)

‖ψk(hDx)u0‖2L2(T) ≤ C0

∫ T0

0

‖gψk(hDx)u(t)‖2L2(T)dt.

Case 2: k ≤ −N0 for some large constant N0. This case corresponds to |ξ| ∼
2−k � 1. Defining a new semiclassical parameter h̃k = 2kh � 1 and to rescale the
time variable we set wk(t, x) := ψ(h̃kDx)u(22kt, x) and uk = ψ(h̃kDx)u. The equation
satisfied by wk is

h̃k∂twk + (h̃k∂x)3wk + 24k(h̃∂x)−1wk = 0.

Applying (3.13) to wk with ε = 2k � 1 and h̃ = h̃k we obtain

‖wk(0)‖2L2(T) ≤ C
∫ T0

0

‖gwk(t)‖2L2(T)dt.

From conservation of the L2 norm, we apply the inequality above 2−2k − 1 times and
obtain that

1

22k
‖uk(0)‖2L2(T) ≤

C

22k

2−2k−1∑
M=0

∫ (M+1)22kT0

M22kT0

‖guk(t)‖2L2(T)dt

=
C

22k

∫ T0

0

‖guk(t)‖2L2(T)dt.

This is exactly

‖ψk(hDx)u(0)‖2L2(T) ≤ C
∫ T0

0

‖gψk(hDx)u(t)‖2L2(T)dt.

Case 3: k ≥ N0. This case corresponds to |ξ| ∼ 2−k � 1. Define the new small

semiclassical parameter h̃k = 2kh. The h̃-pseudodifferential calculus applies, by the
restriction 2kh ≤ ε0 � 1.

Denote by uk = ψ(h̃kDx)u and define vk(t, x) = uk(2−2kt, x). vk solves the
equation

h̃k∂tvk + 2−4k(h̃k∂x)3vk + (h̃k∂)−1vk = 0.

Applying (3.14) with h̃ = h̃k, ε = 2−k, we obtain that

‖vk(0)‖2L2(T) ≤ C
∫ T0

0

‖gvk(t)‖2L2(T)dt.

Again by conservation of the L2 norm as in the argument of Case 2, we finally
have

‖uk(0)‖2L2(T) ≤ C
∫ T0

0

‖guk(t)‖2L2(T)dt.

This completes the proof of Proposition 3.6. Hence the proof of Proposition 3.2
and the observability inequality (3.2) for the linearized KP-II equation are also
complete.
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As a consequence of Proposition 3.1, the internal controllability for the linear KP
II is obtained. We conclude this section by summarizing it in the following proposition.

Proposition 3.9. Given T > 0, there exists a bounded linear operator

Υ : (L2
0(T2))2 → L2(0, T ;L2(T2))

such that for any u0, u1 ∈ L2
0(T2), the control defined by h := Υ(u0, u1) drives the

solution of {
∂tu+ ∂3xu+ ∂−1x ∂2yu = Gh, (t, x) ∈ R× T2,

u|t=0 = u0,
(3.15)

to u(T ) = u1. Moreover, we have

‖Υ(u0, u1)‖L2(0,T ;L2(T2)) ≤ C‖(u0, u1)‖(L2(T2))2 .

4. Local controllability of nonlinear equation. For the full KP-II control
system {

∂tu+ ∂3xu+ ∂−1x ∂2yu+ u∂xu = Gh, (t, x) ∈ R× T2,

u|t=0 = u0, u|t=T = u1,
(4.1)

in order to prove the existence of u ∈ L2(0, T ;L2
0(T2)) solving u|t=0 = u0, u|t=T = u1,

we will reduce it to a fixed point problem by a standard argument.

Proof of Theorem 1.2. The solution of (4.1) with control input h is given by

u(t) = S(t)u0 + υ(t, u) +

∫ t

0

S(t− t′)Gh(t′)dt′

with

υ(t, u) =

∫ t

0

S(t− t′)u∂xudt′.

It must satisfy

u1 = S(T )u0 + v(T, u) +

∫ T

0

S(T − t′)Gh(t′)dt.

Choosing the control input of the form h = Υ(u0, w), this implies that

S(T )u0 +

∫ T

0

S(T − t′)Gh(t′)dt′ = w.

This indicates that w = u1 − υ(T, u). In summary, defining the nonlinear map Γ by

Γ(u) = S(t)u0 + υ(t, u) +

∫ t

0

S(t− t′)Ghu(t′)dt′

with
hu = Υ(u0, u1 − v(T, u)),

we need to find a fixed point of Γ.

We need show that Γ : X
0, 12 ,b1
T ∩ Z0, 12

T → X
0, 12 ,b1
T ∩ Z0, 12

T is a contraction in a
bounded ball. From Propositions 2.4 and 2.3, we have
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‖Γ(u)‖
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

≤ C
(
‖u0‖L2(T2) + ‖Ghu‖

X
0,− 1

2
,b1

T

+ ‖u‖2
X

0, 1
2
,b1

T

)
≤ C

(
‖u0‖L2(T2) + ‖u1‖L2(T2) + ‖υ(T, u)(T )‖L2(T2) + ‖u‖2

X
0, 1

2
,b1

T

)
≤ C

(
‖u0‖L2(T2) + ‖u1‖L2(T2) + ‖u‖2

X
0, 1

2
,b1

T

)
,

where C > 0 does not depend on u0. For R > 0, let BR = BR(0) be the ball centered
at zero with radius R, that is,

BR :=

{
u ∈ X0, 12 ,b1

T ∩ Z0, 12
T : ‖u‖

X
0, 1

2
,b1

T ∩Z
0, 1

2
T

< R

}
.

Then

‖Γ(u)‖
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

≤ C
(
‖u0‖L2(T2) + ‖u1‖L2(T2) +R2

)
.(4.2)

Additionally, for u, v ∈ BR we have

‖Γ(u)− Γ(v)‖
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

≤ C
∥∥∥∥∫ t

0

S(t− τ)(Ghu − Ghv)dt′
∥∥∥∥
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

+

∥∥∥∥∫ t

0

S(t− t′)(u∂xu− v∂xv)dt′
∥∥∥∥
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

≤ C ‖Υ(u0, u1−υ(T, u))−Υ(u0, u1−υ(T, v))‖
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

+ C

∥∥∥∥∫ t

0

S(t− t′)(u∂xu− v∂xv)dt′
∥∥∥∥
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

≤ C‖υ(T, u)− υ(T, v)‖
X

0, 1
2
,b1

T ∩Z
0, 1

2
T

+ ‖u− v‖
X

0, 1
2
,b1

T

‖u+ v‖
X

0, 1
2
,b1

T

≤ C‖u− v‖
X

0, 1
2
,b1

T

‖u+ v‖
X

0, 1
2
,b1

T

≤ 1

2
‖u− v‖

X
0, 1

2
,b1

T

(4.3)

by using properties of the bounded linear operator Υ. Choose δ > 0 and R > 0 such
that 2Cδ + CR2 ≤ R and CR < 1

2 with ‖u0‖L2(T2) < δ and ‖u1‖L2(T2) < δ. We can
conclude from (4.2) that the image of BR through Γ stays in the ball BR and from
(4.3) that Γ is a contraction. The proof of Theorem 1.2 is complete.

5. Noncontrollability in horizontal strip. In this section, we prove Theorem
1.4 by disproving the observability for the linearized KP-II equation (1.5) on the
horizontal control region. By translation, we may assume that the horizontal control
region is ω = (−π,−α)∪ (α, π] for some 0 < α < π. Recall that K is defined by (1.4).
By the HUM method, the proof of Theorem 1.4 reduces to prove the following.

Proposition 5.1. For any T > 0, there does not exist a finite constant CT > 0
such that the observability inequality

‖u(0)‖2L2(T2) ≤ CT
∫ T

0

∫
T2

|Ku(t, x, y)|2dxdydt(5.1)
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holds for every solution u ∈ L2((0, T );L2
0(T2)) of the linearized KP-II equation

∂tu+ ∂3xu+ ∂−1x ∂2yu = 0.

The building block for proving Proposition 5.1 is the following lemma for the
one-dimensional semiclassical Schrödinger equation.

Lemma 5.2. Assume that ω = (−π,−α) ∪ (α, π] for 0 < α < π. Then for any
T > 0, there exists a sequence of solutions un to{

ihn∂tun + h2n∂
2
xun = 0,

un|t=0 = un,0 ∈ L2(T),
(5.2)

such that
lim inf
n→∞

‖un,0‖L2(T) > 0

and

lim
n→∞

∫ T

0

∫
ω

|un(t, x)|2dxdt = 0.

Proof. Take G(x) = e−
x2

2 and define Gεn(x) = 1√
εn
G( xεn ). Denote the Fourier

coefficient of Gεn by

gεn(k) =
1

2π

∫ π

−π
Gεn(x)e−ikxdx =

√
εn

2π

∫ π
εn

− π
εn

G(z)e−iεnkzdz.

The coefficient function gεn(z) satisfies the following estimates:

‖gεn‖L∞(R) = O(ε1/2n ), ‖(gεn)′‖L∞(R) = O(ε3/2n ), ‖(gεn)′′‖L∞(R) = O(ε5/2n ).(5.3)

Take an even cut-off function ψ ∈ C∞c (R) with supp ψ ⊂ [−B,B] with 0 < b < B
and 0 ≤ ψ ≤ 1, ψ(z) ≡ 1, for all |z| ≤ b. We define

un,0(x) =
∑
k∈Z

gεn(k)ψ(hnk)eikx,

and then the corresponding solution to (5.2) is given explicitly by

un(t, x) =
∑
k∈Z

gεn(k)ψ(hnk)ei(kx−k
2hnt).

We need to estimate the mass of initial data. First,

‖Gεn‖2L2(T) =
∑
k∈Z
|gεn(k)|2 ∼ 1

holds from the Plancherel theorem and the definition of gεn(k). We next estimate the
mass away from the frequency scale h−1n , that is,∑

k∈Z
|(1− ψ(hnk))gεn(k)|2 ≤

∑
|k|>h−1

n b

|gεn(k)|2

≤
∑

|k|>h−1
n b

εn
4π2

∣∣∣∣∫
R
G(z)e−ikεnzdz

∣∣∣∣2D
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=
∑

|k|>h−1
n b

εn
4π2

∣∣∣∣∫
R
G(z)

1

−ikεn
d

dz
e−ikεnzdz

∣∣∣∣2
≤

∑
|k|>h−1

n b

1

4k2π2εn
‖G′‖2L1(R).

By setting εn=
√
hn�1, we have ‖(1−ψ(hnDx))Gεn‖L2(T)�1 and then ‖un,0‖L2(T) ∼

1. It remains to estimate the term on the right-hand side of observability inequality
(5.1).

Observe that un,0 is localized by |k| ≤ B
hn

in frequency and by |x| ≤ εn in space

obeying the uncertainty principle (εnh
−1
n & 1). Since the wave packet of the frequency

scale smaller than Bh−1n moves at velocity bigger than 2Bh−1n , it will remain small
for |t| < T in ω. More precisely, we need a decay estimate for |un(t, x)| when x ∈ ω
and |t| < T . Now we choose B > 0 such that |x− 2Bt| ≥ c0 > 0 mod 2π for all x ∈ ω
and |t| ≤ T . Write

un(t, x) =
∑
k∈Z

K
(n)
t,x (k)

with
K

(n)
t,x (z) = gεn(z)ψ(hnz)e

i(zx−hnz2t).

From the Poisson summation formula, we have

un(t, x) =
∑
m∈Z

K̂
(n)
t,x (2πm).

For fixed m ∈ Z,

K̂
(n)
t,x (2πm) =

∫
R
gεn(z)ψ(hnz)e

iϕt,x(z)dz

=

∫
R
gεn(z)ψ(hnz)L2(eiϕt,x(z))dz

with L = 1
iϕ′t,x(z)

d
dz and ϕt,x(z) = (x − 2πm)z − hnz2t. By integration by parts, we

have

K̂
(n)
t,x (2πm) =

∫
R

d

dz

(
1

iϕ′t,x(z)

d

dz

(
gεn(z)ψ(hnz)

iϕ′t,x(z)

))
eiϕt,x(z)dz.

After tedious calculation, we obtain that

d

dz

(
1

iϕ′t,x(z)

d

dz

(
gεn(z)ψ(hnz)

iϕ′t,x(z)

))
=

(gεn)′′ψ(hnz) + 2hn(gεn)′ψ′(hnz) + h2nψ
′′(hnz)g

εn

(ϕ′t,x)2

−
3((gεn)′ψ(hnz) + hnψ

′(hnz)g
εn)ϕ′′t,x

(ϕ′t,x)3
−

3gεnψ(hnz)(ϕ
′′
t,x)2

(ϕ′t,x)4
.

From (5.3), we have

|K̂(n)
t,x (2πm)| ≤ sup

|hnz|≤B

Cε
1/2
n ‖ψ‖W 2,1(R)

|(x− 2hnzt)− 2πm|2
.
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For any x ∈ 2πp+ (−π,−α)∪ (α, π], |x−2hnzt| ≥ c0 > 0 mod 2π with p ∈ Z, it holds
that ∑

m∈Z
|K̂(n)

t,x (2πm)| ≤ C
∑
m∈Z

Cε
1/2
n

|c0 − 2π(m− p)|2

≤ Cε1/2n .

Therefore, ∫ T

0

∫
ω

|un(t, x)|2dxdt ≤ Cε1/2n T |ω| → 0, as n→∞.

This completes the proof of Lemma 5.2.

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. For any T > 0, we will construct a sequence of solutions
un to the linearized KP-II equation such that

‖un(0)‖L2(T2) ∼ 1 and lim
n→∞

∫ T

0

∫
T2

|Kun(t, x, y)|2dxdydt = 0.

Denote by vn(t, y) the sequence of solutions to the semiclassical Schrödinger equation
which satisfies the conditions in Lemma 5.2. Define

un(t, x, y) = vn(t, y)e
it
h3n e

ix
hn =

∑
k∈Z

v̂n(k)ei(ky−hnk
2t)e

i( x
hn

+ t
h3n

)
.

Then un solves the linearized KP-II equation. Moreover,

‖un(0)‖L2(T2) = ‖vn(0)‖L2(T) ∼ 1,

and ∫ T

0

∫
ω

|un(t, x, y)|2dxdydt =

∫ T

0

∫
(−π,α)∪(α,π]

|vn(t, y)|2dtdy → 0, as n→∞.

Now we claim that

lim
n→∞

∫
T
g(y′)vn(t, y′)dy′ → 0 in L∞([0, T ];L2(T)).

Indeed,∣∣∣∣∫
T
g(y′)vn(t, y′)dy′

∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

ĝ(k)gεn(k)ψ(hnk)e−ik
2t

∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
|k|≤M

+
∑
|k|>M

 ĝ(k)gεn(k)ψ(hnk)e−ik
2t

∣∣∣∣∣∣
≤ ε1/2n ‖g‖L2(T)M

1/2 + ‖Gεn‖L2(T)

 ∑
|k|>M

|ĝ(k)|2
1/2

and the right-hand side tends to 0 as n→∞ since we can choose M to be arbitrarily
large before taking the limit in n. The validity of the claim implies that
g(y)

∫
T g(y′)un(t, x, y′)dy′ → 0 in L2([0, T ]×T2). This completes the proof of Propo-

sition 5.1, as well as Theorem 1.4.
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