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SEMI-CLASSICAL PROPAGATION OF SINGULARITIES FOR
THE STOKES SYSTEM

CHENMIN SUN

ABSTRACT. We study the quasi-mode of Stokes system posed on a smooth
bounded domain Q with Dirichlet boundary condition. We prove that the
semi-classical defect measure associated with a sequence of solutions concen-
trates on the bicharacteristics of Laplacian as a matrix-valued Radon measure.
Moreover, we show that the support of the measure is invariant under the
Melrose-Sjostrand flow.

Key Words: Stokes system; Propagation of singularities; Semi-
classical analysis.

AMS Classification: 35P20, 35515, 35Q35.

1. INTRODUCTION

Let © € R? be a smooth bounded domain. Consider the eigenvalue problem of
the Stokes operator

— Aup + VP, = )\%uk, in Q
div up =0, in Q (1.1)
uglog =0

where uy, € (H?(Q))¥NV,||ug||z2 = 1, are R%-valued normalized eigenfunctions and

V={ue (H&(Q))d :div u = 0}.
We collect several facts which are well-known in functional analysis:
e u; forms a orthonormal basis of
H={uc (L*Q)%: divu=0u-v|pg =0}

The canonical projector II : (L2(Q2))? — H is called Leray projector.
e The pressure P, € L*(Q)/R satisfies [, P, = 0.
o Vui|Z: = A% llurllae < ONL VPl < CXL [Pl 22 < OXF.

We rephrase the system (1.1)) by semi-classical reduction. Taking hj = /\,:1 and
Qi = )\glPk, dropping the sub-index, we obtain the following h-dependent system

—h?Au—u+hVg=0, inQ
hdivu=0, in Q
ulgn =0

In this article, we will study the following generalization by adding a quasi-mode:
—h*Au—u+hVg=f, inQ
hdivu =0, in Q (1.2)
ulog =0
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with the following conditions:
lullz2 = 1, [|AVu] 2 = OQ1), [A*VZul 12 = O(1),
1hVqllL: = O), f € H,||fl|z2 = o(h).

When h is small, the corresponding solution v = u(h) can be interpreted as high-
frequency quasi-mode as its mass, i.e., the L? norm, is essentially concentrated on
the frequency scale A1,

Before stating the main result, it is worth mentioning the eigenvalue problem of
the Laplace operator in semi-classical version:

{—hQAu—u:OinQ

1.3
u‘ag =0. ( )

One method to capture the high-frequency behavior of the solutions of is to
use semi-classical defect measure associated to a bounded sequence (uy) of L?(2)
and to a sequence of positive scales hj converging to zero. This measure is aimed
to describe quantitatively the oscillations of (uy) at the frequency scale h,;l. More
precisely, for any bounded sequence (wy,) of L?(R?), there exists a subsequence of
(wy,) and a non-negative Radon measure p on T*R? such that for any a(z,€) €
S(RQd),

kli_}ngo(a(a:,thm)wk|wk)Lz(Rd) = (u,a).

When 2 is a bounded domain, the precise definition of defect measure corresponding
to the boundary value problem will be given later.

Let us mention that a counterpart of semi-classical defect measure, micro-local
defect measure, was introduced by P. Gérard [6] and L. Tartar [I6] independently.
These objects are widely used in the study of control and stabilization, scattering
theory and quantum ergodicity, see for example [3], [2], [7].

In the context of semi-classical defect measure, the classical theorem of Melrose-
Sjostrand about propagation of singularities ([12],[I3]) for hyperbolic equation can
be rephrased as follows:

Theorem 1.1 ([7]). Assume that Q is a smooth, bounded domain with no infinite
order of contact on the boundary. Suppose p is the semi-classical defect measure
associated to the pair (ug,hy) where (ug) is a sequence of solutions to (with
h = hy) which are bounded in L*(QY). Then u is invariant under the Melrose-
Sjostrand flow.

We will give the precise definition of the Melrose-Sjostrand flow and the associ-
ated concept of the order of contact in the second section. Intuitively, these flows
are the generalization of geometric optics. No infinite order of contact means that
the trajectory of the flow can not tangent to the boundary with an infinite order.

The main result of this paper is as follows.

Theorem 1.2. Assume that  is a smooth, bounded domain with no infinite order
of contact on the boundary. Suppose (uy) is a sequence of solutions to the quasi-
mode problem with semi-classical parameters h = hy. Assume that fr € H,
[ frllz2) = o(hx) and wy converges weakly to 0 in L*(Q2). Assume that p is a
semi-classical measure associated to some subsequence of (ug, hy), then supp(p) is
invariant under the Melrose-Sjéstrand flow.
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We make some comments about the result. Firstly, the measure p is Hermitian
matrix-valued, and we have no information so far on the precise propagation for p
except for supp(u). Secondly, since the eigenfunctions of Stokes operator converge
weakly to 0 in L?(), our results includes this special case.

The Propagation theorem for a given quasi-mode has many applications, in par-
ticular, it leads to the stabilization of the associated damped evolution system. In
the context of the damped wave equation, it was shown that (see [15], [1], [10])
under the geometric control condition, the energy decays exponentially. An appli-
cation of Theorem is the stabilization of a hyperbolic Stokes system, a model
in the theory of linear elasticity introduced in [I1I], under the geometric control
condition. More precisely, consider the damped hyperbolic-Stokes system:

O2u— Au+ Vp+a(z)du=0 in R x Q,
divu=0 in R x £,
u=0 on R x 092, (1.4)

(u(0, ), Ou(0,2)) = (ug,v0) €V x H,

The energy
- 1/(|atu|2+ IVuf?)dz

2 Ja
is dissipative. In [5], we use propagation Theorem to show that the energy
decays exponentially in time.

Let us describe briefly our strategy for the proof of Theorem [1.2} The pressure
term ¢ is harmonic and in heuristic, it can only have the influence to the solution
near the boundary. Hence we will prove that the measure u; is propagated in the
same way as Laplace quasi-mode (semi-classical analogue of wave equation) along
the rays inside the domain. When a ray reaches the boundary, we need a more
careful analysis between the wave-like propagation phenomenon and the concentra-
tion phenomenon of the pressure. It is difficult to get a simple propagation formula
near the boundary, comparing to the treatment of quasi-mode problem of Laplace
operator as in [3],[7]. We partition the phase space into elliptic region &, hyperbolic
region H and glancing surface G. It turns out that no singularity accumulates near
the elliptic region. For the hyperbolic region, we prove the propagation by the
standard energy estimate, with an additional treatment when the incidence of the
ray is right. Near the glancing surface, we will follow the arguments of Ivrii and
Melrose-Sjostrand. The main difference is that we will encounter two new cross
terms essentially of the form (q|u)2 after certain micro-localization. To overcome
this difficulty, we further micro-localize the solution according to the distance to the
glancing surface G and treat them separately. For the part nearing G, we use the
fact that the pressure decays fast away from the boundary while the solution can
not concentrate too much near the boundary, provided that it is micro-localized
close enough to the glancing surface. For the part away from G, it can be well-
controlled by induction argument, using geometric properties of the generalized
bicharacteristic flow.

Elu](t)

2. PRELIMINARY

2.1. Notations. We will sometimes drop the sub-index k for a sequence of func-
tions (ug) and semi-classical parameters hi. In this circumstance, the notion
lullx = O(1),0(1) as h — 0 should be understood as ||ux||x = O(1),0(1) as
k — oo (thus hy — 0) up to certain subsequence.
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As in the introduction, we follow the notation in the context of the analysis of
Stokes system (see [17])

V ={uec H}(QN : divu =0}
and
H={uec L*Q)" :divu=0,u-v|pg = 0}.
In this paper we always use v to denote the outward normal vector on 0SQ.

For a manifold M, we let T M be its tangent bundle and T* M be the cotangent
bundle with canonical projection

m:TM(or T"M) — M.
We will identify system as a system on differential form
R2*Agu—u+hdg = fin Q
hd*u=01in Q (2.1)
ulog =0
where the unknown u € A*(€) is 1-form, and
d: AP(Q) = APTL(Q),d* : APTH(Q) — AP(Q)

are exterior differential and divergence operator on forms, with respectively. Recall
also that the Hodge Laplace operator is defined by

Ap =dd* +d*d = (d + d*)2.

In the tubular neighborhood of boundary, we can identify 2 locally as one side of
the tubular neighborhood denoted by Yy = [0,¢9) x X, X = {2/ € R : |2/] < 1}.
We denote by 9Y; = Y, |,—¢ and Y = Y, |,~0. For 2 € Q, we note z = (y,2’),
where y € [0,€6),2’ € X, and x € 99 if and only if 2 = (0,2). In this coordinate
system, the Euclidean metric dz? can be written as matrices

9= < (1) g(y(,)x’) >’gl B ( (1) g‘l(oyw’) >

with |§'|3_1(y’w,)) = (&, 97 (y, ') )pa—1 = g7F¢}€}, be the induced metric on T*51Y,
parametrized by y. Note that |£’|2,1 0 = = (¢, 9g710,2")¢ ) par = gjk%f,’c is the
natural norm on T7*952, dual of the norm on 701, induced by the canonical metric
on Q. Write (z,¢) = (y,2,n,¢') and denote by |¢| the Euclidean norm on T*R<.
For u,v € A'(Y,) with support in the local chart of turbulence neighborhood, we
define the L? norms and inner product on [0, €y) x X via

full vy o= [ [ talo)v/aet@eds
(u)zacry = (el o= [ [ tulo)/Aer@raaay
e,y = [ (ol Mty ) v/ elg)da',
(ulo) o) (0) = [ (Vo) Aet(g)

where for u = ugdy + u;dz'?, v = vody + vjdz’,

(ulv) = ugTo + ujﬁgjk
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In certain situations we also use global notation for L? inner product:

(ulv)q :== /Qu'ﬂdx, (flg)oq :== /Emf'gdo(:zz).

We will identify the unknown vector fields u, v, etc. with their dual 1-forms. For-
mulation of differential form will simplify some calculations. In the tubular neigh-
borhood, we write a vector field

i —, 9
L=L,—+1L Ly = Lo s ——
Loy TH H Z (Epw,
j=1 J
and we write L = (L, Lj). The normal component obeys the following convention:
(a,0) = —av.

Following [4], we will write down system (1.2)) in the tubular neighborhood. For

u = (uy,uy), equation (1.2]) can be written as:

(=h*A = Duy +hVerg = fi,
(_thg — 1)UJ_ + hﬁyq = fJ_,

. h
h div |u) + ﬁﬁy(\/detgug =0

(2.2)

where
h2A| = h?0; — A*(y,a’,hDyr) + hM (y, o', hD,,) + hMi(y, ') ho,,
h2Ag = h?0; — A*(y,a’,hDyr) + hM (y, &', hD}) + hN1(y, 2')hy,

N-1
h
NAET Z 8m3(\/detgu”,j).
j=1

h2A2(y,z',hD,s) has the symbol A2 = |¢’ i(y7.), and M are both first-order

matrix-valued semi-classical differential operators.

h div ||UH =

2.2. Geometric Preliminaries. Denote by T the vector bundle whose sections
are the vector fields X (p) on Q with X (p) € T,0Q if p € Q. Moreover, denote by
bT*Q) the Melrose’s compressed cotangent bundle which is the dual bundle of 7.
Let

j: T Q=P TQ
be the canonical map. In our geodesic coordinate system near 92, *T'Q is generated
by the vector fields 6%'17' - %, ya% and thus j is defined by

iy 2"sn, &) = (y,2's0 = yn, £).
The principal symbol of operator P, = —(h2A + 1) is
ply, "0, &) = + €21y 0y — 1.
By Car(P) we denote the characteristic variety of p:
Car(P) := {(z,€) € T*RY5 : p(,£) =0}, Z :=j(Car(P)).
By writing in another way
p=1"—r(ya &), rly,2,&)=1— ¢,

we have the decomposition

T* 00 =EUHUG,
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according to the value of r¢ := r|,=o where
&= {TO < 0},7‘[ = {T() > O}7g = {T() :0}

The sets £, H, G are called elliptic, hyperbolic and glancing, with respectively.

For a symplectic manifold S with local coordinate (z,(), a Hamiltonian vector
field associated with a real function f is given by
_9f90 _0f0
C0C 9z 0z 0C
Now for (z,&) €  far away from the boundary, the Hamiltonian vector field asso-
ciated to the characteristic function p is given by

Hy

0
H,=2—.
P gaz
We call the trajectory of the flow
¢s ¢ (@,8) = (z+ 5, §)

bicharacteristic or simply ray, provided that the point z + s¢ is still in the interior.
To classify different situations as a ray reaching the boundary, we need more
accurate decomposition of the glancing set G. Let 71 = 0,7|,—o and define

GE2 = {(,¢) s ro(a’,€) = 0, H], (r1) = 0,¥j < k; HyF (r1) # 0}, k > 0

GHE = {2, €) i ro(a, &) =0, £ (2, &) > 0},G% =G>T UG .
Denote by G = G\ (U;>2 G7). We say that there is no infinite order of contact
on the boundary if G = 0.
By setting

HE is a well-defined vector field tangent to G which is called the gliding vector
field. Given a ray ~y(s) with 7(v(0)) € Q and 7w(v(so)) € 9 be the first point that
reaches the boundary. If vy(sg) € H, then ny(v(so)) = £4/70(7(s0)) are the two
different roots of 2 = ry at this point. Notice that the ray starting with direction
n— will leave €2, while the ray with direction 7, will enter the interior of 2. This
motivates the following definition of broken bicharacteristic:

Definition 2.1 ([8]). A broken bicharacteristic arc of p is a map:
se I\ Bw—y(s) e T*Q\ {0},
where I is an interval on R and B is a discrete subset, such that

o If J is an interval contained in I\ B, then s € J — ~(s) is a bicharacteristic
of p over €.

o If s € B, then the limits v(sT) and v(s™) exist and belongs to T;Q \ {0}
for some x € 98, and the projections in Tr0Q\ {0} are the same hyperbolic
point.

When a ray 7(s) reaches a point pg € G, there are several situations. If py € G,
then the ray passes transversally over py and enters T*() immediately. If py € G>~
or pg € G* for some k > 3, then we can continue it inside 70 as long as it can
not leave the boundary along the trajectory of the Hamiltonian flow of H_,,. We
now give the precise definition.



SEMI-CLASSICAL PROPAGATION OF SINGULARITIES FOR STOKES SYSTEM 7

Definition 2.2 ([8]). A generalized bicharacteristic ray of p is a map:
s€I\ B~ ~(s) e (T*Q\T*0Q)UG

where I is an interval on R and B is a discrete set of I such that povy =0 and the
following:
(1) 7(233_ is differentiable and Z—Z = H,(v(s)) if v(s) € T*Q\ T*0Q or v(s) €
goT.
(2) Every s € B is isolated, v(s) € T*Q\ T*0Q if s # t and |s — t| is small
enough, the limits v(sT) exist and are different points in the same fibre of
T*002.
(3) ~(s) is differentiable and (clTZ = HE(’Y(S)) if v(s) € G\ G>T.

Remark 2.3. The definition above does not depend on the choice of local coordi-
nate, and in the geodesic coordinate system, the map

s = (y(s),7°(5), 2" (5), €' (5))
is always continuous and
s+ (2'(s),€'(s))
is always differentiable and satisfies the ordinary differential equations
de’ Or df  Or
dt 9 dt  dx”’
the map s — y(s) is left and right differentiable with derivative 2n(sT) for any
s € B (hyperbolic point).
Moreover, there is also the continuous dependence with the initial data, namely
the map
(5.p) = (y(5, ), 7 (5, p), 2" (5, ), €' (5, p))
is continuous. We denote the flow map by (s, p).

Remark 2.4. Under the map j : T*Q —* T*Q, one could regard ~(s) as a contin-
uous flow on the compressed cotangent bundle *T*Q), and it is called the Melrose-
Sjostrand flow. We will also call each trajectory generalized bicharacteristic or
simply ray in the sequel.

From the classical result of Melrose-Sjostrand, a generalized bicharacteristic that
does not meet G is uniquely defined (see Corollary 24.3.10 in [§]). Then, having
G> = (), meaning G/ = @ for some j > 2, implies the uniqueness of all generalized
bicharacteristics and thus the existence of the Melrose-Sjostrand flow. We refer to
Example 24.3.11 in [§] where nonuniqueness occurs precisely in the case of a point
in G™©.

2.3. definition of defect measure. We follow closely as in [2] and one can find
in [7] for a little different but comprehensive introduction.

We denote by S™ the usual symbol class. Define the partial symbol class S3*
and the class of boundary h-pseudo-differential operators Aj* as follows

Sy i={aly,a',&):  sup 080 a(y. 2, &) < Crmap(1+16)" ).
,8,y€[0,¢€0]
B =2 OB (S™) + Opy (SB) == AR + AR .

Consider functions of the form a = a; + ap with a; € C2°(Q x R%) which can be
viewed as a symbol in SO, and as € C°(Y, x R?71) can be viewed as a symbol in
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Sg,. We quantize a as follows: Take ¢; € C°(), equal to 1 near the z-projection
of supp(a;) and s € C°(R?), equal to 1 near the z-projection of supp(ag). Define

) 1 i(z—2)¢
i,Pd N P .
Oph (a)f(ya x ) = (27Th)d /de e CLZ(I, f)cpz(z)f(z)dzdg
1 iz’ —2")e’ ,
+ W)d_l/}w(“) e ap(y, 2, )pa(y, ') f(y, 2')dz'dE'.

According to the symbolic calculus, the operator Op;*¥?(a) does not depend on

the choice of functions ¢;, pg, modulo operators of norms Or2 _, L’g’omp(hm)v and
we will use the notion Opy,(a) in the sequel. Notice that the acting of tangential
operator Opy,(ap) can be viewed as pseudo-differential operator on the manifold 02,
parametrized by the parameter y € [0, €y). The bounded family of operators As
is defined uniquely up to a family of operators with norms uniformly dominated by

Ch, as h — 0. Moreover, for any family (Ay,), such that
[An = Opy(as)ll 212 = O(h),

the principal symbol o(A) is determined uniquely as a function on T*9€2, smoothly
depending on y, i.e. o(A) € C([0,€) x T*ON).

When we deal with vector-valued functions, we could require the symbol a to
be matrix-valued. Now for any sequence of vector-valued function wy, uniformly
bounded in L?(2), there exists a subsequence (still use wy, for simplicity), and a
nonnegative definite Hermitian matrix-valued Radon measure p; on T2 such that

lim (Opy,, (a;)wr|we)r2 = (i, a;) == / tr (aidp;).
k—0 T+Q

For a proof, see for example [2] or the textbook [I8], and the micro-local version
was appeared in [6].

From now on the symbols and operators will be scalar-valued unless otherwise
specified. Suppose uy be a sequence of solutions to

— h2Auy, — up + eV = fr, (u, fr) € (H*(Q)NV) x H, 23
hkdivuk = 0, in '
under the assumptions below:
llukllz2) = O(1), fr € H and || fx||L2() = o(hw),
(2.4)

1RV k| L2y = O(1), / qrdr = 0.
Q

Let u; be the interior measure associated with (ug)g. Then the following result
shows that u; is supported on Car(P).
Proposition 2.5. Let a; € C°(Q x R?) be equal to 0 near Car(P), then we have

lim (Opy, (a;)ug|ug)r2 = 0.
k—o0

Proof. Note that the symbol b(x, &) = Té‘(f fl) € 59 is well-defined from the assump-

tion on a;. From symbolic calculus, we have

Ophk (al) = Bhk(fhiA — ].) -+ OL2—>L2 (hk)
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Therefore
(B, (—hiA — D)uglug) 2 = (Bpy frlur) 2 — (Bryhi Ve ug) 12
= o(1) + (["&V, Br,Jak|ur) 2 — (heV B, qi|[uk) 2
o(1), as k — oo,

where in the last line we have used the symbolic calculus, integration by part, and
Lemma [3.3 [ |

Now we denote by Z = j(Car(P)). Proposition indicates that the interior
defect measure p; is supported on Z. To define the defect measure near the bound-
ary, we have to check that if ap € C°(U x R%!) vanishing near Z (i.e. ap is
supported in the elliptic region for all y small) then

lim (Opy, (ap)ur|ug)r> = 0.

k—o0
Indeed, this can be ensured by the analysis of the boundary value problem in the
elliptic region, which will be given later. Now for any family of operators Ay € A%,
let @ = o(Ay) be the principal symbol of Aj, and we define x(a) € C°(Z) via
k(a)(p) == a(j71(p)). Note that Z is a locally compact metric space and the set

{k(a) :a =0(Ap), A € AV}
is a locally dense subset of C?(Z). We then have the following proposition, which

guarantees the existence of a Radon measure on Z:

Proposition 2.6. There exists a subsequence of uy, hi, and a nonnegative definite
Hermatian matriz-valued Radon measure jv on Z, such that

lim (Ap, up|ug) e = (u, k(a)),a = o(Ap), VA, € A).
k—o00

The proof of this result can be found in [2], see also [3] and [6] for its micro-local
counterpart. Notice that if we write a = a; + ag, then

Antu) > [t @o)duslo) + [ tr (aolp)due).
T*Q zZ

The following result shows that information about frequencies higher than the
scale hlzl is not lost, and the measure p contains the relevant information of the
sequence (ug).

Proposition 2.7. The sequence of solution (uy) is hy—oscillating in the following

sense:’

R—oo k0o

lim limsup / [an (6)[2dE = 0¥ € C2(9),
|€]>Rhy !

lim lim sup / dy / un (4, €')Pde = 0,% € C2(Q),
0 |¢'|>Rh;*

R—0 koo

where in the second formula, the Fourier transform is only taken for the x' direction.
Consequently, the total mass ||uk\|%2(9) converges to {u;, T*Q) + (u,17).

The proof will be given in appendix.
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3. A PRIORI INFORMATION ABOUT THE SYSTEM

3.1. Information about the trace. We consider the semi-classical Stokes system

{ —h2Au—u+hVg=f, (u,f) e (H*Q)NV)x H

3.1
h divu =0, in Q (3:-1)

Assume that ||ul|z2(q) = O(1), || fllz2(@) = o(h). Taking inner product with u and
doing integration by part, we have ||hVul|;2(q) = O(1). Since ¢ € L*(Q)/R, we may
assume that fQ qgdx = 0. From the regularity theory of the steady Stokes system,
(see [I7], page 33) and Poincaré’s inequality, we have

1029%ull 20y = O(1), (@) = O™, 1AVl 2oy = O(L).
The following is a direct consequence of trace theorem for gy = ¢lagq.
Lemma 3.1. [|qol|z1/2(90) = O(h™1).
We also have the hidden regularity property for the normal derivative.
Lemma 3.2. hd,ulsq = (hd,uy,0) and ||hd,ulaqllr200) = O(1).

The proof of this lemma will be given in appendix. We will recover some infor-
mation for low frequencies from the following lemma;:

Lemma 3.3. Suppose u — 0 in L2(2). Then after extracting to subsequences, we
have hVq — 0 weakly in L*(Q) and hq — 0 strongly in H'/?(€).

Proof. We may assume that hVq — r weakly in L?(Q2). Then the Rellich theorem
implies that hq — P strongly in L?(Q2), and thus VP = r with the property
fQ P = 0. Moreover AP = 0 in €, in the distributional sense. Since the sequence
(h?V2u) is bounded in L2, then up to a subsequence, h?V2u — W weakly in L2
From the Rellich theorem, the sequence (h?u) converges strongly in L? and the
strong limit must be 0, due to the fact that v — 0, weakly in L2. Thus W = 0
and this implies that VP = 0. Finally, we must have P = 0 since it has zero mean
value. The last assertion follows from the Rellich theorem. |

3.2. Semi-classical parametrix of the pressure term. In system (3.1), the
family of pressures ¢ satisfy the boundary value problem of the Laplace equation

_hQAq = 07 in QvQ‘@Q =4qo

with unknown boundary data go. We denote by PI(qg) the Poisson integral of the
corresponding harmonic function with trace qo. Let A be the Dirichlet-Neumann
operator satisfying

Ngo = 9,PI(qo)|a0-

Next we study the behaviour of the sequence of pressures ¢ in the regime of fre-
quency scale h~!. We always fix the notation

)\(y’x/’gl) = ‘£/|g_1(y,m’) ~ |£/|

Let Y = (—€0,€0)y X Xz and Yy = [0,€0)y x X,. We first have the L? bound of g,
micro-locally away from & = 0.
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Lemma 3.4. Let (fn)o<n<1 be a h-dependent family of distributions such that
[ fullz2@ny = O(W™N) for some N € N. Assume that for any x € C°(R*™),
vanishing near £ = 0, we have Hx(x,th)thH%(Rn) =O(h™'). Then

1

X (@, hDy) fullL2@ny = O(h™2).
Proof. Assume that {|£| < 20} Nsupp(x) = 0. Take ® € C°(R™) such that
(&) =1,[¢] < do,  P(£) =0, |¢] > 20p.
We write
(@, hD,) f = ®(hDy)x (2, hDa) f + (1 — ®(hDy))x(x, hDy) f.

From the support property we have ®(hD;)x(x,hDy)f = Opoe(h*®). Thus (1 —
D(hDa)x(w,hD,)f = Oy (k). Let b(€) = |¢[1/2(1 — D(¢)), and we have

b(hD,)x(x, hDy)f = Or2(h™2). Since b(¢) # 0 on supp(), we have
(2, hD2) fll 2 (gny < Cllb(AD)x (2, hDy) f || 2@y +Chlx (@, hD2) f | L2y < Ch72.
|

Lemma 3.5. Given &y > 0 and ¢, 3 € C(Y,). For any x5, € C°(Y, x RI71)
such that xs, vanishes if A(y,z’,&") < 2dg, we have

180Dy, (x50 ) (90) | 2Rty + B2 (0P (X50)(90) ly=oll L2rt—1) < Ty,

Proof. Write D; = -2 we have ||hDj(<pq)||Lz(Ri) = O(1). Since éﬁX% (y,2', &) €

7
Bw]

<

S9, then for x; = |§,}|2X50, we have
-1
&Xso (Y, 2", h Dy ) (0q) = Z@xj(y,x’, hDar)hD;(pq) + Opzra) (1) = Opz(ra) (1),
j=1

where the implicit bound in big O depends on &g, @, p. For the boundary term,
we observe that $Opy, (xs,)(#q)ly=0 = Oppr/2(ra-1)(h™") from trace theorem. Thus

from Lemma 3.4, $Op;, (xs,) (#0)ly=0 = Opaga—1)(h~1/2). -

We express semi-classical Laplace operator thg in the geodesic coordinates of
tubular neighborhood Y by

Py = h*9; + g 0;0; + hM;(y, z')hd; + hH (y, ' )hd,
where 0; = 835;_. We make the ansatz
1 ix'e!

0.0') = Gy [ ol €)e T 0

then we calculate

1 . X izl el
Po(§)(y, 2, &) =GRy / (h?02a + ¢7* (h?0;0ra — g""¢j€a)) eT‘a(g’)dg’
1 . il el
it | (07 6h0,0) €5 0(¢

1
(2rh)d—1

ixe!

/((hQMjajaHhMjg;a)+h2Haya)e w0 de! .

4_
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We next look for the formal semi-classical expansion

a(y,h,a', &) 2> Way(y, h,a',¢)

j=0
with a; € Sa_j and hkajaj € ng+k. We obtain
1 202 ij
e | (050~ g6ga0
+h(ig’*¢,0;a0 + iM;& a0 + h*HO,a0)
—|—h(h2(‘3§a1 - gjkgéf,'ccu)
—|—h2(gjk8jakao + Mjajao)
—|—h2(igjk§,’€8ja1 + iM]f;»al + h2H8ya1)
+h* (W05 az — g"€]E L an)
+o)e o 0(E)de
Pick 1,0 = p1]oa, p1 € CZ(Y). For go = ¢1,0q0, We put
0(€) = Fa(@n(€) = a1 [ e
Ra—1
ap(0,-) =1, a;(0,-)=0,Vj>1,
and we define the functions a; inductively as follows: firstly we define ag

_ yA .2’ g) .
ao(y, 2, &) =e” Ny, 2, &) = 1/g9€&; ~ €],

and the quantity

P()aﬁ

h? 4222 2y
A2 b2 h
can be viewed as of order h. Next we set a;,j > 1 implicitly by solving a sequence
of linear ODEs:
h202a1 — Nay = — h™ 1 (W02 — N)ao — (ig?*&.0;a0 + iM;&ag + h*HOyap).
R0 an — g7 & an = — (97 0;0jan—2 + M;0jan_)
— (ig"*€,0jan1 + iM;Eian—1 + R*HOyan—1),n > 2.
Unfortunately, the functions a; constructed above are not symbols, since they
have singularities when ¢ = 0. This indicates that we can only obtain information

of g(h) from such parametrix away from & = 0. We modify the construction above
by setting

(h*0; — X)ag = h < (O,N)? + ==\ — 28y/\) e

A
AO(:%I/,&l) = ei%wéo (A)Qﬁg(y,lj), (ya z/agl) S Ri X Rdila

with 5, = ¥(65'-),% € C(R,) satisfying ¢(s) = 1 when s > 1 and ¢(s) = 0
when 0 < s < % We next modify other A; in the same manner. Indeed, the ODEs
which define A; are linear ODEs in y variable. Thus for j > 1, A;(y,2’¢’) =0
when A(y, 2/, ¢') < %0. We define the particular class of symbols in Sg.

Definition 3.6.
. . C‘l'.’ay
&)= {a € 8} 1 [(hdy) 0% craly,a', &) < Crae” —F } .
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Lemma 3.7. The symbols constructed above can be chosen to satisfy A; € 58_j for
all j € N.

The proof will be given in appendix.
In summary, we have A ~ 37, hiAj, and a tangential symbol By, (y,a’,¢’)

compactly supported in A(y,2’, &) < %0, such that

Py A(y, ', hDy)(1,090) =9Bs, (y, ', hDyr ) (91,090) + O (R™),
@0 A0, 2", hDy ) (01,090) =00y, (¥5(N)(1,090) + O ().
The following proposition states that the parametrix constructed above is an ap-
proximation of the pressure ¢ in the relevant semi-classical scale.

Proposition 3.8. There exists A € S) with principal symbol

A !/ !
Aol &) =exp (2L ED) 00 €320

which satisfies asymptotic expansion A ~ Z thj, A; e Ea_j. Moreover, for any
j=0
Y, 1 € CSO(Y+)>@1|supp(cp) = 17
we have 0Py, (xs,4;5)(¥1,090) = OL2(R1)(1) for all j, and

0Dy, (X5,) (919) = 00Dy, (X80 A) (91,090) + Ozt y (h*/4),
©Opy, (X8,) Py (p19) = ©ODy, (X5, AA) (¢1,090) + OLZ(Ri)(h3/4)a

0Py (x50)h0, (1) = ©OPL (X8 M) (P1.0d0) +O 3 o (),

where po = o, 1,0 = P1lo0; X6,,0 = Xéoly=0-
We postpone the proof of this proposition in appendix. A direct consequence is

that the singularities of the family of pressures (g ) must concentrate in a very thin
strip near the boundary.

Lemma 3.9. With the same x5, € C°(Y. x R¥™Y) and ¢, € C(Y,), for any
0 < yo < €9, we have

€0 cyQ
/ 190D (t50) (£10) 12 a1y dy < Ciy (e~ F + ),

Yo
where the constant Cs, only depends on dg and is independent of yo and h.

Proof. The second term appearing on the right hand side comes from all the possible
remainder terms. It suffices to estimate the term

€0
[ 160m1 005, Ao} (0100 a1y
Yo

Since ¢1,0q0 = Op2(ga-1)(h™/2), micro-locally, we have for each fixed y > 0 that

- 121 0o
00Dy, (X6, A40)(¢1,090) | L2 (RE-1) < 2 sup o e (X80 A0
l9OPy (x50 A0)( )| <Ch~'/? h 100, ¢ (x50 40)| + O(h™)

pl<ca  v>OEED
<Ch71/2 7%<1 hm/2 Q ”) o0y
< e (14 Z (h) + O(h>)
1<m,n<Cd

Squaring and Integrating the right hand side in y variable yields the desired con-
clusion. ]
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4. MAIN STEPS OF THE PROOF

The proof of Theorem can be divided into several steps according to different
geometric situations. We want to show that for any given point py €° T*Q, if pg ¢
supp pu, then (s, pg) ¢ supp(u) for any s > 0. The first step is to show that
if po € T*Q, po ¢ supp(p), then (s, po) ¢ supp(u) for all s > 0 provided that
7((-, po)ljo,s)) N 02 = 0. This can be summarized by the following proposition,
in which we have stronger conclusion that the measure is also invariant under the
flow.

Proposition 4.1. For any real-valued scalar function a € C(2 x R?) vanishing

near £ =0, we have

@ paon(s ) =0

Proof. Let A = Opp,(a) and P = —h?A — 1. Applying the equation and Lemma

[3-3] we have
1 7

(P, Ajufu)g =

= L(Aulf ~ i¥g)a — (A KV u)a

(Au|Pu)q — %(APu\u)Q

L (Aulh ) + 1 (ARVglu)a + o(1) (41)
= ({4, hdiv Julg)a + (A, Vgl + o(1)

= (0, (Va) - ula)o — i(Op,(Va)glu)e + o(1)

= i(u|Op,,(Va)g)a — i(Op,(Va)qlu)a + o(1).

where we have used integration by part freely, thanks to the fact that A has compact
support in € 2. Now we claim that for any x = a or @, vanishing near £ = 0, we
have
(u|Op, (VX))o = o(1).

Indeed, ¢ = Orz2(q)(1) micro-locally away from & = 0 since hVq = Or2(1). More-
over, h2A(Op,(Vx)q) = Or2(q)(h) and this implies that Op, (Vx)q = o072(1) since
the symbol of h2AOp,, (V) vanishes near £ = 0 as well as x near the boundary. In
view of the definition of u, this completes the proof. |

For the second step, we need prove that if py € £, then u = 0 in a neighborhood
of pg.
Proposition 4.2. pulg = 0. Furthermore, for v, the semi-classical defect measure

of the sequence (hipdyug|aq, hx), we have vlg = 0.

The third step consists of proving that after reflection near a hyperbolic point,
the measure p is still zero.

Proposition 4.3. Suppose that py ¢ supp(p) and there exists so > 0 such that
v(s0,p0) € H and 7(y(s,po)) € Q for all 0 < s < sg. Then there exists 6 > 0 such
that

7(Y(+, P0)[s0,50+0]) N supp(p) = 0.

Next step is to prove the propagation near a diffractive point.
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Proposition 4.4. Suppose that py ¢ supp(p) and there exists so > 0 such that
v(s0,p0) € G>T and w(y(s, po)) € Q for all 0 < s < sg. Then (0, po) ¢ supp(p).

To deal with higher order contact, we will use induction. First let us introduce
Definition 4.5 (k-propagation property). For k > 2, we say that k-propagation
property holds, if along generalized ray (s, po), the following statement is true:
For some oo > 0, if (-, po)lj0,00) N supp(p) = 0 (07 ¥(:, po)l(~o0,00 N supp(pt) = 0)
and y(00,p0) € | J G (or v(=00,p0) € |J G’), then v(00,p0) ¢ supp(p) (or

2<j<k 2<5<k
¥(=00, po) & supp(n) ).

The last step for the proof of Theorem can be reduced to

Proposition 4.6. k-propagation property holds for all k > 2.

5. NEAR &

This section is devoted to the proof of Proposition We set Q(y,z’,¢') =

VA2 — 1 and define Qp = ¢Op;,(Qxo0)p1 with xo € Cfo(Rg,_l) with support near
€ in which 1+ 6 < A < C. With a bit abuse of notation, we refer qg,q to be
©Opy, (x0)¥190, 0Dy, (X0)P19 and u to be wOpy, (xo)p1u. In this manner, we can

combine the parametrix in last section to write the system (1.2)) as
{ (—h28§ + Q}QZ)U”J + gj"”'hc’?m;c (Oph(Ao)qo) = RHJ = OL2(Ri)(h)a

(=h%9% + Q%)u, + hd,(Op,(Ao)ge) = R = O (h). (5:1)
y h)UL y(YDPr{40)q0 1 L2(R%)

Note that the symbol Ag(y,z’,£’) is defined in last section which equals to e s
ince A > 1. Take 1 € C*°(Ry.), with ¥j0.cs) = 1, ¥[2¢9,00) = 0. Denoting the extend-
ed distributions of u by w = (wy, w1 ) = (uj,u1)¥(y)1y>0, we have from standard
elliptic parametrix construction (see Appendix A) that modulo O Hm(Ri)(hO"),

{ wy ;= E(y,2',hDy, hD ) (= (y)g’* hdy: (Opy,(Ao)qo) + hv; ® Sy—o + ¢ (y) Ryj.5),

wy = E(y,2’,hDy, hDy)(—hip(y)9y (O (Ao)ao) + ¥ (y) RL).
(5.2)
where v = hOyu|,=0 = Opz2,(1). Recall that the principal symbol of E is given by

o . Xo(&)ely. ')
- 772 + )\(y,x/’gl)Q - 17

Now we need a lemma which deals with the trace of error terms:

Lemma 5.1. Assume that R = ¢Op},(x0)p1 R+O0 g (h™), then iszb(y)RHLz(Ri =
O(h), we have

”E(yv 1'/7 hDy, th’)(w(y)R”y:O||L2(]RZ71) = O(hl/g)
Proof. From the parametrix construction above, we know that
Ca
n? +Qy, 2, )

Therefore, the symbols nE(y,z';n,¢&") and Ay, z’,&)E(y,z’;n,¢&') are uniformly
bounded in S°. Thus E(y,z’; hDy, hDy)(YR) = OL2(R1)(h) = OHl(Ri)(:l), and

10y o1 e By, 2’5, €] <
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from interpolation, we have E(y,z’; hD,, hDy) (¢ R) = OHZ/S(Ri)(hl/S). The con-

clusion then follows from the trace theorem that H*(R%) — Hs~Y2(RI71) is
bounded for s > 1/2. [ |

Proof of Proposition[{.4 Denote by F(go) = 0 the semi-classical Fourier transfor-
m of qg, we calculate

E(y, &', hDy, hDqr) (1 (y)h, Oph( ) )

'La.

i(y—2z)n z)n /)Xo(f/) _zk(+r’§’) /
27Th // dz d / 2 +Q2 y’ ’5/) T/J(Z)haz(e )dg +R1

L(yn+z [30)

_ £) Bi(n, 2", & )ely, #)xo (&) .,
N 271’h // 7’ +Q2(y x! 5/) dﬁdf

h? e Bo(n, 2/, &) (y, ') xo(€)
~ (2wh)? e /

n?+Qy, 2, &)?

dn+ Ry,
(5.3)

with reminder term Ry = Op2(ga)(h), where Ao = A|,=o,

m+>\(zr E)) )\Z x! f)
', €) = [ ot o

and

Bo(n, ', &) = / P(h2)2(9.) (hz, o', € )e~ Az €0z g,
0

We notice that

Ko(y,a', &) = / e n B(;7(777+96Q§y)7 (75,)2)X0(5)d

is a bounded symbol in Sg,. Thus the second term on the right hand side of (5.3 is
equal to Ry = Oco(Ry_Lg(Rdl—l))(h) and we may concentrate on the first term. Write

G

Bi(n,«,¢) = / W(hz)e” (A=)
0

Taylor expansion gives
1
Y Y d Y
e X022\ (hz, 0! €Y (hz) =e 0 2 (!, €1) + / = (7= DNtz ! € Yo (tz) ) i
0

1
:e—/\o(w/,fl)z)\o(x/7 é-l) + h/ Pt(Z, (E/, 6/)6—>\(htz,a:/,£/)zdt
0
with
Pi(z,2',&) = =22 (N, \) (htz, o', & )b (ht2)+2(0,\) (htz, ', € Vb (htz)+2 X (htz, 2’ €)' (htz).

Ao(,€)
(in + Xo(a",€"))(&")

1,2, &) / / e (mtA(htz,a’ £))2 <§>P(z o', €)dzdt.

Thus we have By(n,2',¢') = + hBy(n,2,¢'), where
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Note that near a point in £, |8§‘,8§,Pt(z, z',¢")] < Cypz?, independent of ¢, h, hence
the symbol

e oy, e )xo0(€) 5 0
( Y,z 75) / 772+Q(y,37/75/)2 Bl(naxag)dngsf"

Therefore, the symbol in the principal term of E(y, z’, hD,,, hD,) (1 (y)hd,Opy, (Ao)qo)
equals to

K (y, 7/, €) =ho(a',€)) / (772+Qe S ]

(y,2',&)? )(m+>\o )
_yQ
=2mXo(y, z')x0(£") (2(/\2 — 00 > +hE (y, 2, €)
yQ Y¥Ao /\
h —e R

=27\ (y, ") x0(&) <6 ) + hKl(y,l’ £').

M0 -QQ Q(A0+Q)

Note that
@_% — 6_% e 1’20
Ey(y,2",¢") = 2mhop(y, 2')x0(&') ( 200 —Q)0 T 2000 +Q)> >0

near &£, we have
E(y,x',hDy, hDy)(1(y)hd,Opy,(Ao)go) = E1(y,2’,hDy)qo + R1 + Ra,
with Ry = OC(Ry_LQ(RdTI))(h). We claim that Ry = Oy (gay(1). Once it is justified,

by interpolation, we have || Ry || g2/s gay = O(h'/3). To Verify the claim, we note that

the symbol of the reminder term R is of the form hS~! (in both  and ¢’ variables),

hence the symbolic calculus yields 0, Ry = Op2ga)(1), and 9p Ry = Op2(ray(1).
We next calculate the parallel component

iz’e!  zX(z,2’,¢) .
1 ity=2)n e n o 0(E)g* (2, 2) ey, 2 )xo(€)
—_— v dzd d
CEn / / () 2 i / e ¢

i(a'e’ +y77)

5)@( z")xo(§ MZ ik ,
27rh // 2 +Q(y,x )2 d dﬁ/ Y(z ¢ (z,2")dz

i(a'¢’ +yn)
10(€) ey, 2)x0(£")
27rh // (n® +Q(y7w £')?)
= EQ(yax ath ) q0

By ji(n, 2', & )dndg’

where
o0 in z,a! ¢! . 1
Baju(n.',€) = [ wla)e "k )
0
Define
iym
B k(nyx ey, 2")xo(§')
K ;x/a/:/eh > da
25y, @, &) %+ Q(y, 2/, ¢)? K

and from similar argument we have

+hEs(y. o', &)

%0,z ei%nﬂ"(%xl)xo(gl)
Kop(y,2',€') = g7" (0, )/(7]2_|_Q(y,x’,g’)Q)(in—l-)\0(33'75/))
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and the principal symbol of Es(y,z’, hD,/) is elliptic if A\g(§’) > 1 and y small
enough. Finally,

E(y,a',hDy, hDy ) (hv ® §,—0)

]_. 7(yn+1 [30) v ! , /
5.4
h iul e _yQ(yhf R30) ’ ’ , )
:W /]—'h(v)(fl)e% i Qy iz(yng Dole )df + OLZ(Rd)(h)

=: E3(y, x, hDg v + OLQ(]Rd)(h),

and again, F3(y, ', hD,) is elliptic near \o(£’) > 1. Moreover, we deduce from the
same argument as for Ry that the reminder terms are indeed of OH2/3(]Rd)(h1/3).
Now the boundary condition (wy,w)|,=0 = 0 and the trace theorem yield

By (0,2, hDar) o = O g J(B3),

E5(0,',hDyr)go + E3(0,2', ADyr)v = O 5 a1y (h'/?).

Therefore, from the ellipticity of E7, Fs, F3, the measure of pressure in the elliptic
region vanishes, so does the measure of v, namely v|¢ = 0. The proof of Proposition

is complete.
|

6. NEAR H

We take 1,0 € C(Y,) such that ¢1|gpp(e) = 1. For any tangential symbol
b e CX(Yy x RI1), we define the pseudo-differential operator B;, = ©Opy, (b)p1,
with compact support in Y. We will change the notation of tangential variables
(2',&) to (z,£). We always work in local coordinate (y,x) and sometimes abuse
the notation u = pyu,q = p1q as compactly supported functions in Y, . Note that
qo, the trace of ¢ is not bounded in L? in priori. Fortunately, it turns out that
go = Orz2(1), micro-locally near a point in H.

6.1. L? bound of boundary datum. Take b(y, z,¢),b1(y, z,£) € C°([0,€0) xH),
such that b1(g,¢, /2) xsupps) = 1. Let Q(y, x,&) = /1 = Ay, z,£)2b1(y, z,&). We will
first factorize the operator (—h?A — 1) near a hyperbolic point.

Lemma 6.1. For 0 <y < ¢y, we have
Bh(_hZA - 1) = _(hDy - QZ)(hDy - Q;) +R = _(hDy - @f:)(hDy - QVZ) +RH’
where R, R" € C*([0, o], h>°T~>°(9N)), and Qf, Qvf have principal symbols +Q(y, x,§).

Proof. The proof is quite standard, and we follow the construction in [3] by trans-
lating word by word to the semi-classical setting. In local coordinate, we have

Bp(—h*A —1) = h2D§ + R(y,x,hD;) + hMl(y,x’)hDy + hMy(y, x)hD,
with o(R) = Q2. Set ¢f = VQ(y,2',¢), QF = Op,(¢f) and Q7 = —Qf — hM;.

Direct calculation gives

h
(hDy — QF)(hDy — Q7) = h*D; — (Q)* — hQ{ My — (Qf + Q1 )hD, — ;%(QI)
= h2D2 — (Qf)? + hM1hD, — h(Qf My —i0,(Q7)).
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Thus By (—h2A — 1) — (hD, — QF)(hD, — Q) = hTy, with some operator T7,
bounded in L?. Now for j > 1, suppose that we have

Ba(=h?A —1) = (hD, — Q] )(hD, — Q) = W},

by setting Q;t-u = Qjc + hjS 1 with St 1+ Sj4 =0and O’(S]_,’_l)
obtain that
Bh<_h2A ) (hD Qj+1)(hDy - Q;+1)
hit1

=hiT; +hj(5 Q7 +QFSL) — (s f o+ S )hDy — Tay(sj;l)Jrh SJHS*

+
=Ry,

for some operator T} bounded in L% Thus the proof can be completed by induc-
tion. |

Define w = py1u — hV(p1q), w* = By(hD, — Qif)w and their boundary values

wg := w¥|,—o. Note that pP,w = ¢f.

Proposition 6.2. |\thawa||Lz(Ri) = O(1), and consequently, ||wf||Lz(Ri) =

o(1).
Proof. From hdiv u = 0, we have phdiv w = 0, hence
(p(haywj_ + hdiva”) = OLZ(Ri)(h)’

where in local coordinates,

diV”w” 6% det w” ])

Therefore,
[1Bhhyw, |[12rey < O(h) + || Bphdivjwy || 12 ga ) = O(1).

Now we recall the following hyperbolic energy estimate.

Lemma 6.3. Suppose Ay, = Opy,(a) is ellptic (with real-valued symbol a smoothly
depending on t) of order 0 on a compact manifold M and w are solutions of the
h-dependent equations

(hDy £ Ap)w =g, (t,z)€Rx M.
Assume that for any compact time interval I and small h,
[wllr2rsary < CU),  gllLzaxary < C(I)h,
then we have for all small h,

sup [[w(t)|| 2y < CUI'), VI' C I compact.
ter
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Proof. By symmetry, it suffices to treat the case hD; — Ap. Take x(t) € C°(I'),
and we may assume that 0 € I’ with x(0) = 1. Multiplying by x(¢) to the equation,
we have

(hDy — Ap)(xw) = xg + [x, hDy — Aplw =: v = Op2mxar)(h).

We now calculate

d . .
h Ocwlxw) (@) 2y = (thDexwlxw)r2 (ary + (xwlihDexw) 2y
= i(An(xw) + rlxw) 2(ar) — ixw|An(xw) +7)12(ar)
= i((An — Ap)xwlxw) r2(ar) + i(r|xw) L2y — 1xw|r) 2(ar
Integrating the formula above from 0 to supI’, we finally have [Jw(0)]|%, vy =
o(1).
Lemma 6.4. |[w|2ga-1) = O(1).
Proof. From Proposition we have (hD,, — Qi)wi = OL?(Ri)(h)- Applying the
previous lemma to wF, we have||w$J_||L2(Rg_1) = O(1). Combining the boundary
condition, we have

Bu(QF — Q) (hdyq)ly=0 = —Br(Q} — Qi )hNqo = wi | —wg = Opzma-1)(1).

Remark that in priori, N is a classical first order pseudo-differential operator, and
we only have

||thNqo||L2(Rdf1) S HBh||H*1—>L2h||-/\/'q0||H*1(Rd*1) = O(h_l)

From the exact pricipal symbol of Qf, we have || ByhN qo|| 2 (ra-1) = O(1), and the
constant in big O depends on the micro-local cut-off b(y,z’,£’). As a consequence,

+
lwg 1 [IL2@a-1) = O(1).
It remains to study wf. Notice that their boundary values are

w(“f” = Bh(v — (hDthI\Q)|y:0) — BthhV”qo,

where v = (hdyu)|y—o = Op2(ga-1)(1). All terms are obviously bounded in L*(R4~1)
except the trace of B,hV|hD,q. To bound it, we use the support property of b
and Proposition hence ByhV | hDyqly—0 = —ByhV hN g = Opore-1)(1). ®

Again by hyperbolic estimates, we have the following result:
Proposition 6.5. ||wi||L2(Ri) = O(1). In particular,
IBrhDywll 2@a) + | BahN ol 2 ga-1y + [ Brh?* Aogoll 12 ga-1y = O(1),
where Ag = Apq is the Laplace-Beltrami operator on 0f2.
Proof. 1t remains to prove ||Brh?Aoqol| 2 (ga-1) = O(1). Indeed,
Bphoyw, =BphOyu; — hQBhaiq

. 0
> 09i(¢" 0kqo) +

1
—h?Bdyu) + h*Bj,( ——— 2V H,q).
! (\/det(g) <jhed-1 det(g) " )

Thus
thawaLg:o = thZAoqo + OLQ(Rd'_l)(l)?
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thanks to hayul = 0and th/\/qo = OL2(Rd—1)(h71). From w()i71_ = thDwa|y=O+
B;LQihNQO = OL"’(Rd—l)(l)v we deduce that thDy’wLb:o = OLQ(Rd—l)(l), and
these yield || Brh?Aoqo|| p2@a-1) = O(1). |

Corollary 6.6. ||thVQHL2(]Ri) = o(1).

Proof. We will go back to the global notation in this calculation. It suffices to show
that B,hVq = ¢Op,,(b)p1hVq = or2(q)(1) since there are only change of bounded

weight in the integral with respect to the measure /det(g)dydz and dydz in local
coordinate, and the former allows us to apply integration by part and the structure
of the equation in a simple way. We calculate
(thVq|thVq)L2(Q) :([Bh, hV}q|thVq)L2(Q) + (hVth|thVq)L2(Q)
:0(1) — (Ahth‘hdiVthvq)Lz(Q)
+(Brhqo| Br(hd,q)|oa) L2 (a0)
=0(1) + (Brhqo| BLhN qo) 12 (99
where we have used the fact that hq = o0r2(q)(1) and Ag = 0 in the calculation.

Now from Lemma we know that hq — 0 weakly in H*(2) and hqo — 0 strongly
in L?(09). The last term is o(1) since BrhNqo = Or2(90)(1). [ |

6.2. propagation estimate. In this subsection, we prove Proposition [{.3] We
factorize —h?A — 1 as (hD, — QF)(hDy, — QF) + R* near zp € H and choose
Qf with principal symbols +Q(y,x,&) = V1 — A2b1(y,x,&), as in the previous
subsection. Take ¢ € C$°([0,€p)) with ¢» = 1 in a neighborhood of y = 0. By an
abuse of notation, we introduce

w® = B (hD, — QF )w,
where Bff have principal symbols ¥ (y)b* (y, z, &). Here, b* are solutions of

abt -

+
oy T Hewsob™ =0, b7y=0 = bo, (6.1)

where by is another micro-localization near zy with b1|supp(b0) =1, and Hgb =
{Q,b}. Note that the compact support of ¥(y)b* can be chosen arbitrarily close
to the semi-bicharacteristic curves y* corresponding to the principal symbol p.
Moreover, b* are invariant along 4*. Under these notations, Proposition can
be rephrased as follows

Proposition 6.7. Let v be the defect measure of u. If
b+/~L10<y§50 =0 (b7ﬂ10<y§so = 0),

then we have
b plo<y<e, = 0 (b7 plo<y<e, = 0).

Moreover, we have in fact by = b~ = 0 in this case.

The proof will be divided into several lemmas. First we calculate
(hDy — Qf)wi = [hDy — Q}T» B}jz:](hDy —Qp)w+ BijLE(hDy - Q%)(hDy - Qf)w,

and
h’ h / /
[hDy — Q. By] = S 0p,(0,0* F Hob ) (y) + -¢/'(4) Bj; + R".

1
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The first operator vanishes thanks to the definition of b*, and the remainder term
R’ = OL?(Ri)(h2)~ Therefore we have

||R'/(hDy - QE)WHB(M) = O(hQ)a
and consequently
h
(hD, — Qi yw* = 2 (yyu* + g*,
with gj: = OLQ(Ri)(h)'

Lemma 6.8. Let u* be the semi-classical defect measure of w* and b is defined as
above. Suppose that bj[/ﬂ[lkyg60 = 0, then we must have bi,ui =0 and ,uoi =0,
where i is the defect measure of w = w|y—o.

Proof. For yo = €/2, we first claim that [|w®(yo)|z2 = o(1). Indeed, from the
assumption and compactness, the measure py* vanishes in a small neighborhood
of semi-bicharacteristic curve y*. Thus ||wi\|Lz([y0,€0]de_1) = 0(1), provided that
we choose supp(bg) small enough in the definition of w*. Finally, repeating the
argument in the proof of Lemma [6.3] we have
€0
—hllw® (yo)l17 2 a1y = Z/ (@i — (@) )xw™ [xw®) 2ra—1) (y)dy + o(h).
Yo
The claim then follows.
Integrating the identity
d . *
hd—y(wﬂwi)w(qu) = (Z(Qf - (Q;jf) )wi|wi)L2(]Rd*1) + Qhw'(y)wi\wi)m(u@d%)
+ ZIm(wi ‘gi)L2(Rd—1)

from y = 2z < yo to y = yo, we have
Yo
o ()2 sy < C / e )2 sy dy + (1),

Using [;* ||wi(y)||%2(Rd,l)dy = o(1), we obtain that ||w(:)t||L2(Rd71) = o(1). This
completes the proof of Lemma [ |

Remark 6.9. Away from the boundary, the defect measure of u equals to the defect
measure of w, and it propagates along the bicharacteristic curves . Since we can
decompose w into wr and w™ near a hyperbolic point, we call w* (w™ )the incoming
wave and the out-coming wave. Thus the above proposition asserts that if we have
no singularity of w™ (w™ ) along incoming wave(out-coming wave) near the boundary
but strictly away from the boundary, then there is no singularity of the boundary
data of incoming wave(out-coming wave).

Changing the role of y = yg and y = 0 in the proof of Lemma we conclude
that if Moi = 0, then b*p* = 0. To finish the proof of Proposition we need
understand how the singularity transfers form boundary data of in-coming wave to
the boundary data of out-coming wave.

Lemma 6.10. [Lét = 0 implies that p§ lezo = 0. Consequently, p¥1ezo = 0.
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Proof. By symmetry, we only need to deduce g 1¢zo = 0 from pg = 0. For 6 > 0,
we define

i) = (. 6)(1 - S,

with some 1 € CSO(R),{/IH_Q,Q] = 1. We define b5 (y,z,£) by solving ODE (6.1)
with initial data by s. Let Bffh be the associated semi-classical PdO of b(;i. From
compactness and continuous dependence of the initial data, we have that § <
My, x,€) < co < 1 on supp(bs(y)) for 0 <y < ¢, since on Y, x RI~1, % ~ 1.
Note that the solutions of the transport equation are given by

bE(y,2,6) = by ovE(y) "M, €),  bE(y,2,8) = bos oy E(y) (2, €),

+
we have that Z& is a smooth function with compact support in Y x R4, Denote
by wgt = Bf;th (hDy— Q] )w, and ,uf;t its semi-classical defect measure, we have ,u(:;'E =

£\ 2 2
pt (2&) . In particular, /‘(:3%0 = (1 - (%)) and supp(ui) C supp(p®). On

the boundary, th and B; ;, coincide and will be denoted by Bg’ n- Taking the trace

of wéi, we have

w;r,O,II = _iBf?’hU + ih2B§7hay(V‘J)H ly=0 + Bg,hQ;{hVu(Io?
{ wio, = iB3nh*0aly—o + B5 Q@ hdyaly—o,
where v = hOyuly=o = Orz(1). Similarly, we have
Wy o = ~iB§pv +ih? B0y (Va)ly=o + BS 4@y, hV jao,
{ W o,. = 1By nh*0aly—o + BShQj, hdydly—o.

Notice that o(Q}) = —o(Q},), we write o = —B§7hh2A0q0,ﬁ = thQZtho,
hence
wf;(u_ =iaF B+ Opz2(h).

From the assumption Hw(‘{O,J_HLz = 0(1), we have that [ic — S]|3, = o(1), and this
implies that ||| + ||8]|? — 2Im(«|B) = o(1). We claim that Im(a|8) = o(1).

Indeed, from Proposition [6.5| and the ellipticity of the Dirichlet-Neumann oper-
ator N, we have that ¢y = OLZ(Ri—l (1), micro-locally away from £ = 0. Now from
the trace theorem and Proposition we have

ﬁ = A&,hQO + OLz(Rgfl)(hl/S)

for some PdO with real-valued principal symbol a5, compactly supported and van-
ishing when A(y,x, &) < 6/4. Similarly,

o = A:ith + OLZ(RZ—l)(l)

for some PdO with real-valued principal symbol aj. Thus Im(«|5) 2 = o(1), since
all the principal symbols involved in the inner product are real-valued. Now from
leell 2 = o(1), ||BllLz = o(1), one deduce that the terms on the righthand side of
w; o involving pressure are also or2(1), and v = op2(1) follows since Wso | =

or2(ra-1)(1). Therefore pz, = 0 and consequently y5 = 0 from Lemma m This

implies that pglyxss = p~1xss = 0. Since § > 0 is arbitrary, we have that
b=~ 1¢xo = 0. Moreover, Corollary implies that ulexo = 0. This completes
the proof of Lemma [6.10] ]
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Now we finish the proof of Proposition [6.7] by showing the following lemma.
Lemma 6.11. p™ = 0 implies that u= = 0.

Proof. We only need deal with £ = 0. Take {/; to be a cut-off function which equals
to 1 near the origin. Pick any € > 0, we define the operator

B = Opy,($(My, 7,)/€)) Bi:-

Applying divergence equation for w*

B;’ihdivuwﬁ[ + B;’ihawa = OLQ(]Ri)(h)7

we have
€,+ €, t .
1By, haywijLZ(]Ri) < By hleHwﬂ[Hm(Ri) + Re(h)
with R.(h) — 0, as h — 0 for each fixed ¢ > 0. By estimating the operator norm
from its symbol, we have
€,
1By, hawaHL?(Ri) < Ce+ Rc(h),

and
lim sup ||B;’ihawa:|fHL2(Rd) < Ce.
h—0+ +

Using the equation hD,w* = waf + OL?(]Ri)(h)a we have
lim sup ||B;’i fwaLz(Rd) < Ce.
h—0+t +

Finally let ¢ — 0, we have ,uflgzo = 0. Therefore u; = 0. As a consequence
of the proof of Lemma uOingzo = 0. Now let pi4, g be the defect measures
of @ = —Bh?Aoqo, B = BpQrhNqo, and let pin1p be the defect measure of
ia+ 5. Denote also by pqp the limit corresponding to the quadratic form (Apa|f3).
Similarly for pg,. Note that png = [ige. From

(Hiatp: Le=0) = (Ha, Le=0) + (1, Le=0) — (2Im pag, Le=o) = 0

(Hia+8, Le=0) = (Ha, Le=0) + (1, Le=o0) + (2Im piap, Le=o) = 0,
we have that puqle—o = pugle—o = 0.

Next we consider parallel components. The key claim is that the measure corre-
sponding to B}OLQ,th”qo vanishes on the set {{ = 0}. Indeed, from Lemma and
the trace theorem, hqy — 0 strongly in L?(9f2). From the ellipticity of A, there
exists a classical pseudo-differential operator E of order —1 such that EN = I + R,
where R is a classical smoothing operator. Our goal is to show that

lim li BB Qi Sy =0.
lim i sup [| B, B, Q) AV ol 2 ety = 0
From symbolic calculus and the strong convergence of hqo in L2(R%~1), it suffices

to prove
lim lim sup ||hVHB;OLB;’Oqu0HLz(qu) =0. (6.2)
=0 ho

We write
hV) By B, Qifqo =hV BBy " Qif EN g0 — hV | B By’ Qif Rqo
=V EB}B; QifhNqo + hV | (BB} Qi , EIN qo (6.3)
—hV | BB Qi Ryo.
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Here we are taking the commutator between a semi-classical PdO and a classical
PdO, hence the semi-classical symbolic calculus is not applicable. Yet, it is not
difficult to check that for any a € C*(T*0Q), E € S;é,
[a(x,hD,), E(zx,D,)] = hOp(S~') + Op(S~2),
where the implicit constants only depend on the semi-norms of the symbols a(z, )
and E(z,£). Notice that hVHBg,B;’O,QiE are uniformly bounded operators in
L2 with respect to h, thus V”B,?B;’OQ%R, V BLOp(S™*)N, hVBpOp(S~HN
are uniformly bounded operators in L2 with respect to h. Thus from the strong
convergence of hqg, the last two terms on the right hand side of (6.3) are killed
when we let h — 0 first. Thus (6.2) follows from the vanishing of the measure of
+8 = Bngh./\/'qo on the set {{ = 0}. Combining the assumption that ugulgzo =
0, we deduce that ,uo_”lgzo = 0. The proof of Proposition is now complete. H

7. NEAR G>t

In this section, we follow the strategy of V. Ivrii (see [9] or [§]) to prove Propo-
sition Denote by G = det(g) and P, = h?Ag — 1, we have

Lemma 7.1. In local coordinate Y, we have

Py = fh2%ay(\/ég*ay) + Ry = h?D2 4 Opy,(r) + Opz, 12 (h),

where Ry, is a matriz-valued second order differential operator in x with scalar
principal symbol r(y,z,€) = 1 — Xy, z,£)?, which is self-ajoint with respect to the
Cl)z2evyy-

The proof will be given in the appendix.

To simplify the notations, in a fix local coordinate in Y, , we will identify v =
p1u,q = p1q and all the operators B by ¢ B1.

Proposition 7.2. For any tangential operator B with scalar principal symbol
by, x, &) vanishing near & = 0, we have

limsup [ BAD,ull vy < sup ()2 ().
h—0 pEsupp (b)

Proof. We calculate
(BhDyu|BhDyu)y, =([B, hDylu|BhDyu)y, + (hDyBu|BhDyu)y,

=O(h) + (Bu|Bh*Dju) 12y, )
=0(h) — (Bu|BRu)r2(y, ) + (Bu|BPyu)y,
=0(h) — (Bu|BRu)y, — (Bu|Bhdq)y .

Integrating by part and using symbolic calculus, we have

(Bu|Bhdq)y, =(Bu|lhdBq)y, + (Bu|[B, hd]q)y,

= — ([nd", Blu|Bq)y, + (Bu|[B,hd]q)y,
=0(h),

thanks to the fact that B has scalar-valued principal symbol. |

The proof of Proposition [£.4]is based on the following integration by part result.
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Proposition 7.3. Given real scalar-valued tangential symbols ag,ay, there exist
tangential operators Ag, Ay (constructed in the local coordinate) with real, scalar-
valued principal symbol ag, a1 and A = A1hDy + Ay, such that for any 1-form w
with compact support in Y, we have
2
2 .
- Im(Pyw|Aw)y, = (AthDywhDyw)ay, + Re ) (Cj(hDy) wlw)y, + O(h),
§=0

where the tangential operators C; have scalar-valued principal symbol c;(y, z, &) and

2
Z Cj (yv Z, 5)77] = {p, a}.

§=0
Proof. We first calculate

1 h?
:E( - ﬁ?hay(@yilhayw)‘flw))q - (Aw|

=(hDyw|A1hDyw)ay, + (AlhDyw|hDyw)QY+

\FGgh(’? , (VGG ho yw))y,

1 1
JrE(hDyw|hDyAw)Y+ — E(hDyAw|hDyw)Y+
:(hDy'LU|A1hDy’U))QY+ —+ (AlhDy’UJ|hDyw)QY+

1 1
+%(hDyw| (hD,, Alw)y, — %([hDy, AJw|hDyw)y,

1 1
—|—%(hDyw|AhDyw)y+ — %(AhDyw|hDyw)y+7
and the last two terms on the right hand side equal to
1 1
E(A*hDymeyw) — (AThDyw|hDyw)ay, — E(AhDyw|hDyw)y+

We want to construct operators Ag, A; such that A} = A; + O(h?) and A* =
A+ O(h?). Assume that

h
a = ago) + agl)

with real-valued agj ) (

/<A1U‘U>Rd—1\/édyd$:/ (G Ayu, v)ga—1 VGdydz,
vy Yy

not necessarily scalar—valued). From

the symbol of A} is equal to the symbol of %Oph(cﬁ*)\/ég_l, which can be

expressed by
h k
bl(yaxag) = Z <Z> b(lk)(y,xvf),

k>0
with
1 _
0z =Y Y <—1>fa§(%a?asa§”>-afwéy-l), k> 1.
J=0 |a|+|B|+j=k
‘We have that
B =a®, bV =M+ 3 9 \LF 2al”) - 08(VGg )

la|+]8]=1
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We set

(O): (1) — B8 g [e%aVe (0) . 9B ——1
o’ =a, a) =g > 9 \/éaga )-08(VGgh),

le|+181=1

thus A7 = A; + O(h?). Note that agl) is matrix-valued while ago) is real and
scalar-valued.
The construction of Ay is similar. We observe that (hD,)* = hDy+h%Dy(\FG§—1)
and set
R OB G

ap = ay ;ao .

A§ has symbol which can be expanded as
hyk, (k
o= (5) by
k>0
with b(o) = a(()o) and

V=3 % (—1)@?(%8@‘8;@8”)~8§f(\/§§’1), k> 1. (7.1)

J=0|a|+|8|+j=k

Note that
(hDy)* A7 — AThDy =[(hDy)", AT] + A7 (hD,)" — AThD,
h * h g —— * h * g ——
:;(311141) + ;[ﬁay(\/ég 1)7A1] + ;A1ﬁay(\/ég Y,

and its symbol can be expanded as

> (%)kﬁk(y,x,ﬁ)

k>0
with ko = 0 and
8 b1+b1\/* (\/7§71%
a Ao g __
Rk = Z Z‘\a|+1{6§ ’ax}(ﬁay(\/ag 1), b1)

|a|=k—1

g ol 7
+%(ayb1+b1 J_0,(VGg ) +% > ZT\{‘???@?}(% ,(VGT ) by), k=2,

VG 231
where
{06, 02 H(f1, f2) = O f103 fo — OF f207 fu.

We set béo) = agp and a((]l) such that agl) = bél) + k1(it has a solution thanks to
(7.1)). Finally, we construct A; by ¢10p;(a;)ei1 in local coordinate and it can be
easily verified that

AT =A1+OL2_)L2(h2), A* :A+OL2_)L2(h2).
Therefore

1
I = (hDyw|A hDyw)sy, + h(hD wl[hD,, Alw)y, = ([hDy, AJuwlhDyw)y, +O(h).



28 CHENMIN SUN

We next calculate

1 1 1
E(Rhw|Aw)Y+ - %(Awu%hw)y+ :%((A*Rh — Ry A)wlw)y,

1
== ([4, RuJwlw)y, +O(h),
since Ry, is self-ajoint and A* — A = Op2_,12(h?). Moreover, the principal symbol
of #[A, Ry] is {r,a}. This completes the proof of Proposition [ |

Now assume that we are working near a diffractive point p € G>% in Y, where
Oyr > ¢co >0
The following lemma is a semi-classical version of Lemma 24.4.5 in [§]. The proof

is slightly more complicated, due to the different equation that we are considering.

Lemma 7.4. Let B; = @B, with real, scalar-valued tangential principal symbols
bj,7=0,1,2, compactly supported and

2
> bz, 0 = i (y,x,0,6)  when n? = r(y, z,€),
j=0

with some smooth function ¢ € C°(R? x (R4 \ {0})). Assume that

2
dr #0,0,7 > 0,on {y=r=0}N U supp(d;).
j=1
Then one can chose compactly supported, tangential operators V;, j = 0,1 with real,
scalar-valued principal symbols v;,j = 0,1, satisfying

¢0(y7 €, 5) = w(ya €, Oa f), wl (yv €, 5) = 6»,7(:% Zz, 07 g) when n= ’I"(y, €, g) = 07
so0 that for any solution u of Pou = f — hVg, hdivu = 0 with u|y=9 = 0, we have
2

Re Y (Bj(hDy)v|v)y, + [Tov + W1hDyo||2(y,) + (OPyvfv)y, (72)
Jj=0 ’

=o(1)
as h — 0, where v = @Opy(x)p1u and x € CX(Yy x R4™Y) has support near

p € G>T. © is a tangential operator, depending on v;,b; whose principal symbols
are scalar-valued.

The proof is based on the following elementary lemma, for which the proof can
be found as Lemma 24.4.3 in [§],

Lemma 7.5. Let X be an open subset of@ ={z € R" : 1 > 0}, and let
r € C™(X). Assume that r is real-valued, that dr # 0 when r =0 and that 88;1 >0
when r = x1 :%:Oforj#l. Let

I

F(t,x) = fi(x)t?
7=0
be a quadratic polynomial in t with coefficients in C*°(X) such that

F(t,z) = —(t,z)? when t* = r(z),
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where 1 € C°(R x X). Then one can find g, 11,0 € C°(X) such that o(x) =
P(0,2),¢1(x) = %—T(O,x) when r(x) =0, and

F(t,z) 4 (Yo(z) + t1(x)? < 0(z)(t? — r(x)), VteR,z € X.

Proof of Lemma[74) Choose C* functions ¢o(y, z,&) and ¢4 (y, x,€) as in Lemma
such that ¢;(y,z,&) = 8%¢|y:0,j = 0,1 when n = r(y,z,&) = 0 and

2

D b + (o +mipn)® < 0(y, 2, ) (n” — 7).

Jj=0

Since 1,11 and each b; are compactly supported in variables (y,,&), we may
assume that 6 is smooth and with compact support. Define © = ¢Op,, (0)p1,
U, = oOpy;, (¥j)¢1,J = 0,1 and consider the quantity

2
Re Y "(B;(hDy)v[v)y, + ((¥g + U1hD,)*v|v)y, — (OhDyv|hDyv)y, + (ORpv[v)y, .
j=0

The expression above can be written under the form below

2

> (Ci(ADy Y vlv)y,

Jj=0

where the tangential operators C; have real, scalar-valued principle symbol. More-
over,
2

Z G (yv €L, 5)77] <0.

§=0
However, since the symbol is not bounded in 1 and we can not apply sharp Garding
inequality directly. To resolve this issue, we extend each ¢; to ¢; € C™™(R x R?4-2)
who agrees with c¢; on y > 0 up to order m, any given order, of derivatives. This is
possible since any order of y derivative of all the symbols has continuous limit as
y — 0. We still use the notation ¢; in what follows. Let v = v1,>0 and we use the
boundary condition v|y—o = 0 and calculate

2 2
(D Ci(hDyYvlv),, =(D_ Ci(hDy) vlv),,
=0 =0
hD, . <
=(1( Ay) Z CJ’(hDy)“’|U)Y+
§=0
hD, .. <
H - o) S cymn, o),
=0
—I4+1I,

for any big number A > 0. Now we apply sharp Garding inequality to the first
term to get

I < Cuh,
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with some constant C'4 depending on A. For the second term, the principle symbol
is supported in the elliptic region and we define

2 j

j=0
hence we can bound

2hD
‘H| <O(h) + C(E(ya z,hD,, hDy)x(y,z, th)PhQ| (1 - ¢( A y)Q))er

hD
=0(h) + C(E(y, ,hDy, hD;)x(y, z, hD;)(hw & §,—0)| (1 — w(2 1 “)v))y,
2hD,

A )y))Y+7

+C (E(y, x, hDy, kD) x(y, z, hD3)(1,>0hVq)| (1 — ¥ (

with w = hDyu|y=o. Note that to obtain the expression above, one can not use
symbolic calculus to deal with commutator between semi-classical tangential symbol
and the classical symbol. However, since P, is a differential operator, we can
compute its commutator with x(y,x, hD,) explicitly.

Now from Proposition the limsup of the third term on the right hand side
when A — 0 can be bounded by €(A) with Aliﬂmoo e(A) = 0. Here we can use the flat

metric to estimate the L? norm. The second term on the right hand side can be
bounded by

ORI = 12D y0) ™ (w0 ® 6y0) L Laqeay | (1 = h*Ay.0) 50 ggay < O,

for any s € (3,1). Here we have used the fact that 6,—o € H *(R,) for any s > 1
and h*v is bounded in H*(R?) since v|,—o = 0 and hV, ,/v is bounded in L?(R%).
Therefore, for any A > 0, we have showed that

limsup |II| < e(A4),
h—0

and this completes the proof of Lemma |

Adapting to the notations in this section, Proposition [£.4] can be rephrased as
follows

Proposition 7.6. Suppose that p € G>t, and py € T*Q approaching to p such
that 0yr(po) > 20,r(p) > co. Let v— = [po, p] be a segment of the generalized ray
issued from po to p (the trajectory under the canonical projection is tangent to the

boundary at p). Then if po ¢ supp(u), we have p ¢ supp(u).

Proof. Take a small neighborhood T'g of pg such that T'g Nsupp(p) = &. Take a
small neighborhood Wy C 0 x R?~! such that%(y, x,&) > ¢o/4 > 0. Shrinking W)
if necessary, we assume that each point (y,x,&) € Wy with r(y,x,&) > 0 can be
connected by a (possibly broken) ray issued from 'y with at most one reflection or
tangency at 0f). It suffices to prove the following statement:

For any y € C2°(02 x R?~1) with supp(x) C Wy, small enough, we have

©Opy, (x)p1u = or2(1),h — 0.

As in [8], we construct test functions which satisfy the following properties:
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Lemma 7.7. There exists

a(y7$777)€) :a0(yv$a£)+a1(yax7§)na a; € CCOO(WO)
with the following properties:
(1) a1(0,z,&) = —t(z,&)?, for some t € C(T*9Yy),

c

(
(2) For some large M > 0, when p =n? —r(y,x,£) = 0, we have
)

{pv CL} +aM = —?/1(.%55777,5)2 + w(y,x,{ (77 - Tl/Z(y7x7£))7 a= 527
where s € C™(Yy x (R\ {0})),0 € C(Yy x R\ {0}) and w € C=(Wy).

Moreover, 7|supp(w) > 0.

The construction is exactly the same as in [8] and will be given in the appendix
D for the sake of completeness.

Now we take x € C°(Wy) with x = 1, in a neighborhood of supp(ag)Usupp(ay).
Let v = ¢Opy,(x)p1u, and we calculate

(Prv|Av)y, =(¢Opy,(x)e1PrulAv)y, + ([Ph, 9Opp, (x)p1]ulAv)y,
=(pO0p, (X)p1f|Av)y, — (¥Opy(X)p1hdg|Av)y,
+([Pn, 9Opy, (X)p1]ul Av)y, .

Here we have used the differential form to calculate the inner product. Notice that
{p,x} =0 on supp(a;) and f = or2(h), hDyu, |y=o = 0, thus

2 Im(Fol4v)g = o(1) ~ + In([¢Op, (X}, gl 4O, (1),
(7.3)

2
+s Im(Opy, (x)g|hd* (ApOpy, (X)p1u))y, -

From Proposition

2
, 2
> (Cj(hDy ) v|v)y, = —(A1hDyv|hDyv)y, — 7 Im([pOpy, (x)w1, hd]g|Av)y,
§=0
2
+y Im(¢Opy, (x)p1q/hd* (ApOpy, (x)1u))y, + o(1).
(7.4)

Since the principal symbol of A is scalar-valued, by using d*u = 0, we have

2
7 Im(pOpy, (x)p19|hd™ (ApOp;, (X)p1u))y, = (¥Ops(X)pq|Tu)y, + O(h)
and
2
_E Im([‘POPh(X)le hd]q‘A’U)YJr = (T2q|ArU)Y+ + O(h)v

where T = Yy 4+ T1hD,, and T; are matrix-valued tangential pseudo-differential
operators with principal symbols supported in supp(x). Applying Lemma to

the function
2

S e +aM —w(n —r'/?) = —y?,
j=0
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we have
2

Re () Cj(hDy Y ulu)y, —Re(®(hD, — Q4 )vle(y, =, hDy)v)y,
7=0

+ 1%8(]\4’(4141})1/Jr + (@]D}L11|11)YJr + ||\IIO'U + \IllhDyU||%2(y+)
<o(1) +Ch||UH%2(Y+)7

(7.5)

where the compact supported tangential operator ® has scalar-valued principal

symbol ¢ € C(Wy) and 7|supp(g) > 0, ¢ = 1 in a neighborhood of supp w. Q4

is the operator constructed in the hyperbolic region with principal symbol /2.

This is possible since in the proof of Lemma we indeed have r > 62|¢]? on the
support of w. Note that the principal symbol of A is positive on 2 —r = 0, we can
apply Lemma again to the term (Mwv|Av)g and bound it from below by

o(1) = [(©1Ppvv)y, |.
Thus we have
— (A1hDyv[hDyv)ay, + [[®ov + U1hDyv| 72y, )
< o(1) + Chlv|| 12y, ) + ClOP, )y, | + C|(©1Pyo[v)y, |

+ [Re(9Opy, ()¢1 (hDy — Q+)v|9O0py, (w)1v)y,
+ [(T2q|Av)y, | + |(©O0ps (X) @14 Tw)y, |-

The terms on the left hind side are essentially positive from the sharp Garding
(semi-classical, see [I8]) inequality, hence we only need to control the terms on
the right hind side. The term [(OP,v|v)q| + [(©1Pyv|v)a| = o(1) follows from
the equation and symbolic calculus since the principal symbols of © and ©; are
scalar-valued. Next we claim that

Re(w0p;,(9)¢1(ADy — Q1 )vleOpy, (w)erv)y, | = o(1), k= 0. (7.7)

Indeed, micro-locally on supp(¢), 7 = 62 > 0, hence in the region where \?(y, z, &) <
1, we could construct @, Q— micro-locally such that

Py = (hD, — Q-)(hD,, — Q1) + O(h™)

as we have done in the hyperbolic case. From symbolic calculus and Corollary
we have

(hD, — @_)(hDy — @+)u =Orz2 (h) + hVq = oL;j’I(l)7 micro-locally on supp(¢).

(7.6)

Therefore the measure p concentrates on {n = —/r}U{n = 1/r}. For any point p; €
supp(¢)Nsupp(p), with n(p1) = —+/r(p1) < 0, the backward generalized ray issued
from p; must enter I'y without meeting any point in G2, since along the backward
flow, 7 is decreasing. Consequently, away from the boundary, u = oz2(y,)(1) and
hence (hD, — Qi )u = 0r2(v,)(1), micro-localized near n = —/r, due to the fact
that hD, — @, is micro-locally elliptic near n = y/r. Near the boundary and some
point p; € H Nsupp(¢), any point can be connected backwardly to I'g by at most
transversal reflection. Thus holds true.

It remains to control the last two terms involving pressure. We just treat one of

them, and the other can be treated in the same way. Pick ¢o € C2°((—2,2)) which
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is equal to 1 on (—1,1). Define
Xe(y,2,€) = x(y, ,€)wo (r(y, z,€)e) .
We fix any € > 0, small enough, and write
(TaglAv)y, =(T2q|ApOpy(xe)pru)y,
+(Y2q|ApOpy (X — X))y, (7.8)
=pc +1p .
We first deal with I, .. Notice that from Proposition we have

limsup |AD,¢O0py (xe)prull 2 < Ce'/2.
'

Applying Cauchy Schwartz, we have

Yo Yo Yy 2
/ ||@Oph(Xe)¢1u||i2(ay+7¢§dx)dySCh‘Q/ /‘/ hDyOpy, (xe)pru(s, v)ds| drdy
0 - 0 0

< O% 1D w0 )
< 53 1hDye0py (xepru)lzz -

By choosing 6 € (0,1/2) and yo = he™%, we estimate

Yo €0
Th.el < (/O +/ )|(T2q|A<POph(X6)<P1u)L2(QY+,\/adw)|dy
Yo

1 .
< O (1ADyOpy (xeJullzz | + O(h) + Ce™,

where we have used Lemma Note that Lemma [3.9|is applicable even when the
micro-local cut-off x5, is matrix-valued. In summary we have

limsup [T, | < C(e' "2 + 7).
h—0

We now turn to the estimates of IIj, .. This can be done from geometric argu-
ment. Let

Se={(y,2,8) : r(y,2,§) = e,y < 4e/co} N Wo.

We claim that for any ray v with v(0) € g and I'(so) € Se, 70,50 1G> = 0.

Indeed, by contradiction, assume that for some v and s; € [0, 5], we have
p1 = 7(s1) € G&F. After time 51, along v we have

Y =2n,1m=0yr > co/4,

with y(s1) = n(s1) = 0,n(s9) > +/e. This implies that so — s1 > 4v/€/cy and
y(s0) > coT?/4 > %. The claim then follows.

Now we write

I = (o (coy/€) T2q|ApOpy, (x — Xe) P11y,
+ (1 = %o (coy/€)) T2qlApOpy, (X — Xe)p1t)y, -

From the discussion above, the first term on the right hand side above tends to

0 as h — 0 for any fixed € > 0, while the second term is controlled from above by

€0

/ / |C(y, z, hD,)q|* dzdy
569
4C

for some zero order semi-classical tangential operator with principal symbol ¢(y, z, £)

such that supp ¢N {¢ = 0} = 0. Applying Lemma we have limsup |II.| =0 is
h—0
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true for any € > 0. Notice that the left hand side of (7.5 is independent of €, we
have

liI}flsgp((—AlhDthDyv)Qer + | Tov + \IflhDva%z(er)) =0.
—

From the construction of ag, a; and the corresponding expression of g, 11, we can
choose another different ag, a;, such that the function vy + 117 is independent of
Yo + ¥1m on supp(x)(see appendix D). It follows then

lvll2(yyy + |ADyv| L2 v,y = o(1), h—0,
and this completes the proof of Proposition [7.6 ]
8. NEAR G®>~ AND G* FOR k>3

This section is devoted to the proof of Proposition [4.6] Before proving it, we
need some preparation. In what follows, we take tangential operators

A=¢Opy(a)p1, A" = A+ Op2ay,)(h?).
Proposition 8.1.

1 1 1

E(([P’ Alulu)y, = E(Au|Pu)y+ - E(Al’—ju|u)y+ + O(h).
Proof. The proof goes in exactly the same way and much simpler than the diffractive
case, and we omit it here. [ |

Recall that 9 = r|y= and 71 = Oyr|y=o. Direct calculation gives

Oa  Or Oa
Hpa = 27]87y —+ @% —+ H,Ta.

Pick pg € G>~ C T*OON\{0} and a small neighborhood U C T*9Q\ {0} of py. Let
L C U be a co-dimension 1 hypersurface containing pg in 7*9€2 and transversal to
the vector field H_,,. For small positive numbers d,7 > 0, define

LE(6,7;p0) := {exp(tH_,,)(p) € U : p € L,dist (p, po) < 62,0 < +t < 7}.
When there is no risk of confusion, we write it simply as L* (6, 7). Define also
F(0,7) = {(y,2,6) : 0 <y < 6%, (2,6) € L*(5,7)},
F(6,7)=F*Y(6,7)UF(6,7).

Let C7 > 0 sufficiently large and §y > 0, 79 > 0 sufficiently small so that § < dg, 7 <
T0

1
Ir(y, 2,9 < 5C10° (8.1)

in F(§,7) for all 0 < 6 < §p,0 < 7 < 79. With the same constant Cy, we further
define the sets

VE@,T) ={(y,2,n,€) 0 <y < 6%/2, (2,€) € L*(8,7)}
U{(y, ,n,€) : 62/2 <y < 6%, (2,€) € LF(6,7), |n| < C16},
WE(8,7) :={(y,2,n,€) : 0 <y < 6%/2, (2,€) € L*(8,7)}
U{(y, ,n,€) : 62/2 <y < 6%, (2,€) € LF(6,7), |n] < 2C16},
V(é,T) =V, 1)UV~ (6,7), W(1)=WT(57)UW (7).

We need test functions constructed in [12]:
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Lemma 8.2 ([12]). Let I = [0,¢0)y. There exist o > 0,09 > 0,79 > 0, small
enough with the hierarchy §g < o < 1, and families of smooth functions as €
CX(I xU),gs,hs € C°(Y+ xR, x Rg_l \ {0}), where 0 < § < &y, satisfying the
following properties:
(1) as > 0, supp(as) C F(8,06) UF~(5,82) .
(2) as(0,exp(tH_,,(po))) # 0, YO < ¢ < do.
(8) as > 0 on supp(as) if 0 < &' < & < §y and as is independent of y for
0<y<d?/2.
(4) gs + hs = —Hpas.
(5) in W(0,7), gs > 0 and gs > 0 when as # 0.
(6) For any m > 1 and any multiple index o € N9, |g§7%60‘g(5| = Os(1), locally
uniformly on W (4, 19), where the implicit constant inside Os(1) depends on
a,m and §.
(7) supp(hs) € I x L™(8,6%) x Ry, and supp(gs) Usupp(hs) C supp(as), gs, hs
are independent of n for 0 <y < 62/2.
For the convenience of the reader, we will recall the proof in the appendix D.
According to the lemma, we have 8(g§/2) = 2951/28% = O(1), this implies that
gé/Z € C®(W(6,7)). Set bs := gé/z € C>*°(W(6,7)). Note bs may not be smooth
with compact support. We need split it into two parts as follows: Let ¢; € C°(R)
such that ¢ = 1if 0 <y < & and ¢, = 0 if y > 2. Let ¢y € C°(Q x R4\ {0})
with compact support in x, &, n variables, such that ¢o > 0 and ¢ = 0 whenever
y < % or |n| > 2C14. Indeed, we can choose k € CS°(R), non-negative, smooth
and with compact support, such that x(z) = 0 when |z| > 2C16 and k(z) = 1
when |z| < %015. Now let ¢o(y,x,1,€)? = (1 — ¢1(y)?)k(67n)xs(y, z,£) with
X5 lsupp(as) = 1, supp(xs) C FT(8,00) U F~(d,00). We observe that
2
W=(8,7) Nsupp (1 — ¢7 — ¢3) C {(y,2,m,€) : % <y <6 [nl > 2015, }

We finally put bs; = ¢;bs,j = 1,2. Note that b5y € CX(F(4,7)) is a tan-

gential symbol (since for y > %, supp(gs) C supp(as) is compact) while bso €

C*(W(4,7)) is a usual interior symbol with compact support in 7).

8.1. Gliding case. The propagation of support of y near a gliding point in G2~
can be stated as follows:

Proposition 8.3. Suppose po € G>~ and LT (69, 70) U L™ (60, 70) C G>~ for some
00,70 > 0. Then for any o > 0 with odg < Ty, such that if

{(y,2,1,€) : 0 <y < 8%, (2,€) € L7(6,6% po)} Nsupp(p) = &
for some 0 < & < o, then exp(tH_.,)(po) ¢ supp(p) for any t € [0,09).

We need several lemmas.
Lemma 8.4. Suppose a € C°(R??),b € C°°([0, 1], C2°(R*@=1)) with the following
support property:
a(y,,m,§) =0 ify < co <1 or[n| > Col¢].

Then the usual symbolic calculus for a(y,x, hDy, hD;)b(y, x, hDy) still valid. In
particular,

a(y,z,hDy, hD;)b(y, x, hD;) = c(y, z, hDy, hDy) + Or2,12(h),
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with
c(y,z,n.€) = aly, z,1,§)bly, z,€)
We postpone the proof in the appendix F.

Lemma 8.5. Given any p1 € G, there exist 61 > 0,71 > 0,01 > 0 with 61 < o1
and 0181 < 71 such that if p € T*0Q and dist(p, p1) < 62 for some 0 < § < &y, then
dist(v(s, p), (s, p1)) < C6? for |s| < 018. In particular, v(s,p) € W(d,71) for all
ls| < o16.

Proof. Write (s, p) and exp(sH_,,)(p) in coordinate as

71(8) = (y(s),n(s), 2(s),&(s)) and y2(s) = (§(s),7(s), (s),&(s))-

From ¢ = 21,7 = O(1), we have y(s) < C's?> and the same estimate holds for §(s).
Let

d(s) = |z(s) — 2(s)* + [€(s) — £(s)I,

and then d(s) < C'/d(s). This implies d(s) < €162 for all |s| < 14. By the same
argument, we have dist(exp(sH_,,)(p),exp(sH_,)(p1)) < C8§2. The conclusion
then follows from the triangle inequality. ]

We will see the crucial role of py € G~ in the following lemma:

Lemma 8.6. Assume that 01,71 are parameters given in the previous lemma.
Suppose that —Cy < 0yr(p) < —co < 0 for all p € W(b1,71). Define S =
W (b1, m1) N{r > e,y < e} for sufficiently small e > 0. Then along any ray (s, p1)
in W(01,71) with p1 € Se, if y(y(—t,p1)) = 0 for some 0 < t < 7y, we have
r(y(y(=t, p1)) > c1€, where ¢; depends only on W (d1,71).

Proof. Assume pr = (g1, 20,m0,61) € S, amd (s, pr) = (y(5), 2(s); m(s), £(5)). Let

sg =inf{0 < s <7 :y(—s) =0}. For s € [-s3,0], y =2n, —Cy <1 = Iyr < —cq.

There are two possibilities. If 71 > /e, then n(—s3) > 71 > 0 since 1 < 0.

Otherwise, m1 < —y/¢, and we denote by sy = inf{s € [0,s1] : n(—s) = 0}. From
0

N = / nds > —Cpsa, we have so > % Moreover,
.

0 0 \771|2
y1 — y(—s2) = 2m 52 —/ ds/ jids’ < 2my189 + Coss < — .
— 8o s

Co
Now from
— S92 —S82
o(=s2) = y(-sa) ~y-s) == [ ds [ s’ < Colsa — saf’
—S83 S
_ ) 2
we have |s3 — 52|2 > y(C’SQ) > (y( 5(27)0 y1) > |nc% and finally

—%2 cor/€
n(—s?T):—/ ids > colss — 55| > OC{.

—s3

The proof of Lemma is then complete by applying the argument above between
any two adjacent zeros of s — y(y(—s, p1)). |
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Proof of Proposition[8.3 For any ¢’ > 0, we define the operator

1
Ns = —|[P, As/
v = =[P, Ay
with principal symbol ns: = —Hpas: = gs' + hs'. Define operators

B(S/J = Oph(bé',j)vj =12 N5,3 = Oph((l - dﬁ - ¢§)n5/)
Write hg j = ¢3hs, Hyr j = Opy,(hs ), 5 = 1,2. The proposition will follow if we
can show that for any §’ < 4,

2
. 2 .
}1111)%; |Bs jullz2(v,) =0 (8.2)
j:

We remark that hs: 1,bs/ 1 are both tangential symbols while hs/ 2, bsr 2 are interi-
or symbols vanishing near the boundary. Observe also that Ny 3 is interior pseudo-
differential operator with symbol vanishing near the boundary as well as on p~1(0),
thanks to the fact that in W(&',7), |r(y,z,£)| < 2C3%6%. Thus Ny su = or2(y, (1)
as h — 0 for ¢’ > 0 small enough. Moreover, from the assumption on the support
of yu near the original point po we have Hs/ ju =orz (1). Now set

My j = ¢7Ns: j — By, ;Bsi j — Hy j,j = 1,2.

From symbolic calculus, we deduce that My 1 = Or2_,12(h) and it has the principal
symbol depending only on y, z, £. Note that by definition of My 2, we will encounter
the composition of tangential operator with interior operator Op,,(¢3). Since ¢,
has support far away form y = 0 and n = 0, the symbolic calculus still valid thanks
to Lemma Therefore My o = Op2_,72(h) is an interior operator. Finally, we
obtain that

2
Ny = Nys+ Y (By jByj + He ) + Oravy) 2y (h)-
j=1

Combining all the analysis above and applying Proposition [8.1] we have

2
2 1 .
2By gulliaqy,) < o) + [ As, hdlafu)y, | + 3 [om(ahd" (s, |- o o
Jj=1 .
=o(1) + (g rw)y, | +[(T2qlu)y,

where 11, T are compactly supported matrix-valued tangential operators with
principal symbols vanishing outside supp(as).
To finish the proof, we need show that the right hand side of is o(1) as
h — 0. Pick x € C2°(R) such that x(s) =1if0<s < % and x(s) = 0is s > 1.
Let xc(y,7,&) = x(e 'r(y, x,£)). Denote by
Ine = [(Y190p;, (xe)e1ulq)v, |, Iae = [(T1(1 — ©Opy, (x)e1)ulg)y, | -

The treatment of I, . is exactly the same as in the diffractive case, so we have

lim lim sup I, = 0.

€0 pso
For IIj, ¢, we may assume that the interval of the integration over y variable is [0, €],
since for y > € we can use the rapid decreasing of ¢ as in the treatment of Ij, ..

According to Lemma and Lemma the measure of YT1(1 — Opy,(xe)p1)u
vanishes, since all the backward generalized rays starting from each point in S,
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will enter the small neighborhood of py € G~ by at most reflection at boundary.
From the propagation theorem in the hyperbolic case(Proposition , the proof
of Proposition [8.3|is complete. ]

Remark 8.7. We remark that as a consequence of Proposition[8.3, the measure of
q(or hNq) also vanishes along exp(tH_,,) fort € [0,09).

8.2. high order contact. In this subsection we will use a new coordinate system
in a neighborhood Wy, of pr € GF in [0, €] x T* 0

(y7nax7£)’_>(y7na27<)7 z:(zl7z/)>C:(C1aC/)

with p =n? —r,r = (1 +yri(z,) + O(y?), ¢ = ro, where ro = 7|y—0,71 = 9y7|y=0-
This is possible since dy ¢ro # 0, if £ # 0. Along the generalized bicharacteristic
curve (s), (z, () satisfies

z= 76Cr(y(5)7 Z(S)a C(S»v < = azT(y(S), Z(S)ﬂ C(S))
This implies that in I/IN{k, —Z1~1>0, asy — 0, and thus s — 2z(s) is strictly
decreasing. Moreover, (1 ~ y0,,71, as y — 0.
Suppose now k > 3, we have locally that
GF = {(2,0) : (1 = 0,0, 11(2,¢) = 0,V < k = 3,05%r1(2,¢) # 0}
Define 2y, := {(z,¢) : 85 73r1(2,¢) = 0,05 72r1(2,¢) # 0}. From implicit function

theorem, X5, is locally a hypersurface and we can write it as

Y = {(z7g) 21 = @k(zlag)}'

G* can be viewed locally as a closed subset of ¥;. Since the map s +— z(s) is
bijective, we may assume that along each ray, z;(0) = ©(2'(0),(0)), and

21(8) < Ok(2'(8),¢(8)),8 > 0; 21(s) > Or(2'(s),((s)),s < 0.

We see that all the generalized rays are transversal to the codimension 2 mani-
fold(locally) Xj. Moreover, a ray passes ¥y, if and only if y(0) = 0 and ¢;(0) = 0.
Now we define the set near py:

Ef ={(y,m, 2,¢) € Car(P)N Wiz F Ok(2',¢) > 0}.

Note that the gliding rays exp(sH_,,) intersect transversally to ¥; and H_,, =
—0,, inside T*0€). Thus we can re-parametrize the gliding flows by z;. Moreover,
Zf NG} =(,Vj > k, provided that we choose Wk small enough. In other word, z;
gives a foliation of T*0) near Xy, for small |z; — O (2, {)|.

The following proposition is a long time extension of Proposition 8.3 adapted
to the notations introduced above.

Proposition 8.8. Suppose pg € G*~ near p, € X, with coordinate (2,¢), 21 >
O (2',(). Then there exists g > 0, sufficiently small such that if

{(y,,m,€) : 0<y < 6% (2,€) € L7(6,6% po)} Nsupp(p) = @
for 0.< 6 < o, then exp(sH_r,)(po) ¢ supp(u) for any s < 21 — O (', C).

In other words, each generalized ray, issued from gliding set outside supp(u) does
not carry any singularity until it reaches some point in G* for k > 3.
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Proof. The proof is purely topological. For each py = (z,() ¢ supp(u) and 2z; >
0, let s; := sup{s : s < 21 — Op(Z,(),exp(s’H_,,) ¢ supp (u),Vs € [0,s)}.
The existence of s; is guaranteed by Proposition It remains to show that
s1 = z1 — Ok(2',¢). By contradiction, suppose s; < 23 — ©(z’, (), then the point
p1 = (21 — 81,2',¢) is in G>~. We can apply Proposition again to obtain that
for some small o1 > 0, exp(foH_.,)(p1) ¢supp (u) for any 6 € [0,1]. This is a
contradiction of the choice of s;. |

As a consequence, we have

Corollary 8.9. Suppose po € G>~ and py ¢ supp(u). Let v(s) be the generalized
ray passing po with v(0) = po. Then y(s) ¢ supp(u) for any s € [—so, so|, provided
that 'y|[750’50] c G .

Combining the analysis near a diffractive point and a gliding point, we have al-
ready established the k-propagation property for k = 2. We will argue by induction
to prove k-propagation property for all £ > 3. To this end, we need an intermediate
step. Let us first introduce a notation

F(p()v(s) = {(y,x,Z,C) :0 S Yy S 523 (Z,C) € Li(é, 52§P0)}
and a definition

Definition 8.10 (k-pre-propagation property). For k > 2, we say that k-pre-
propagation property holds, if the following statement is true:
For any pr, € GF, there exists a neighborhood Vi, of py in T*0Q, and 0 <
0 < o < 1, depending on Vi, such that for any pg € (92’7 U U gj) NV,
3<j<k
if T(po; 8) Nsupp(p) = O for some 0 < & < O, then exp(sH_.,)(po) & supp(p) for
all s € [0,040).

The key step is the following inductive proposition.

Proposition 8.11. Suppose k > 3 and (k — 1)-propagation property holds true,
then k-pre-propagation property also holds true.

We do some preparation before proving this proposition. Select a neighborhood
Wy, of pp € GF in T*08 (and contained in Wk) with compact closure such that
105211 (p)| = ¢o > 0 for all p € W,. By abusing the notation, we will refer G¥
to be G¥ N W}, in the sequel. According to the asymptotic behaviour of the flow
exp(sH_,,) as s — 0, we have for any given (21 = O (2{, (o), 2, (o) € G*,

10 exp(SH—T‘o)(Z{)a CO) = bk(Zé, <0)5k72 + O(Skil)a
where by # 0 can be viewed as a function of points in G*. From compactness, we
can choose o > 0,60 > 0 depending only on W}, such that for all p € G*,
1
[br(p)| = 0 > 0,|r1 o exp(sH_r,)(p)| > §\bk$k72|, Vs € [-0,0) U (0, 0].
Now we define a smaller neighborhood Vj of pp such that for any pg € Vi, and
6 > 0,01 > 0, exp(sH_,)(L* (6,025 po)) C Wy for all |s| < o46,. Moreover,

71 0 exp(sH_p,)(po)| < 6k. We also put Wy = [0,62] x Wi, Vi = [0,62] x Vi.
Choosing a cut-off a5 € C° with a5 = 1 near pg, we define

Ss,c := supp (as) N {y < e,r > ¢}
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for any 0 < € < § . Note that near Ss . (thus near p,, € G¥, k > 3) we have |rq| < g,
and this implies that {; 2 €, near Ss.. We divide the proof of Proposition into
several lemmas.

Lemma 8.12. Given any generalized ray v(s) = (y(s),n(s), z(s),((s)) with y(so) €
L(po; ) NG*~ and y(s1) € Ssc. Assume that 7|5, s,) C Car(P)N Wi, then v(s) ¢
G* for all s € [sg, 51].

Proof. Take T (po; d) := T'(pg; ) N Zz and identify points in Ef as their projec-
tion to (y,z,£). Let Fy(may be empty) be the union of generalized rays issued
from T't(pg;d) which meet G*. Note that along both real trajectories (s) and
exp(sH_y,), s — z is strictly decreasing, it suffices to show that Fj, NS5, C E$
since generalized rays intersect with > transversally,.

We argue by contradiction. Assume that some ray in Fj satisfies y(sg) €
T+ (po;8), v(0) € G*, and ~(s1) € S5 for so < 0 < s1. Write exp(sH_,,)(v(0)) =

(2(s),{(s)), and
r1oexp(sH-r,)(2'(0),¢(0)) = r1(2(s),((s)) = bus™ 2 + O(s* 7). 5 = 0,

More precisely, we have
N 5 1 _
|bi(27(0),¢(0))] = 0 > 0, |r1(2(s), ¢(s))| = glbksk ?[,Vs € [-0,0) U (0,0].

After shrinking support of as if necessary, we may assume that s; < . According
to the parity of k£ and the sign of by, there are several situations.

If by < 0, then for any k we have y(s) € G»~ for all s € (0,0). This is impossible
since rovy(s;) > €. Otherwise by, > 0, in this case we have r1(2(s), {(s)) > bps*~2/2,
for all s € (0,0), and

(0=71)((5), ((5))
=(0z,m1) 0 exp(sH_r,(2'(0),¢(0))
— 05 (11 0 exp(sH_r, (2'(0), €(0)))
= — (k= 2)bps" 3+ 0(s57?) < 0,Vs € [0, 0),

(8.4)

thanks to O¢or|y=0 = 0.r|y=0 = 0. Taking the difference with real trajectory
7(8) = (9(5)777(3)72(3)74(5))7 we have

:0r1(y(5), 2(5), () = 0=,71(2(5), C(5))

)
= (0271(0, (), C(8)) = 02,71 (3(5), C(9)) + (02,71 (2(5), C(5)) = Dz, 71(3(5), {(5)))
+(0:,m1(y(s), 2(5),C(s)) — 9:,71(0, 2(5), C(s)))-
Using the fact that (2(0),¢(0)) = (2(0),¢(0)) and y(s) = O(s?), we have
52«17"1( (5), 2(5),C(5)) = 0=y m1(2(5), C(5)) = O(s).
This together with (8.4) yield
(1 < yd:,m1(y(5), 2(5),C(5)) + Coy® < Col(y® +ys), =20,
772 =G+ yﬁ(Z»O + O(y2)7 (Cl(o)vy(o)) = (070)7

where the constant Cy and the implicit constant inside the big O only depends on
supp(as).-

(8.5)
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Applying the formula H;fy(O) = 2(H_,,)*2r; = 2by(k — 2)! > 0 and Taylor ex-
pansion, we have

2by, by

_ Ok ok k+1y S k
YO = -t PO 2 Rt 0 (8.6)
. _ 20y, k—1 k by k—1 .
y(S)—ik_ls +0(s )>k_1s >0,s € (0,0).

Injecting in (8.5), we have ¢ (s) < Co(€% 4 es) for all s > 0 small as long as y(s) < €
and y(s) ¢ Ss.e. For these s,

¢1(8) < Co(e?s +es?/2).
Setting so = inf{0 < s < s1 : y(s) € Ss.}, we know that along the flow, 2/ =
2n(s2) = y(s2), and this implies that sy ~ 2T since y(s) >eif s > €T
In summary, we have
e<rogp,, < ZC’OelJr?(kl—l) + 0 + C1 €.

However, this contradicts to 7 = ¢; + yr1 + O(y?), provided that 6, < 1, e < 6 <
1. |

Lemma 8.13. The conclusion of Proposition holds if py € G*~

Proof. Adapting the notations and argument in the proof of Proposition (8.3 we
have

2 2 1
Z I1Bs jull 2y, < o(1) + 7 [Im([As, hd]q|u)y, | + 7 [Tm(g|hd* (Asu))y,|. (8.7)
j=1
The goal is to show that the last two terms on the right hand side tend to 0 as
h —0.

We denote by (s) the gliding ray exp(sH_,,) such that (sg) = po for some
so < 0. Suppose 7(0) = p € G* for some k > 3 and 7(s) € G~ for s € (s0,0).
In view of Corollary we may assume that po is close enough to p, and |so| is
small. Pick xy € C°(R) such that x(s) =1if 0 < s < 1 and x(s) = 0if s > 1. For

2 2
5|

Tne =+ | (hd* (0Opy, (xe) 1) 9)y, | - Hpe = | (hd” (1 — ©ODy, (Xe)P1)ulq)y, | -

The treatment of I, . is exactly the same as in the diffractive case, we have

lim lim sup I . = 0.

=0 ho
For 1T}, ., again, we only concern about the integration over [0, €] in y variable. From
Lemma any ray entering Ss . can at most pass G7 for j < k. Applying (k—1)-
propagation property, we deduce that for any cut-off ¢. with supp(ye) C Sse,
supp(pe)N supp(p) = @. Therefore

lim I, = 0
h—0
for any € > 0. This completes the proof of Lemma |8.13 ]

Lemma 8.14. The conclusion of Proposition holds if po € G for some 3 <
J<k.
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Proof. Taking a micro-local cut-off ¥(y, x, &) with support near pgy, we have

l£0py, () prull L2 v,y = o(1)

from the assumption that py ¢ supp(p). Note that along the flow of H_,, and
on supp(1l — ¢) N Vi we have |r1(0,z,£)| > ¢(¢,0) > 0. Hence from Corollary
if exp(tH_,,)(po) € G*~ for all t € (0,00), and then exp(tH_,,)(po) ¢ supp(u).
Otherwise exp(tH_,,)(po) € G*>T for all t € (0,00), we claim that we still have
exp(tH_,,)(po) ¢supp(p) from geometric consideration.

Indeed, by considering the backward generalized ray, we conclude that for any
so € (0, 0%0), there exists p € Wy, so that vy(so, p) = exp(soH_r,)(po) where y(s, p)
is the generalized ray issued from p. From this fact we must have (s, p) ¢ G* for
s € (0,s0), since any ray intersecting with G* will enter 7*Q or G~ immediately,
provided that the neighborhood Wy is chosen to be small enough. By (k — 1)-
propagation property, if suffices to show that p ¢ supp(u).

Therefore, by definition of I'(pg; d), we only need to show that

pe{(y,2¢):0<y<6%(2,¢) —po| <8}

We will prove this by comparing two flows exp(sH_,,)(po) = (2(s),((s)) and
(s, p) = (y(s),n(s), 2(s),¢(s)). Taking the difference of the two, we have

@ (a5) — 21() = B, (0(5),2(9), €6+ 8,70, 5(5), £(5)) = O(y(s)),
L 5) = 7(5)) = Oyls)), -(¢(s) = E(s) = O((w(s)), 2 = 2ms).

Note that |7]? = |r| = O(1) and y(s¢) = 0, Z(s0) = 2(s0), C(s0) = C(s0), we have
y(s) < C(s — s0)? for all s € [0, s0].
Hence y(0) < Co26% < 6%, provided that o7 < 1/C. Moreover,
1(2(0), €(0)) — ol < O < Crs® < 82
This completes the proof of Lemma[8.14] as well as Proposition [8:11] [ |

Proposition 8.15. Suppose that (k-1)-propagation property holds. Then k-pre-
propagation property implies k-propagation property.

Proof. Up to re-parameter the flow, we may assume that py € G¥ and v(s) is the
generalized ray such that v(0) = pg. We also denote v(s) by v(s, po) in view of flow
map. Suppose (o) ¢supp(p) for some so < 0 and v(5,,0)Nsupp(p) = 0. Our goal
is to show that py ¢supp(u). Let ox_1 > 0 be the required length in the definition
of (k — 1)-propagation property.

Let §; > 0,0, > 0 and Vj, neighborhood of py € G* in T*0Q and Vk, neigh-
borhood of pg in [0, €] x T*0, as in the definition of k-pre-propagation property
which satisfy the conditions in the paragraph in front of Lemma [8:12] Note in par-
ticular that we have Vi, N G; = 0 for all j > k. Without loss of generality, we may
assume that |so| < min{oy_1,0%} and y(so) € Vi, since otherwise we can choose
5o < 0,|sp| small enough and replace y(so) by v(sp)-

Let Ty C Vi be a neighborhood of v(sg) so that T'oN supp(u) = 0. For ;1 > 0

small with §; < oy, we set p; = exp (— 2L H_,) (po) and define

Us, = {p = (y,m,2,¢) € Car(P) : 0 <y < 67, (2,¢) — p| < 67}
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From continuous dependence of the generalized bicharacteristic flow, we have
Us, C v(s0,Tp), provided that §; small enough .

Now we claim that for possibly smaller §; > 0, we have

v(s1,Us, ) N U Gl =10, Vs1 € (s0,0).
>k

Indeed, it suffices to prove that v(s1,Us,) N G* = @ since there are no point of G/
in Vj, for j > k. Firstly, from the transversality of the flow exp(sH_,,) and Xy,
we deduce that at p1, 21 > Ox(2’,(). By choosing §; smaller, there exists e; > 0,
such that for all p € Us,, 21 > O4(2",¢) + € holds. In particular, Us, C S, We
calculate
!
O () 0lo) = T T
_ 00, Or 00 Or
92 oC' T ¢ 05

Note that in Vi, we can write r = (1 + yr1 (2, ¢) + O(y?), hence

SO (5),6(5) = Oly(s)).

Next we argue by contradiction, assume that for some s; € (sg,0) and p € Us,
we have y(s1,p) € GF and (s, p) ¢ G* for any 0 > s > s;. In this case we have
ly(s)| < Cls — s1] for all s € [s1,0]. Therefore we must have

LOu(2(5),¢(5)

Combining with z; ~ —1, we have

< C|s — s1]-

0
Ok (2'(51), ((51)) S@k(Z’(O),C(O))JrC/ |s — s1lds

<21(0) + Cs?
d
=z1(s1) / ﬁd +Csl

<z1(s1) — Cils1| + Cs?

Szl(sl)a

provided that |sg| is chosen to be small enough. This implies that v(s1, p) € X},
which is a contradiction.

From (k — 1)-propagation property, we know that Us, N supp(p) = 0. Therefore,
applying k-pre-propagation property with respect to p; and Us,, we deduce that
po ¢ supp(u), and this completes the proof of Proposition (8.15). |

A .PROOF OF LEMMA

Proof of Lemma[3.3 The first assertion follows from hdivu = 0 and Dirichlet
boundary condition, while we apply a multiplier method to prove the second. From
the geometric assumption on Q, we can find a vector field L € C'(Q) such that
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L|pa = v(see [14], page 36). In global coordinate system, we write L = L;(x)0s,.
By using the equation, we have

/ Lu - fdz :/ Lu - (—h*Au — u + hVq)dz,
Q Q

i [
=),

*/Q (z)ul (z )817uzdx+/div L(z)|ul?dz

:/ Lu.udx+/ div L(z)|u|*dz,
Q Q

1
and thus / Lu - udx = —5/ div L(z)|u[*dz = O(1). Next we calculate
Q Q

L;(x)0,,u'u'dx
Ou, (L

Ju der/ div L(z)|u*dx

h/QLu qux——h/Q Oy, (LjOy,q) dz
= —h/Qu - L(Vq)dz — h/Q(div L(z))u- Vgdx

= —h/ u-[L, V]gdx — h/ div L(z)u - Vgdz
Q Q
=0(1),

—h2/ LuiAuidxz—hQ/ |a,,ui|2da+h2/ VL(Vu', Vu')dax
Q Q
+h2/ ( )aijzk iaIkui
Q
:—h2/ yayui|2da+h2/ VL(z)(Vu', Vu')da
o0 Q

+ h2/ Ou; (LjOy,u') Oy u'de — h2/ div L(z)Vu' - Vu' (z)dx,
Q Q

h2/ Oz, (L]@Ikui) 8$kuidx = h2/
Q

L-v |8Vui‘2 do — h2/ Li(2)0y,u'02 , u'de,
o

ka
Q

2 2
—h2/ LuiAuidm:—h—/ |5Uui|2da+/ VL(x)(hVui7hVui)dx—h—/ div L(z)|Vu'|*dx.
Q 2 Jaq Q 2 Ja

Observing that [, Lu - fdxz = o(1), we have

/ |hd,ul* do = O(1).
oN

B.STANDARD ELLIPTIC THEORY

The differential operator is given by
Py, = Opy,(11° + Ay, 2',€)* = 1+ hm(y, a',n,£)),
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where the principal symbol p = n? + A2 — 1 is scalar while m is matrix valued.
When micro-locally near the region p > 0, we want to construct the parametrix of
the inverse of P. Denote by U the tubular neighborhood (two sided) of 9. Take
0 € CX(U),xo € C®°(R%!) and the support of ¢ is contained in a coordinate
patch near the boundary. We put

E°.—0 ( Xo(f')@(y,x') )
M R Ay, )2 - 17
and we define matrix valued PdO E', [ > 1 inductively via

1
E'xp=-Y_ =08, B x 0 p — E° xm,

la|=1
1 & 1 %
E'xp=— Y o108 B X 03 b > o108 B" X 0 ym.
la|+k=n,k#n la|+k=n—1
(8.8)
For any N € N, we set
N
En =Y WE,
j=0

and then
Eno P = xo(hDy)p(y,2)Id + Ry, ||Rn|lp2mr2 = OV 1Y),

Proposition 8.16. The sequence of solutions (uy) is hi-oscillating in the following
sense:

Jim lim sup / GuR(E)2dE =0 Vi € C2(Q),
|€|>RR; T

R—00 koo
lim limsup / dy / Gy, €)PdE =0, Vi € (@),
R—0o0 koo ‘ ’|2Rh;1

where in the second formula, the support of ¢ is contained in some local coordi-
nate patch near the boundary, and the Fourier transform is only taken for the '
direction.

Proof. We drop the subindex k in the proof. For the first formula, one can use the
equation of u to obtain

(=h*A =1)(pu) = g = Or2(1),

and
l9(¢)I? ¢

|pu(é)[*de < g < ,
/Ifl>Rh‘1 niel>r [R21E17 — 1] (R? —1)?
For the second formula, it will be sufficient to show that

o hDy:
Jim timsup [[(1 = x(Z)) (ew)] 2 = 0

for some x € CF(—1,1). We write w = uly>0,§ = gly>0,v = hOyuly— =

Or2(y=0)(1). We apply the parametrix construction above with xo(§) = 1— ( )
Let en(y,2’,n,&") be the symbol of the operator Ey, which is meromorphic in 5
with poles 5 = +iy/A2(y, 2’,€)2 — 1. Moreover,

CN,a

o e (.2’ m, )] <

(8.9)
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We take ¢ to be a slight enlargement of ¢ such that @y = ¢. Then

hDg
R

From the jump formula, Pw = g + hv(z') ® d,—¢. We have

hD,.
(1-x(—

From symbolic calculus,

IEN@Dlz < S s [0Pen(y,a'm€)] +Ch,
o |a‘§0d(y,$',m5')€R2d

Eyo@Pw=(1-x( ))(pw) + Ryw.

))(pw) = Ex (8g + $hv ® 6,—0) +Opz  (WVF).

x

and it vanishes after the taking the limit h — 0 and then R — oo, thanks to .
We next write

_ _ ™ i(af—z")&" )~ ’ INE Y,
En(fho @ dyn) =gy [ T (0, €050,)0() g
with
wN(y,:c',fl):/ €N(y,$/a777§,)6“’/7bnd77~

To calculate wy for y > 0, we deform the contour of integral in 7 in the half plane
Imn > 0. From the Residue formula, we have
iyngd
wy (y, @', &) = 2miRes(en (y, ', 0, & )iing Je ™
The principal symbol of wy is given by

’

_ YR8 ely ) (1~ x(%))

A TORRD Qy, ', &) Ay, 2',&)? =1

T exp (

Therefore

limsup || Ex ($2hv @ dy=o)|lr2> |
h—0 v

=1 Q

oo
<Cwa [ 30 sup 108 gion (., €)lvllz, dy <
0 la|<Cd (',¢) -

where we have used the point-wise estimate

10 ceon( ’f’)I<M(1+(g)|al)
z! & WN Y, T, = 1 h .

Given x(y,z’,¢") € C([0, o) x R??=2), the following proposition can be deduced
in the same manner.

Proposition 8.17. Let wi, = x(y,2’, hDy ) (pug), wr, = 1y>our. Then for x1 €
C*(R),0 < x1 <1,x1 =1 near 0, we have

hiD,

lim limsup H (1 — Xl(

R—oo oo

))%HLz(Rd) =0.
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Proof. We have Pw = g + hv(z') ® 6,—¢ with ||9||L2 =0(1), ||v||Lz = O(1). Note

that the functions g,v here may not coincide Wlth the functions in the proof of
Proposition 2.7} We define

2!

N
Eny = ZhjEj + Ry, ||RNHL2—>L2 = O(hN+1),
=0
Py, 2)(1—x1(%))
n? + Ay, 2/, ¢)% —

hD
(1 —x (="

with E° = Oph( )Id and E',1 > 1 asin . This implies that

) (pw) = Ex(@g + 2h¢v @ dy—o) — Ryw.
Consequently, we have

lim hmsupHEN(SOg)”L2 o 0.
h—s

R—o0

En(hov ® 6y=0)(y, ')

T ie’ —2")¢! ~
:Eﬁﬁjéwﬂeh aly @', €)5(0, 2")v(=')d='de,
> iyn
with a(y,2’,¢') = / e en(y,2',n, & )dn.
— 0o

Observe that (
sup | /eN(yvx 7775)\3—,
@en (1 +7*)(1+y?)
and this implies that
lim limsup || En(h@v ® 0= 0)||L2 =0.

R—oo p50

C.PROOF OF TECHNICAL RESULTS IN SECTION 3

Proof of Lemma[3.7. The proof can be reduced to the point-wise estimate of the
solution F'(y) of the ODE:
d2
W+ AWPF ) = Gy, F(0) = F(0) =0,
with 0 < ¢1 < A(y)? < ¢a, G € C([0,0)), and |G(y)| < Ce~ 7 for all y > 0. By
rescaling z = ¥, it reduces to prove the exponential decay of the solution W of the
ODE:
d*w ,
2 TVEWE) =9(z), W(0)=Ww(0)=0,
with 0 < ¢; < V(2) < g, g € C*(]0,00)) and |g(z)] < Ce * for all z > 0.
For this, we first notice that W is smooth and in H*(R.) for all s > 0. To prove

50z
the exponential decay, we pick 6.(z) = e% with dp > 0 to be chosen later. One
observe easily that 0 < 0.(z) < 2§p0.(z) for z > 0. We multiply by . W to the
both sides of the equation and integrate it, then

/ ((96W)’W’+95VW2)dz:/ 0. WGdz.
0 0
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Notice that O.W'W > —2800|W ||[W'| > —800.(|W|? + |W'|?), by choosing
1 ¢

50<mm{4 T 2}

we have that

/O O (W' + W) dz < 2||Ge*%| 2w, )| W]l L2(r, )

thanks to Cauchy-Schwartz and the fact that 6. < e?%°% uniformly in e. From
the dominating convergence theorem, we have We®?* € L2(R,) and W'e%* €
L?(R,). Finally, by elliptic regularity, we have that We%* € L®(R,),W’e%* €
L>®(Ry). |

Proof of Proposition[3.8 We choose py € C2°(Y, ) such that

501|Supp(902) = 1’902|Supp(<ﬂ) =1
We first claim that

©20p4 (X6, 47)(1,090) = OLZ(Ri)(U (8.10)
Indeed, we can write
©20D4, (A4 X5,)(#1,090) = 920D, (4;5)p100D;, (X50) (¢1,090) +h20p (B} X5, ) (¢1,090)

with B; € &, 7 and X5, has similar support property as xs,. Thus from symbolic
calculus, we have for each fixed y > 0,

120D, (A5 () x50 (1)) (91,0901 12 a1y < Cje™ Fn H1+ (h) ")

thanks to Lemma Integrating over y > 0 yields (8 .
By taking supp(xs,) small such that poxs, = Xs,, We have that

@2 (Opy, (x50 (919) — Opy (X6, 4)(#1,090)) = w + Opzre ) (h)
with
w = 2 (0P, (Xa,) (19) — Opp (X8, ) 1020P4 (A) (01,090)) -
From Lemma we have w = OLQ(RdJr)(l) and hDyw = OLQ(Ri)(:l). The trace of
w satisfies
w|y:O = 2,00D;, (X5, (1 — 15, (20))) (¢1,090) = OHw(Rdfl)(hoo)v
and w satisfies the equation (we use @3 = @199 here)

Pow = 1 [Po, 920Dy, (X60)] (910 — 020D, (A)(01,090)) + O proe (ray (™). (8-11)

Notice that ¢iq — QOQOph( )(¢1,000) = OL2(]Rd (1), micro-locally for A > <2, the
right hand side of ( is equal to OLz(Rd (h) as well as O Ri)( ). Multlply by
w = Y1w to the both 51des of (8.11f - ) and integrate it, we have

/ / w(y, ') Powdx'dy = O(h).
Rd—1

Doing integration by part for the left hand side, we have

o0 (oo}
/ / wPywdz'dy = — / / |hoyw|*da’dy — / h? (wOyw) |y=oda’
0 Rd—1 Rd—1 —1

/ / Z ¢**hdjwhdwdz'dy + O(h).

Y 1<k<d—1
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This implies that
||hDy,z'w||L2(Ri) + ||w||L2(R1) = O(h'/?).
Using this smallness and redoing the integration by part, we can improve each
bound in the procedure above and obtain that
||hDy,w'w||L2(Ri) + ||w||L2(]Rd+) = O(h**).
To conclude, we observe that
©hdyw =phdyOpy, (Xs,) (1) — $hdyOpy (X5, )20p1 (A)(#1,090)
=0py, (X5,)h0y (¢19) — 0Py (X6, ) 920Dy (h0y A) (¢1,040)
+O0r2(re)(h) (8.12)
=¢0py, (x50)h0y (919) — POPy (X5, AA) (¥1,090)
+O0r2(re)(h),
where we have used symbolic calculus and Lemma [3.5] several times. Plugging into
(8.11)), we have that Pyw = OLZ(Ri)(h>7 wly=0 = Opoora-1y(h>). We decompose

w = w; + wy with Pyw; = Pow,w1|y:0 = 0 and Pywy = O,’U)2|y:0 = U}|y:0.
From elliptic regularity of boundary value problem, we have h%w; = O H2(RE y(h)

and h?wy = OHz(Ri)(hOO) and thus hOyw = OHl(Ri)(l). From interpolation, we

deduce that hOyw = O Observe that the error terms on the right

1
H%(Ri)(h4)'

hand side of (8.12]) can be also bounded by OHl(Ri)(l) and thus OH%(Ri)(h%) by
interpolation. This completes the proof.
[ |

D.CONSTRUCTION OF TEST FUNCTIONS

We first give the detailed construction of a = ag 4+ a1 used in the first step of
the proof of Proposition7.6] which follows closely to [§].

Proof of Lemma[7.7 . Given x1 € C°(—2,2) with x1[(_1,1) = 1 and x2 € C°(—3,3)
such that x2|(—2,2) = 1. Consider the smooth functiiton xo(t) = e tmg. We
work in the local coordinate (y,z,&), and assume that (0,79,&) € G*T with

€| ~ 1. Set ¢ = ¢o + ¢171 with
¢1(y7x7§) = i

€]
We calculate
Hp¢ =n (26y¢0 - {7’, ¢1}) + ¢13yr - {Ta ¢0} Z 2¢c > 07

provided that |n| < ¢y for some ¢y > 0 and Wy is chosen small enough such that
% > 4c on it. The positivity then follows from the direct calculation:

{r,do} =20 - (v — x0) — 20,7 - (£ — &0)s

a¢0(y7x7€) = y2 + |‘T - IL’0|2 + |£ - €0|2'

Byb0 =2y, {r, 1} = Ou - ég
We next take
f(yaxanvg) = X2(%)2X0(1 — %)
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The desired functions ag, a; are chosen to be the remainders when f is divided by
p=n%—r(y,z,&), thanks to the Malgrange preparation theorem:

f(yaxan’g) = (7]2 - r(yaxag))g(ya x,nag) + al(yv%f)ﬂ + aO(ya ‘T,g)
On the support of f, we observe that

¢0(y7xa€): |(y7l',£)*(0,$0,§0)|2 Sg(;a %+¢0§57

which implies 1 < 6|¢|. Moreover, on supp(f) Nsupp(dx2(d~1¢g)), we have ¢g >
20, ¢o + ¢1n < &, and these imply n < —d[¢], hence r(y,z,&) = n* > §6%|¢|?, when
p=n?—r=0.

Direct calculation yields

Hof + FMIE -+ 02 = xa(1 = ), (e (5)7) = (1= (7))

with

H
N = m(%)Q(XB(l - %) §¢ —xo(1 - %Mlﬁl) €C®, v = xl(%)N”?

Here N > 0 on supp(¢) if we choose 6 > 0 small enough. Observe that when
2 2

n =12 >0, we have xo(1 — 67" ¢)Hp(x2 (07 ¢0) ") = 0, (1 — x1(55) )N = 0.

We then define a function

Yo(1 = ) Hy (x2(%)") = (1= (5) )N
@(y,x,f) = - 27"1/2 |77:77’1/217‘(y,:r,£)>0

and then
pr+fM|f|+¢2 290(77—7“1/2), when p =7% —r =0.
Therefore, on p = 0, we have
Hya+ aM|¢| + 9% = p(n —r'/?).

It is left to check the smoothness of functions p, ¢ and p. Indeed, on the support
of ¥,|p1m| < 2§, ¢ < 30, and then 1 — % < 3. Notice that % = t2, we have
%o ¢

H M|
N1/2:X2(7) Xf)(l—g) §¢ [3 ,1—?)66'00,

H,¢ )
since the function G(a,t) = V1 —at? € C* for t < 3,|a| < 1. This implies that

1 € C*°, provided that § is chosen small enough.
For ¢, the smoothness comes from the fact that on the support of

o ®0\2 N \2
1= OVH, (2 (22)) e — (1= 1 ()N oy
ot~ 2, (02 e~ (10 ()N
we have r > §2|£|?. Moreover, ¢ has compact support.
Finally, from the definition of a, we have

ai(y,z,§) = 1y 2,m:¢) 27.7f(y’z7 —nt) ‘n:\/r(y,ic,ﬁ) €,

G(

ao(y’ x, é.) _ f(y7 x, 1, 5) +2f(y7 £, _77’5) ‘n:i\/r(y,w,ﬁ) € Cgc
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we deduce that % = —%XQ(%fxg(l — ?) < 0, hence

f(yaxanvf)ff(yvxafnvf) 1/1 af

277 ) 7(y,l’,8'f],§)d5 <0.

1 0n

Define )
t(y,l’,f) = ( - % [1 %ﬁ(yvxv Sn,f)d8|n:m)l/2,
one can show that ¢ is a smooth function with compact support.
The last observation is that a = f > 0 on p = 0, hence s = f1/2|p:0 € Cx.
We give some more calculations: Let ¢g = 1|,=0, 91 = g—qf”yzo7 when n =7r=0.
Thus at (xg, &),

5 ’
o(wo,&0)” =x6(1)g(0,x07§0)w

dy
2
2¢01P1 (20, &0) = — xé’(l)g;(xoéo)(bl(ﬁ?é&))

+X6(1)M¢1 (07 Zo, 50)
1)

t(l‘(), 50) =

— Xo(1)M[¢] > 0,

X7, 61}(0,20,60) 5

> 0, for ¢ small enough since y; (1) < 0.

Observe that near (z9,&), we have % ~ —%‘8%‘;(1), provided that § is small
0

enough. Now if we make a different choice of 5> 0, the difference between two ratios

% and % is non-zero. This implies that we can choose a further cut-off x near

0
(0,20, &o) such that ||Opy,(x)p1ull2(v,) = o(1) and [|@Op;, (x)hDyprullL2(v,) =

o(1) from [|pOpy, (Yo + Yr1m)erullz2(y,) = 0(1) and ||@Opy (Yo + Y1) 1wl L2 (v, ) =
o(1). [ |

Next we recall the proof of Lemma which is essentially given in [12].

Proof of Lemma[8.3 : From the transversality, we can choose a new coordinate
(s,t) in U such that pp = (0,0) and H_,, = J; in this coordinate.

Step 1. Consider the function y(u) = w57 1y<3/4- It is easy to check that x is
smooth and non-increasing with the property:

N x(u) = O((—x)™), ¥N € N,m > 1,locally uniformly.

Step 2. Next we choose 8 € C*°(R) such that § > 0 vanishing on (—oo, —1) and
strictly increasing on (—1, f%), equaling to 1 on (f%, 00). We modify g such that

ONB =0(BY™), VN eN,m > 1,locally uniformly.

Step 3. Choose f € C*(R) so that f vanishes on (—o0,1/2) and is strictly increas-
ing and convex on (1/2,00) with f(1) > 1.
Now we set ,
L3t t s y
aé—ﬁ(462)X(06+ 64 +f(52))’

and
95 = B 155) Hyx(w)
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75 + % + f(;yz)- Finally we define hs = —H,as — gs. Note that
2 | 3
supp (as) = {(y,s,t) : =0 <t—5+—+f( 1) <),

hence it is clear that (1)(2)(3)(4) in Lemma [8.2] are satisfied.
Since r = 1oy + O(y), when H_,. acts on functions independent of 1 we have

H, =0, +O0(y)0s + O(y)0; + O(0)0,,

with v =

due to the bound |n| = O(4). Therefore, we have

g5 = B() (5 + O 2 +006%) L+ 00) )W/ (w) + O()x(w)
:ﬂ<§><§+o<5>+o<g>+o<l>» @)
~ Bl 2 (w),

provided that J,0 < 1. In the calculation above, we have used the fact that
x(u) = O(x'(u)) on the support of gs. Thus (5) in Lemma [8.2] follows.

(6) follows from the construction of x.

To check (7), we observe that supp(gs)Usupp(hs) Csupp(as). Moreover, from
the construction, gs, hs are independent of 7 whenever 0 < y < %. Finally, to check
the support of hs, we write hs = —H. (6(52 )) (u). Since 8 is independent of y, 7,
we have H), (6 (52)) H_, (B (52)) , which is supported on I x L™(4,6%) x R
thanks to supp 8’ C [-1,—3]. [ |

E.PrROOF OF LEMMA [T.1]

Lemma 8.18. In local coordinate Y., we have
0
P, = —h? \gﬁa (VGG 9,) + R = h*D2 + Opy,(r) + Opz 12 (h).

Moreover, Ry, is a matriz-valued second order differential operator in x with scalar
principal symbol r(y,z,€) = 1 — Xy, z,€)?, which is self-ajoint with respect to the

C1)r2(vy)-
Proof. Denote by y = 2%, 8y = 9,,0; = Op;yj=1,2,---d—1. Let u € AY(Y,) and
w € A%2(Y,) written in the form
u = updz® + ujdxj, w = wojdxo Adz? + wjkdxj A da®.
We have from direct calculation that

du =(0pu,; — a»uo)dxo A dxj + 8kujdxj A da®,

d*u \/éao(uof) \@ (gjkukxf)
dw—\/la (wojgﬂ“\ﬁ)

1 .
=g (00(worg™ VG + O (VG (6" — ¢ gH) )
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From direct calculation, h2Agu = h?(dd* + d*d)u = vodz® + v;dz? + Rpu with

2 80(\/6)
VG

gjlao (gkl\/a)aouk

Vo = — h26§u0 —h

Jouop,
h2
VG
and the Rj,u consists only the tangential derivatives d;. Hence in the matrix form,

e 12 L9 (a1
v = Lpu:= h\/éay(\/ég ay)'

Moreover, one easily verified that L; = Ly, thus R} = Rj. |

1252
v; = — h*Ogu; —

F.PrROOF OF LEMMA

Proof of Lemma[8.4 For our need, it suffices to prove the last assertion. We first
let Ay = a(y,z,hDy, hD;) and By = b(y, z, hD,), then

1 i(x—a')eti(y—y')n
ApBpu(y, ) = W//e oy Y, Euly ) dy' da dEdn,
where
, 1 i(e=2)(6' =€) , , ,
Qo(y 7%55,7775) = W € h a(y,x,n,f)b(y 727£)d£ dZ

Talor expansion gives

1
@(y/a y,xﬂ%f) = ‘P(i%y»fﬂ),f) + (y/ - y)/ 8y’§0(ty/ + (]— - t)y»yv%%f)dt-
0

Denote by c(y,z,n,£) = ¢(y,y,z,n,£), it is obvious that ¢ is an interior symbol,
since it can be viewed as a tangential symbol for fixed 7, and we have (14 |£])™ <
(1+ &+ |n))™ for all m € R on the support of ¢, thanks to the support property
of a. Now we note Cj, = c(y, z, hD,, hD,), and write A, Byu = Chu + R} u, where

1
1 i(e—z')e+i(y—y’)n
Ria(y.) = | s [ = oty v uty oy g
0
. 1 1 i(z—a)e+i(y—y )n ’ ;. / /
=ih dtw e g OOy cr(y's y,z,m, Huly’, 2')dy' dz’dédn
0

1
=: ih/ Cu(y, z)dt,
0
with ¢ (y',y,2,n,§) = ¢(ty’ + (1 = t)y, y,x,7,§). Notice that
1 i(e—2)(e' =)
anay’ct(y/ay7xana§) = W //6 h 5na(y,x7n,§')(3yb)(ty’+(l—t)y7z,ﬁ)df/dz

We need to be careful here since 9,b only exists for y > 0 and at the point y = 0,
the right derivative (9;")"b(0) := lim+ 0™b(y) exists for any order m. Since we are
y—0

dealing with Dirichlet boundary condition, we always apply a tangential operator
B(y,x, hD;) to functions u(y, z) with u|,=9 = 0 in the trace sense. We could thus
extend u(y’, z') by u(y’,2')1,>0in 3’ in the expression of the form

1 i(e—a)e +i(y—y)n
. // . r oy, z,m, Ouly', 2 )dy' da’ dEdn.
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Therefore, we have

sup |8§8§b(ty’ +(1=1)y,2,6)] < Cmap VmeN, a,f € N1
y,y'20,0<t<1,2,§

Now it is reduced to prove the uniform L? boundness of the operator
Tou= [ Koo'y uly' o)y o'
Rd

with kernel

1 i(z—z)e+i(y—y)n
Kh(ylvx/ayvx) = W/Rde h Ht(y/vyaxvnvg)dndga

where

1 iz¢
Ht (yla Y,x,n, 5) = 1y’7y20W / eh ap (y7 x,n, €+<)b1 (tyl+(1_t)y7 T—=z, C)dZdC
From Schur’s test, we need to show

sup / |Kn(y', 2y, z)|dy'dz’ < Cy < o0,
(y,z)GRi ]R‘i

sup / [Kn(y', 2, y, )|dyde < C2 < oo,
(y",z")ERY JRE
with C4, Cs independent of h and t.
To this end, we define

1
(2m)

kh(y,x,w,v) = / eiv€+iwnHt(y - hwayvxanﬂg)dndga
Rd
hence,

1 —y r—2a
Thuly,z) = W/Rd kn (y, % T July'2)dy'da’.
¥

Notice that H;(y',y, x,n,£) is a tangential symbol, parametrized by (y', y,n). More-
over, it is compactly supported in (y, x, 7, £) variables, uniformly in the first variable
y'. Thus, 8,77"8?Ht(y — hw,y,z,n,£) has compact support in (1,£) and

|87’f7n8§04Ht(y - hw7ya‘ra 777£)| S C’V‘ma

for any m € N and a € N4, Thus, doing integration by part in the expression of
kn, we have
k <C(1 —(d+1)
sup [kn(y, z, w,v)| < C(1+ |w| + [v]) :
(y@)
Therefore, we obtain
y—vy x—12

1
/Rd |Kh(y’,x/,y,:c)|dy/d:£/ = ﬁ Rd |kh(y7xa h ,T)}dy'dx/
+ ¥

:/ lkn(y, z, w,v)|dwdv
Rd
Sclv
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and
. 1 y—y x—a
‘Kh(yﬂﬂay’x”dydx:m |kh(y,x7Ta h )|dyd93
R% R4
§/ sup |kn(y, z, w,v)|dwdv
R? (y,7)
< Cs.
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