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DECAY RATES FOR KELVIN-VOIGT DAMPED WAVE EQUATIONS II: THE GEOMETRIC CONTROL CONDITION

 for similar results under stronger assumptions on the damping function).

Introduction

In this paper we investigate decay rates for Kelvin-Voigt damped wave equations under geometric control conditions. We work in a smooth bounded domain Ω ⊂ R d and consider the following equation

(1.1)      (∂ 2 t -∆)u -div(a(x)∇ x ∂ t u) = 0 u | t=0 = u 0 ∈ H 1 0 (Ω), ∂ t u | t=0 = u 1 ∈ L 2 (Ω) u | ∂Ω = 0
with a non negative damping term a(x). The solution can be written as

(1.2) U (t) = u ∂ t u = e At u 0 u 1 ,
where the generator A of the semi-group is given by

A = 0 1 ∆ diva∇ u 0 u 1 ,
with domain D(A) = {(u 0 , u 1 ) ∈ H 1 0 × L 2 ; ∆u 0 + diva∇u 1 ∈ L 2 ; u 1 ∈ H 1 0 }. The energy of solutions

E(u)(t) = Ω (|∇ x u| 2 + |∂ t u| 2 )dx satisfies E((u 0 , u 1 ))(t) -E((u 0 , u 1 ))(0) = - t 0 Ω a(x)|∇ x ∂ t u| 2 (s, x)ds.
Our purpose here is to show that if the damping a is sufficiently smooth, the exponential decay rate holds, dropping some unnecessary assumptions on the behaviour of the damping term where it becomes positive in previous works [START_REF] Burq | Imperfect geometric control and overdamping for the damped wave equation[END_REF]. Namely we shall assume a(x) 0 is C 1 (Ω) and satisfy the regularity hypothesis |∇a| Ca

1 2 . (1.3)
Our main result is Theorem 1. Assume that Ω is a compact Riemannian manifold with smooth boundary. Let a ∈ C 1 (Ω) be a nonnegative function satisfying (1.3), such that the following geometric control condition is satisfied:

• There exists δ > 0 such that all rays of geometric optics (straight lines) reflecting on the boundary according to the laws of geometric optics eventually reach the set ω δ = {x ∈ Ω : a(x) > δ} in finite time. Then there exists α > 0, such that for all t 0 and every (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), the energy of solution u(t) of (1.1) with initial data (u 0 , u 1 ) satisfies E[u](t) e -αt E[u](0).

To prove this result, we first reduce it very classicaly in Section 2 to resolvent estimates. Since the low frequency estimates are true, we are reduced to the high frequency regime. The proof relies on resolvent estimates which are proved through a contradiction argument that we establish in Section 2. In Section 3 we prove a priori estimates for our sequences. The main task then is to prove a propagation invariance for these measures. A main difficulty to overcome is that it is not possible to put the damping term in the r.h.s. of the equation (1.1) and treat it as a perturbation. Instead we have to keep it on the left hand side and revisit the proof of the propagation property from [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]. In Section 4, we introduce the geometric tools necessary to tackle the boundary value problem and define semi-classical measures associated to our sequences. In Section 5 we prove the interior propagation result for our measures. Finally, in Section 6, we finish the proof of the contradiction argument by establishing the invariance of the semi-classical measures we defined up to the boundary. Here the proof uses crucially the main result in [7, Théorème 1].

Remark 1.1. Throughout this note, we shall prove that some operators of the type P -λId, λ ∈ R (resp. λ ∈ iR) are invertible with estimates on the inverse. All these operators share the feature that they have compact resolvent, i.e. ∃z 0 ∈ C; (P -z 0 ) -1 exists and is compact (or it will be possible to reduce the question to this situation). As a consequence, since

(P -λ) = (P -z 0 ) -1 (Id + (z 0 -λ)) -1 ),
and (Id + (z 0 -λ) -1 ) is Fredholm with index 0, to show that (P -λ) is invertible with inverse bounded in norm by A , it is enough to bound the solutions of (P -λ)u = f and prove

(P -λ)u = f ⇒ u L 2 A f L 2 .
Remark 1.2. Assume that a is the restriction to Ω of a nonnegative C 2 (R d ) function. Then the hypothesis (1.3) is satisfied.

Proof. It is enough to prove (1.3) for Ω = R d , a ∈ C 2 (Ω). Let x 0 ∈ R d and denote by z 0 = ∇a(x 0 ) From Taylor's formula, we have for any s ∈ R, there exists θ ∈ (0, 1), such that

a(x 0 + sz 0 ) = a(x 0 ) + s|z 0 | 2 + s 2 2 a (x 0 + θsz 0 )(z 0 , z 0 ) 0
Since this polynomial in s is non negative, we deduce tat its discriminant is non positive

|z 0 | 4 -2 a ∞ |z 0 | 2 a(z 0 ) 0 ⇒ |∇ x a(x 0 )|| 2 2 a ∞ a(z 0 ).
Notice that in the above lemma, the condition cannot be relaxed to a ∈ C 2 (Ω), a 0. Indeed, consider the following example: Ω = B(0, 1) and a(x) = 1 -|x| 2 for |x| 1. Then obviously a ∈ C 2 (Ω), a 0 , but on the boundary, ∇ x a = 0, while a = 0.
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Contradiction argument

It is well known that decay estimates for the evolution semi-group follow from resolvent estimates [START_REF] Charles | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF][START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF]]. Here we shall need the classical (see e.g. [6, Proposition A.1]) Theorem 2. The exponential decay of the Kelvin Voigt semi-group is equivalent to the following resolvent estimate: There exists C such that for all λ ∈ R, the operator (A -iλ) is invertible from D(A) to H and its inverse satisfies

(2.1) (A -iλ) -1 L(H) C Let us first recall that (2.2) (A -iλ) u v = f g ⇔ -iλu + v = f ∆u + diva∇ x v -iλv = g
From [8, Section 2], we have the following low frequencies estimates of the resolvent of the operator A:

Proposition 2.1. Assume that a ∈ L ∞ is non negative a 0 and non trivial Ω a(x)dx > 0. Then for any M > 0, there exists C > 0 such that for all λ ∈ R, |λ| M , the operator A -iλ is invertible from D(A) to H with estimate

(2.3) (A -iλ) -1 L(H) C.
As a consequence, to prove Theorem 1 it is enough to study the high frequency regime λ → +∞ and prove Proposition 2.2. Assume that a ∈ C 1 (Ω) is a nonnegative function satisfying (1.3). Then under the geometric control condition, there exists Λ 0 > 0 such that for any |λ| > Λ 0 we have

(A -iλ) -1 L(H) C.
By standard argument, we can reduce the proof of Proposition 2.2 to a semi-classical estimate. We denote by 0 < h = |λ| -1

1 and

P h = -h 2 ∆ -1 -ihdiv a(x)∇.
Proposition 2.3. There exists C > 0, such that for all 0 < h 1,

P -1 h L(L 2 ) Ch -1 . (2.4)
For the proof of Proposition 2.3, we argue by contradiction. Assume that there exist sequences

(u n ) ⊂ H 2 ∩ H 1 0 , (f n ) ⊂ L 2 and h n → 0, such that P hn u n = f n , u n L 2 = 1 and f n L 2 = o(h n ).
We will use a semi-classical notation and denote by (u h , f h ) the sequences with the properties

u h L 2 = 1, f h L 2 = o(h), P h u h = f h . (2.5)
Sometimes we even omit the subindex for u h , f h . In the following subsections, we will prove propagation estimates for such sequences.

A priori estimates

In this section we establish a series of a priori estimates for the sequence defined in (2.5).

Lemma 3.1. Assume that a ∈ L ∞ (Ω) is a non-negative function, then (1) 
Ω |u h | 2 -|h∇u h | 2 = Re Ω f h u h = o(h); (3.1) (2) Ω a(x)|h∇u h | 2 = h Im Ω f h u h = o(h 2 ).; (3.2) (3) h 2 u h H 2 = O(1). (3.3)
Proof. We get (1) and (2) by multiplying the equation P h u = f by u, integrating by part and taking the real and imaginary parts repectively. For (3), from the equation, we have

h 2 ∆u + u + ih∇a • ∇u + iha∆u = -f, i.e. h 2 ∆u = - u + f + i∇a • h∇u 1 + ih -1 a(x) .
From the global estimate of the Poisson equation

w H 2 C ∆w L 2 , ∀w ∈ H 2 ∩ H 1 0 , we obtain that h 2 u H 2 = O(1). Corollary 3.2. Assume that a ∈ C 1 (Ω) is a non-negative function satisfying (1.3), then a 1 2 u h L 2 + a 1 2 h∇u h + a 1 2 h 2 ∆u h L 2 = o(h). (3.4)
Proof. We only need to estimate Ω a(x)|u| 2 , since Ω a(x)|h∇u| 2 = o(h 2 ) is just (3.2). Multiplying P h u = f by au and taking the real part, we have

Ω a(x)|u| 2 = Re Ω h∇u • h∇(au) -Im h Ω a(x)∇u • ∇(a(x)u) + Im Ω a(x)f u. Since |∇a| Ca 1 2
, the first term on the r.h.s. can be bounded by

a 1 2 h∇u 2 L 2 + h ∇ah∇u L 2 u L 2 = o(h 2
). The third term of r.h.s is bounded by o(h) a 1 2 u L 2 , and the second term can be bounded by

h Ω a∇a • u∇u h a 1 2 u L 2 a 1 2 ∇a∇u L 2 C a 1 2 h∇u a 1 2 u L 2 = o(h) a 1 2 u L 2 .
For the second derivative, we observe that a(x)

1 2 h 2 ∆u = - a 1 2 u + a 1 2 f + iha 1 2 ∇a • h∇u 1 + ih -1 a(x) , thus a 1 2 h 2 ∆u L 2 = o(h).
This completes the proof of Corollary 3.2.

Let ν be the out-normal vector field on ∂Ω. We denote by L 2 (∂) = L 2 (∂Ω). The following hidden regularity holds:

Lemma 3.3. Assume that a ∈ C 1 (Ω) is a nonnegative function satisfying (1.3), then h∂ ν u L 2 (∂) = O(1), a 1 2 h∂ ν u L 2 (∂) = O(h 1 2 
).

Proof. We use the standard multiplier method. Let L = b j (x)∂ j be an C 2 extension of the out-normal vector field ν, where b j 's are supported in a neighborhood of ∂Ω. Write P h = P h,0 + iM h , where 

P h,0 = -h 2 ∆ -1, M h = -hdiv a(x
-[M h , L]u, u L 2 = h∂ k [a∂ k , b j ∂ j ]u, u L 2 + h [∂ k , b j ∂ j ]a∂ k u, u L 2 = h∂ k (a(∂ k b j )∂ j u -b j (∂ j a)∂ k u), u L 2 + (∂ k b j )h∂ j (a∂ k u), u L 2 = -(a∂ k b j )∂ j u -b j (∂ j a)∂ k u, h∂ k u L 2 -a∂ k u, h∂ j ((∂ k b j )u). L 2
From Corollary 3.2, the absolute value of the r.h.s. can be bounded by constant times

a∇u L 2 + ∇a∇u L 2 = o(1). Therefore, [P h , L]u, u L 2 = O(1)
. On the other hand, by developing the commutator and exploiting the equation, we have

[P h , L]u, u L 2 = P h Lu, u L 2 -Lf, u L 2 = Lu, P * h u L 2 -f, L * u L 2 + h 2 ∂ ν u 2 L 2 (∂) + ih a 1 2 ∂ ν u 2 L 2 (∂) . Observe that Lu, P * h u L 2 = Lu, f -2M h u L 2 = o(1) -2 Lu, M h u L 2 = o(1) -2 Lu, h∇a • ∇u + ha∆u L 2 .
Since L is a first order differential operator and from Corollary 3.2 that a

1 2 h∆u L 2 = o(1), we have | Lu, h∇a • ∇u + ha∆u L 2 | h∇u L 2 ∇a∇u L 2 + a 1 2 ∇u L 2 a 1 2 h∆u L 2 = o(1). Therefore, h∂ ν u 2 L 2 (∂) + ih a 1 2 ∂ ν u 2 L 2 (∂) = O(1).
The proof of Lemma 3.3 is then completed by taking real and imaginary parts.

Let χ ∈ C ∞ c (R) such that χ(z) ≡ 1 for |z| 1 and χ(z) ≡ 0 for |z| > 2. We decompose (3.5)

u h = v h + w h , v h = χ ah -1 u h , w h = 1 -χ ah -1 u h .
In the rest of this note, we always assume that a ∈ C 1 (Ω) is a nonnegative function satisfying (1.3).

Lemma 3.4. We have

w h L 2 + h∇w h L 2 = o(h 1 2 ), a 1 2 v h L 2 + a 1 2 h∇v h L 2 = o(h),
and

u h H 1 h (a ch) + v h H 1 h (a ch) = o(h 1 2 ).
Proof. By definition,

Ω |w| 2 + |h∇w| 2 a h |u| 2 + |h∇u| 2 + |∇a| 2 |u| 2 .
The conclusion then follows from Corollary 3.2 and the fact that |∇a| 2 Ca. Similarly, for any other cutoff to the region a ch, we deduce that 2 ). For the estimate of v, note that a

u h H 1 h (a ch) = o(h 1 
1 2 h∇v = a 1 2 χh∇u + a 1 2 ∇aχ v, from Corollary 3.2, we have a 1 2 h∇v L 2 a 1 2 h∇u L 2 + χ a 1 2 (a 1 2 v) L 2 = o(h).
This completes the proof of Lemma 3.4.

Geometry, semi-classical measures

Having the a priori estimates of the previous section at hand, we can now study v h . For some subsequence of v h , we will associate it a semi-classical measure and then prove the invariance of the measure under the generalized geodesic flow. First recall some geometric preliminaries from [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]. 

(4.1) j(x d , x , ξ d , ξ ) = (x d , x , v = x d ξ d , ξ ).
Denote by CarP 0 the semi-classical characteristic manifold of P 0 = -h 2 ∆ -1 and Z its projection

(4.2) CarP 0 = (x, ξ) = (x , x d , ξ , ξ d ) ∈ T * R d | Ω ; p(x, ξ) = 0 , Z = j(CarP 0 ).
The set Z is a locally compact metric space. Consider, near a point x 0 ∈ ∂Ω a geodesic system of coordinates for which

x 0 = (0, 0), Ω = {(x d , x ) ∈ R + × R d-1 } and the operator P 0 has the form (near x 0 ) (4.3) P h,0 = -h 2 ∆ -1 = h 2 D 2 x d -R(x d , x , hD x ) + hQ(x, hD x )
, with R a second order tangential operator and Q a first order operator.

We recall now the usual decomposition of T * ∂Ω (in this coordinate system). Denote by r(x , x d , ξ ) the semi-classical principal symbol of R and

r 0 = r | x d =0 . Then T * ∂Ω is the disjoint union of E ∪ G ∪ H with (4.4) E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}.
Remark that j gives a natural identification between Z | ∂M and H∪G ⊂ T * ∂M . In G we distinguish between the diffractive points G 2,+ = {r 0 = 0,

r 1 = ∂ x d r | x d =0 > 0} and the gliding points G -= {r 0 = 0, r 1 = ∂ x d r | x d =0 0}.
We will make the assumption (Ω has no infinite order contact with its tangents) that for any 0 ∈ T * ∂M , there exists N ∈ N such that

H N r0 (r 1 ) = 0
The definition of the generalized bicharacteristic flow, ϕ s associated to the operator P 0 is essentially the definition given in [START_REF] Melrose | Singularities of boundary value problems II[END_REF]:

Definition 4.1. A generalized bicharacteristic curve γ(s) is a continuous curve from an interval I ⊂ R to Z such that
(1) if s 0 ∈ I and γ(s 0 ) ∈ T * Ω then close to s 0 , γ is an integral curve of the Hamiltonian vector field H p (2) If s 0 ∈ I and γ(s 0 ) ∈ H ∪ G 2,+ then there exists ε > 0 such that for 0 < |s -

s 0 | < ε, x d (γ(s)) > 0 (3) If s 0 ∈ I and γ(s 0 ) ∈ G -then for any function f ∈ C ∞ (T * R d | Ω ) satisfying the symmetry condition (4.5) ∀ 0 ∈ Z, ∀ 0 , 0 ∈ j -1 ( 0 ) ∩ Car( P ), f ( 0 ) = f ( 0 ) then d ds f (j(γ(s)) | s=s0 = H p | j -1 (γ(s0)) f (j -1 (γ(s 0 )))
It is proved in [START_REF] Melrose | Singularities of boundary value problems II[END_REF] that under the assumption of no infinite order contact, through every point o ∈ b T * M \{0} there exists a unique generalized bicharacteristic (which is furthermore a limit of bicharacteristics having only hyperbolic contacts with the boundary). This defines the flow Φ.

Wigner measures. Consider functions a

= a i + a ∂ with a i ∈ C ∞ 0 (T * M ), and a ∂ ∈ C ∞ 0 (R 2d-1
). Such symbols are quantized in the following way: take

ϕ i ∈ C ∞ 0 (M ) (resp ϕ ∂ ∈ C ∞ 0 (R d )) equal to 1 near the x-projection of supp(a i ) (resp the x-projection of supp(a ∂ )) and define (4.6) Op ϕi,ϕ ∂ h (a)(x, hD x )f = 1 (2πh) d e i(x-y)•ξ/h a i (x, ξ)ϕ i (y)f (y)dydξ + 1 (2πh) d-1 e i(x -y )•ξ /h a δ (x d , x , ξ)ϕ δ (x d , y )f (x d , y )dy dξ .
Remark that according to the symbolic semi-classical calculus, the operator Op ϕi,ϕ ∂ h (a) does not depend on the choice of functions ϕ i , ϕ ∂ , modulo operators on L 2 of norms bounded by O(h ∞ ). For conciseness we shall in the sequel drop the index ϕ i , ϕ ∂ .

Denote by A h the space of the operators which are a finite sum of operators obtained as above in suitable coordinate systems near the boundary and for B ∈ A, by b = σ(B) the semiclassical symbol of the operator A.

For such functions b we can define κ(b) ∈ C 0 (Z) by

(4.7) κ(b)(ρ) = b(j -1 (ρ))
(the value is independent of the choice of j -1 (ρ) since the operator is tangential). The set

(4.8) {κ(b), b = σ(B), B ∈ A h } is a locally dense subset of C 0 c (Z). 4.2.1. Elliptic regularity. The sequence v h satisfies (with χ h = χ(a/h)) P h v h =χ h P h u h -h 2 div(∇χ h u h ) -h 2 ∇χ h ∇u h -ihdiv(a∇χ h u h ) -iha∇χ h • ∇u h .
Since ∇χ h = h -1 χ (a/h)∇a and |∇a| a 1 2 , by Corollary 3.2, we have

P h v h = o L 2 (h) + o H -1 (h 2 ). Thus (h 2 ∆ + 1)v h = -ihdiv(a∇(χ h u)) + o L 2 (h) + o H -1 (h 2 ).
Using Corollary 3.2 again and the fact that a h on the support of χ h , we deduce that ha∇(

χ h u) = o L 2 (h 3 2 ), hence (h 2 ∆ + 1)v h = o(h 3 
2 ) H -1 (Ω) + o L 2 (h). We deduce, by standard elliptic regularity results Proposition 4.2. If a i is equal to 0 near Car(P 0 ) then 

(4.9) lim k→+∞ (Op h k (a i )v h k , v h k ) L 2 =
(a ∂ (x , x d , h k D x )v h k , v h k ) L 2 = 0.
Remark 4.4. Note that if we regard the damping term hdiv(a∇

(χ h u)) = o H -1 (h 3 
2 ) as a source term, we are not able to use the classical propagation theorem for h 2 ∆ + 1 as a black box, as such a strategy would require smaller r.h.s., namely o H -1 (h 2 ) + o L 2 (h). On the other hand, an integration by parts shows from Lemma 3.4 div(a∇(χ h u)), χ h u

L 2 = -a 1/2 ∇ x χ h u 2 L 2 = o(1),
and this will ensure that in the propagation estimates such terms are invisible. The key of our analysis in the sequel will be to systematically uses this procedure: testing the damping term on expressions like Q h χ h u, doing the integration by part and then balancing a 1 2 to the other side. It is to perform this analysis that we need the condition |∇a| Ca 

4.5. Assume that Q h , B 0,h , B 1,h are tangential h-pseudodifferential operators of order 0 and B h = B 0,h + B 1,h hD x d , then h -1 Q h M h u, B h u L 2 = o(1),
where M h = -hdiva∇.

Proof. Since M h u = -∇ah∇u -ah∆u, from Corollary 3.2, we have

h -1 Q h ∇ah∇u, B h u L 2 C ∇a∇u L 2 u H 1 h = o(1). To estimate Q h a∆u, B h u L 2 , we write Q h a∆u = a 1 2 Q h a 1 2 ∆u + [Q h , a 1 2 ]a 1 2 ∆u. From Corollary 3.2, a 1 2 ∆u = o L 2 (h -1 ). By Corollary A.2, [Q h , a 1 2 ], [B h , a 1 2 ] = O L(L 2 ) (h). Therefore, Q h a∆u, B h u L 2 = Q h a 1 2 ∆u, B h a 1 2 u L 2 + o(1).
Again from Corollary 3.2, we have B h a

1 2 u = O L 2 (h), hence (Q h a∆u, B h u) L 2 = o(1)
. The proof of Lemma 4.5 is complete. 4.2.2. Definition of the measure. The following results gives the existence of semi-classical measures. Proposition 4.6. Let (v h kp ) be a sequence bounded in L 2 (Ω). There exists a subsequence (k p ) and a Radon positive measure µ on Z such that

(4.11) ∀Q ∈ A h kp lim p→∞ (Qv h kp , v h kp ) L 2 = µ, κ(σ(Q)) .
The proof of this result relies on the Gårding inequality for tangential operators (see G. Lebeau [START_REF] Lebeau | Equation des ondes amorties[END_REF] for a proof in the classical context and [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF][START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for the semi-classical construction). As before, we drop the indexes k p and denote by (v h ) the extracted sequence. Proposition 4.7 (First properties of the measure µ). We have (4.12) µ(H) = 0.

Moreover, for any tangential symbol b,

(4.13) lim sup k→+∞ | (Op h (b)h k D x d v h k , v h k ) L 2 | C sup ∈ supp(b) |r| 1/2 |b|.
Proof. The first property (4.12) follows from the fact that the trajectories near a hyperbolic point is transversal to the boundary. It follows from [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF], with additional attention to the damping term ihdiva∇v h . We factorize

P h,0 = -h 2 ∆ -1 as (hD x d -L + h )(hD x d -L - h ) + O H ∞ (h ∞ ) (see [7, Lemme 6.1]
) near ρ 0 ∈ H and choose L ± h with principal symbols ±l(x , x d , ξ ) = ± r(x , x d , ξ ). we denote by q 0 (x , ξ ) ∈ C ∞ c (H) and q ± (y, x , ξ ) solutions of

∂ x d q ± ∓ {l, q ± } = 0, q ± | x d =0 = q 0 .
Denote by

u ± := ψ(x d )Q ± h (hD x d -L ∓ h )u, where ψ(x d ) ≡ 1 if 0 x d 0 . We have (hD x d -L ± h )u ± =ψ(x d )[hD x d -L ± h , Q ± h ](hD x d -L ∓ h )u + Q ± h f h + h i ψ (x d )Q ± h (hD x d -L ∓ h )u +iQ ± h M h u + O L 2 (h ∞ )
where M h = hdiva∇ and f h = o L 2 (h). By definition of q ± , the first term of r.h.s. is O(h 2 ), hence

(hD x d -L ± h )u ± = g ± h -ihψ (x d )Q ± h (hD x d -L ∓ h )u + iQ ± h M h u, g ± h = o L 2 (h). (4.14) We have h d dx d (u ± , u ± ) L 2 (∂) = -2 Im g ± h -ihψ (x d )Q ± h (hD x d -L ∓ h )u + iQ ± h M h u, u ± L 2 (∂) +i (L ± h -L ±, * h )u ± , u ± L 2 (∂) .
For y 0 0 , we have

u ± (y 0 ) 2 L 2 (∂) u ± (0) 2 L 2 (x d =0) + Ch -1 g ± h L 2 (x d y0) u ± L 2 (x d y0) + C u ± 2 L 2 (x d y0) +Ch -1 (Q ± h M h u, u ± ) L 2 (x d y0)
The second line of r.h.s. is o(1), due to Lemma 4.5, and the first line of r.h.s. can be bounded by

u ± (0) 2 L 2 (x d =0) + C u ± 2 L 2 (x d y0) + o(1).
Integrating both sides over y 0 0 , letting h → 0 and then 0 → 0, we deduce that µ1 y=0 , q 0 = 0. This proves (4.12).

For (4.13), it suffices to prove the inequality for u instead of v. By Cauchy-Schwarz,

Op h (b)h∂ x d u, u L 2 Op h (b) * Op h (b)h∂ x d u, h∂ x d u L 2 1 2 u L 2 .

Doing integration by part, we have

Op h (b) * Op h (b)h∂ x d u, h∂ x d u L 2 = -Op h (b) * Op h (b)h 2 ∂ 2 x d u, u L 2 + O(h). Replacing h 2 ∂ 2 x d u by equation h 2 ∂ 2 x d u = -R h u -iM h u + O L 2 (h), we deduce that Op h (b) * Op h (b)h 2 ∂ 2 x d u, u L 2 Op h (|b| 2 )R h u, u L 2 + O(h) + Op h (b) * Op h (b)M h u, u L 2 .
From Lemma 4.5, the third term of r.h.s. is o(h). Passing h → 0, we complete the proof of Proposition 4.7.

4.3.

Invariance of the measure. The key to prove the invariance of the measure will be to apply the propagation theorem in [7, Théorème 1].

Theorem. The two following properties are equivalent

(1) The measure µ is invariant along the generalised flow.

(2) The measure µ satisfies μ = 0 and µ(G + 2 ) = 0 in the sense that µ, {p, q} = 0 holds for any even symbol q ∈ C ∞ c (Car(P 0 )), i.e. q(x , x d = 0, ξ , ξ d ) = q(x , x d = 0, ξ , -ξ d ).

Remark 4.8. Technically, Theorem 4.3 is proved in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] for time dependent measures, i.e. measures depending in addition on two additional variables (t, τ ) ∈ T * R, and p is replaced by p -τ 2 . However, it is easy to apply the results from [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] by considering the measure

(4.15) µ = µ x,ξ ⊗ dt ⊗ δ τ =1 ,
which is supported in Car(-∆ + ∂ 2 t ) and satisfies ˙ µ = 0 in the sense that µ, {p -τ 2 , q} = 0 holds for any even symbol q ∈ C ∞ c (Car(P 0 -τ 2 )), i.e. q(x , x d = 0, t, ξ , ξ d , τ ) = q(x , x d = 0, t, ξ , -ξ d , τ ). Remark that though we shall not use it, the measure µ is, in the sense of [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]Section 2], the microlocal defect measure on the sequence v n (t, x) = h n e ith -1 n u n (x) (the pre-factor h n comes from the H 1 normalisation of the sequence v n in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]). Now, the generalised bicharacteristic flow for p 0 -τ 2 , Ψ s is given in terms of the generalised bicharacteristic flow for p 0 , ψ s by

Ψ s (t, x, τ = 1, ξ) = (t -2s, τ = 1, ψ s (x, ξ)),
The set of diffractive points G 2,+ in the time dependent frame-work is given by

G 2,+ = G 2,+ × R × {τ = ±1} and consequently, µ(G 2,+ ) = 0 ⇔ µ( G 2,+ ) = 0,
and in view of the particular form (4.15), the invariance of µ by Ψ s is equivalent to the invariance of µ by ψ s .

Let us now briefly explain the procedure we are going to follow.

• First from Proposition 4.6 and the elllipticity (Proposition 4.9, Proposition 4.10), the measure µ is defined on Z = j(Car(P 0 )) by testing on symbols of the form q = q i + q ∂ , q i ∈ C ∞ c (T * Ω) and q ∂ tangential (which is dense in C 0 (Z)).

• Using the fact µ(H) = 0 (Proposition 4.7), the measure µ can be extended to test on functions of Car(P 0 ) which admits a representation (thanks to Malgrange's theorem) q(x , x d , ξ , ξ d ) = q 0 (x , x d , ξ ) + ξ d q 1 (x , x d , ξ ), on ξ 2 d = r(x , x d , ξ ). Then, we will show in Proposition 4.9 that for tangential h-pseudodifferential operators B 0,h , B 1,h , the quadratic form

((B 0,h k + B 1,h k 1 i h k ∂ x d ))v h k , v h k ) converges to µ, b 0 + b 1 ξ d 1 ρ / ∈H
, by a suitable limit procedure for symbols in A h . Consequently, for any q ∈ C ∞ c (Car(P 0 )), we can make sense of the expression µ, {p, q} µ-a.e., by viewing {p, q} = 2ξ d ∂ x d q1 ρ / ∈H -{r, q}. We remark that to calculate {p, q}, it is enough to choose one representation q = q 0 + q 1 ξ d on Car(P 0 ), since {p, p} = 0 and p = 0 on supp(µ).

• Finally, to prove that the measure µ is invariant along the Melrose-Sjöstrand flow, we apply Theorem 4.3, for which we need to verify the following conditions: (a) µ(G 2,+ ) = 0 (b) μ = 0, in the sense that µ, {p, q} = 0 holds for any even symbol q ∈ C ∞ c (Car(P 0 )), i.e. q(x ,

x d = 0, ξ , ξ d ) = q(x , x d = 0, ξ , -ξ d ).
The verification of (a),(b) in our context is based on the propagation formula: Proposition 5.1 and Proposition 6.1. Especially, starting from Proposition 6.1, by choosing suitable test symbols of the form q 0 + q 1 ξ d , we are able to verify the conditions (a) and (b). Proposition 4.9. If B 0,h , B 1,h are two tangential h-pseudodifferential operators of with principal symbols b 0 , b 1 of order 0, then we have

lim k→∞ ((B 0,h k + B 1,h k 1 i h k ∂ x d )v h k , v h k ) L 2 = µ, b 0 + b 1 ξ d 1 ρ / ∈H .
Proof. Since B 0,h and B 1,h are all tangential, by the definition of the measure, the first term (B 0,

h k v h k , v h k ) L 2 converges to µ, b 0 . It remains to prove the convergence of the second term (B 1,h k 1 i h k ∂ x d v h k , v h k ) L 2 .
For this, we pick > 0, δ > 0 and define

B 1,h k , = 1 -ψ x d B 1,h k 1 -ψ x d 2 , B 1,h k = B 1,h k -B 1,h k , , B ,δ 1,h k = Op h k ψ r δ B 1,h k , B 1,h k ,δ = B 1,h k -B ,δ 1,h k ,
where ψ is a cutoff function which is 1 near 0. Now by the definition of µ and the dominating convergence, lim

→0 lim k→∞ (B 1,h k , 1 i h k ∂ x d v h k , v h k ) L 2 = µ, b 1 ξ d 1 x d >0 = µ, b 1 ξ d 1 ρ / ∈H , since µ(E) = µ(H) = 0. Now from Proposition 4.7, the contribution of lim →0 lim sup k→∞ |(B ,δ 1,h k h k ∂ x d v h k , v h k ) L 2 | Cδ 1 2 ,
which converges to 0 if we let δ → 0. Finally, by Cauchy-Schwarz,

|(B 1,h k ,δ h k ∂ x d v h k , v h k ) L 2 | h k ∂ x d v h k L 2 (B ,δ 1,h k ) * v h k L 2 . Notice that lim k→∞ (B ,δ 1,h k ) * v h k 2 L 2 = lim k→∞ (B ,δ 1,h k (B ,δ 1,h k ) * v h k , v h k ) L 2 = µ, 1 -ψ r δ ψ x d 1 -ψ x d 2 b 1 + 1 -ψ x d ψ x d 2 b 1 ,
taking the double limit lim sup δ→0 lim sup →0 , we obtain that lim sup

δ→0 lim sup →0 lim k→∞ (B ,δ 1,h k ) * v h k 2 L 2 µ, b 2 1 1 x d =0 1 r =0 = 0,
since µ1 E∪H = 0. This completes the proof of Proposition 4.9.

Interior propagation estimate

Proposition 5.1 (Interior propagation). Let Q h = χQ h χ be a h-pseudodifferential operator of order 0, where χ ∈ C ∞ c (Ω), then we have

1 ih [h 2 ∆ + 1, Q h ]v h , v h L 2 = o(1).
Proof. Denote by P h = P h,0 + iM h with M h = -hdiv a∇ and P h,0 = -h 2 ∆ -1, we have

1 ih [P h,0 , Q h ]v, v L 2 = 1 ih Q h v, P h,0 v L 2 - 1 ih P h,0 v, Q * h v L 2 = 1 ih Q h v, χP h,0 u L 2 - 1 ih χP h,0 u, Q * h v L 2 + R 1 with R 1 = 1 ih Q h v, [P h,0 , χ]u L 2 - 1 ih [P h,0 , χ]u, Q * h v L 2 .

By using the equation

P h,0 u = f -iM h u, we have 1 ih [P h,0 , Q h ]v, v L 2 =R 1 + R 2 + o(1), (5.1) 
where

R 2 = 1 h Q h v, χM h u L 2 + 1 h (χM h u, Q * h v) L 2 . Note that -[P h,0 , χ] = h∇ ∇aχ (a/h) + 2∇aχ (a/h)h∇, since h∇(χ(a/h)) = ∇aχ (a/h). • Claim 1: R 1 = o(1) It suffices to show that ih -1 B h v, [P h,0 , χ]u L 2 = o(1)
for any compact supported h-pseudo B h of degree 0. By integration by part,

- 1 ih B h v, [P h,0 , χ]u L 2 = - 1 ih B h v, hdiv (χ ( a h )∇au) + χ ( a h )∇ah∇u L 2
and we simply apply Corollary 3.2, to get for each term o(1).

• Claim 2: R 2 = o(1) It suffices to prove that (Q h v, χdiv (a∇u)) L 2 = o(1). We write

Q h v, χdiv a∇u L 2 = -(∇χ)Q h v, a∇u L 2 -χ[∇, Q h ]v, a∇u L 2 -χQ h ∇v, a∇u L 2 .
Since |a

1 2 ∇χ| = h -1 |a 1 2 χ ∇a| C, from Corollary 3.
2, the first term of r.h.s. can be bounded by

Q h v L 2 a 1 2 ∇u L 2 = o(1).
The second term of r.h.s. can be bounded by o(h). Observe that ∇(a

1 2 ) = 1 2 a -1 2 ∇a is bounded, thus from Corollary A.2, [a 1 2 , Q h ] = O L(L 2 ) (h). Therefore, χQ h ∇v, a∇u L 2 χQ h a 1 2 ∇v, a 1 2 ∇u L 2 + χ[a 1 2 , Q h ]∇v, a 1 2 ∇u L 2 .
The second term is bounded by Ch ∇v L 2 a

1 2 ∇u L 2 = o(1)
, and the first term can be bounded by o(1), due to Lemma 3.4. This completes the proof of Proposition 5.1.

Propagation near the boundary

Recall that v h = χ(a/h)u h . Consider the operator

B h = B 0,h + B 1,h h i ∂ x d
where B j,h = χ 1 Op h (b j ) χ 1 , j = 0, 1 are two tangential operators and χ 1 has compact support near a point z 0 ∈ ∂Ω. Note that in the local coordinate system,

P h,0 = -h 2 ∆ -1 = - 1 |g| h∂ x d |g|h∂ x d -R h ,
where R h is a self-adjoint tangential operator of order 2. The operator involving the damping can be written as

M h = - h |g| ∂ x d |g|a∂ x d - h |g| ∂ x k |g|ag jk ∂ x j Proposition 6.1 (Boundary propagation). 1 ih [P h,0 , B h ]v, v L 2 = B 1,h | x d =0 (h∂ x d v)| x d =0 , (h∂ x d v)| x d =0 L 2 (∂) + o(1).
Proof. We give the proof in the case B 0,h = 0. The B 0,h terms are handled by slightly simpler versions of the same computations. By developing the commutator, we have

1 ih [P h,0 , B h ]v, v L 2 = 1 ih B h v, P h,0 v L 2 - 1 ih B h P h,0 v, v L 2 + B 1,h | x d =0 (h∂ x d v)| y=0 , h∂ x d v| x d =0 L 2 (∂) ,
where the boundary term (the third) comes from the integration by part of the term 1 ih

1 |g| h∂ x d |g|h∂ x d v, v L 2 ,
since R h is self-adjoint tangential operator. It suffices to show that

I h := 1 ih B 1,h h∂ x d v, P h,0 v L 2 - 1 ih B 1,h h∂ x d P h,0 v, v L 2 = o(1). (6.1) Since v = χu and P h,0 u = P h u -iM h u = f h -iM h u, we have P h,0 v = χP h,0 u + [P h,0 , χ]u = χf h -iχM h u + [P h,0 , χ]u. Therefore, I h = o(1) + I h,1 + I h,2 ,
where

I h,1 = 1 ih B 1,h h∂ x d v, [P h,0 , χ]u L 2 - 1 ih B 1,h h∂ x d [P h,0 , χ]u, v L 2 and I h,2 = 1 h B 1,h h∂ x d v, χM h u L 2 - 1 h B 1,h h∂ x d χM h u, v L 2 • Claim 1: I h,1 = o(1).
Indeed, from integration by part, the second term

ih -1 (B 1,h h∂ x d [P h,0 , χ]u, v) L 2 = ih -1 ([P h,0 , χ]u, h∂ x d A h v) L 2
for some tangential operator A h , hence it has the same structure as the first term. It suffices to show that

h -1 B 1,h h∂ x d v, [P h,0 , χ]u L 2 = o(1). Since -[P h,0 , χ]u = h∇ • (∇aχ (a/h))u + 2∇aχ (a/h) • h∇u,
doing integration by part, we obtain that

-h -1 B 1,h h∂ x d v, [P h,0 , χ]u L 2 = -∇(uB 1,h h∂ x d v), ∇aχ L 2 + 2h -1 B 1,h h∂ x d v, ∇aχ h∇u L 2 = -∇B 1,h h∂ x d v, ∇aχ u L 2 + h -1 B 1,h h∂ x d v, ∇aχ h∇u L 2 .
Note that v = χu, if one of the derivatives h∂ x d , h∇ fall on χ(a/h) we can bound them from Corollary 3.2 by o(h). If all the derivatives fall on u in anyone of the two terms, by Lemma 3.1 and Corollary 3.2, these terms can be bounded by

h∇∂ x d u L 2 ∇au L 2 + h -1 h∂ x d u L 2 ∇ah∇u L 2 = o(1).
• Claim 2: I h,2 = o(1).

It suffices to prove that

h -1 B 1,h h∂ x d (χu), χM h u L 2 = o(1).
Note that -M h u = ∇ah∇u + ah∆u = o L 2 (1) and h∂ x d (χu) = ∂ x d aχ u + χh∂ x d u. We have

h -1 | B 1,h ∂ x d aχ u, χM h u L 2 | h -1 ∇au L 2 χM h u L 2 = o(1), since ∇au L 2 = o(h) from Corollary 3.2. It remains to show that h -1 B 1,h χh∂ x d u, χ(∇a • h∇u + ah∆u) L 2 = o(1). Since ∇ah∇u L 2 = o(h), we have h -1 B 1,h χh∂ x d u, χ(∇a • h∇u) L 2 = o(1)
. Finally, we show that

h -1 B 1,h χh∂ x d u, χah∆u L 2 = o(1).
Recall that from |∇(a

2 )| C and Corollary A.2, [B 1,h , a 1 2 ] = O L(L 2 ) (h), 1 
we have

h -1 | B 1,h χh∂ x d u, χah∆u L 2 | h -1 | B 1,h a 1 2 χh∂ x d u, χa 1 2 h∆u L 2 | + h -1 | [B 1,h , a 1 2 ]χh∂ x d u, χa 1 2 h∆u L 2 | Ch -1 a 1 2 h∇u L 2 a 1 2 h∆u L 2 + C h∇u L 2 a 1 2 h∆u L 2 = o(1).
This completes the proof of Proposition 6.1.

To show that the semi-classical measure µ of (v h k ) is invariant along the Melrose-Sjöstrand flow (to complete the proof of Proposition 2.3), we need to verify the condition (2) in Theorem 4.3. We will make use of the propagation formula, i.e. Proposition 6.1. Formally, for

B h = B 0,h + B 1,h 1 i h∂ x d , the principal symbol of i h [P h,0 , B h ] is given by {η 2 -r, b 0 + b 1 ξ d } = a 0 + a 1 ξ d + a 2 ξ 2 d , where 
a 0 = b 1 ∂ x d r -{r, b 0 } , a 1 = 2∂ x d b 0 -{r, b 1 } , a 2 = 2∂ x d b 1 , (6.2)
and {•, •} is the Poisson bracket for (x , ξ ) variables. On the other hand, by calculating the commutator, we find

i h [P h,0 , B h ] = A 0 + A 1 hD x d + A 2 h 2 D 2 x d + hOp h (S 0 ∂ + S 0 ∂ ξ d ), (6.3)
where A 0 , A 1 , A 2 are tangential operators with symbols a 0 , a 1 , a 2 , with respectively. We will prove the following propagation formula: ∈H , where a 0 , a 1 , a 2 are given by (6.2). Then the defect measure µ satisfies the equation

µ, {p, b} = -ν ∂ , b 1 ,
where ν ∂ is the semiclassical measure of (h∂

x d v h | x d =0 ). Moreover, if b is an even symbol (i.e. b(x , x d = 0, ξ , ξ d ) = b(x , x d = 0, ξ , -ξ d )), then we have µ, {p, b} = 0.
In particular, by combining Proposition 5.1, we have μ = 0.

Proof. From Proposition 6.1 and the decomposition (6.3), we have

(A 0 + A 1 h k D x d + A 2 h 2 k D 2 x d )v h k , v h k L 2 = -ν ∂ , b 1 + o(1). (6.4)
From Lemma 3.4, we can also replace the function v h k on the l.h.s. by u h k . Using the equation of u h k :

(h 2 D 2 x d -R h k )u h k = iM h k u h k -f h k + O L 2 (h k ), we deduce that (A 2 h 2 k D 2 x d u h k , u h k ) = (A 2 R h k u h k , u h k ) L 2 + o( 1 
), thanks to Lemma 4.5. Therefore, from Proposition 4.9, lim kh→∞

((A 0 + A 1 h k D x d + A 2 R h k )u h k , u h k ) L 2 = µ, a 0 + a 1 ξ d 1 ρ / ∈H + a 2 r = µ, {p, b} . Now if b = b 0 + b 1 ξ d is an even symbol, we must have b 1 | x d =0 = 0, therefore, µ, {p, b} = -ν ∂ , b 1 = 0.
The proof of Lemma 6.2 is complete.

Corollary 6.3. We have µ(G 2,+ ) = 0.

Proof. We will make use of the formula µ, {p, b}

= -ν ∂ , b 1 by choosing b = b 1, η with b 1, (x , x d , ξ ) = ψ x d 1 2 ψ r(x d , x , ξ ) κ(x d , x , ξ ),
where ψ ∈ C ∞ c (R) equals to 1 near the origin and κ(y, x , ξ ) 0 near a point ρ 0 ∈ G 2,+ . Since {p, b } = (a 0 + a 2 r) + a 1 ξ d 1 ρ / ∈H , and a 0 , a 1 , a 2 are given by the relation (6.2). In particular for our choice, by direct calculation we have a 0 = b 1, ∂ x d r, a 1 = -{r, κ} ψ x d Note that a 2 is uniformly bounded in and for any fixed (y, x , ξ ), ra 2 → 0 as → 0. Thus by dominating convergence, we have lim From Lemma 6.2 and Lemma 6.3, we have verified that μ = 0 and µ(G 2,+ ) = 0, thus from Theorem 4.3, the semi-classical µ is invariant along the Melrose-Sjöstrand flow. Thanks to the geometric control condition and the fact that a By Schur's test, we have T h,j L(L 2 ) 2 -jd d+1 . Using the triangle inequality, we obtain that T h is bounded on L 2 (R d ), uniformly in 0 < h 1. The proof of Lemma A.1 is now complete. 

1 arXiv: 2010

 12010 .05614v2 [math.AP] 19 Mar 2021

4. 1 .

 1 Geometry. Denote by b T Ω the bundle of rank d whose sections are the vector fields tangent to ∂Ω, b T * Ω the dual bundle (Melrose's compressed cotangent bundle) and j : T * Ω → b T * Ω the canonical map. In any coordinate system where Ω = {x = (x d > 0, x )}), the bundle b T Ω is generated by the fields ∂ ∂x , x d ∂ ∂x d and j is defined by

1 2

 1 to ensure the gain O(h) from the commutator [a 1 2 , Q h ]. More precisely, we shall need the following lemma:

Lemma

  

Corollary 6 . 2 .

 62 Assume that B h = B h,0 + B h,1 hD x d , where B h,0 , B h,1 are tangential operators of order 0 with symbols b 0 , b 1 , with respectively. Assume that b = b 0 + b 1 ξ d . Define the formal Poisson bracket {p, b} = (a 0 + a 2 r) + a 1 ξ d 1 ρ /

2 = 2∂ x d b 1 ,

 21 

→0µ,

  {p, b } = µ, κ| x d =0 ∂ x d r1 r=0 0 since ∂ x d r > 0 on G 2,+ . However, -ν ∂ , b0, we must have µ1 G 2,+ = 0. This completes the proof of Lemma 6.3.

1 2 v 1 2 |ξ| 2 )h 2 -j 2

 212222 h k = o L 2 (1), we deduce that µ = 0. This contradicts to the assumption thatv h k L 2 = u h k L 2 = 1 + o(1), as k → ∞. The proof of Proposition 2.3 is now complete. Appendix A. Some commutator estimates Lemma A.1. Assume that b(x, y, ξ) ∈ L ∞ (R 3dx,y,ξ ) such that|∂ α ξ b(x, y, ξ)| α ξ -(|α|+1) for all multi-index α ∈ N d , |α| d + 1.Then the operator T h associated with the Schwartz kernelK h (x, y) := 1 (2πh) d R d b(x, y, ξ)e i(x-y)•ξ h dξ is bounded on L 2 (R d ), uniformly in 0 < h 1.Proof. Using the Littlewood-Paley decomposition, we can decompose the operator T h = j 0 T h,j where each T h,j has the Schwartz kernelK h,j (x, y) = 1 (2πh) d R d b j (x, y, ξ)e i(x-y)•ξ h dξ, with b j (x, y, ξ) = b(x, y, ξ)ψ j (ξ) and ψ j (ξ) = ψ(2 -j ξ) for some ψ ∈ C ∞ c ( , if j 1 and ψ 0 (ξ) is supported on |ξ| 1. Note that (x -y) α K h,j (x, y) = i -|α| h |α| (2πh) d R d D α ξ b j (x, y, ξ) • e i(x-y)•ξ h dξ,we have|K h,j (x, y)| α h |α|-d |x -y| |α| • 2 -j(|α|+1-d) .We have another trivial bound |K h,j (x, y)| α 2 jd h -d . Therefore, for fixed x ∈ R d , by choosing |α| = d + 1, we haveR d |K h,j (x, y)|dy R d min 2 -j 2 -j h |x -y| d+1 , 2 jd h -d dy -j h |z| d+1 dz 2 -jd d+1 .Similarly, for fixed y ∈ R d ,R d|K h,j (x, y)|dx 2 -jd d+1 .

Corollary A. 2 .∂

 2 Assume that κ ∈ W 1,∞ (R d ) and b ∈ S 0 (R 2d ) is a symbol of order zero, then we have[Op h (b), κ] L(L 2 ) = O(h). Proof. The kernel of [Op h (b), κ] is given by K(x, y) = 1 (2πh) d R d b(x, ξ)(κ(y) -κ(x))e i(x-y)•ξ h dξ. Since κ ∈ W 1,∞ , there exists Ψ ∈ L ∞ (R d ; R d ) such that κ(y) -κ(x) = (y -x) • Ψ(x, y). ξj b(x, ξ)Ψ j (x,y))e i(x-y)ξ h dξ Applying Lemma A.1 to each ∂ ξj b(x, ξ)Ψ j (x, y), the proof of Corollary A.2 is complete.

  0, while near the boundary (see e.g. [7, Appendice A.1] in a slightly different context) we get Proposition 4.3. If a ∂ is equal to 0 near Z (i.e. a i is supported in the elliptic region) then

	(4.10)	lim k→+∞