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In this work, dynamical systems of points on metric graphs (a discrete version of a quantum graph with localized wave packets) that have longest stabilization time are studied. It is shown that the set of dynamical systems over metric graphs that can be constructed from a given set of edges with fixed lengths always contains a system consisting of a bead graph with vertex degrees not greater than three that demonstrates longest stabilization time. Also, it is shown that dynamical systems of points on linear graphs have the slowest growth of the number of dynamic points.

Introduction

In the field of mathematical physics, a quantum graph is a metric graph equipped with functions on its edges, a differential operator acting on such functions, and matching conditions on its vertices, see [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF]. Quantum graphs occurred as a model or tool in a number of problems in chemistry, physics, engineering, and mathematics since 1930s, see [START_REF] Pauling | The diamagnetic anisotropy of aromatic molecules[END_REF]; [START_REF] Exner | Topological bulk-edge effects in quantum graph transport[END_REF].

A dynamical system of points (DP -system) moving along the edges of a metric graph could be considered as a simplified discrete model of a quantum graph with narrow localized wave packets, see [START_REF] Chernyshev | Time-dependent schrödinger equation: statistics of the distribution of gaussian packets on a metric graph[END_REF]; [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF]. Points in such a system may represent supports of Gaussian wave packets in a quantum graph and/or projection of wave propagation on medium geodesics, see [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF]. Some results towards the characteristics of the dynamics of such systems were recently obtained in [START_REF] Tolchennikov | Asymptotic properties and classical dynamical systems in quantum problems on singular spaces[END_REF]; [START_REF] Chernyshev | Time-dependent schrödinger equation: statistics of the distribution of gaussian packets on a metric graph[END_REF]Tolchennikov (2018, 2017a,b). The growth of the number of points moving along edges and its asymptotics are studied for metric trees in Chernyshev and Tolchennikov (2017a) and, for some special cases, in [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF]. Additional motivation for studying such systems, that emerges from mathematical physics, can be found in [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF]; [START_REF] Berkolaiko | Quantum Graphs and Their Applications[END_REF].

In this paper, it is shown that, in the set of all dynamic-point systems with longest stabilization time (LSTDP -systems) constructed from a fixed set of edges, there are DP -systems on graphs with a specific structure (bead graphs) having a dynamic point at one of its vertices.
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Fig. 1: System of dynamic points PΓ on metric graph Γ Another motivation for the work is to potentially ease further study of the upper bound of the stabilization time for a DP -system on an arbitrary metric graph by taking into account only the set of its edges or considering only graphs of a specific structure.

Section 2 contains basic notions and definitions. In section 3, it is shown that longest stabilization time could not always be achieved using only tree metric graphs; also, we introduce notions of point-places and walks classes used in Section 4. Section 4 demonstrates the existence of a bead graph with vertex degrees not higher than three among LSTDP -systems. Section 5 concludes the paper with some notes.

Preliminaries

A metric graph Γ is a graph consisting of set of vertices V , set of undirected edges E, and length function l mapping each edge e = {v 1 , v 2 } ∈ E to a positive real, i.e., l : E → R + , see [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF]. For technical convenience, each edge e = {v 1 , v 2 } in E may be considered as a pair of arcs v 1 , v 2 and v 2 , v 1 , and both arc lengths coincide with the length of e; both notions will be used interchangeably.

The arc opposite to arc a = v j , v i is denoted by ā, i.e., ā = v i , v j . For two points x and y on the graph, metric ρ(x, y) is the shortest distance between them, where distance is measured along the edges of the graph additively. A walk is a finite or infinite sequence of arcs which joins a sequence of vertices. A trail (path) is a walk in which all edges (vertices) are distinct.

The set of all walks from vertex v to vertex v is denoted by W(v, v ). For a walk w, the length l(w) is the sum of lengths of all the arc entries in w. The support of walk w is the set of all arcs in w and is denoted by S(w). The (directed) multisupport of walk w in graph Γ is a new (directed) graph S(w) obtained from Γ such that it has the same vertices V as Γ, and, for each entry of arc v i , v j in w, we introduce a new edge {v i , v j } (new arc v i , v j ) into S(w), i.e., the number of edges (arcs) in S(w) is equal to the number of arc entries in w. Note that a walk may contain many entries of an arc.

For a metric graph Γ, the dynamics of a system of dynamic points P Γ on Γ is defined as following. In the initial state, some vertices of Γ hold a dynamic point. When time starts to flow, each such point p located in vertex v, for each edge e incident to v, produces a point p on each e, and p disappears (informally, it corresponds to wave scattering); each produced point p starts moving along corresponding e. Note that if we consider e as a pair of directed arcs, then p is generated on and moving along the arc outgoing from v. All points move with the same constant speed -for simplicity, let it be a unit of length per a unit of time, and, due to new points generation, some arcs may carry more than one point. When any moving point reaches any vertex v , again, a new point on each outgoing arc incident to v is produced. When several points reach a vertex simultaneously, on each outgoing arc, only one point is produced, as if only one point has reached the vertex; i.e., points met at a vertex fuses, and each coordinate of an arc can carry only one dynamic point. However, points do not collide anywhere on edges except vertices, i.e., if two points met on an edge, they both continue their movement. This, probably, becomes clearer if we consider the edge as a pair of arcs; then, points converging on an edge move along separate opposite arcs. In Figure 1, the initial set of points consists of two points in vertices v 1 and v 3 . The point in v 1 produces a new point on edge {v 1 , v 2 }, The point in v 3 produces points on edges leading to vertices v 2 , v 4 , v 5 , v 6 , v 7 . After one time unit, there are no more points in v 1 and v 3 (coloured gray), but there are points (coloured black) moving from v 1 and v 3 to their adjacent vertices.

More examples and further details on DP -systems on metric graphs and some of their extensions can be found in Chernyshev and Tolchennikov (2017b,a); [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF].

Cutting of a metric graph

The number of dynamic points in P Γ at time t is denoted by N PΓ (t). Let e be an edge of Γ; the number of points on e at time t is denoted by N e (t). For dynamical systems of points P Γ and P Γ , we say that the growth rate of P Γ is equal or less thus of P Γ iff ∀t ∈ R + \Coll : N PΓ (t) ≤ N P Γ (t), where Coll is the (countable) set of time points when at least two dynamic points met in a vertex; we exclude such time points as the number of dynamic points decreases for these moments. In what follows, we discuss growth and stabilization implicitly omitting vertex collision time points Coll .

The stabilization time t s (P Γ ) of DP -system P Γ on graph Γ with edges of commensurable lengths is the value of the period of time from the initial time point to the point in time when the number of dynamic points N Γ (t) on Γ has been stabilized, see [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF], i.e., ∀t ∈ R + \ ([0, t s (P Γ )) ∪ Coll ) : N Γ (t) = N Γ (t s (P Γ )). For a given set of edges E, let LSTDP (E) be the set of DP -systems constructed from E demonstrating the longest stabilization time (LSTDP -systems); note that LSTDP (E) is not necessary a singleton.

The growth of N PΓ (t) at time t 0 is possible iff the number of points simultaneously reached a vertex v at t 0 is strictly less than the (out-) degree of v.

In this section, it is shown that, while for an arbitrary DP -system P Γ , there is always a tree DP -system which growth rate is equal or less than thus of P Γ ; still, set LSTDP does not always contain a DP -system over a tree.

To begin with, we suggest to partition walks into equivalence classes under the following equivalence. Let v be a vertex and e = {v a , v b } be an edge of Γ. Let set W(v, e) be the union of sets W(v, v a ) and W(v, v b ). Let us introduce an equivalence relation ≈ over set of walks W(v, e) defined as follows:

• if walks w 1 and w 2 both end in v a or both end in v b , then they are equivalent iff their lengths are congruent modulo 2l(e), i.e.,

∀ w 1 , w 2 ∈ W(v, v a ) 2 ∪ W(v, v b ) 2 : w 1 ≈ w 2 ⇐⇒ l(w 1 ) ≡ l(w 2 ) (mod 2l(e))
• if, w.l.o.g., w 1 ends in v a , and w 2 ends in v b , then they are equivalent iff the difference of their

v 0 v 2 v 3 e s v 1 v 4 v 5 v 6 v 1 Fig. 2: Metric graph with a cycle e1 . . . e k lengths is congruent to l(e) modulo 2l(e), i.e., ∀ w 1 , w 2 ∈ W(v, v a ) × W(v, v b ) : w 1 ≈ w 2 ⇐⇒ l(w 1 ) -l(w 2 ) ≡ l(e) (mod 2l(e))
For each edge e = {v 1 , v 2 }, set W(v 0 , e) is partitioned into equivalence classes under ≈. The arrival of point p to vertex v of e, moving from v 0 to v along walk w, induces a new point on e iff w has the minimum length in [w] ≈ ; i.e., only the shortest walks of [w] ≈ induce a new point on e. Now, consider two arcs v 1 , v 2 and v 2 , v 1 as a set of points forming a loop; the point-places move around the loop along the arc directions with the same speed as dynamic points. We name them point-places as, when a dynamic point reaches a point-place, the dynamic point continue its movement bound to the point-place; we denote such point-places on figures with empty circles (as in Fig. 2). Thus, for edge e, an equivalence class [w] ≈ of W(v 0 , e) corresponds to a point-place which will be saturated by a dynamic point that came from v 0 along the minimal path of [w] ≈ . It is possible to define point-place evolution and corresponding time-dependent equivalence classes in a more rigorous manner, but, to avoid handling time-dependent coordinates, we just take class representatives for t = 0.

The first observation is that, for any dynamical system P Γ , there is a DP -system constructed from the same edges consisting of a tree and a point that has less or equal growth rate. Note that we do consider only non-empty connected DP -systems with at least one dynamic point.

Lemma 1 Let E be a given set of edges with a length function l on E, and P Γ be a dynamical system with a graph Γ constructed from E. Then, there is a dynamical system P Γ consisting of a tree graph Γ constructed from E and one dynamic point at its vertex, such that the growth rate of P Γ is equal or slower than thus of P Γ .

Proof: Let P Γ have N 0 initial points on metric graph Γ, where N 0 > 0. Obviously, elimination of points
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Fig. 3: Metric graph Γ at a) and its possible cuttings Γ at b) and Γ at c) in P Γ can only decrease growth rate. Thus, if N 0 > 1, it is safe to eliminate all points in P Γ except one arbitrary dynamic point p 0 in vertex v 0 .

Let Γ be not acyclic. The proof is based on an observation that a cutting of a loop in Γ can only decrease growth rate.

Now, let v i1 , v i2 = a 1 , . . . , a k = v i k , v i1 be a cycle in Γ.
Let us split the cycle at arc a k , i.e., a vertex v i1 is introduced, arcs a k and āk are replaced with a k = v k , v i1 and ā k in resulting graph Γ ; in Figure 2, cycle v 1 , v 4 , v 5 , v 6 is split at vertex v 1 , i.e., {v 6 , v 1 } is removed, vertex v 1 and edge {v 6 , v 1 } are added. For any edge e, the operation can only narrow set W(v 0 , e); i.e., all walks of the resultant graph Γ are realizable in Γ. Thus, no shorter walks are introduced; and, no point-place on e in Γ is saturated earlier than the corresponding one on e in original Γ.

By repeating cycle elimination, we obtain P Γ on a tree metric graph. 2 2

However, we cannot use the same approach to achieve an LSTDP -system on a tree. A cutting may completely eliminate some classes of walks of original P Γ that stipulate longest stabilization time (LSTclasses), i.e., those whose shortest walks are longest among all the walk classes of P Γ for all the edges of Γ (LST -walks). The dynamic points corresponding to such LST -classes never occur in P Γ , so stabilization does not depend on (wait for) these dynamic points and may occur earlier. The metric graph Γ that demonstrates such phenomenon is depicted in Figure 3a). The dynamic point system P Γ on Γ consists of only a dynamic point in v 1 . Lengths of e 1 and e 2 are equal to 1, and thus of e s is equal to 2. The stabilization time t s (P Γ ) is equal to 4, and ∀t > t s (P Γ ) : N Γ (t) = 8. If we cut Γ into Γ as in Figure 3b), stabilization time t s (P Γ ) is downgraded to 3, and ∀t > t s (P Γ ) : N Γ (t) = 4.

To handle this obstacle, we suggest to fix one of shortest LST -walks in an LST -class, and conduct the cutting preserving the walk. In the example above, the 'missed' points were generated by the eliminated walks in the class that contains LST -walks e 1 , e 1 , e 1 , e 2 and e 1 , e 2 , e 2 , e 2 . Thus, if we cut graph Γ into Γ preserving such walks, then P Γ will have stabilization time not less than P Γ even if some non-LSTclasses vanish and overall N Γ could decrease. A possible cutting is depicted in Figure 3c).

If such a cycle cutting preserving LST -walk would always be found, then LSTDP should always contain a tree and, moreover, using a procedure from the next section, a linear graph. Unfortunately, the graphs of DP -systems in Figure 4 cannot be cut into an acyclic graph preserving the stabilization time. All the edges of the graphs in Figure 4 have length equal to 1. For DP -system in 4a), it could be checked manually; the last point is generated on e s at t = 4, while, for a linear graph with 4 edges, stabilization time is 3, for other trees -even less. Figure 4b) shows that an uncuttable cycle could lie not on a path from initial point vertex v 1 to stabilization edge e s . Figure 4c) shows that the absolute difference between the stabilization time of LSTDP -system on 4c) (t s = 2k + 5) and a linear graph with the same set of edges (t s = k + 5) could be arbitrary large.
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4 Bead DP -systems with longest stabilization time

In this section, we show, by applying LST -path preserving operations, that set LSTDP (E) always contains a DP -system over a graph of a specific structure. While it is easy to see that a star metric graph has the stabilization time not more than two times greater than the shortest stabilization time for a fixed set of edges, search for graphs demonstrating longest stabilization time is more tricky.

DP -system on a metric graph with incommensurable edges never stabilizes, see [START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF]; therefore, stabilization time is considered only for commensurable metric graphs.

A graph is called a bead graph if it does not contain incident cycles, i.e., there is no vertex that belongs to two different cycles, It is shown below, that, among LSTDP (E), there is a bead LSTDP -graph with one dynamic point at one of its terminal vertices and vertex degrees not greater than three. The argument is done in three steps. The first claim is that, for any E, there is a bead DP -system in set LSTDP (E).

Theorem 2 Let E be a given set of edges with a length function l on E. Set LSTDP (E) contains a bead LSTDP -system Γ with a dynamic point at a vertex. Proof: By scaling, i.e., dividing by gcd, w.l.o.g., the lengths of all edges in E are made integer, and gcd(E) is equal to 1.

The points generated by dynamic point p reached a vertex are called descendants of p, and p is the ancestor of the points; descendants and ancestor are transitive notions, i.e., descendants of descendants of p are descendants of p. Let t s (e) be the stabilization time for an edge e, i.e., ∀t > t s (e) : N e (t) = N e (t s (e)). N e (t) stabilizes when edge e receives N e (t s (e)) points. Assume that e s is the edge with the longest stabilization time t s in P Γ . Now consider the last point p s that appears on e s at stabilization time t s (e). Point p s is the descendant of an initial point p 0 in P Γ . Elimination of all initial points except p 0 in P Γ do not decrease t s (P Γ ). Thus, we may consider only DP -systems with only one dynamic point.

Let P Γ be a DP -system on graph Γ in set LSTDP (E) with point p in v 0 . Let e s be the edge with the longest stabilization time t s in P Γ , and let w s ∈ W(v 0 , e s ) be an LST -walk.

It is clear that, for any walk w from vertex u to v, it is possible to obtain a new walk w with the same length by reordering arc entries in w, such that, when any entry of arc a p = v i , v j , that corresponds to edge e p , is met in w for the first time, walk w runs back and forth on e p (do alternating series of steps āp and a p ) until there are no more entries of arcs āp or a p left in w, except probably one last entry to preserve ability to reach u. Intuitively, consider multisupport S(w), which is semieulerian by construction, and apply 'greedy' modification of Fleury algorithm [START_REF] Fleischner | Eulerian Graphs and Related Topics[END_REF]) for a semieulerian tour(walk) from u to v on S(w) that always chooses just passed edge again if it may; i.e., it is possible as Fleury algorithm is path-choice agnostic if only an edge is not a bridge. For example, for walk w = a 2 , a 3 , ā3 , ā2 , a 2 , a 3 , a 4 , there is a walk w = a 2 , ā2 , a 2 , a 3 , ā3 , a 3 , a 4 ; in this paper, such reordered walks are called greedy.

For a walk w, if the number of arcs in S(w) corresponding to edge e in Γ is odd (even), we will call edge e in Γ and the corresponding arcs in S(w) odd (even).

Let w s ∈ W(v 0 , e s ) be the greedy version of LST -walk w s , and, obviously, w s is an LST -walk in W(v 0 , e s ) itself. Note that if, while traversing S(w s ) according to w s , we reached arcs corresponding to an edge e of Γ which multiplicity is larger than 2, then, by greedy procedure, we always move back and forth on these arcs, except the case when the last arc becomes a bridge in S(w s ) during Fleury traversing. Thus, while analysing the structure of a semieulerian walk for graph cutting purposes, we may temporary omit all 'parasite' pairs of arcs in S(w s ) leaving only one arc for odd and two arcs for even edges (i.e., for k arcs, we keep 2 k+1(mod 2) of them); such a multisupport is called reduced and is denoted by S(w s ). Of course, to preserve path length, we need to restore such omitted arcs after graph cutting.

As we will see now, greedy semieulerian walks have simpler structure than arbitrary ones. At first, we take greedy walk w s and start traversing S(w s ) according to w s . If walk w s reaches vertex v a with an incident even edge e = v a , v b , traverses back and forth all the arcs corresponding to e, and end up in v a (i.e., it doesn't passes beyond v b ), then we split e from vertex v b . Such case may happen only when all but last arcs on e are traversed and the last arc is not a bridge, i.e., even if we traverse the last arc on e, there are still paths to the rest arcs incident to v b in untraversed fragment of S(w s ); this implies that when we first reach e, it lies on a cycle in the untraversed part of S(w s ). Figure 5 provides an example of such cutting. We have walk

w s = v 0 , v 1 , v 2 , v 3 , v 4 , v 5 , v 1 , v 2 , v 3 , v 4 , v 5 , v 1 , v 2 , v 6 , its greedy version w s = v 0 , v 1 , v 5 , v 1 , v 2 , v 1 , v 2 , v 3 , v 4 , v 5 , v 4 , v 3 , v 2 , v 6 ,
and a cutting of edge e = v 1 , v 5 from vertex v 5 as w s reaches but does not cross (walk beyond) v 5 from e. After all cuttings, we obtain resultant graph Γ . Obviously, the cutting procedure preserve w s ; i.e., w s is realizable in Γ . All cycles that contain even edges are cut, i.e., there are not cycles with even edges in Γ . Thus, even edges will correspond to bridges in Γ after cutting.

Note that, while we talk about cuttings, we do them simultaneously on S(w s ) and the original graph, even we are focused only on S(w s ) during the procedure. The multisupport plays auxiliary role to let us see how to cut the original graph preserving LST -walk. Now, we take Γ after cutting and S(w s ) and, if there is an edge e in Γ that corresponds to two or more arcs in S(w s ), then we remove a pair of arcs that corresponds to e and repeat the procedure while we can; the result is denoted by S mod2 (w s ). Clearly, when the proccess ends, all arcs corresponding to
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Fig. 5: a) Semieulerian v0v6-walk, b) its greedy version, and c) graph Γ after cutting -edge v1, v5 is split from v5 even edges will be removed, and, for each odd edge, only one arc is kept. As parity has not changed, all components of odd edges are eulerian, except one that corresponds to a semieulerian v 0 e s -tour. For each eulerian connected component CC in S mod2 (w s ), we find eulerian walk w cc within CC. For each vertex v 2 of w cc with degree d(v 2 ) more than two, i.e., w cc crosses vertex v 2 exactly d(v 2 )/2 times, we split v 2 into d(v 2 )/2 vertices and make w cc pass through different copies of v 2 , thus, not crossing any vertex more than once. fTherefore, by adding new vertices, we transform CC into one big cycle. For the semieulerian component, we do the same process but the result is a linear graph. After cutting, we revive all deleted pairs of arcs on edges and restore path w s in the resulting graph; it does not introduce any difficulties as, while we added new vertices, the set of edges is the same -for example, edge v 1 , v 3 in Figure 6a) corresponds to edge v 11 , v 32 of the resulting graph in Figure 6b). For a vertex v in Γ , there can be several vertices in Γ ; for example, in Figure 6, for vertex v 1 in Γ , there are vertices v 11 and v 12 in Γ . Therefore, while we reconstruct even edges that are incident to v in Γ , it is irrelevant which of new vertices corresponding to v in Γ we choose as our only goal is to preserve w s , even more -a path of the same length.
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The resulting graph is denoted by Γ and path w s reconstructed in Γ is denoted by w s . Graph Γ consists of a linear subgraph and a number of cycles, that are connected with bridges corresponding to even edges; to easier imagine it -if each cycle of odd edges is contracted to a vertex, the resulting graph is a tree of even edges. Thus, Γ is a bead graph. As all contacting cycles of odd edges are merged into one cycle, any vertex in Γ has not more than two incident odd edges with exception of e s .

As w s has the same length as w s , w s is LST -walk, and P Γ is an LSTDP -system in LSTDP (E). A graph is called a bead broom graph if it is a bead graph with a fixed connected (linear) subgraph -a handle; all vertices of the handle have at most degree two, except one of its terminal vertices. For example, in Figure 8, the graph is a broom graph with a handle v 0 , v 1 , v 2 , v 3 .
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Theorem 3 Let E be a given set of edges with a length function l on E. If there is a bead LSTDP -system Γ in LSTDP (E) with a dynamic point at vertex v 0 , then LSTDP (E) contains a bead broom LSTDP -
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Fig. 8: Resulting bead broom metric graph system Γ with a point at the end of the handle of Γ , and the handle contains edge e s with the longest stabilization time.

Proof: Let e s be an edge with longest stabilization time. We apply to Γ the procedure described in the proof of Theorem 2, and, after cutting, Γ consists of a linear v 0 e s -subgraph, odd cycles, and even bridges.

Let e s = v 2 , v 3 , where v 2 is the vertex that is closer to v 0 , i.e., v 3 does not lie on the shortest path h from v 0 to v 2 . Path h is unique as v 0 and v 2 belong to the linear subgraph of odd edges in Γ constructed as described at the previous phase; h will become the handle of the resulting bead broom metric graph.

Consider now an arbitrary even edge e b incident to h and subgraph g of Γ that corresponds to the connected component incident to another terminal vertex of e b that appears if we remove bridge e b (even e b is a bridge as was shown in the the proof of Theorem 2). On the left of Figure 7, such a subgraph containing vertices v 4 and v 5 is outlined by a grey wavy line. Let v 4 be the vertex in g adjacent to v 0 .

New graph Γ is obtained by disconnecting g from vertex v 0 in Γ and connect g to v 3 , i.e., e b is removed from Γ, and a new edge v 4 , v 3 is added. The moved subgraph g with the new edge in Γ will be denoted by g , and each vertex v and each edge e in g will be denoted by v and e , correspondingly, in Γ .

Consider set W(v 0 , e s ) in Γ and set W(v 0 , e s ) in Γ . It is needed to ensure that, after such modification of Γ, no new walks from v 0 to the endpoints of e s that decrease t s (e s ) appear in Γ .

Every walk w in W(v 0 , e s ) of Γ that has no edges of g is, clearly, in W(v 0 , v 2 ) of Γ. Let w be a walk in W(v 0 , e s ) of Γ that has edges of g in its support S(w ). For example, consider path w = v 0 , v 1 , v 2 , v 3 , v 4 , v 5 , v 4 , v 3 in Figure 7; its support is highlighted with gray. For walk w , there is a walk w in Γ that is not longer than w . Walk w contains all edges of w that do not belong to g ; in addition, for each edge v i , v j of w in g , w contains corresponding edge v i , v j in w. For v 4 , v 3 in w , w contains v 4 , v 0 . The lengths of such w and w are equal; and, thus, w and w lie in the same class [w ] ≈ . Point p moving along w from v 0 to v 3 in Γ can even induce a new point on e s earlier than moving along w in Γ if w does not contain edges of Γ beyond endpoint v 3 of e s , i.e., p produces a new point on e s in l(e s ) time units earlier. Thus, for every walk w in Γ , there is a walk in Γ that produces a point on e s not later than w . As the result, e s will be saturated in P Γ not earlier than in P Γ , and P Γ belongs to LSTM (E). 2 2 Theorem 4 Let E be a given set of edges with a length function l on E. If there is a bead broom DPsystem P Γ in LSTDP (E) with a handle h, an initial point at the end of the handle terminal vertex v 0 , and h contains an edge e s with longest stabilization time, then LSTM (E) contains a bead LSTDP -system P Γ with an initial point at one of its terminal vertices and maximum degree of 3.
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Proof: Let e s = v 2 , v 3 , where v 3 is the vertex that is farther from v 0 than v 2 .

If a vertex v is a leaf or v belongs to a cycle C in Γ that has only one incident bridge (even edge) e b , i.e., C is a terminal cycle, and v is not incident to e b itself, then v is called a bead leaf.

Consider a path p l from v 3 to a bead leaf v l of Γ that does not run through e s , and an arbitrary even edge e b of Γ that is incident to a vertex v b of p l . Let subgraph g be the connected component that occurs if we remove e b , and g does not contain p l . Let v a be another terminal vertex of e b adjacent to v b . New graph Γ is obtained by disconnecting g from vertex v b in Γ and connect g to v l , i.e., edge e b is removed and a new edge v a , v l is added. The moved subgraph g with the new edge in Γ will be denoted by g , and each vertex v and each edge e in g will be denoted by v and e , correspondingly, in Γ .

For example, in Figure 9, there is path w l = v 3 , v 4 , v 5 , v 6 from v 3 to bead leaf v 6 . Subgraph g containing vertices v 7 and v 8 is outlined by a grey wavy line and is incident to vertex v 4 of the path. Graph Γ is obtained from Γ by moving g from v 4 to v 6 .

The second part of the proof argument mostly resembles thus of the previous theorem. Consider W(v 0 , e s ) in Γ and set W(v 0 , e s ) in Γ . It is needed to ensure that no new walks from v 0 to the endpoints of e s appear in Γ that may decrease t s (e s ) in Γ .

Every walk w in W(v 0 , e s ) of Γ that has no edges of g is in W(v 0 , e s ) of Γ. Let w be a walk in W(v 0 , e s ) of Γ that has edges of g in its support S(w ). For walk w , there is a walk w in Γ that is not longer than w . Walk w contains all edges of w that do not belong to g ; in addition, for each edge v i , v j of w in t , w contains corresponding edge v i , v j in w. The lengths of such w and w are equal and, thus, w and w are in the same class [w ] ≈ . For example, in Figure 9, consider walk

w = v 0 , v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 7 , v 6 , v 5 , v 4 , v 3 ; its support is highlighted with gray. In Γ, there is a corresponding walk w = v 0 , v 1 , v 2 , v 3 , v 4 , v 7 , v 8 , v 7 , v 4 , v 5 , v 6 , v 5 , v 4 , v 3 .
Thus, for every walk w in Γ , there is a walk in Γ that produces a point on e s not later than w . As the result, e s will be saturated in P Γ not earlier than in P Γ ; therefore, P Γ belongs to LSTM (E).

For any vertex v in Γ with four or more incident edges, v may have two odd incident edges if v lies on a cycle, v may have one another odd incident edge if v is a terminal vertex of e s , and all other incident edges of v are even. One of even incident edges may belong to the e s v-path; for each other even incident edge we move it with its connected subgraph to a bead leaf. After applying such procedure long enough, we obtain a bead graph with no vertices of degree four or more.

2 2

As the set of metric graphs that can be constructed from the given finite set of edges E is finite, there is a metric graph with the longest stabilization time built from E. All given procedures combined give us the following corollary.

Corollary 5 Let E be a given set of edges with a length function l on E. There is a DP -system on a bead metric graph with vertices of degree three or less and with an initial point in one of its terminal vertices that belongs to LSTDP (E).

As the resulting tree DP -system P Γ in Lemma 1 does not contain cycles at all, if we select arbitrary edge e as a stabilization edge e s and apply the transformations of a graph suggested in the proofs of Theorems 2,3,4 to P Γ , then we obtain a linear graph P Γ . As such transformations does not add paths of new lengths, P Γ will demonstrate less or equal growth rate than P Γ . As this can be done for any P Γ , we can improve Lemma 1.

Corollary 6 Let E be a given set of edges with a length function l on E, and P Γ be a dynamical system with a graph Γ constructed from E. Then, there is a dynamical system P Γ consisting of a linear graph Γ constructed from E and one dynamic point at its vertex, such that the growth rate of P Γ is equal or slower than thus of P Γ .

The proofs are mostly agnostic regarding the numerical properties of edge lengths and specific structure of the graph. Thus, it could be interesting to extend the results to incommensurable metric graphs.

Conclusion

While the problem of estimating the longest stabilization time of an arbitrary DP -system is not solved and seems not so easy to tackle, it could be easier to overapproximate it by considering a subclass which contains LST DP -systems.

The Corollary 5 let us narrow set of DP -systems to only bead graphs of degree not higher than 3, if we want to study the longest stabilization time for the set of metric graphs constructed from E. This, probably, may ease progress towards finding the upper bound of stabilization time for an arbitrary DPsystem, which is our distant goal.

It also allows to narrow down the search state if, for given E, we want to find the longest stabilization time of LST DP (E) using algorithmic search.
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 4 Fig. 4: Examples of DP -systems that have stabilization time greater than any acyclic graph with the same set of edges. All edges have length one.

Fig. 6 :

 6 Fig. 6: a) Walk wcc in component CC of S mod2 (w s ), and b) the resulting component after all cuttings conducted b).

Fig. 7 :

 7 Fig. 7: Moving the graph fragment from vertex v0 to v3

Fig. 9 :

 9 Fig. 9: Relocation of subgraph g from v4 to v6
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